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Abstract: Mobile crowdsensing utilizes the devices of a group of users to cooperatively perform
some sensing tasks, where finding the perfect allocation from tasks to users is commonly crucial to
guarantee task completion efficiency. However, existing works usually assume a static task allocation
by sorting the cost of users to complete the tasks, where the cost is measured by the expense of time or
distance. In this paper, we argue that the task allocation process is actually a dynamic combinational
optimization problem because the previous allocated task will influence the initial state of the user
to finish the next task, and the user’s preference will also influence the actual cost. To this end, we
propose a personalized task allocation strategy for minimizing total cost, where the cost for a user to
finish a task is measured by both the moving distance and the user’s preference for the task, then
instead of statically allocating the tasks, the allocation problem is formulated as a heterogeneous,
asymmetric, multiple traveling salesman problem (TSP). Furthermore, we transform the multiple-TSP
to the single-TSP by proving the equivalency, and two solutions are presented to solve the single-TSP.
One is a greedy algorithm, which is proved to have a bound to the optimal solution. The other is a
genetic algorithm, which spends more calculation time while achieving a lower total cost. Finally, we
have conducted a number of simulations based on three widely-used real-world traces: roma/taxi,
epfl, and geolife. The simulation results could match the results of theoretical analysis.

Keywords: mobile crowdsensing; personalized task allocation; minimizing cost; traveling salesman
problem

1. Introduction

With the explosive usage of smartphones and the widely equipping of powerful
sensors on them, a practical offline crowdsourcing scheme called Mobile CrowdSensing
(MCS) [1] becomes popular in our daily life over the past few years, which recruits a group
of users to commonly finish some location-based sensing tasks through their hand-held
devices. A traditional MCS system [2–10] has three roles: a centralized platform, task
publishers, and mobile users. The platform takes charge of addressing the requestings from
task publishers and announcing the corresponding sensing tasks to mobile users as a form
of notification in their mobile-device applications.

A common challenge in crowdsening is to find a suitable allocation from tasks to
users, in order to achieve an optimal task completion. To this end, most of the existing
researches [11–17] regard task allocation as a static matching problem between users and
tasks. In most cases, they first measure the contribution of a user to all the tasks, then
the ranking of contributions is regarded as important references to select suitable users.
However, we argue that the task allocation process is a dynamic combinational optimization
problem because the previous assigned task will influence the initial location of the user
to head for the next task. Hence, we should consider the problem as a continuous and
dynamic allocation process. Moreover, existing works usually consider time or distance
spent for moving to a task location as the actual cost, while ignoring the user’s preference
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for the task. Actually, the user’s preference may make a discount for the time or distance
cost. For example, we suppose such a task, which is located at a shopping mall, and a user
likes shopping very much. Then even though the mall is far away from the user, the user
may still be willing to complete the task. Obviously, the above two limitations could be
further improved to enhance the efficiency of task allocation.

Considering the above limitations of existing task allocation researches, in this paper,
we design a Personalized Task Allocation strategy in Mobile crowdsensing (PTAM), with
the purpose of minimizing the total cost for the users to complete the sensing tasks. As
shown in Figure 1, the cost for a user to finish a task depends on not only the distance
but also the user’s interests. Then for user 1, the cost (Cost 2) from shopping mall to
restaurant does not only equal to the distance, the interests of user may achieve a discount
for the actual cost. Obviously, there are two roles in Figure 1: personalized users, and
location-based tasks. The problem turns into how to assign tasks to users for minimizing
the total cost of completing all the tasks and getting back to the initial locations of users.

Personalized 

Users

Location-based

Tasks

How to assign the tasks 

to users for minimizing 

the total cost?

Interests Discount

Shopping        0.6

Delicacy        0.4

Interests Discount

Movie          0.7

Sports          0.3

Cost 1 

=0.6·distance1

Cost 3

=0.7·distance 3

Cinema

Restaurant

Shopping Mall

Gym

Cost 2

=0.4·distance 2 Cost 4

=0.3·distance 4

User 1 User 2

Figure 1. Personalized task allocation strategy for mobile crowdsensing. The cost for a user to finish
a sensing task depends on not only the distance but also the user’s interest on the location of task.
Then the problem is transformed into how to assign the tasks to users for minimizing the total cost.

In order to solve the above problem, we first formulate the problem as a heterogeneous,
asymmetric, multiple TSP. Then, we transform the multiple-TSP to single-TSP, which could
be solved through both greedy and genetic algorithms. Furthermore, we make the greedy
algorithm with an acceptable bound to the optimal solution, and also make the genetic
algorithm with heuristic close to the optimal solution. The above research thoughts raise
the following challenges: (1) due to the reason that the estimated cost takes the user’s
preferences into consideration, then the costs do not satisfy geometric property. Hence, the
formulated TSP is a heterogeneous, asymmetric, multiple TSP problem; (2) the simplest
TSP is NP-hard, while the formulated problem in this paper is much more complex than
the traditional TSP; (3) different from the cost maximization problem, the cost minimization
problem in TSP could not be directly solved by a bounded greedy algorithm.

The main contributions of this paper are briefly summarized as follows:

• A cost estimation method is proposed by taking the user’s preference for the sensing
task into consideration. Furthermore, the minimizing cost problem is formulated as
solving a heterogeneous, asymmetric, multiple TSP.

• Through transforming multiple-TSP to single-TSP, we first propose a greedy algorithm:
PTAM-Greedy when the task is urgent, which is proved to have a bound to the
optimal solution.

• When the task is not urgent, we further propose a genetic algorithm mixed with
heuristic: PTAM-Genetic to minimize the total cost. The genetic algorithm consumes a
lot of calculation time while achieving a better total cost performance.

• We conduct a number of simulations based on three widely-used real-world traces.
The simulation results show that, PTAM-Greedy achieves a bounded cost perfor-
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mance, and PTAM-Genetic achieves the lowest total cost compared with the other task
allocation strategies.

