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Abstract: The ability to discern subtle image changes over time is useful in applications such as product
quality control, civil engineering structure evaluation, medical video analysis, music entertainment,
and so on. However, tiny yet useful variations are often combined with large motions, which severely
distorts current video amplification methods bounded by external constraints. This paper presents a
novel use of spectra to make motion magnification robust to large movements. By exploiting spectra,
artificial limitations and the magnification of small motions are avoided at similar frequency levels
while ignoring large ones at distinct spectral pixels. To achieve this, this paper constructs spline-
kerneled chirplet transform (SCT) into an empirical Bayesian paradigm that applies to the entire
time series, giving powerful spectral resolution and robust performance to noise in nonstationary
nonlinear signal analysis. The important advance reported is Bayesian-rule embedded SCT (BE-SCT);
two numerical experiments show its superiority over current approaches. For applying to spectrum-
aware motion magnification, an elaborate analytical framework is established that captures global
motion, and use of the proposed BE-SCT for dynamic filtering enables a frequency-based motion
isolation. Our approach is demonstrated on real-world and synthetic videos. This approach shows
superior qualitative and quantitative results with less visual artifacts and more local details over the
state-of-the-art methods.

Keywords: motion magnification; time-spectrum analysis; statistical inference; computer vision

1. Introduction

Video motion magnification techniques have opened up a wealth of important ap-
plications. Examples include detecting a heartbeat vibration from tiny head motions [1]
or blood flow [2], magnifying muscle tremors [3,4] to give an accurate clinical judgement,
reconstructing speech information from small visual variations [5], evaluating material
properties by the way it moves [6], estimating damage information of a building structure
by measuring small vibrations in video [7–9], and lip reading [10]. However, some essential
properties of dynamic objects become evident only when they move. For example, the
muscles of an athlete when doing sports, the mechanical properties of a drone in flight,
or the tremors of a Parkinson patient during walking. To open up new applications, this
paper proposes to amplify variations at dynamic spectrum ranges in the entire time series,
which makes motion amplification robust to occlusions and large motions.

Current video magnification techniques are classified into two categories: Lagrangian
and Eulerian perspective. For Lagrangian approaches [11], tiny visual variations can be
magnified by explicitly estimating feature points with optical flow, but corruptions affect
amplification quality easily, since the local motion is represented by a single feature pixel
point. The Eulerian techniques, on the other hand, do not estimate motions explicitly.
Instead, they decompose video frames into representations to manipulate the local motions,
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thus handling noise at deeper levels. In [2], an input video frame sequence is first decom-
posed into a multiscale stack (Laplacian or Gaussian pyramids); then, subtle changes are
temporally filtered to find the variations to be amplified. When scaled and added back
to the input images, a magnified output is rendered. With the complex-steerable pyra-
mid [12–14], an input video frame sequence can be decomposed into a multi-orientation,
multiscale stack [15]. Moreover, the use of phase-based motion processing has been consid-
ered not only in the context of motion magnification but also for many motion-related cases.
In [5], phase decomposition is employed for extracting sound information from high-speed
cameras, whereas in [16], the video phase information is applied to predict object material
properties, and in [17], phase aids in estimating measurements of structural vibrations. In
the context of motion amplification, the successful work in [15] extracts phase information
through complex steerable filters and then magnifies it, the phase-based technique has
better noise handling characteristics and supports larger amplification factors. In [18], a
significant speedup without perceptual decrease in quality has been obtained; this work
approximates the complex pyramid with the Riesz pyramid. While extremely successful
for clean video signals, all these approaches assume that the objects of interest have very
small motion—no large object motion or camera motion existing. Such large motions when
processed result in large artifacts such as haloes or ripples, and our technique is specially
designed to deal with these cases.

To deal with large motions, a layer-based video magnification approach was proposed
in [19], with some help of a manually drawn mask by the user, outlining regions whose
pixels are specified to be tracked and then magnified and yielding good magnification
results. Whereas a mask indicates which pixels should be used, motion filter effects on the
border of the mask cannot be ignored, leading to a certain spatial extent and eventually
leaking across the mask edge. On the other hand, manual selection is time consuming
and error prone; the selected region tracking is sensitive to occlusions and 3D object
rotations. Furthermore, the alignment is based on a homography, which may generate
wrong information for non-planar objects and a non-static camera. By using depth cameras
and bilateral filters, the recent work in [20] proposed an alternative approach, making it
possible for the amplification processing to be applied on pixels located at the same depth.
In a sense, depth-aware motion processing extends the layer-based approach in replacing
the manual selection mask by a weighted mask obtained from depth ranges, which avoids
manual annotation to some extent. In addition, it also prevents the leaking problem
in [19] by ignoring motion effects from different depth layers. However, this technique
cannot cope with any moving objects; more importantly, the lack of depth knowledge will
introduce inaccurate manual operations in processing. Based on the assumption that the
large motion is typically linear at the scale of the small variations, the innovative processing
framework [21] was proposed to magnify small deviations of linear motion by linking the
response of a second-order Gaussian derivative to spatial acceleration. This work achieves
impressive results for motion magnification; however, the downside is the inability to
cope with nonlinear large motion. Inspired by the above approaches, this essay exploits
time-frequency characteristics to automatically define the mask. In addition, based on
the observation in [21,22], the significant differences are found in the frequency domain
between these two kinds of variations, making our technique in principle suitable for large
motion isolation.

