
����������
�������

Citation: Hlava, J.; Abouelazayem, S.

Control Systems with Tomographic

Sensors—A Review. Sensors 2022, 22,

2847. https://doi.org/10.3390/

s22082847

Academic Editors: Uwe Hampel and

Min Yong Jeon

Received: 11 February 2022

Accepted: 4 April 2022

Published: 7 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Review

Control Systems with Tomographic Sensors—A Review
Jaroslav Hlava * and Shereen Abouelazayem

Institute of Mechatronics and Computer Engineering, Faculty of Mechatronics, Informatics and Interdisciplinary
Studies, Technical University of Liberec, 461 17 Liberec, Czech Republic; shereen.abouelazayem@tul.cz
* Correspondence: jaroslav.hlava@tul.cz

Abstract: Industrial process tomography offers two key advantages over conventional sensing
systems. Firstly, process tomography systems provide information about 2D or 3D distributions of
the variables of interest. Secondly, tomography looks inside the processes without penetrating them
physically, i.e., sensing is possible despite harsh process conditions, and the operation of the process
is not disturbed by intrusive sensors. These advantages open new perspectives for the field of process
control, and the potential of closed-loop control applications is one of the main driving forces behind
the development of industrial tomography. Despite these advantages and decades of development,
closed-loop control applications of tomography are still not really common. This article provides an
overview of the current state-of-the-art in the field of control systems with tomographic sensors. An
attempt is made to classify the different control approaches, critically assess their strengths and weak
points, and outline which directions may lead to increased future utilization of industrial tomography
in the closed-loop feedback control.

Keywords: industrial process tomography; process control; control systems in process engineering;
distributed parameters systems

1. Introduction

Industrial process tomography is a relatively new development in the field of sensor
systems. Industrial applications of tomography were reported in the 1970s; however, they
mostly used ionizing radiation, and hence they were not suitable for normal industrial
use [1]. Not only was there an obvious safety issue, but most of these tomography sensors
required very long times to collect the data and reconstruct the tomograms. These times
were in the range of several seconds to several hours or even more according to a review
paper published in 1984 [2]. For this reason, they were suitable for purposes such as quality
control, and detection of cracks and other defects. However, they could not be used for
real-time closed-loop control. The actual origins of industrial tomography can be dated
back to the mid-1980s when several laboratories started the development of tomography
systems that were not based on electromagnetic radiation but used measurements of
various electrical properties (e.g., electrical capacitance tomography electrical, impedance
tomography, see [1] for these early developments).

These electric-based tomography systems reached a certain degree of maturity in
the 1990s. Compared to tomography using ionizing radiation, they were more suitable
for industrial applications. This was due to their safety and their faster response times.
Towards the end of the 1990s, these sensors achieved scanning speeds in the range of
several hundreds of frames per second [3]. Modern electric-based tomography sensors
achieve even higher speeds in the range of thousands of frames per second up to about
10,000 frames per second in the case of wire mesh sensors [4,5].

It is generally known that industrial process tomography can be used as a super-
sensing technology that allows us to see inside industrial processes. This ability to look
inside the process has an obvious advantage: it creates a cross-sectional or volumetric
image of the internal physical properties of an object, i.e., the measurement data are
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richer in information than single-point measurements [6]. Moreover, most (though not all)
tomography modalities look inside the processes without penetrating them physically [7].
This ability is advantageous if the conditions inside the process are harsh (e.g., high
temperatures, high pressures, corrosive environments). Nonintrusive sensors are also
necessary for processes that might be disturbed by intrusive sensors (e.g., the flow in a
fluid separator would be disturbed and separation efficiency decreased by an intrusive
sensor in the region where fluids are separated) [8].

Considering these advantages of industrial tomography systems, it is not surprising
that the applications of process tomography for closed-loop real-time control have been
one of the main stated purposes of the development of process tomography since its very
beginning. The focus of the present paper is on closed-loop control using the measurements
from tomographic sensors. Hence, it is definitely not its intention to give a detailed
treatment of the development of industrial tomography. However, it will be helpful
to introduce the major monographs on industrial tomography published at intervals of
one decade and see how they view the relationship between tomography and closed-
loop control.

In 1995 an extensive monograph, Process Tomography—Principles, techniques and applica-
tions, edited by R. A. Williams and M. S. Beck was published [9]. Its focus on automatic
control is more than evident. Descriptions of tomography modalities and tomography
applications are mostly concluded with explicit references to automatic control as one of the
primary purposes for process tomography. “Process monitoring and control in an industrial
environment” is one of the five main categories of applications of process tomography in
this monograph. The next major monograph on process tomography was published ten
years later in 2005, titled: Process Imaging for Automatic Control [10]. In this monograph,
tomography is categorized under the more general term of imaging sensors, and the main
focus on automatic control is explicit even in the monograph title.

On the contrary, if we make another decade jump in time to 2015 we have a different
picture. An even more extensive monograph called, Industrial Tomography Systems and
Applications [11] was published in this year. It is interesting to note that, although the
application part of this monograph is quite long (about 40% of its total length), there are
minimal references to control. Closed-loop control applications of tomography are missing
almost completely. A similar impression appears when looking at the last published
proceedings of the World Congresses on Industrial Process Tomography [12]. Each of
the proceedings of the last three congresses (2016, 2018, and 2021) includes only one
paper describing a closed-loop control application of tomography [13–15]. Moreover,
papers [13,14] use hard-field tomography, which is less standard in industrial applications,
and Ref. [15] describes a closed-loop control application that is rather biomedical than
industrial (control of mechanical ventilation based on lung electrical tomography). This
contrasts with the first congresses (1999, 2001, 2003) where tomography-based control
played a much more significant role.