The remainder of the paper is organized as follows. The system model and problem
formulation are presented in Section 2. The personalized task allocation strategies (PTAM-
Greedy and PTAM-Genetic) are detailedly described in Section 3. In Section 4, we evaluate
the performance of the task allocation strategies proposed in this paper by conducting a
number of simulations. The related works are introduced in Section 5. Finally, we conclude
the paper in Section 6.

2. System Overview
2.1. System Model

We consider a MCS system including a set of mobile users, denoted by U = {u1, u2, . . . ,
un} and also a set of tasks: S = {s1, s2, . . . , sm}. At the system beginning time, each user has
an initial location, and all the tasks also have their corresponding locations. Moreover, all
the users’ preferences are denoted by the set A = {a1, a2, . . . , ar}. Without loss of generality,
ui’s preferences are Aui ⊆ A, while each task location si could meet some preferences of
users, which are Asi ⊆ A. The physical distance between ui and sp is recorded as D(ui, sp),
and the distance between sp and sq is D(sp, sq). Accordingly, Ci(ui, sp) represents the cost
for user i to finish sensing task sp from its initial location. While Ci(sp, sq) represents the
cost for user i to finish sensing task sq from its previous task location sp. As described
before, the cost C depends on not only the distance D, but also the user’s preference A.

Each ui begins with its initial location, and heads for its first task location sp with
the cost Ci(ui, sp). In the following steps, if ui is at the location of sp, its cost to finish
the next task sq is Ci(sp, sq). We assume that a task sp could be finished by a user who
arrives at the location of sp. In other words, we do not consider the data sensing and
uploading process. Moreover, all the tasks should be allocated to at least one user, if a
task sequence is assigned to a user, the user needs to begin with its initial location and
head for the locations of task sequence one by one, and finally go back to its initial location.
For example, if the task sequence {s1, s3} is allocated to u1, then u1 will consume the
cost C1(u1, s1) + C1(s1, s3) + C1(s3, u1) to finish the tasks. In this way, the locations of
users and tasks are regarded as nodes, and the costs are considered as edges with weight
among nodes. If we determine the allocation from tasks to users, a unidirectional weighted
topological graph consisting of cycles is formulated. The notations used throughout this
paper are listed in Table 1.

Table 1. List of key notations.

Notation Description

U, S, A the set of users, the set of tasks, the set of users’ preferences

Aui , Asi the preferences of user i, the preferences of task location si that could satisfy some
preferences of users

ui, uv
i the initial location of the user i, the terminal point of the user i on the trans-

formed graph

si
j the j-th virtual task location of user i

m, n the number of task locations, the number of users

Ci(ui, si) the cost of user i from ui to task si

Ci(sp, sq) the cost of user i from sp to sq

D(ui, si) the physical distance between ui and si

D(sp, sq) the physical distance between sp and sq
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Table 1. Cont.

Notation Description

xiq the ui’s preference level for task sq

diq the discount for ui to task sq

Pi the path of user i in the transformed graph from the initial location ui to its corre-
sponding terminal point uv

i in the optimal solution

Ri the tour of user i in multiple-TSP

G a transformed graph

V the collection of nodes in graph G

E the collection of edges in graph G

Y a cycle cover in graph G

Y1, . . . Yl the cycles in cycle cover Y

Ik the set of all indices i, such that Yi is a k-vertices-cycle (k ≥ 2)

2.2. Problem Description

By regarding the users and tasks as nodes, and considering the corresponding costs as
edges, we get a unidirectional weighted topological graph. We attempt to assign the tasks
to the users, and also determine the order in which the tasks are completed. In other words,
we want to allocate the tasks to users in the manner of task sequences. If a task sequence
is assigned to a user, then the user should complete the tasks one by one following the
sequence order. A task allocation strategy is composed of Si and Ci, where Si is the task set
allocated to ui, while Ci is the total cost for ui to complete task sequence and get back to
initial location. Hence, our purpose is to find the best task allocation meeting the following
optimal problem:

Minimize
n

∑
i=1

Ci

s.t. ∀s ∈ S, ∃Si, s ∈ Si (1)

Here, we aim to find the best task allocation to minimize the total cost for all the users,
with the constraint that each task is at least assigned to one user. It is worth noting that,
maybe some users are not assigned with any task, while all the tasks should be allocated. If
necessary, a task may be assigned to multiple users.

3. Personalized Task Allocation Strategy

In this section, we detailedly describe all the modules in task allocation system frame-
work as shown in Figure 2. It mainly includes the following three parts: cost estimation,
which estimates the actual costs for the edges among nodes in the unidirectional weighted
topological graph; multiple-TSP transformation, which transforms the formulated multiple-
TSP to a single-TSP; and single-TSP solution, which solves the transformed single-TSP by
both greedy and genetic algorithms.
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Multiple-TSP 

Transformation
Equivalence Proof Single-TSP

Adding Virtual Locations 

Single-TSP

Solution Genetic Algorithm with 

Heuristics

Bound Proof Greedy Algorithm

Urgent Task 

or not

Yes
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Figure 2. The task allocation system framework.

3.1. Cost Estimation and Multiple-TSP Formulation

First, we focus on the calculation process for the weights of edges among nodes in
the formulated unidirectional graph. As previous described, the cost for ui to move from
sp to sq is Ci(sp, sq), which mainly depends on not only the distance between sp and sq:
D(sp, sq), but also ui’s preference for sq. Obviously, a longer distance D(sp, sq) should lead
to a higher cost because ui needs to move a long distance to finish the task. While if ui is
interested in the location of task sq, then the actual cost should have a discount because ui
perhaps would like to head for its interested task location even though the location is far
away from ui. Hence, we should give a reasonable estimated cost which considers not only
the distance between the user and task location but also the user’s preference for the task.