Several techniques are available for time-frequency analysis, having played important
roles in analyzing nonstationary signals. Among a number of analysis methods, short-
time Fourier transform (STFT) [23–25], Wigner–Ville distribution (WVD) [26,27], wavelet
transform (WT) [28,29], and Hilbert–Huang transform (HHT) [30,31] have been widely
applied. For the STFT approach, since the STFT is based on traditional Fourier transform,
the signal is assumed to be piecewise stationary at the scale of the window width, so
showing weakness in accurate estimation for time-varying frequency. Whereas extremely
successful for presenting excellent time-frequency representation for signals in terms of
energy concentration, the WVD’s bilinear structure creates the redundant cross terms that
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cannot track the true time-frequency structure of the signal well, leading to the inaccurate
estimation of instantaneous frequency. As another form of STFT method with an adjustable
window size, the WT uses a large window for low-frequency components and a small
window for high-frequency components, so it cannot achieve an accurate estimation for
time-varying frequency as well [25]. Via applying the combination of empirical mode
decomposition (EMD) and Hilbert spectral analysis, HHT offers a powerful way for non-
stationary nonlinear signal analysis, which makes the instantaneous frequency meaningful.
The need for spurious harmonics to represent nonlinear and nonstationary signals is also
eliminated. However, the shortcomings of HHT include envelope fitting, mode mixing,
end effects of EMD, and no uniform criterion for sifting stop, which may yield misleading
results in nonstationary nonlinear signal analysis. By introducing an extra chirp kernel,
which is characterized by the chirping rate parameter, the time-frequency atoms of the
Chirplet transform (CT) can be sheared and shifted to match the signal in the time-frequency
plane, thus showing superiority to WT and other time-frequency analysis approaches in
analyzing nonstationary signals. Nonetheless, due to the inability of the chirp kernel to
suit nonlinear-frequency-modulated (NLFM) signals, the CT fails the identification and
extraction of the nonlinear frequency of the NLFM signal. By replacing the kernel of a
frequency-shift operator and a frequency-rotate operator with spline kernel function [32],
the spline-kerneled chirplet transform (SCT) extends the capability of the CT and is able
to produce a time-frequency representation with an excellent energy concentration for
signals with nonlinearly time-varying instantaneous frequency, such that the instantaneous
frequency of the NLFM signal can be accurately estimated. This paper begins with the SCT
due to its superiority over other time-frequency analysis techniques. However, a critical
shortcoming remains in current time-frequency methods, including SCT. These widely used
techniques lack a statistical inference framework applicable to the entire time series [33–39];
their spectrum estimates on adjacent intervals cannot be formally related. Therefore, this
paper adapts SCT by constructing a Bayesian statistical inference framework so it can be
applied to wider practical projects.

In the following sections, the current parameterized time-frequency analysis tech-
niques will be first discussed; then, we offer a statistical inference framework on how to
model nonstationary time series on nonoverlapping intervals. The improved technique
is experimentally evaluated by comparing against the state-of-the-art approaches in two
numerical examples, and application of the proposed algorithm for video magnification in
the presence of large motion is also shown to yield a superior performance over the existing
amplification method.

2. Proposed Be-Sct

In this section, based on the traditional SCT (readers interested in this theory, please
refer to [34,40–42]), the nonstationary time signal is modeled as a series of second-order sta-
tionary Gaussian processes defined on nonoverlapping spline function intervals. After SCT
processing, a frequency domain random-walk model is utilized to relate the spectral repre-
sentations of the Gaussian processes. The proposed algorithm efficiently calculates spectral
updates by parallel complex Kalman filters; moreover, an expectation–maximization (EM)
algorithm is utilized to estimate static and dynamic model parameters. The estimate is
empirical Bayes, because it is computed conditional on the maximum likelihood parame-
ter estimates.