Major monographs and proceedings of the World Congresses on Industrial Process
Tomography represent just a fraction of works related to process tomography. Section 3 of
the present paper offers a more exhaustive review of the published papers on closed-loop
control based on tomographic sensors. Nevertheless, as we will see, the overall trend is the
same. It is important to note that this relative decline in the number of published papers
concerns only papers describing complete closed-loop control applications of tomography.
Industrial tomography itself is a subject of keen research interest. The number of papers
focused on advances in the design of process tomography sensors and tomography data
processing is constantly growing. Moreover, these advances are often connected with more
or less explicit statements that closed-loop control is their ultimate purpose [4,16–20].

In the end, this leaves an ambivalent impression. All building blocks for creating a
tomography-based closed loop are available. They enjoy unceasing and growing research
attention, and they are much more advanced than two decades ago. The only missing thing
is a corresponding development of closed-loop control applications.
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Hence the present paper will have a twofold purpose. Firstly, and most impor-
tantly, there is no up-to-date, clear description of the current state-of-the-art in the field of
tomography-based control. The last publication that reviews control systems with tomog-
raphy sensors is the monograph, Process Imaging for Automatic Control [10] published in
2005, i.e., 17 years ago. The more recent results are scattered in various conferences and
journal papers, and no review papers exist. The purpose of the present review paper is
to fill this gap and survey the current state-of-the-art in the field of control systems based
on tomographic sensors. The focus will be on papers that describe complete closed-loop
applications, while we will mostly put aside those numerous papers that deal only with
tomography data processing or tomography hardware. We will concentrate on the de-
velopments after 2005 with occasional excursions more to the past because they are often
necessary to understand the development of the main concepts. Secondly, we would like to
analyze and critically assess the strengths and weak points of the various automatic control
approaches used in connection with tomographic sensors and outline which directions
may lead to increased future utilization of industrial tomography in closed-loop control.

The paper is organized as follows. Section 2 briefly discusses control-related properties
of tomographic sensors, mainly their distributed sensing property and processing of sensor
data. Processing of the measurements from the tomographic sensors is a vast subject by
itself. It is definitely not the purpose of the present paper to give a detailed treatment.
The focus is only on the control implication of various approaches to working with data
from tomographic sensors. Section 3 is the main section of this paper. It focuses on the
various control techniques used with tomographic sensors and their application areas. The
emphasis is on automatic control methods. Section 3 is therefore divided into subsections
according to this principle. For this reason, some application areas are mentioned several
times because similar processes were controlled using different methods by various research
groups. Section 4 summarizes and discusses the state-of-the-art described in Section 3 and
outlines future research directions.

2. General Characteristics of Tomography-Based Control
2.1. Implications for Selection of Control Method

Automatic control theory includes no methods and techniques developed specifically
with the objective to be used in connection with tomographic sensors. Nevertheless,
tomographic sensors have specific features that make some methods preferable to others.
Additionally, standard control methods must often be modified or extended to be used
in connection with tomography. For this reason, we will first give a general overview
of control relevant characteristics of tomographic sensors before going to more specific
descriptions of their control applications.

Tomographic sensors can look inside the industrial processes. This ability to look
inside means in the first place that the data provided by tomographic sensors are multidi-
mensional. The controller can perceive the variable(s) of interest within the whole plane or
volume inside the process [4]. This distributed sensing fits well with the fact that there are
many industrial processes whose state cannot be adequately characterized by a limited set
of single-point measurements. Many such processes will later be described in greater detail.
However, even without a detailed description, it is clear that, e.g., single-phase/multi-phase
flow processes are characterized by velocity fields, concentrations, particle moistures, flow
patterns, and other similar characteristics which are always defined in the whole volumes
or cross-sections of the process not just at single points.

Single-point measurements correspond to ordinary differential equation (ODE) process
models. A first-order differential equation can describe the dynamics of each single-point
variable, and the complete model is then in the form of a set of a finite number of first-order
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differential equations. This form of the model is called a state-space model [21]. In its
simplest linear timer invariant form, such a model can be written as

dx(t)
dt = Ax(t) + Bu(t)

y(t) = Cx(t)+Du(t)
(1)

where x(t) is an n-dimensional state vector

x(t) =


x1(t)
x2(t)

...
xn(t)

 (2)

Its n scalar components (single-point variables) are called state variables. Vector u(t) is
a vector of input variables, y(t) is a vector of output variables, A, B, C and D are matrices of
appropriate dimensions. The number of first-order equations n is finite, and it is called the
order of this model.

On the contrary, if the variables of interest are not located in a finite number of points
but are distributed within a whole plane or volume, model (1) is no longer adequate. Its
order would have to be infinity. Although it would be possible to construct a model with
a structure similar to (1), A, B, C, D would be infinite-dimensional operators on Hilbert
spaces and not matrices [22]. Such models are popular in textbooks on the mathematical
theory of infinite-dimensional systems. However, their relationship to physics is indirect
and their practical applicability is more than limited. Nevertheless, they are closely related
to partial differential equations (PDEs) and can be derived from them [22]. For this reason,
it is better to work with models in the form of PDEs that can be derived from the underlying
physics of the process.