In order to solve the above problem, the key is to measure the ui’s preference level
for sq. We adopt the tag-matching method to measure the preference level, which means
that we mark both user’s preferences Aui and task location’s attributes Asq from a common
attribute set A. Then the first step is to measure the ui’s preference level xiq for task sq. We
use the following equation to calculate xiq:

xiq =
|Aui

⋂
Asq |

|Aui |
(2)

Obviously, x is in [0, 1], if a user’s preference could match all the tags of location sq,
then x = 1. Otherwise, x < 1. Then, we attempt to calculate the discount for ui to task sq,
which is defined as diq:

diq = (dmax − 1)
√

1− (1− xiq)2 + 1, (3)

where dmax is a constant (0 < dmax < 1), which represents the maximum discount. Ob-
viously, if xiq = 1, which means ui is totally interested in sq, then diq = dmax. It is not
difficult to find that when xiq = 0, diq = 1, this is because if ui is totally not interested in sq,
then there is no discount for the actual cost. Moreover, diq is an decreasing function of xiq:
∂diq
∂xiq

< 0, this is because a larger interest leads to a better discount. While this function is

convergent:
∂2diq
∂xiq

2 > 0. The above descriptions also explain that why we use Equation (3) as

the discount function.
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Finally, the actual cost of ui to move from the location of sp to the location of sq is
defined as the Equation (4). Obviously, dmaxD(sp, sq) 6 Ci(sp, sq) 6 D(sp, sq), and the
value of Ci(sp, sq) depends on not only the distance but also the preference.

Ci(sp, sq) = diqD(sp, sq) (4)

After calculating the weights of edges, we now focus on the structure of formulated
unidirectional graph. It is not difficult to find that, the cost Ci(sp, sq) may be different
from Ci(sq, sp). Hence, the formulated unidirectional graph is asymmetrical. Moreover,
for different users, the costs of them to move from sp to sq may be also different. So the
formulated unidirectional graph is heterogeneous. To sum up, the problem changes to
be finding the optimal task allocation (assigning task sequences to users) to minimize the
total cost (depends on not only the distance between user and task but also the user’s
preference for the task) in the unidirectional, heterogeneous and asymmetrical weighted
graph. It is not difficult to find that, in fact, this is equivalent to solving a heterogeneous
and asymmetrical multiple-TSP [18].

3.2. Transformation from Multiple-TSP to Single-TSP

In order to solve the multiple-TSP, we transform it to the equivalent single-TSP [19].
The detailed process of the transformation is described as follows. First, we replicate a set
of virtual task locations for each user. The virtual task locations for user i is defined as
si

j, ∀j ∈ {1, . . . , m}. For each i ∈ 1, . . . , n, si
j is the virtual task location of sj for user i. The

cost of moving from location si
p to si

q of user i is denoted by Ci(sp, sq) for all p, q ∈ {1, . . . , m}.
As shown in Figure 3, each user has a replicated virtual task location corresponding to each
physical task location.

, ) , )

, ) , )

, u )

, )

, ) , )

, ) , )

, u )

, )

, ) , )

, ) , )

, u )

, )

Users

Tasks

) Cost for user i to 

travel among locations

Figure 3. An example of the virtual task locations and costs for 3 users and 2 task locations.

Then, we add a virtual terminal point for each user. Specifically, we denote uv
i as the

terminal point of user i. So there are m + 2 nodes corresponding to user i. Due to the fact
that there are n users, the total number of nodes in the transformed graph is n(m + 2). The
costs of the edges on the transformed graph are calculated as follows:
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C(ui, si
j) = Ci(ui, sj) + B, ∀i ∈ {1, . . . , n},

∀j ∈ {1, . . . , m}.
C(ui, uv

i ) = B, ∀i ∈ {1, . . . , n}.
C(uv

i , ui+1) = 0, ∀i ∈ {1, . . . , n− 1}.
C(uv

n, u1) = 0.

C(si
p, si+1

q ) = Ci+1(sp, sq) + B, ∀i ∈ {1, . . . , n− 1},
∀p, q ∈ {1, . . . , m}, p 6= q.

C(sn
p, s1

q) = C1(sp, sq) + B, ∀p, q ∈ {1, . . . , m}, p 6= q.

C(si
j, si+1

j ) = 0, ∀i ∈ {1, . . . , n− 1}, ∀j ∈ {1, . . . , m}.

C(sn
j , s1

j ) = 0, ∀j ∈ {1, . . . , m}.

C(si
j, uv

i+1) = Ci+1(sj, ui+1) + B, ∀i ∈ {1, . . . , n− 1},

∀j ∈ {1, . . . , m}.
C(sn

j , uv
1) = C1(sj, u1) + B, ∀j ∈ {1, . . . , m}. (5)

Here, B is a positive constant which is set to be 2(n + m)maxn
i=1maxm

p,q=1Ci(sp, sq), and
also large enough. If an edge does not have a cost in above equations, it does not exist in
the transformed graph. Using the Equation (5), a transformed graph is obtained. Figure 4
demonstrates the transformed graph for 3 users and 2 task locations.

Then, we prove the equivalence of the transformed single-TSP and the initial multiple-
TSP in the following theorem.

, )+B

, )+B

, )+B

, )+B

, )+B

, )+B

Users

Tasks

B

B

B

, 
)+
B

, 
)+
B

Virtual nodes

Edge with 0 cost

Figure 4. An example of the transformed graph of the single-TSP for 3 users and 2 task locations.

Theorem 1. Given an optimal solution, yopt, of the single-TSP, the optimal solution of the multiple-
TSP could be achieved in n + m steps, which is a set of tours R1,. . . ,Rn [19].

Proof. We give a common assumption that the optimal solution yopt starts from the initial
location of the first user, u1. To prove the Theorem 1, we state the following lemmas:
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Lemma 1. The optimal solution yopt for the single-TSP has some natures, which are listed as follows:

1. We define the virtual location set corresponding to task location sj as Lj = {si
j : i = 1, . . . , n}.

Moreover, we make user that there is only one edge that comes into and departs from Lj.
2. Assume that si

j is the first virtual location in Lj visited by the path in the optimal solution,
after that, the path will visit all the remaining virtual locations in Lj before leaving Lj.