SCT entails estimating the frequency content as a spline function of time for the non-
stationary signal, and it is carried out by repeating spectrum estimation time intervals.
Nevertheless, spectrum estimates on adjacent intervals are not regularly related. In con-
trast, current time-frequency methods are computationally intensive, achieve their high
performance in signal-to-noise problems, and up to now have had limited application in
practical time series analyses. Despite their usefulness for studying important problems, a
critical shortcoming remains in current time-frequency methods including SCT: none of
them offers an efficient statistical inference framework appropriate for the entire time series.
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State-space modeling is an established, flexible inference framework for analyzing
systems with properties that change over time [41,42]. In addition, this paradigm has
been widely applied for the analysis of nonstationary time series with harmonic regression
models [43], parametric time series models [44,45], and nonparametric time series models
based on batch processing [46,47]. Therefore, on the basis of SCT, a plausible approach
to analyze nonstationary and oscillatory time series can be proposed. By providing a
flexible time-domain decomposition of the time series and a broadly applicable, empirical
Bayes’ framework for statistical inference, a comprehensive analysis framework for time-
varying spectral analysis of nonstationary nonlinear time series can be achieved. The
crucial advance reported is specially constructed Bayesian-rule embedded SCT (BE-SCT).

2.1. Theory

In the time-frequency model of BE-SCT, a nonstationary nonlinear time series observed
can be defined as:

yt = xt + εt (1)

where xt is a second-order, zero mean, locally stationary Gaussian process, and εt is a zero
mean, independent Gaussian noise with common variance σ2

ε . A common approach in the
analysis of nonstationary time series is to assume a minimum interval length on which the
data are stationary. The stationary intervals are indexed as: i = 1, 2, . . . , I, where I defines
the number of distinct, nonoverlapping stationary intervals in xt.

Based on the spectral representation theorem [48], the form of the observation model
on stationary interval i is defined as:

Yi = Xi + εi

= ∆Zi + εi
(2)

where εi denotes an independent, zero mean Gaussian noise with common variance σ2
ε .

To relate the data on adjacent intervals, the Gaussian increment differences are as-
sumed to be linked by the random walk model.

∆Zi = ∆Zi−1 + vi (3)

where vi is assumed to be an independent, zero mean complex Gaussian process. In
Equation (3), a stochastic continuity constraint is defined on the nonstationary time series
in the frequency domain.

Followed by applying SCT, to represent the observation model Equation (2) in the
frequency domain, the SCT operator is introduced, thus yielding the equation:

Y(SCT)
i,s = ∆Z(SCT)

i,s + ε
(SCT)
i,s

∆Z(SCT)
i,s = ∆Z(SCT)

i−1,s + v(SCT)
i,s

(4)

where s denotes the number of observations per stationary interval in the time-frequency
plane, Y(SCT)

i,s = Yi ∗ SCTs, ε
(SCT)
i,s = εi ∗ SCTs is a zero mean, complex Gaussian vector, and

v(SCT)
i,s = vi ∗ SCTs is also a zero mean, independent complex Gaussian vector. For ease of

reading, the superscript “(SCT)” is omitted in the following derivations.

2.2. Algorithm

According to the linear complex Gaussian form of Equation (4), the sequence of
increment differences [44] can be computed by a Kalman filter algorithm. The Gaussian
increment difference estimates are assumed to have been computed on interval (i− 1),
then for line s, a 1D complex Kalman filter algorithm for estimating ∆Zi,s(ωs) on interval i
can be obtained:
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∆Zi|i−1,s(ωs) = ∆Zi−1|i−1,s(ωS)

σ2
i|i−1,s = σ2

i−1|i−1,s + σ2
v,S

∆Zi|i,s(ωs) = ∆Zi|i−1,s(ωs) + Ci,s

(
Yi,S − ∆Zi|i−1,S(ωs)

)
σ2

i|i,s = (1− Ci,s)σ
2
i|i−1,s

(5)

The Kalman gain for i = 1, . . . , I and s = 1, . . . , S can be computed as:

Ci,s =
(

σ2
ε + σ2

i|i−1,s

)−1
σ2

i|i−1,s (6)

The definition i|u is the estimation on the stationary interval i based on all of the signal
data observed through stationary interval u.

To efficiently analyze the functions of the increment differences at any time, the joint
distribution of the increment differences in the time series can be computed using the fixed
interval smoothing algorithm, which is defined as:

∆Zi|I,s(ωs) = ∆Zi|i,s(ωs) + Ai,s

(
∆Zi+1|I,s(ωs)− ∆Zi+1|i,s(ωs)

)
σ2

i|I,S = σ2
i|i,S + A2

i,s

(
σ2

i+1|I,S − σ2
i+1|i,S

)
Ai,s =σ2

i|i,s

(
σ2

i+1|i,s

)−1

(7)

In the smoothing algorithm, the initial conditions are ∆Zi,s(ωs) and σ2
I|I,s for

i = I − 1, I − 2, . . . , 1 and s = 1, 2, . . . , S. The covariance smoothing algorithm is used
to obtain the covariances between any two states:

σi,u|I,S = Ai,sσi+1,u|I,s (8)

where 1 ≤ i ≤ u ≤ I, Equations (7) and (8) are utilized to compute the joint distribution
of the increment differences on all of the data. The distribution of any function of the
increment differences can be computed by Monte Carlo methods [49,50], and a Monte
Carlo estimate of its posterior probability density can be provided by the histogram of
the function. The estimate process is empirical Bayes, since it is computed on the basis of
maximum likelihood parameter estimates.