Control of PDE systems is a specific branch of control theory with a relatively long
history. Its origins date back to the 1960s or even earlier [23]. Now this theory has reached
a considerable degree of maturity. Many textbooks are available, and a plethora of control
methods has been developed. References [24–26] can serve as good introductory texts for
PDE control and [27] for state estimation. However, they are just a small selection from
a substantially larger body of the existing literature. Considering the distributed sensing
property of tomographic sensors and advanced development of the PDE systems theory,
tomography and control theory of PDE systems seem to be the most natural connection.
Models and sensors are here consistent with each other. We will see in the next section to
what extent this is really the case.

Nowadays, controllers are implemented mainly using digital computers. An imple-
mentation based on analog electronics is also possible but much less common [28]. Any
nontrivial controller is also a dynamical system. If it is linear, it can be described by matrix
Equation (1). In these equations, the derivative of each component of the state vector is
expressed as a linear combination of state variables and input variables. Therefore, one
integrator (analog or digital) is necessary to implement each row of these equations [21].
For this reason, it is clear that regardless of whether the controlled process itself is de-
scribed by ODEs (i.e., it is finite-dimensional) or PDEs (i.e., it is infinite-dimensional),
the controller must always be finite-dimensional. Otherwise, it would not be technically
implementable because it would need infinitely many integrators. However, the transition
to finite-dimensional description (if needed, i.e., with PDE process models) can be done
at different design stages. Consequently, all design methods for control of PDE systems
can be classified either as early lumping methods or late lumping methods, depending on
when this transition is done.

Early lumping methods use approximation and model reduction techniques as a first
step. PDE systems are reduced to finite-dimensional descriptions before controller design
using the finite difference method, finite element method (FEM), or other techniques [29].
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Regardless of which technique is used, the result is a state-space model, whose order may
be relatively high, but still, it is finite.

This early lumping procedure may be illustrated using a simple example of a PDE
model representing a forced-flow steam-jacketed tubular heat exchanger [30]. The space
coordinate is one dimensional in the direction of the heat exchanger tube (x-axis). The
dynamic model of this process can be expressed as:

∂T(x, t)
∂t

= −u
∂T(x, t)

∂x
+

1
τ

(
Tj(t)− T(x, t)

)
(3)

where T(x,t) is the temperature of the heated liquid in the heat exchanger tube, Tj(t) is the
steam jacket temperature, u is the heated fluid velocity through the tube, and τ is a positive
constant. The steam temperature is considered to be spatially uniform for simplicity.

If the heat exchanger is space discretized into N discrete elements of equal length ∆x,
the space derivative can be approximated using the backward difference method

∂TL
∂x
≈ T(i)− T(i− 1)

∆x
(4)

Substituting the formula for backward difference into Equation (3), the following
model is obtained

dT(i, t)
dt

= − u
∆x

T(i− 1, t)−
(

u
∆x

+
1
τ

)
T(i, t) +

1
τ

Tj; i = 1, . . . , N (5)

where T(i,t) are temperatures of individual discrete elements, and T(0,t) is the input tem-
perature. It is evident that if the state vector x is composed of temperatures T(1,t) to T(N,t),
input vector u includes T(0,t) and Tj(t), and output from the system is T(N,t), the set of
Equation (5) can be written in matrix form (1).

If the model is in the form (1), i.e., in the standard linear state-space form, controller
design can also proceed in a standard way and the number of available design methods
and tools is very high. These methods include classical approaches based on state feedback
such as the Linear Quadratic (LQ) control as well as modern advanced approaches based
on numerical optimization such as Model Predictive Control (MPC) [31]. However, the
reduction of infinite-dimensional to finite-dimensional dynamics implies that some part
of the original dynamics is neglected. This may result in the so-called spillover effect [32].
This effect is marked by bad control performance or even closed-loop instability if the
controller designed on the basis of the reduced lumped parameters model is connected to
the real plant.

On the other hand, the late lumping approach exploits the full PDE model and uses
the PDE systems theory for controller design. Lumping (in principle similar to the proce-
dure outlined above in Equations (3) to (5)) is the last step to be done to implement the
controller. Late lumping introduces no approximations during controller design, but the
whole procedure requires a significantly deeper knowledge of PDE system theory [25].

The advantages of tomographic sensors are not limited to the fact that their sensing is
distributed. Their ability to look inside the process also has the aspect that most of their
modalities are nonintrusive [7]. They look inside the processes without penetrating them.
Since most of the process tomography modalities are non-optical, they can be used even
if the processes contain opaque fluids and the conditions inside them are very harsh. For
these reasons, tomographic sensors can provide information that is not obtainable in other
ways [4]. In the following pages of this review, we will see that incorporating tomographic
sensors in feedback control makes sense even if their distributed sensing capability is not
fully utilized, but their measurements are condensed into one or a few simple numerical
values characterizing the behavior of the controlled process.
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2.2. Tomography Data Processing

A very important general consideration related to the use of tomographic sensors for
feedback control is the fact that they do not simply provide an image of what is inside the
process. Their raw output is a set of measurements. The image must be reconstructed from
this output. The reconstruction procedure depends on the specific tomography modality
used. Medical tomography usually belongs to the so-called hard-field tomography category
(e.g., X-ray, gamma-ray, ultrasound tomography). In this case, the path of the transmitted
signal is a straight line, and signal strength is affected only by the material along that path.
On the other hand, industrial process tomography usually belongs to the category of the
so-called soft-field tomography (e.g., electrical impedance, electrical capacitance, magnetic
induction tomography). In the soft-field-tomography, the path of the signal is not simply a
straight line but there are other factors that can influence the transmitting signal (e.g., the
distribution of conductivity or permeability inside and outside the measured region in the
case of ERT or ECT) [6].