3. The user route, Pi, from the initial location ui to its corresponding terminal point uv
i in yopt

will not pass through any other users’ initial locations and terminal points.
4. The cost of the optimal solution C(yopt) is equal to the summation of all the route costs of

users, i.e., ∑n
i=1 C(Pi).

Proof. The cost of the incoming and outgoing edges of Lj would have a value B associated
to it. If the user route in the optimal tour leaves Lj without visiting all the virtual locations
in Lj, there will be other paths entering Lj to visit remaining locations whose cost is at least
greater than B. Since the optimal solution would have a least number of edges whose costs
are no less than B, the number of edges entering and leaving Lj is as few as possible. So
nature 1 and nature 2 are proved. Due to nature 2, the transformed graph is such that
the user route from ui after visiting a subset of the virtual locations must visit uv

i in the
end. In other words, the user route can pass through any other users’ initial locations
and terminal points only if nature 2 is violated. Therefore, nature 3 is true. For each
terminal point, there is only one outgoing edge and the cost is zero. So all these edges
{(uv

1, u2), (uv
2, u3), . . . , (uv

n, u1)}must exist in the optimal solution and removing all these
edges will leave n unconnected user routes P1, P2, . . . , Pn. Hence, C(yopt) = ∑n

i=1 C(Pi),
nature 4 is proved.

Lemma 2. Given an optimal solution on the transformed graph, yopt, a set of tours R1,. . . ,Rn are
available for the multiple-TSP and the cost of multiple-TSP ∑n

i=1 C_(Ri) = yopt − (n + m)B. The
above tours could be achieved in n + m steps.

Proof. We denote βi as the number of the virtual location sets visited by Pi in the optimal
solution, that is, βi is equal to the number of tasks that user i performs. If βi > 0, we
denote the virtual location sets visited by Pi as Li1, Li2, . . . , Liβi . The path visits the sets
in the order of Li1, Li2, . . . , Liβi . Let the tour of the ith user, Ri, constructed from Pi be
{ui, si1, si2, . . . , siβi , ui}. Specifically, sij is the physical location corresponding to Lij and sk

ij
is the virtual location corresponding to user k in Lij for all j ∈ {1, . . . , βi}. When i is equal
to 1, the following equation is available.

C(Pi) = C(u1, s1
11) +

β1−1

∑
h=1

C(sn
1h, s1

1(h+1)) + C(sn
1β1

, uv
1)

= C1(u1, s11) + B +
β1−1

∑
h=1

(C1(s1h, s1(h+1)) + B)

+ C1(s1β1 , u1) + B

= C_(R1) + (β1 + 1)B. (6)

Without loss of generality, the equation is workable for any i > 1. When βi = 0,
Pi is made up of only one edge (ui, uv

i ), so Ri = ∅ and C_(Ri) = 0 in this case. So the
cost of the optimal solution, C(yopt), can be represented as Equation (7). For any i, Ri can
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be transformed from Pi in βi + 1 steps. Hence, all the tours are available in n + m steps
from yopt.

C(yopt) =
n

∑
i=1

C(Pi)

=
n

∑
i=1,βi>0

C(Pi) +
n

∑
i=1,βi=0

C(Pi)

=
n

∑
i=1

C_(Ri) + (m + n)B. (7)

Lemma 3. There are some optimal tours, R∗1 , . . . , R∗n, of the multiple-TSP. A feasible solution y
can be constructed on the transformed graph which satisfies ∑n

i=1 C_(R∗i ) = C(y)− (n + m)B.

Proof. If R∗i contains no point for user i, let Pi consists of only one edge(ui, uv
i ). Otherwise,

assume that R∗i is represented by {ui, si1, si2, . . . , siβi , ui}, we can build Pi that starts from
ui and visits all the virtual location sets in the order of Li1, Li2, . . . , Liβi and arrives at the
terminal point uv

i . Then, add the zero cost between the terminals and initial locations
(i.e., {(uv

1, u2), (uv
2, u3), . . . , (uv

n, u1)}). So a feasible solution y for single-TSP is available
on the transformed graph. Considering Lemma 2 in the reverse method, the following
equation: ∑n

i=1 C_(R∗i ) = C(y)− (n + m)B could be proved.

We can build the tours for the multiple-TSP as in Lemma 2. According to Lemmas 2 and 3,
the following equation is available.

n

∑
i=1

C_(Ri) = C(yopt)− (n + m)B

≤ C(y)− (n + m)B =
n

∑
i=1

C_(R∗i ) (8)

Hence, the tours, {Ri : i ∈ {1, . . . , n}}, is optimal for the multiple-TSP. Theorem 1
is proved.

3.3. Single-TSP Solution
3.3.1. Greedy Algorithm

Since the minimal TSP in this paper does not satisfy the geometric nature, that is,
the sum of two sides is larger than the third side in any triangle, it is difficult to find a
greedy algorithm whose approximate performance satisfies bound [20], so we transform
the minimization problem to maximization problem.

As shown in Algorithm 1, PTAM-Greedy works as follows, we first take the trans-
formed graph G = (V, E, C(E)) obtained in the previous section as input, where V repre-
sents the node set, E is the edge set in G and C(E) denotes the cost function on the set of
edges E. Then we calculate the maximum cost C(emax) for all edges and redefine the cost
of each edge as C′(ei) = C(emax)− C(ei) and obtain the new graph G′. Now we have trans-
formed the asymmetric minimization TSP into the maximization TSP. Moreover, we run
Algorithms 2 and 3 on the graph G′ using the new cost function C′, each algorithm returns
a Hamiltonian tour and we take the heavier Hamiltonian tour of Algorithms 2 and 3 as the
final solution [21]. In this way, we can obtain the guaranteed approximation performance
of PTAM-Greedy as 8

13 . Next, we introduce Algorithms 2 and 3 in turn.
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Algorithm 1 PTAM-Greedy.
Input: the transformed graph G = (V,E,C(E))
Output: a Hamiltonian tour on G

1: Let C(emax) =max{C(ei)} for ∀ei ∈ E.
2: Define a new cost function C′(ei) = C(emax)− C(ei) for ∀ei ∈ E.
3: Run Algorithms 2 and 3 on the graph G′ = (V, E, C′(E)) with new cost

function, respectively.
4: Return the heaviest tour as the final solution.