2.3. Model Parameters and Initial Condition Estimation

In the processing of Kalman filter (5) and (6), Kalman smoother (7), and covariance
smoothing (8) algorithms, the initial state variances σ2

0,s, the initial states ∆Z0,s(ωs), and the
model parameters σ2

v,s and σ2
ε are assumed to be known; then, an EM algorithm is used to

obtain maximum likelihood estimates [46] of the parameters. The details are concluded
as follows.

Firstly, the joint probability distribution of ∆Z1,s(ωs) and ∆Y0,s(ωs) at frequency s is
expressed as:

Ls = p
(

∆Z0,s(ωs) | σ2
v,S

)
×

I

∏
i=1

p
(

∆Zi,S(ωs) | ∆Zi−1,s(ωs), σ2
v,S

)
×

I

∏
i=1

p
(

Yi,s(ωs) | ∆Zi,s(ωs), σ2
ε

) (9)

Assume that the probability density of the initial state is obtained by:

p(∆Z0,s(ωs)) =
(

πσ2
v,s

)−1
exp

(
−‖∆Z0,s(ωs)‖2

σ2
v,S

)
(10)
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E-step: In iteration it of the E-step, on the basis of the previous estimates of the pa-
rameters and observed data from iteration (it− 1), the expectation of the complete data
log-likelihood can be calculated. For easy readability, Θ is introduced to represent the
parameters

{
σ2

ε , σ2
v,S, ∆Z0,s, σ2

0,s

}
. Analyzing log and expectation to the likelihood yields:

E
[
log Lit

s | ·Y1:I,S, Θ(it−1)
]
=E

−
∥∥∥∆zit

0,S(ωs)
∥∥∥2

σ
2,(it−1)
v,S

− 1

σ
2,(it−1)
ε

I

∑
i=1

∥∥∥Yit
i,S − ∆Zit

i,s(ωs)
∥∥∥2

− (p− 1) log
(

πσ
2,(it−1)
ε

)
− (p− 1) log

(
πσ

2,(it−1)
v,S

)
−

1

σ
2,(it−1)
v,s

I

∑
i=1

∥∥∥∆Zit
i,s(ωs)− ∆Zit

i−1,s(ωs)
∥∥∥2
| Y1:I,s

] (11)

Three quantities are required to be calculated to evaluate Equation (11).

∆Zit
i|I,S(ωs) = E

[
∆Zi,s(ωS) | Y1:I,s, Θ(it−1)

]
Wit=

i|I,S = E
[
‖∆Zi,s(ωs)‖2 | Y1:I,S, Θ(it−1)

]
Wit=

i,i−1|I,s = E
[
∆Zi,s(ωs)Z∗i−1,s | Y1:I,s, Θ(it−1)

] (12)

By using the Kalman filter (5) and (6), Kalman smoothing (7), and covariance smooth-
ing algorithms (8), these three quantities can be efficiently computed.

M-step: Let τit
(v,s) = 1 /σ

2,it

v,s
and τit

ε = 1/σ
2,it
ε , then each gamma prior density is defined as:

eρ(τ|α, β) =
βα

Γ(α)
(τ)α−1 exp(−βτ) (13)

For α > 1 and β > 0, the expectation of log joint posterior density of each parameter is:

E
[
log ep

(
τit

ε , τit
v,s

)
Y1:p−1, s, Θit−1

]
∝

log
(

eρ
(

τit
ε |α, β

))
+ log

(
eρ
(

τit
k,s|α, β

))
+ E

[
log Lit

s

] (14)

Equation (14) is required to be maximized with respect to τit
v,s and τit

ε , yielding the results:

τit
v,s =

p− 1 + α

2 ∑it
i=1

(
Wit

i−1|I,s − R
{

Wit
i,i−1|I,s

})
+ Wit

I|I,s + β

τit
ε =

α− 1 + S(p− 1)

∑i,s

((
Yit

i,s

)2
+ Wit

i|I,S − 2R
{

Yit
i,s ∗ ∆Zit

i|I,S

})
+ β

(15)

In addition, each initial state ∆Z0,s and initial variance σ2
0,s can be computed as:

∆Zs(ωs) = Y1 ∗ SCTs

σ2
s = ∆Zs ◦ (∆Zs)

∗ (16)

where ◦ denotes the Hadamard product, the EM algorithm iterates between E-steps and
M-steps until satisfying Equation (17) or it = EMmax, and EMmax is a predefined number
of maximum iterations and ε ∈ (0, 0.001).∥∥∥∆Zit

i|I,S − ∆Zit−1
i|I,S

∥∥∥2

∆Zit−1
i|I,s

< ε (17)
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The details are described in Algorithm 1.