The nature of soft-field tomography is more complex. The reconstruction of the
image from raw measurement data poses an increased difficulty. Most importantly, it
is an ill-posed and often nonlinear problem in the case of most soft-field tomography
modalities. It is not the purpose of this paper to give an overview of image reconstruction
methods. An interested reader can find a good survey in [11] Part two, “Tomographic
image reconstruction”, as well as in [33].

A more important point from the perspective of control applications is the fact that it
is not always necessary to proceed in the seemingly most natural way: raw measurement
data→ image reconstruction resulting in a pixel-based image→ image analysis and interpreta-
tion where some control relevant features are extracted→ feedback control. Following [34,35],
we can say that there are at least two alternatives to full image reconstruction. Firstly,
raw measurement data may often provide enough information for feedback control in
many applications. Secondly, even if an image reconstruction step is performed, it need
not be a blind reconstruction assuming that any image can arise from measurements.
Rather it should incorporate prior information about the process into the reconstruction of
the images.

Approaches relying on the analysis of raw data have been used since the beginning
of process tomography. In [36], principal component analysis (PCA) was used on the
raw data to relate the material concentration to the principal components of the raw data.
Therefore, calculating the phase concentration of the two-phase flow was possible without
reconstructing the image. Another early example is [37], where the time topology of flow
was recreated by plotting signals corresponding to the peripheral impedance measurements,
thus avoiding the reconstruction of the image. In [38] the flow regime identification was
performed on the basis of the so-called fingerprint matching method. This method uses a 12-
electrode electrical capacitance tomography sensor, i.e., with 66 capacitance measurements.
For any specific flow regime, the data present a particular pattern. Such typical patterns for
various flow regimes were stored in memory. The flow regime could then be identified by
comparing the currently measured pattern with the set patterns stored in the memory.

The flow-pattern identification method described in [39] used two simple numeri-
cal identifiers obtained directly from electrical capacitance tomography measurements:
(1) variance of on the electrode pairs of the same type (facing as well as first, second, and
third adjacent electrodes) and (2) the ratio of the capacitance value for the top electrode
pairs to the bottom electrode pairs. Based on these identifiers, it was possible to classify
different variants and combinations of annular flow and stratified flow patterns. Although
paper [39] is focused on flow pattern identification only, and its authors do not go on to
consider control, it should be noted that the output from this classification is not a numeri-
cal continuous-valued variable but a set of discrete flow patterns with some intermediate
combinations between them. Such a situation is not uncommon with tomography sensors.
It is not well suited for using classical feedback controllers that need continuous-valued
set-points and controlled variables. However, it might be well suited for using fuzzy valued
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variables and fuzzy control where a knowledge base can be utilized using prior knowledge
of the flow patterns.

A similar but more recent example of the use of raw data is described in [40]. In
this paper, the twin-plane ECT was used to sense two-phase flow involving water, air,
and particulate flow in a fluidized bed. There was no image reconstruction. The raw
capacitance data from each frame were processed using several alternative approaches,
most importantly using neural networks with deep learning and cascades of Support Vector
Machines (SVM). Similarly, as in [39], the result was a classification of the flow into several
categories of flow patterns. Compared to [39], this classification was somewhat finer: plug,
slug, annular, stratified, and wavy flow.

Regarding the second alternative to pixel-based image reconstruction, it can be said
that there have been two common methodologies for the incorporation of prior information
with the reconstruction of the images: Parametric modeling and state estimation. Parametric
modeling makes use of the known geometry of the problem. Its principle can be explained
using the hydrocyclone application described in [34]. Hydrocyclones form a central air
core extending over the full length of the hydrocyclone. This core has a circular shape.
Hence if the objective is to identify this core and find its diameter, we have a problem with
circular geometry. For any given diameter of the core, we can calculate theoretically which
tomographic measurements should be expected. The research described in [4,34] used
ultrasound tomography. The air core diameter was found by searching for such diameter
of the circle that produced calculated data that would be the best fit for the measured data.

Parametric modeling was also used in [41]. This paper considered the control of a
small-scale model of the continuous casting process. In continuous casting, the quality
of the casted metal depends to a considerable degree on the flow patterns in the mold.
These flow patterns are shown in Figure 1a. The desirable flow pattern is a double-roll flow
pattern, while a single-roll flow pattern should be avoided. The flow inside the mold was
measured using Ultrasonic Doppler Velocimetry (UDV) sensors. UDV sensors measure the
velocity field inside the volume of the mold. Because of this ability to look inside, UDV
sensors can be classified as a specific tomographic modality or at least as sensors with
properties similar to tomographic sensors [42,43]. It can be seen from Figure 1a that the flow
pattern is determined mainly by the initial direction of the flow from the nozzle. This initial
part of this flow can be approximated by a line with varying angles (see Figure 1b). This
angle should be kept within acceptable limits by a controller and electromagnetic actuator.
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variable angle.

What is important from the viewpoint of sensor data processing is the fact that this is
a problem with very simple geometry. The analysis of the data can be reduced to finding
the angle of the jet flow exiting from the nozzle. Further research described in [44] has
shown that the shape of the exiting jet flow has a rather banana-like than straight-line
shape, and a third-order polynomial better parametrizes the whole problem than just a
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linear function. However, this is merely a development of the same idea, just with slightly
more complex geometry.

Another method enabling the use of tomography measurements without performing
blind pixel-based image reconstruction is state estimation. This approach makes use of the
techniques that were developed for finite-dimensional state-space system models. The orig-
inal developments (Luenberger observer, Kalman filter) were for linear systems. Later, they
were extended to nonlinear systems (extended Kalman filter and related techniques). State
estimation techniques are a standard part of control theory described in many textbooks. A
detailed treatment can be found, e.g., in [45].