Algorithm 2 GHT.
Input: a graph G = (V,E,C(E))
Output: a Hamiltonian tour on G

1: Compute a maximum weight cycle cover Y of G with greedy method.
2: Define a new cost function C′ for edges in E. ∀ i ∈ I2, C′((si, ti)) = C′((ti, si)) =

2(bi − ci).
3: ∀ i, j ∈ I2, i 6= j, C′((ti, sj)) = C((ti, sj)) + (bi − ci) + (bj − cj).
4: ∀ i ∈ I2, if u 6∈ {tk|k ∈ I2} and v 6∈ {sk|k ∈ I2}, C′((u, si)) = C((u, si)) + (bi − ci), at

the same time, C′((ti, v)) = C((u, si)) + (bi − ci).
5: For other edges e, C(e) = C′(e).
6: Compute the maximum perfect matching M on G = (V, E, C′(E)).
7: Delete the edge with the smallest weight of each cycle in Y except 2-nodes-cycles and

get a set of paths P.
8: Let T denote the set of 2-nodes-cycles in Y which do not have the common edge with M.
9: Let M̌ denote all the edges in M but not in any 2-nodes-cycle.

10: Form the graph G̃ = (V, T ∪ P ∪ M̌) and color the edges in G̃ into two colors.
11: For all 2-nodes-cycles out of T, add the edge with larger weight to the above two color

sets. For each 2-nodes-cycle Yi, em and en represent two edges that connect the nodes in
Yi, then color the edge of Yi adjacent to em the same color as em and the edge adjacent
to en the same color as en.

12: Connect the paths in the color set with larger total weight randomly and get the solution.

Algorithm 3 GHTCAN.
Input: a graph G = (V,E,C(E))
Output: a Hamiltonian tour on G

1: Compute a maximum weight cycle cover Y of G with greedy method.
2: Delete the edge with smallest weight of each cycle and achieve a group of paths P.
3: Connect all the paths in P arbitrarily and get the solution.

As for Algorithm 2, we first find the maximum cycle cover Y of the transformed graph
G using the greedy method in line 1, where the cycle cover of graph G is a group of the
node disjoint cycles which contains all nodes. Let Y1, Y2,. . . , Yl denote all cycles in cycle
cover Y. In the greedy method, we search a cycle with the highest weight, then continue to
search next cycle with the highest weight at the remaining nodes until getting the cycles
which cover all nodes. In this paper, we denote Ik as the set of all indices i such that Yi
is a k-cycle. Then in line 2 we redefine the cost function for each edge in E, the changes
mainly happen in 2-nodes-cycles, where (si, ti) denotes the heavier edge in Yi for all i ∈ I2,
bi is the greater weight in Yi and ci is the lower one. Then in lines 3–4, we add the weight
of bi − ci to all the edges adjacent to the edge (si, ti) with larger weight. Moreover, we
calculate a maximum perfect matching M in line 6, the perfect matching is a set of edges
without common nodes, which covers all nodes in V. Then in lines 7–9, we delete the edge
with smallest weight for each cycle which covers at least 3 nodes and get a group of node
disjoint paths P. Next, in lines 10–11 we compress the 2-nodes-cycles into a single node
and obtain the graph G̃, then according to the coloring lemma [21], we color all edges in
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graph G̃ into two colors such that the edges in each color set could form a nodes disjoint
path set. Finally, we connect the paths of the color set with heavier total weight arbitrarily
and get a Hamiltonian tour.

For example, assuming that there are 6 nodes n1, . . . , n6 in graph G, we first compute
the maximum weight cycle cover Y of G. In Figure 5a, (n1, n3, n2) and (n4, n6, n5) are the all
two 3-nodes-cycles in the cycle cover Y that we have found with the greedy method, and
the number next to the edge represents the weight in Figure 5a. Then we change the weight
for each edge and compute the maximum perfect matching M according to Algorithm 2,
afterwards, we remove the lightest edge in each 3-nodes-cycle. As Figure 5b shows, all
the edges in M = {(n3, n2), (n6, n5), (n1, n4)} are drawn dashed, meanwhile, (n2, n1) and
(n5, n4) are deleted as the lightest edge in each 3-nodes-cycle. Moreover, according to the
coloring lemma [21], we color all the edges into two colors and select the edges (n1, n3),
(n3, n2), (n4, n6) and (n6, n5) in the color collection with heavier total weight as shown in
Figure 5c. Finally, we connect these edges arbitrarily, in this example, there is only one
feasible connection method, thus we connect node n2 to n4 and node n5 to node n1 and get
the final Hamiltonian tour.

n

n n

n

n5 n

n

n n

n

n5 n

(a) (c)

Edges

Nodes

n

n n

n

n5 n

(b)

Figure 5. A simple execution process of the Algorithm 2. (a) initial state. (b) computing M. (c) find
maximum cycle.

In Algorithm 3, similar to Algorithm 2, we first find the maximum cycle cover Y of
the transformed graph G. Then in line 2 we remove the edge with lightest weight for each
cycle in Y and achieve a group of node disjoint paths P. Finally, we connect all paths in P
arbitrarily and get a Hamiltonian tour which covers all nodes in G as the final solution.

Theorem 2. Using Algorithm 1 to solve the minimal TSP could achieve the performance bound of
5

13
C(emax)
C(emin)

+ 8
13 to the optimal solution.