Algorithm 1 BE-SCT
Equations
Input: matrix Yi,s, maximum iteration of EM steps EMmax, minor integer ε.

while it < EMmax and εit < ε do
Generating initial states ∆Z0,s and initial variances σ2

0,s by Equation (16);
for i = 2, . . . , I do

Obtaining quantities in Equation (12) by recursively solving Equations (5) and (6)
to evaluate Equation (11).

end for
for i = I − 1, . . . , 1 do

Recursively computing Equations (7) and (8), to get quantities in Equations (11)
and (12).

end for
Obtaining final τit

v,s and τit
ε by Equation (15);

it = it + 1.
for i = 2, . . . , I do

On the basis of estimated parameters, recursively solving Equations (5) and (6) to
perform the Kalman filter in matrix Yi,s.

end for
end while

Output: Final matrix Y(BE−SCT)
i,s with s lines and i columns.

2.4. Numerical Experiments

In this section, two numerical simulations are used to demonstrate the effectiveness of
the proposed BE-SCT. To add an extra degree of difficulty in analysis, additive Gaussian
noise with a standard deviation of 0.1 and a mean of zero is artificially induced to the
nonstationary nonlinear analytical signal. The sampling frequency is set to 100 Hz, and
the time-frequency representation obtained by the proposed BE-SCT is compared with the
continuous WT (CWT), HHT, and SCT.

The first example is given by:

f (t) =

{
sin(2π(25t + 10 sin t)) (0 ≤ t ≤ 6 s)
sin(2π(34.2t)) (6 s ≤ t ≤ 10 s)

(18)

The SNR of the first signal is 7.1203 dB, and the time-frequency representations gen-
erated by the CWT, HHT, SCT, and BE-SCT are shown in Figure 1. The wavelet is set to
be ‘cmor3-3’, and the total scale is 256, the representation given by the CWT, as shown
in Figure 1a. It can be seen that the CWT dissipates the energy around the instantaneous
frequency at the high-frequency plane because of its coarse frequency resolution. Moreover,
the representation is too blurry to reveal the time-frequency trajectory due to the high
sensitivity to corruptions. In Figure 1b, HHT has higher anti-noise and robust performance
compared with CWT; however, due to the misleading energy frequency distribution for
corruptions and intrinsic modal information, the analytical consequence is too sparse to re-
veal the instantaneous frequency trajectory. As shown in Figure 1c, SCT provides excellent
local estimates of signal features, but on account of its inability to offer a statistical infer-
ence framework appropriate for the entire time series, multiple instantaneous frequency
trajectories are generated in the time-frequency plane. Figure 1d shows that the BE-SCT
outperforms the CWT, the HHT, and the SCT as it clearly reveals the true time-frequency
pattern of the analytical signal.
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(a) (b)

(c) (d)

Figure 1. Time-frequency analysis of signal with instantaneous frequency in Equation (19) by (a) CWT,
(b) HHT, (c) SCT, and (d) BE-SCT.

The second example is given by:

f (t) = sin
(

30 + 50t + 60t2 + 40 sin t
)

(0 ≤ t ≤ 10 s) (19)

The SNR of the second signal is 7.1177 dB, and the time-frequency representations
generated by the CWT, HHT, SCT, and BE-SCT are shown in Figure 2. As shown in
Figure 2a, CWT shows poor resolution in the time-frequency plane; besides, due to the
reciprocal relationship between the center frequency of the wavelet function and window
length, it is difficult for the representation given by the CWT to differentiate the true
instantaneous frequency trajectory from the spurious frequency components introduced by
the additive corruptions. The representation generated by the HHT is shown in Figure 2b,
in which partial spurious frequency contents generated by nonstationary noise have been
removed by EMD. However, some intrinsic modal information is mistaken for artifacts, so
the true frequency trajectory is still hard to be identified by HHT. As shown in Figure 2c, the
SCT offers the instantaneous frequency representation with an excellent concentration, and
the most prominent trajectory can characterize the true time-varying frequency successfully.
However, the spectrum estimates on adjacent spline functions are not formally related,
resulting in the parallel spurious trajectories. On the other hand, as shown in Figure 2d, it is
evident that the BE-SCT outperforms the CWT, the HHT, and the SCT; based on the precise
parameters estimation, the adjacent spline functions are recursively linked, therefore giving
its best performance in this high signal-to-noise spectrogram estimation problem.
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(a) (b)

(c) (d)

Figure 2. Time-frequency analysis of signal with instantaneous frequency in Equation (19) by (a) CWT,
(b) HHT, (c) SCT, and (d) BE-SCT.

3. Spectrum-Aware Video Magnification

On the basis of BE-SCT, in this section, a spectrum-aware video magnification tech-
nique is presented to amplify small motions within large ones. Our technique has three
main components:

1. On the basis of the earth mover’s distance (EMOD) algorithm (readers interested
in this theory, please refer to [22]), which avoids quantization and other binning
problems, the moment function of original video motion information is temporally
extracted;

2. By applying BE-SCT, the estimation stage seeks to understand the time-frequency
characteristic of global nonstationary motions in analytical video;

3. With the appropriate prior knowledge, the dynamic ideal band-pass filter is used to
remove large motions while preserving subtle ones.