The use of state estimation techniques for the reconstruction of tomography data is
based on a fairly simple idea. A tomographic sensor is connected with a process whose
PDE description is converted into a finite-dimensional state-space model using some of
the methods mentioned above. This state-space model is usually also time-discretized. It
describes the dynamics of the process. In papers focused on tomographic sensors, this fact
is often stated by saying that it describes the evolution of the process. Mathematically, this
is a set of ordinary differential or difference equations.

A tomographic sensor produces measurements that depend on the internal states
of the dynamic model and represent system outputs. This relationship is expressed by
the so-called output equation of the state space model. Considering the time-discretized
variant of state-space Equation (1) we have the equations in the following form

x(k + 1) = Mx(k) + Nu(k)+ξ(k)
y(k) = Cx(k)+Du(k)+η(k)

(6)

This is the linear time-invariant case. These equations may be generalized into more
general cases. Matrices of the model become time-dependent if the system is time-varying.
If the system is nonlinear and time-varying, the equations can be written as

x(k + 1) = f(x(k),u(k),ξ(k), k )
y(k) = g(x(k),u(k),η(k), k )

(7)

In these equations, x stands for a vector of internal state variables (e.g., concentration
distributions), and y is the vector of the measured outputs. Vectors ξ and η are noises:
process noise and measurement noise, respectively. These vectors are not included in the
continuous version of the state space Equation (1). They are added to the discretized version
because these noises are the standard way the model uncertainties and measurement
errors are considered in Kalman filtering and LQ control [45]. System input (manipulated
variables, disturbances) is denoted with u and k stands for the discrete time.

The task of a state estimator is generally to estimate the values of state variables from
available output measurements. In this specific application, the measured outputs are
tomography measurements. The use of state estimation enables us to find the values of
internal states (i.e., the variables to be sensed by tomography) without performing pixel-
based image reconstruction. This approach to tomography data analysis is particularly
useful in connection with control approaches based on state-space models.

The purpose of this section was not to give a detailed exposition of the issues associated
with tomography data processing. Such a presentation would require another complete
review paper. This section’s main objective was to illustrate that the connection between
sensor and controller in tomography-based control is much more complicated, and more
options exist than in control tasks with standard sensors. The various options for connecting
a tomographic sensor into a control loop outlined in this section are summarized in Figure 2.
It shows that besides the “long feedback loop” going through image reconstruction and
reconstructed image analysis, we have several shorter options that are generally more
suitable for real-time control.
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3. Control Techniques, Methods, and Applications
3.1. Control Based on Distributed Models

As has already been stated, tomographic sensors enable distributed sensing. As
a result, it is pretty natural to combine them with control approaches that exploit the
distributed parameters nature of the controlled process. For this reason, we will start
this treatment with this class of approaches. A very important category of processes with
distributed parameters is the processes that include single-phase or multiphase flows.
Applications of tomography-based control to flow processes have been reported since the
very beginnings of industrial tomography.

3.1.1. Concentration Distribution Control

A very basic control task related to flow control is the control of the concentration
distribution of a substance in a fluid flow along a straight pipe with a circular cross-section.
The concentration profile is controlled by injecting strong concentrate into the flow through
one or more injectors. Their flow rates are considered manipulated variables. The control
action is based on concentration measurements performed by an electrical impedance
tomography system located downstream from the injection point. The structure of this
process is shown in Figure 3.
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From one viewpoint, this is a relatively simple, specific process. However, as far as the
structure of its mathematical model is concerned, this process reflects the general nature of
many fluid flow processes, including liquid/liquid and solid/liquid mixing. Thus, it can be
viewed as a paradigmatic controlled process for tomography-based control. For this reason,
its control was addressed in many papers, most notably in several papers and a PhD thesis
written mainly by S. Duncan, A. Kaasinen, and their co-authors [46–51]. Therefore, we
will describe this process in some detail. A mathematical model of this process has been
given several times in slightly different variants in the papers cited above. The following
equations are based mainly on [51].

The concentration of the injected substance can be described by a PDE model—
convection–diffusion equation

∂c(ξ, t)
∂t

= −v(ξ)×∇c(ξ, t) +∇×κ(ξ)∇c(ξ, t) + q(ξ, t) (8)

where ξ is the vector of space coordinates within the domain of interest Ω (finite segment
of a pipe). This domain is generally three-dimensional, but it can be two-dimensional if it
is a straight pipe with circular symmetry. The concentration distribution is denoted as c(ξ,
t) where ξ ∈ Ω and t ≥ 0, v(ξ) is the velocity field and κ(ξ) is the diffusion coefficient. The
source term q(x, t) describes the injection of substance B into the flow of substance A. If
there are multiple injectors, this term can be expressed as

q(ξ, t) = Λu(t) = Λ
[

u1(t) · · · uK(t)
]

(9)

where u(t) is the vector of manipulated variables and Λ is a linear map that depends on the
geometry of the injection and the number of injectors K.

Initial and boundary conditions can be specified as follows

c(ξ, 0) = c0(ξ), ξ ∈ Ω (10)

c(ξ, t) = cin(ξ, t), ξ ∈ Ωin (11)

∂c(ξ, t)
∂n

= 0, ξ ∈ Ωwall ∪ Ωout (12)

Here cin(t) is the time-varying concentration at the input boundary, i.e., it is generally
assumed that even the fluid entering the pipe can contain a fraction of the substance injected
by the injectors. This variable is a disturbance from the viewpoint of feedback control.