Proof. As described before, we we can obtain the guaranteed approximation performance
of PTAM-Greedy as 8

13 [21] through solving the maximal TSP by Algorithm 1. Then we
give the following proving process.

First, we find the maximum cost edge C(emax) and the minimum cost edge C(emin) > 0
in the transformed graph, then the corresponding cost is changed from C(ei) to C(emax)−
C(ei). Then, we record the optimal cost for minimization problem is Copt, and the actual
cost for minimization problem is CPTAM. According to the bound of solving the above
maximization problem, then we have:

ϕC(emax)− CPTAM ≥
8

13
(ϕC(emax)− Copt), (9)

where ϕ is the number of edges in a solution, and obviously, ϕC(emax) ≤ C(emax)
C(emin)

Copt, so
we have:
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CPTAM ≤ (
5

13
C(emax)

C(emin)
+

8
13

)Copt, (10)

Hence, for the minimization problem, through the above algorithm, we could get a
bound of 5

13
C(emax)
C(emin)

+ 8
13 to the optimal solution.

3.3.2. Genetic Algorithm

With the purpose of further enhancing the performance of solving the above single-TSP,
the genetic algorithm called PTAM-Genetic (as shown in Algorithm 4) is proposed starting
with creating p individuals for the initial population by Nearest-Neighbor heuristic [22].
Then we adopt the fast-3-Opt heuristic [23] to transform the initial population into local op-
timal result as shown in Figure 6. The reason why we can’t use Lin-Kernighan heuristic [24]
is because it adopts 2-opt moves which will change the direction of tours so that the tour
length could be unpredictable. While the fast-3-Opt chooses a fragment and reinserts it
into another position without changing direction of tours so that the algorithm could be
used in solving the asymmetrical TSP.

Algorithm 4 PTAM-Genetic Algorithm.

1: Creates population P with Nearest-Neighbor heuristic;
2: for all individual g ∈ P do
3: fast-3-Opt(g).
4: end for
5: repeat
6: for g = 0 to #crossovers do
7: select two parents ga, gb ∈ P stochastically.
8: gc := PTAMG-crossover (ga, gb).
9: fast-3-Opt(gc).

10: with predefined probability do PTAMG-mutation(gc).
11: replace an individual of P by gc.
12: end for
13: until converged.

…

… …

Figure 6. An example of fast-3-Opt heuristic.

After that, the PTAM-Genetic starts operating on its population by random choosing
two individuals of the inputs to the crossover procedure. Then a crossover procedure called
PTAMG-crossover, as shown in Algorithm 5, is employed.

Algorithm 5 PTAMG-crossover (ga, gb).
1: gc := ga.
2: Remove all edges in gc that are not in gb.
3: Greedy_reconnect(gc).
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In Algorithm 5, the contents of the first parent ga are copied to a new individual gc.
Then in line 2, the edges in gc that are not in gb are deleted, so gc contains a series of
unconnected node sequence called fragment. Afterwards, as shown in line 3, a greedy
reconnection operation is conducted on individual gc in function Greedy_reconnect. The
detailed process is described as follows. Assume that there is a fragment (a, b) in gc where a
is the start point and b is the endpoint. For each of other fragments, we can only connect the
endpoint of the fragment to a or connect the start point of the fragment to b. Let Fa denote
the set of the fragments, for each fragment f in Fa, the edge between the endpoint of f and
a exists in neither parent ga nor parent gb. fe represents the fragment in Fa whose endpoint
can connect to a with minimum cost. While Fb is denoted as the set of the fragments, for
each fragment f in Fb, the edge between the start point of f and b exists in neither ga nor
gb. fs represents the fragment in Fb whose start point can connect to b with minimum cost.
Then, we select a fragment from fe and fs which can connect to (a, b) with minimum cost
and connect it to (a, b). The process continues until all fragments are reconnected.

Let us give an example to explain the PTAMG-crossover. As shown in Figure 7,
suppose that there are two parents, then we copy the first parent (Parent1) and delete all
edges that do not exist in Parent2. As a result, we can get the fragments: (6, 5), (3, 9), (8),
(7), (0, 4, 1), (2). Then, a fragment is chosen randomly as the start for the reconnection, for
example, (3, 9). For the start point 3, the set Fa contains {(8), (7), (0, 4, 1)} and the endpoint
set is {8, 7, 1}.

5 3 9 8 7 0 4 1 2 6

0 4 1 6 5 2 3 9 78

3 9 8 7 0 4 1 25 6

3 9 6 5 7 2 0 4 1 8

Parent1

Parent2

Fragments

Offspring

Figure 7. An example of crossover and greedy reconnection.

For the endpoint 9, the set Fb contains {(6, 5), (0, 4, 1), (2)} and the start point set is {6, 0,
2}. Assume that node 6 can connect to (3, 9) with the minimum cost among the endpoint set
and the start point set, so node 6 is connected to node 9 and the fragment after reconnection
is (3, 9, 6, 5). Through repeating the above process, all fragments are reconnected and the
offspring is available in the end.

After finishing the crossover operation, the fast-3-Opt heuristic is employed to trans-
form the offspring into a local best one. Then, the mutation as shown in Algorithm 6, is
applied. It starts with stochastically deleting k edges from the individual (4 ≤ k ≤ 7, where
k is randomly chosen, while if the total number of tasks in TSP is less than 14, then k is
randomly chosen from 1 to half the number of tasks), and a greedy reconnection operation
which is similar to the one for the crossover procedure is employed to reconnect the nearest
while having not reconnected fragment. Finally, the mutated individual is handled with
the fast-3-Opt to gain a local minimum.

Algorithm 6 PTAMG-mutation (g).