Our proposed magnification pipeline is depicted in Figure 3.

3.1. Motion Metric Extraction

Carrying out the analysis of global motion information in video remains a challenging
task due to the millions of pixels’ respective temporal vibration signal exiting in video.
In engineering application areas and stereo-vision systems [51–57], the three-dimensional
digital image correlation (3D DIC) and three-dimensional point tracking (3DPT) techniques
are used to extract the full-field dynamic displacements of the analytical structure, and
temporal vibration signals are further analyzed to obtain the material properties [58,59].
These methods are appropriate for structural engineering due to the law of mechanics;
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however, limitations arise when analyzing an irregular video. The selection of degrees
of freedom is time consuming and error prone. Inspired by recent research [60], which
extracts the periodic pulsation of flame from the temporal image sequence based on the
Euclidean distance and cross-correlation coefficient, EMOD is a method measuring a
distance between two distributions. In this paper, every video frame is considered as a
distribution, and EMOD is used to calculate the distance between each frame and the first
frame. Therefore, temporal EMOD metrics can be conducted; then, BE-SCT is applied to
these temporal metrics to generate the time-frequency estimation in the following parts.
Detailed information of the EMOD can be seen in the reference [61].

Figure 3. Video spectrum-aware magnification pipeline. Our approach does not require manual
region annotation nor additional depth information as done in conventional techniques; instead, by
employing the proposed BE-SCT, the intrinsic frequency characteristics can be understood to achieve
the goal of adaptive large motions isolation, meanwhile avoiding the nonlinear limitation in the
Eulerian acceleration approach.

3.2. Dynamic Spectrum-Aware Filtering

Applying the specially constructed BE-SCT, which has been verified for the superiority
over other time-frequency estimation algorithms, the true time-varying frequency pattern
of global motions in analytical video can be precisely obtained. Hereby, it can be observed
that at the scale of subtle visual changes, the frequency of large motion is relatively small.
By only magnifying small deviations of dynamically selected frequency ranges, this method
arrives at temporal spectrum-aware filtering magnification.

For easy readability of the temporal spectrum-aware filtering, a time-domain mathe-
matics model is established for illustration. Consider the time domain of intensity changes
denoted by I(x, y, t) at position (x, y) and time t based on the significant anti-noise per-
formance of complex steerable pyramid, small temporal variations in the spatial offset of
edges can be converted to subtle temporal changes in polar coordinates of the complex
filter responses in the pyramid. Therefore, in the temporal mathematics model, the tem-
poral variations are first turned into the frequency domain by Fourier transform, which
is S(ω, ρ, t). Then, based on the observation that the large motions differ evidently from
small ones in frequency property, the sophisticated time domain of intensity variations is
reconstructed in the frequency domain as a combination of two components:

S(ω, ρ, t) = Sρa(ω, ρ, t) + Sρb(ω, ρ, t) (20)

where Sρa(ω, ρ, t) denotes the variations component with spectral amplitude above the
threshold ρ, and Sρb(ω, ρ, t) stands for the opposite.

Ultimately, it is crucial to develop a self-adapting estimation for the spectrum-aware
filtering to separate these two components. Returning to the proposed BE-SCT, it can act
not only as the “detector” of the property of global video motions but also adaptively
isolate the large motions from the small ones as deeper utilized. On the basis of the time-
varying spectrogram by BE-SCT, this method further constructs a dynamic frequency-based



Sensors 2022, 22, 2794 11 of 19

filtering algorithm to handle the challenging isolation task. In the actual operation, similar
to the common ideal band-pass filter, the time-domain dynamic weighting function of the
spectrum-aware filtering is defined as:

Wω,ρ,t =

{
1, ρ ∈ [ρl , ρh]

0, otherwise
(21)

where [ρl , ρh] stands for the identified amplitude-frequency ranges in the time-domain
spectrogram generated by BE-SCT. ρl is the minimum amplitude bound, which is not
critical, since small noise can be negligible after arbitrary simple built-in spatial filtering
algorithms. ρh is the maximum amplitude threshold used for eliminating the large motions,
which can be experience-modifiable.

4. Experimental Results

To verify the effectiveness of the proposed spectrum-aware approach, experiments
on real sequences as well as on a synthetically generated one with ground truth are
performed. This paper only assesses the real videos’ performance qualitatively, whereas
for the synthetic sequence, the quantitative evaluation is taken against ground truth. For
all videos, the video frames are processed in a YIQ color space. In the contrast tests, a
complex steerable pyramid with octave bandwidth filters and four orientations is used
to decompose each frame into phase and magnitude. The results demonstrate that state-
of-the-art techniques optimized for subtle variations generate blurs and artifacts when
handling large motions. Our technique fully utilizes the powerful BE-SCT, significantly
reduces haloes or corruptions, and increases the scope of its applicability.