PDE model is further space-discretized to obtain a finite-dimensional model. This can
be done using FEM (e.g., [47–52]) or finite difference approximation in the direction of the
pipe centerline [49,50]. Regardless of the method used, the result is a high order state-space
model that can be written in a time-discretized form as

c(k + 1) = Ac(k) + B1u(k) + B2d(k) + w(k) (13)

where c(k) is the space and time-discretized concentration, which plays the role of a state
vector, u(k) is the vector of manipulated variables defined in Equation (9), disturbance
d(k) is input concentration defined in Equation (10), and w(k) is a stochastic process repre-
senting modeling uncertainties, random components of input signals and other stochastic
influences. Assuming that the velocity field and the diffusion coefficient in Equation (8)
are not time-varying, the matrices in Equation (13) are constant, i.e., they describe a linear
time-invariant finite-dimensional system. It can be used instead of the PDE model (8) in
control design. That means that this approach is a sort of early lumping design.

Concentrations are measured using electrical impedance tomography. Depending
on the properties of the fluids, either conductivity or permittivity measurements (i.e.,
electrical resistance or capacitance tomography) are used. Conductivity measurements (i.e.,
a conductive fluid consisting of components with different conductivities) will be assumed
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here. However, the main principles would be the same if permittivity measurements
were considered.

Electrical tomography does not provide simple and direct information about concen-
trations. The available measurements are voltages between different pairs of electrodes pro-
duced by varying current injection patterns (j = 1, . . . , NI) applied to the electrodes. These
voltages depend on the conductivity distribution σ within the pipe, and this conductivity
distribution depends on the concentration of injected substance c. Voltage measurements
for one current injection pattern can be expressed by a compound formula

Vj = Uj(σ(c)) + vj = U∗j (c) + vj (14)

where V j are the voltage measurements, and Uj maps the conductivity to the measured
voltages. Vector vj represents additive measurement noise. If the controlled process
is slow enough, the conductivities can be considered constant during the whole frame,
where the full set of all current injection patterns is used. In this case, all measurements and
conductivity mappings can be combined into one vector and one mapping [52]. Equation (9)
can then be written as

V(k) = U(σ(c(k))) + v(k) = U∗(c(k)) + v(k) (15)

All variables have the same discrete time, i.e., the time necessary for performing a full
set of current injections must be significantly shorter than the controller sampling period.
However, these stationarity assumptions are often not satisfied in the real-time control.
This non-stationarity can be handled in several ways. It is possible to use a substantially
reduced set of current injection patterns or even one pattern optimized in such a way that it
provides as much information as possible [53]. The observation equation has then the same
form as Equation (15), but it uses just one measurement or a small number of measurements.
As a result of this, the concentrations must be computed on the basis of a smaller amount
of data. Alternatively, this observation equation can be considered time-varying where the
mappings are different each discrete time k depending on which current injection pattern j
is used.

Equation (15) can be kept in its nonlinear form, or it can be linearized and written in
deviation variables around an appropriately selected operating point

V(k) = U0 + J(c(k)− c0) + v(k)⇒ ∆V(k) = J∆c(k) + v(k) (16)

where J is the Jacobian of the function U*(c(k)) evaluated at the operating point c0.
Equations (13) and (16) or (15) are then of the same form as Equation (6) or (7). They

can be used to design a state estimator using either a linear version of the Kalman filter
or some of its nonlinear versions, e.g., an extended Kalman filter. State estimation was
originally proposed as an approach to solving the inverse problem and obtaining the
concentration (or other) data from voltage measurements where the dynamic Equation (13)
was used in order to bring additional information and make the whole procedure feasible,
especially in the non-stationary cases, where observation Equation (15) includes just a
limited amount of data.

This means the original motivation was mainly data reconstruction. However, this
setting is very suitable for control. Equations (13) and (15) or (16) provide a good starting
point for control methods based on state-space models. It is just necessary to consider that
although observation Equations (15) and (16) can be regarded as output equations of a
state-space model, they provide measured outputs that are not controlled variables. The
controlled variables are concentrations at a selected region. Most naturally, the output
boundary can be considered. This can be described by an additional output equation

y(k) = Cc(k) (17)
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Matrix C can be zeros and ones matrix that selects just the concentrations in the region of
interest as controlled outputs. This form of output equation can also cover other cases of
control objectives, e.g., an average concentration in a chosen region of interest can be the
output variable.

We described this concentration control process in some detail because it corresponds
well with the fundamental characteristics of tomographic sensors. Corresponding to the
distributed sensing achievable by tomography, there is a distributed parameter model of
the process. This model is handled using the early lumping approach, i.e., it is converted
into a high order state-space model, which can then be used as a starting point for several
controller design approaches.

Early papers by S. Duncan [49,50] used PI controller. This controller is suitable for SISO
systems. In accordance with this, only one injector was used, and the average concentration
at a particular pipe point was the controlled variable. The control was tested in simulation
only. Control performance was rather poor, marked by oscillatory responses to set-point
changes. These oscillations were caused by the significant delay because of the flow from
the injector to the measuring point. It is well known from the theory of time-delay systems
that these oscillations can be eliminated either by decreasing the proportional gain or by
adding the Smith predictor structure to the PI controller [54]. However, neither of these
approaches was used in [28,29].