1: Randomly Choose k in an interval, which is determined by the total number of tasks.
2: Remove k randomly chosen edges from g.
3: Greedy_reconnect(g).
4: fast-3-Opt(g).
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The replacement strategy is important for maintaining adequate diversity within the
population, which may also avoid premature convergence of the PTAM-Genetic algorithm.
The replacement strategy proposed in this paper is described as follows. First, we consider
the most similar (for the total cost performance) individual of the current population to
the offspring. If the difference between them is lower than the predefined threshold, the
individual should be replaced by the new offspring. While there is a special case, if the
individual is the best one at present, then the individual will be replaced only when the
new offspring has a lower total cost. If the new offspring has a larger total cost, then the
individual with the largest total cost, while not the most similar individual in the current
population, will be replaced by the new offspring.

4. Performance Evaluation
4.1. The Traces Used

Three data sets: roma/taxi trace set [25], epfl trace set [26], and geolife trace set [27,28]
are adopted to test the performances of the task allocation strategies. The roma/taxi trace
set includes 320 taxi drivers that work in the center of Rome, Italy. The epfl trace set
contains mobility traces of taxi cabs in San Francisco, USA. While the geolife trace set
contains 17,621 trajectories. We set the initial position as the points of users’ departures,
and randomly select some positions (famous malls or views) as the task locations (as shown
in Figure 8).

(a) (b) (c)

Figure 8. Performance comparisons on the three real-world data sets. (a) roma/taxi trace set. (b) epfl
trace set. (c) geolife trace set.

4.2. Algorithms in Comparison

To demonstrate the performance of the proposed task allocation strategies, we evaluate
simulations of the following three aspects: (1) performances of PTAM-Greedy and PTAM-
Genetic; (2) bound performance for the greedy algorithm; and (3) genetic algorithm’s
performance along with the change of the number of generation. We take vast amounts of
data by the simulations, while we consider the total cost performance, which is defined as
the total cost consumed for users to complete all the tasks.

Three task allocation strategies: PTAM-Greedy, PTAM-Genetic and Random are com-
pared to test the proposed algorithms. The first two strategies are proposed in this paper,
while Random randomly assigns tasks to the users. In this paper, we consider task allo-
cation process as a dynamic combinational optimization problem, while most methods
regarded task allocation as a static allocation problem. In the dynamic special scenario,
through a large number of literature review, such as [11,17,29], we found that most methods
are improved on the basis of random. Therefore, we believe that the random method is
widely representative in this scenario, and used the random method as the comparison
method for experimental comparison.
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4.3. Simulation Results

In this section, we aim to evaluate the performance of the proposed algorithm. Specifi-
cally, we test the total cost along with the changing of the number of attributes, dmax, the
number of users and the number of tasks. The simulation results on three different real-
world data sets are illustrated in Figures 9–11. In addition, The results of PTAM-Greedy
are compared with the optimal results, meanwhile, the influence of PTAM-Genetic’s gen-
eration numbers to the total cost and execution times is tested. Finally, we compare the
optimal results with the three algorithms along with the change of number of tasks on
three data sets.
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Figure 9. Performance comparisons on the roma/taxi trace set.
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Figure 10. Performance comparisons on the epfl trace set.
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Figure 11. Performance comparisons on the geolife trace set.

Firstly, we evaluate the performances of the three algorithm: PTAM-Genetic, PTAM-
Greedy and Random on the roma/taxi trace set. As illustrated in Figure 9, we investigate
the influence of the four variables to the total cost in different algorithms. Obviously,
PTAM-Genetic consumes the lowest total costs in all four situations, while the performance
of Random algorithm is the worst. The performance of PTAM-Greedy is far better than
that of Random algorithm and close to that of PTAM-Genetic. Specifically, along with the
increase of the number of attributes, the total cost of the three algorithms decreases slightly.
The total costs of these algorithms increases along with the increase of the value of dmax,
and diq increases as the value of dmax goes up. diq represents the discount for ui to task
sq. When diq increases, the cost will also increase. Furthermore, along with the growth of
the number of users, the total cost will decrease. The reason is that when the number of
users performing tasks increases, there will be more chances for a task to be assigned to
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an appropriate user, so the total cost is reduced. For changing the number of tasks, the
performances of PTAM-Genetic and PTAM-Greedy are both far better than that of Random
algorithm. The cost of PTAM-Greedy approximates to the cost of PTAM-Genetic but is
slightly higher than that of PTAM-Genetic.

Secondly, in Figure 10, we compare the performances of the algorithms on ep f l trace
set. The simulation results show that the total cost performances rank as follows: PTAM-
Genetic < PTAM-Greedy < Random, along with the change of the number of attributes,
the value of dmax, the number of users and the number of tasks. The simulation results are
reasonable and match the theoretical analysis. The total cost of PTAM-Genetic algorithm
slightly decreases along with the change of number of attributes. The similar shapes also
appear for PTAM-Greedy and Random algorithm. The total cost appears to be an upward
trend for all three algorithms along with the growth of the value of dmax. With the increase
of the number of users, the total costs of these algorithms decrease gradually. Moreover,
The total cost slightly increases as the number of tasks goes up.

Thirdly, as shown in Figure 11, the performances of the algorithms are tested on geoli f e
trace set. The total cost performance is still PTAM-Genetic < PTAM-Greedy < Random
which is similar to the previous simulations.

Then, when number of users is 3 and number of tasks is 5, we conduct some simu-
lations and get the results of PTAM-Greedy and the optimal results as shown in Table 2,
where C(emin) and C(emax) denote the minimum and maximum cost of all edges, Pro-
portion represents the ratio of the results of PTAM-Greedy and the optimal results, and
Bound is the value calculated in Equation (10). In Table 2, we can find that as C(emax)
increases, the values of proportion fluctuate somewhat because the values of C(emax) for
all experiments are relatively close. However, the proportion is always less than the bound
calculated by Equation (10) in each experiment, which means that simulation results match
the theoretical analysis.

Table 2. Results under the condition that 3 users, 5 tasks, Cmin = 10.