4.1. Real-Life Sequences

Figure 4 shows a cat toy moving on the table, which coincided with the high-frequency
vibration perpendicular to the circle trajectory. The goal of this experiment is to magnify the
vibration with amplification factor α = 8; the motion above the black arrow is recorded in
the spatio-temporal slice indicated with the green line over the raw video. The phase-based
motion magnification generates substantial artifacts due to the large movement on the
table. The Eulerian-acceleration approach relies on the second-order filter; therefore, the
nonlinear motions in the background are magnified while inducing tiny blurring effects,
as seen in the figure. Our proposed technique manages to achieve this by amplifying the
variations at the pixels that lie in the time-varing frequency property estimated by BE-SCT,
thus magnifying the vibration of the toy and separating the motion along the trajectory on
the table.

(a) (b) (c) (d)

Figure 4. A cat toy vibrating at a high frequency, along with the large amplitude movement of a circle
trajectory depicted by the black arrow. Four frames indicating the toy’s trajectory are shown in each
top row, the bottom rows show the spatio-temporal line corresponding to the green line in the relevant
video frames. (a) Original video. (b) Phase-based video magnification. (c) Eulerian-acceleration mag-
nification. (d) Our proposed spectrum-aware magnification. The proposed magnification approach
can clearly reveal the vibration of the cat toy without inducing blurs and artifacts [21].



Sensors 2022, 22, 2794 12 of 19

Figure 5 demonstrates various motion amplification results for a gun shooting video
with magnification factor α = 8. In this case, the recoil of the gun induces subtle movement
in the arm muscles. To preform an in-depth and meticulous analysis, the movements of the
bracelet, upper limb, and the forearm are recorded in the spatio-temporal slices indicated
with three green lines over the original sequence. Due to the strong arm movement, the
phase-based processing induces ripples and motion artifacts, which cover the subtle motion
in the muscles. The Eulerian-acceleration method only magnifies the nonlinear motion,
leading to the loss of linear subtle movement. Our proposed technique not only magnifies
the intensity changes of the arm muscles but also magnifies clearly the intensity variations
of the bracelet, which is caused by the reflection of the muscles, as shown in the plot on the
bottom-right of Figure 5.

(a) (b) (c) (d)

Figure 5. In the gun shooting sequence, the strong recoil causes small vibrations of the arm. The
spatio-temporal slice is shown at different positions with three green lines over the sequence for each
processing. (a) Original video frame. (b) Phase-based video magnification. (c) Eulerian-acceleration
magnification. (d) Our proposed spectrum-aware magnification. The Eulerian-acceleration approach
only magnifies the nonlinear motion by linking the response of a second-order Gaussian derivative,
whereas the phase-based method results in large blurs and artifacts. Our proposed method magnifies
the arm movements correctly without being affected by the background clutter [21].

In Figure 6, the picture shows a transparent bottle with water being pulled sideways
on the smooth surface, whereas the level of water in the bottle fluctuates sharply, as shown
in the original sequence. The magnification factor α = 8 is chosen for each video processing.
According to the contrast experiments, the phase-based approach generates significant
blurring artifacts caused by the bottle moving. On the other hand, similar but more precise
than Eulerian-acceleration processing, our approach is able to correctly amplify the desired
motion—oscillation of the water level, while not inducing substantial blurring artifacts.

Figure 7 shows magnification results for iris wobbling, combined with large-scale
eye horizontal movements, and sets the magnification factor α = 15. As demonstrated
in the figure (top-right), when applied to the video with the phase-based technique, the
small motion remains hard to be seen because it is overshadowed by the then-magnified
large motions and its blurring artifacts. Our spectrum-aware magnification maintains the
local motions of the iris wobbling. Eulerian acceleration does magnify segmental temporal
variations; however, it kills more useful information than our approach.
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(a) Original video (b) Phase-based

(c) Eulerian acceleration (d) Spectrum aware

Figure 6. The water oscillating in a bottle while the bottle is being pulled sideways on a smooth
surface. The green stripe indicates the locations at which the dynamic movements are temporally
detected from the video. Compared to the state-of-the-art approaches, our proposed magnification
method is able to amplify the oscillations in the water while not inducing substantial blurs [21].