Since a state-space model is available, it is possible to use advanced model-based
controllers instead of PI control. This was done in several papers [46–48,51]. The control
approach of choice was the Linear Quadratic (LQ) controller. This controller is based on
quadratically optimal state feedback in the form

u(k) = −K(k)x(k) (18)

where x(k) is a state vector, i.e., it is the vector of concentrations c(k) if model (8) is the
controlled plant. K(k) is an optimal feedback gain matrix calculated using a discrete-time
matrix Riccati equation [55]. Equations (13), (16), and (17) provide a standard setting for the
design and straightforward application of LQ controller. It was only necessary to take into
account that the LQ controller in its basic form is a regulator, i.e., its objective is to drive
states and system output to zero. In this case, it is not an appropriate objective because the
control objective is to obtain a specified nonzero reference concentration yref at the output
boundary. For this reason, the structure of the controller had to be changed to

u(k) = u−K(k)(c(k)− c) (19)

where u and c are steady-state values corresponding to the state, where the reference
concentration yref is achieved. This modification introduces feedforward action into the
controller. Set-point enters the controller indirectly as a variable on the basis of which the
steady-state values are computed. The controller described by Equation (19) is used by all of
the papers [46–48,51]. The state vector (concentrations), which is input to the controller (19),
is estimated either using a Kalman filter based on a linearized observation equation [46] or
using an extended Kalman filter based on a nonlinear observation equation [51].

This control application of tomography may seem to be a fairly nice example of the
early lumping approach applied to a control of a distributed parameter system connected
with distributed sensing. It includes a well-established mathematical model as well as
an advanced control method. Unfortunately, this concept of tomography-based control
may also be a blind alley. The controlled process considered here is relatively simple, and
it was the subject of several papers published over more than one decade. Nevertheless,
this concept has never gone beyond simulation testing. None of the papers gives more
than simulated responses. Moreover, it also seems that this research line found only a very
limited continuation in the last decade.
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3.1.2. Microwave Drying Process

Looking to the development following 2013 when [51] was published, almost no
papers follow this concept and attempt to transfer it into other controlled processes. The
most notable exception is the paper by Hosseini et al. [56] published in 2020. This paper
is focused on the control of a microwave drying process. In microwave drying, a porous
dielectric material with high moisture content is placed inside a cavity and exposed to
microwave sources (magnetrons). In paper [56], the control objective is specified in the
following way: “The objective is to reach as homogeneous moisture distribution as possible
inside the porous material and the average moisture of the material should follow the
desired moisture level.” Power levels of microwave sources are used as manipulated
variables. The output moisture is measured using electrical capacitance tomography, i.e.,
using a sensor whose behavior is similar to the sensor described by Equations (14) to (16)
but with permittivity instead of conductivity.

Industrial tomography is the key enabling technology for feedback control of this
process because it is the only technology that can measure the moisture distribution inside
the material. Alternative sensor technologies can provide only surface-related information
which is not enough for efficient control. For this reason, paper [56] is also likely to be
the first paper to treat the question of feedback control of microwave drying. It should
also be noted that efficient feedback control would be a very important innovation in the
case of microwave drying because if the control of microwave sources is not based on the
measurements taken inside the material, there is a danger of hot-spot formation [57]. This
danger is particularly high in the case of drying porous polymer foams, where it can lead
not only to low-quality processing but also to foam ignition danger [58].

The control design concept used in [56] is similar to the concept described in the
preceding section for the concentration distribution control process. The microwave drying
process was modeled using a parabolic PDE model. This model was space discretized; the
LQ controller was designed and tested in simulation. Since the control objective is to reach
a nonzero set-point, a modified version of LQ control similar to the controller (19) had to
be used. The simulation results presented in [56] are promising. However, this paper does
not go beyond simulation, and no follow-up papers going further to implementation have
been published.

3.1.3. Inline Fluid Separation Process

A similar controller design methodology based on the concept of space-discretized
PDE models was also applied to control of gas–liquid inline swirl separator. This control
design was described in recent (2020) papers [59,60]. The structure of the gas–liquid inline
swirl separator process is outlined in Figure 4. The central component of this process is a
vaned swirl element generating the swirling flow. This swirling motion should generate
a core of the lighter phase, which is then captured by the central pickup tube, while
the heavier phase should be captured by the outer tube. In order to improve this phase
separation, the flows through the tubes are controlled by two valves. These valves are used
as manipulated variables.

Conventional control of this process is explained in a recent paper [61]. It is inherently
indirect and based on the so-called pressure drop ratio, i.e., the ratio of the pressure
differences between the pressure in the inlet tube and the two outlet tubes. It is rightly
stated in [61] that such an indirect control approach can reduce the efficiency of these devices
significantly and result in violations of the environmental requirements. The authors also
propose some extensions and improvements to the control based on the pressure drop ratio.
However, these extensions are just variations of the same basic structure, e.g., they add
feedforward action or make the setpoint of the ratio controller variable. On the contrary,
the structure shown in Figure 4 allows significantly more direct control because it includes
several tomographic sensors.
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Void fraction sensors in the outlet tubes can be either ERT or wire-mesh sensors,
and they measure cross-sectional volumetric gas fractions in the outlet flows. From the
viewpoint of the control system, all these variables can be used as controlled variables.
The ERT sensor monitors the gas core created by the swirl element. This measurement
can be used both as a controlled variable and as a measured disturbance. The wire mesh
sensor in the bottom measures the gas fraction and gas velocity of the incoming flow. In
this way, it provides some kind of advanced information for the controller. It can be used
as a measured disturbance for controller feedforward action.