Parameter
Results

PTAM-Greedy Optimal Proportion Bound

C(emax) = 15 62 62 1 1.19

C(emax) = 16 68 63 1.08 1.23

C(emax) = 17 70 64 1.06 1.26

C(emax) = 18 74 66 1.15 1.30

C(emax) = 19 77 74 1.04 1.34

Next, as shown in Figure 12, along with the number of generation changing from
40 to 240, we test total cost and execution time of roma/taxi trace set. It is not difficult
to find that, the total cost of PTAM-Genetic algorithm is getting less, because along with
generation growing, PTAM-Genetic algorithm can get a chance to find a better tour, so
that the total cost will be lower. In addition, we can also see that the execution time of
PTAM-Genetic algorithm is getting longer, because as generation grows, PTAM-Genetic
algorithm takes time to find a better tour, so that the total execution time will get longer.
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Figure 12. Performances along with a change of the number of generations.

Finally, as shown in Figure 13, the total cost of PTAM-Greedy, PTAM-Genetic, Random
algorithm and the optimal results are compared along with the change of the number of
tasks on three data sets. It is not difficult to find that the total cost performances rank as
follows: Optimal = PTAM-Genetic < PTAM-Greedy < Random on all three real-world
data sets. Due to the reason that the number of users in this simulation is set to 3 and the
number of tasks varies from 2 to 4, the solution space is small. Therefore, the total costs of
PTAM-Genetic are identical to that of the optimal results. Moreover, the total costs of all
four algorithms increase with the growth of number of tasks in most cases.
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Figure 13. Performance comparisons on the three real-world data sets. (a) roma/taxi trace set. (b)
epfl trace set. (c) geolife trace set.

5. Related Work

There are some works focusing on task allocations. Wang et al. [11] consider the
heterogeneous user mobility model and dynamic arrivals of tasks, and present the offline
combinatorial algorithm, then they mainly propose an online scheduling strategy based
on the Lyapunov optimization with perturbation parameters to settle the problems in the
new environment. Different from other studies that always focus on the task organizers,
Wang et al. [30] mainly consider the attributes of participants such as user work bandwidth
and mobility model, then they further consider the heterogeneity of tasks and participants
and propose a novel task assignment framework. Guo et al. [31] focus on the worker
selection problem in multi-task context, they consider both time-sensitive tasks and delay-
tolerant tasks, and minimize the total distance and total number of selected workers,
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respectively. Then they present two genetic algorithms to settle the two optimization
problems. In order to reduce energy consumption of vehicles and protect environment,
Ding et al. [32] propose a cost-efficient path planning framework, which consists of two
parts. One part is the cost consumption model considering the attributes of drivers and
practical routes, the other is the real-time data collection with crowdsensing approach and
path recommendation. Zhao et al. [33] consider task alloction from the perspective of task
performers, and present a privacy-preserving unknow worker recruitment algorithm in
crowdsensing, which is used to recruit the best workers to complete tasks without knowing
the qualities of them completing tasks. They present a Differentially Private Multi-Armed
Bandit game to model the unknown worker recruitment, and task completion quality
contributed by each worker.

There are also some works taking the personalized problem into consideration.
Yang et al. [34] study the fine-grained personalized task assignment considering users’
preferences and reliability level, then they present a task recommendation system to rec-
ommend tasks to users which consists of two parts, the first part is the method to quantify
users’ preferences, the other one is the method to confer users’ reliability. In order to protect
the privacy of users from being exposed when the server is hacked or under attacked,
Wang et al. [35] present a distributed agent-based privacy-preserving framework, which
uploads anonymous user information to a randomly selected agent at each upload to avoid
exposing user trajectories to the proxy. They then locally perturb the crowdsourced data
aggregated by each agent using Laplacian perturbation, and further combine the perturbed
data from all agents for publication. An et al. [36] uses blockchain instead of data trading
broker to record data transactions in Crowdsensed Data Trading, ensuring data truthfulness
while protecting user privacy, and incentivizing consumers to rate truthfully the reliabilities
of sellers. Wang et al. [37] consider the privacy protection of users’ locations and present
a privacy-preserving task allocation framework, where users upload the ambiguous dis-
tances and locations rather than real ones, then they propose the winner selection strategy
to select the users with ambiguous information and the payment determination strategy to
ensure the truthfulness. Different from prior efforts, Jiang et al. [38] consider the similar
sensing task data requirements for different workers as well as the heterogeneous attributes
of workers and present a data-centric framework, which analyzes the common data in
different tasks and reuses the common data to make full use of sensing resources and
reduce the social costs. They also consider the private data of users and tasks and present a
randomized auction strategy to maximize the social welfare. Lu et al. [39] use game theory
to solve user’s inactive participation in multi-service exchange in MCS. They model the
multi-service exchange problem as a Stackelberg multi-service exchange game consisting
of multiple leaders and multiple followers, and present two novel algorithms to compute
the unique Nash equilibrium for the sensing plan determination game and the reward dec-
laration determination game, respectively. The only Stackerberg Equilibrium of the game
is formed by these two algorithms together. Karaliopoulos et al. [40] study how to assign
tasks to users and stimulate users efficiently with a novel view on payment distribution.
They first obtain users’ preferences from historical data and formulate the optimization
problem as a non-linear model, and finally they verify their mechanism by questionnaire.
However, the above works usually regard task allocation as a static matching problem
instead of a dynamic combinational optimization problem.

6. Conclusions

We have investigated the problem of task allocation in MCS campaigns through solv-
ing a combinatorial optimization problem. First, we propose a measurement method to
calculate the cost for a user to complete a sensing task, taking both the distance and user’s
preference into consideration. Then, we formulate the cost minimization problem as a het-
erogeneous, asymmetric, multiple-TSP. Through transforming multiple-TSP to single-TSP,
we propose two algorithms to solve the multiple-TSP: greedy algorithm, which is proved
to have a bound to the optimal solution, and genetic algorithm mixed with heuristic, which
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spends more calculation time while achieving a lower total cost. Finally, we have conducted
a number of simulations based on three widely-used real-world traces: roma/taxi, epfl,
and geolife. The simulation results could match the results of theoretical analysis.
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