(a) Original video (b) Phase-based (c) Eulerian acceleration

(d) Spectrum aware

Figure 7. The eye video and its magnification with the phase-based approach, the Eulerian-acceleration
approach, and our spectrum-aware processing. The spatio-temporal slice is shown in each approach
for the green stripe (top-left). This video demonstrates an eye moving along the horizontal direction,
as shown in the original sequence; such wobbling is too subtle to be observed (top-left). The global
motion of the eye generates significant blurring artifacts when processed with the phase-based
approach. However, processing the sequence with Eulerian acceleration and our approach show
clearly that the iris wobbles as the eye moves; through the in-depth comparison, more local details
can be preserved in our approach [19].
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To quantitatively evaluate the performance of the proposed method compared with
traditional methods, commonly used objective metrics including peak signal-to-noise ratio
(PSNR) and mean absolute error (MAE) are further introduced, which are measured over
the whole image in all frames. The range of MAE at the numerical span is [0, 1]; the closer to
0, the more similarities there are in the two images. Meanwhile, PSNR follows the opposite
monotonicity rule. Results for all the real-life videos are given in Figures 8–11, respectively.
It can be seen that the proposed method achieves higher values of PSNR and lower values
of MAE than the traditional methods, quantitatively validating its superiority in terms of
magnifying subtle changes and achieving the best anti-noise results.

(a) (b)

Figure 8. Objective metrics with ground truth for each magnification processing using (a) PSNR and
(b) MAE in cat toy video

(a) (b)

Figure 9. Objective metrics with ground truth for each magnification processing using (a) PSNR and
(b) MAE in gun shooting video.

(a) (b)

Figure 10. Objective metrics with ground truth for each magnification processing using (a) PSNR
and (b) MAE in bottle video.
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(a) (b)

Figure 11. Objective metrics with ground truth for each magnification processing using (a) PSNR
and (b) MAE in eye video.

4.2. Synthetic Sequence

In Figure 12, the picture demonstrates a synthetic ball that moves horizontally on the
screen from the left to right corner; the radius of the ball is set to 10 pixels, and the velocity
of movement is 1 pixel/frame. The ball vibrations are modeled in the vertical direction
as a sine wave, with a maximum value of 1 pixel. The vibration frequency is 3 cycle/sec,
and the frame rate is set to 30 frame/sec. For ground truth amplification, the temporal
changes are magnified by two times without changing any other parameters. A complex
steerable pyramid is applied for all contrast processes, with octave bandwidth filters and
four orientations, which only amplify the pyramid level with a magnification factor of 5.

Figure 12. Synthetic video. A ball moves from left to right along with a tiny vibration in the vertical
direction [21].

Objective results are given in Figure 13. Statistically speaking, our proposed algorithm
yields the best performance for deriving the most significant fidelity. However, on the
other hand, due to the innovative construction of second-order Gaussian derivative, the
magnified sequence processed by the Eulerian-acceleration approach shows certain regular-
ity in the time domain, which provides us some beneficial enlightenment of fundamental
improvements for the future work.

(a) (b)

Figure 13. Objective metrics with ground truth for each magnification processing using (a) PSNR
and (b) MAE in synthetic video.
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5. Discussion

Limitation of our approach. As demonstrated in the controlled experiments for
synthetic sequence magnification, compared with the Eulerian-acceleration approach, our
magnified results show relatively irregular temporal variations. However, our algorithm
achieves the best anti-noise performance and retains the most details over other methods,
as verified in each controlled experiment. If required to recover regular small motions
from large ones as possible in some special project applications, the Eulerian-acceleration
approach may be the best choice in spite of its other flaws. Thus, to establish a more
comprehensive analytical framework, some powerful shift rules will be constructed in the
pyramid level in future research.

Performance superiority over state of the art. The superiority of our work can not
only be summarized in the context of time-frequency analysis but also in video motion
further revelation. For the time-varying spectral analysis of nonstationary nonlinear signals,
this paper introduces the SCT, which has been validated for its excellent local estimates of
data features. A statistical inference framework is established to efficiently relate its spectral
estimates across local intervals; the important advance that this paper presents is BE-SCT.
In Figures 1 and 2, BE-SCT depicts clearly the time-varying spectrum trajectory of two
nonstationary nonlinear signals, whereas the state-of-the-art approaches do not. For large
movements isolation, this method sidesteps the problem of Eulerian-acceleration processing
for being easily affected by the nonlinear background clutter. The results in Figure 4–13
for processing whether real-life or synthetic sequences show the robustness superiority of
our spectrum-aware technique. Therefore, in the future work, further extensions will be
presented of its anti-noise ability.

6. Conclusions

Standard video magnification techniques cannot reliably handle large motions, which
are bounded by excessive user annotations, additional depth information, their inability to
operate nonlinear background clutter, and so on. By exploiting the spectrum characteristic
of global motions in analytical video, we are not restricted by such limitations and can
magnify unconstrained videos.

To construct a powerful time-varying spectral analytical framework, the spectral
representation theorem-based inference model is adapted to SCT. Then, with the assistance
of EMOD extraction, background large movement values are ignored by filter responses at
spectrum layers.

Spectrum-aware motion magnification is demonstrated on several real-world and
synthetic sequences. We show that our approach performs well, has better anti-noise
characteristics, and has less background edge artifact than the state of the art. Improving
robustness in the pyramid level so that it works at higher magnification is an important
direction for future work.
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