The underlying concept used by paper [59] is the same as was described in the previous
sections on microwave drying and concentration distribution control. The starting point
is a simplified PDE model of the flows inside the separator process. This model is space
discretized using the finite volume method. The resulting finite-dimensional model is
then linearized. The result of this procedure is a high-order state-space model of the form
(1). Unlike previous sections, this paper uses not LQ but MPC approach for controller
design. However, this MPC controller is developed in a really minimalistic form. Although
the paper introduces the control structure shown in Figure 4, this structure is rather an
ideal concept that should be achieved in future development. The really developed MPC
controller is much more modest. It does not use the information from the inlet wire-mesh
sensor. Rather, the ERT sensor measurements serve as a measured disturbance, while the
measurements from the void fraction sensors are controlled variables. The controller is
unconstrained, and its cost function considers only squared differences between measured
void fractions and perfect separation conditions, i.e., increments of manipulated variables
are not included in the cost function.

Although the controller was tested in simulations, these simulation tests are still at a
very early stage. At this moment, it can be considered a very interesting concept. However,
only future development can show its real strength. The open question is not so much
the use of MPC but whether the space-discretized PDE model is really the most suitable
option. Although [59] uses this version of the model, in [61] the authors consider using
either identified black box/grey box models or neural network models.

3.1.4. Issues with Control Based on Early-Lumped PDE Models

Papers [56–59] are the only papers using the concept of early lumped PDE models for
control with tomographic sensors published after 2013. Trying to analyze the reasons for
this somewhat discouraging situation, at least two principal issues can be identified.
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The first issue to consider is the use of linear quadratic control. This control method
was originally developed for aerospace applications where modeling the uncertainties
by white or colored noise disturbances such as in Equations (6) and (7) is more or less
adequate. However, it is generally known that this is not an adequate model for industrial
process control and that the application of the LQ approach to industrial control problems
is not really a success story [62]. Moreover, the version of set-point tracking described by
controller (14) is sensitive to model inaccuracy. If the steady-state values are calculated
using an inaccurate model, there is no way to compensate for this, and steady-state control
error appears. A more robust version of linear quadratic set-point tracking can be obtained
by introducing the integral of control error to the controller [55], but this has never been
used in the context described above.

Generally speaking, the importance of linear quadratic control is mainly historical. LQ
control was the first control method based on quadratic optimality criterion and state-space
models, but it has never found significant industrial acceptance. On the other hand, model
predictive control (MPC) [63] is related to LQ control in many important respects. It also
usually uses a quadratic criterion of optimality, and it is based on a model of the process. LQ
control is sometimes referred to as the zeroth generation MPC because of these similarities.
However, despite these similarities, MPC is much more suitable for industrial use than LQ
control. In particular, MPC features a unique ability to handle constraints, a wide range of
acceptable models (state-space models, step-response models but also e.g., fuzzy models),
and suitability for control of multivariable processes. Nonzero set-point tracking can also
be achieved in a straightforward way, and no awkward modifications such as in the case of
LQ control are necessary. For these reasons, MPC has found wide industrial acceptance.
Nowadays, it is the standard method of choice for control tasks where PID control is unable
to achieve desired control performance.

Although the idea to apply MPC in a context similar to the application of linear
quadratic control described above may seem obvious, there are just two attempts in this
direction. One attempt done in [59] has already been described, and it is rather a concept
than a fully-fledged MPC application. The second attempt is the paper by Sbarbaro and
Vergara [64] published in 2015. This paper uses electrical impedance tomography modeled
by Equations (14) and (15) while the controlled plant is a generic discrete-time state-space
model with a linear dynamic equation and nonlinear output (observation) equation

x(k + 1) = Mx(k) + Nu(k)
y(k) = g(x(k))

(20)

This structure corresponds well with the model of the concentration distribution
control process described by Equations (18) and (20) as well as with the space-discretized
model of the microwave drying process. Similar correspondence could be found with
other processes where tomographic sensors can be applied. That means the MPC design
proposed there could be fairly general. However, the MPC design in [64] does not go too
far. The paper includes just standard textbook equations of analytical unconstrained MPC
controller combined with a nonlinear observer. The resulting control design is tested using
a simple numerical example.

The second issue is the dimensionality of the model. PDE models are space-discretized
using the finite element method (FEM) or finite differences method in the above-mentioned
papers. This is an appropriate approach for numerical simulation, but it does not provide
good control-oriented models. For instance, the order of the state-space model used in [56]
is 3670. This extremely high order is likely to result in high computational demands and
ill-conditioned computations. Since the processes considered are described by parabolic
PDE, it might be better to use the well-known fact that parabolic systems have a spectral
gap between finite-dimensional slow and infinite-dimensional stable, fast modes [65]. This
enables an accurate approximation of such PDEs using relatively low-order models based
on slow modes. Such models can be derived using spectral methods or the Karhunen–
Loève method. For instance, paper [66] applies these methods to distributed parameters
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processes with convection-diffusion phenomena and compares the quality of resulting low
order models. In this paper, an acceptable approximation is always achieved with model
order less than ten, which is by order of several magnitudes less than the order of models
resulting from FEM.

Using low order models derived from parabolic PDE models on the basis of spectral
methods or the Karhunen–Loève method is an open research direction for further devel-
opment of tomography-based control. The use of these methods and their advantages are
not as straightforward as they might seem at first sight. All approximation methods can be
interpreted in such a way that the spatiotemporal PDE variable y(x, t) is expanded by a set
of spatial basis functions Φi(x)

y(x, t) =
∞

∑
i=0

Φi(x)yi(t) ∼=
n

∑
i=0

Φi(x)yi(t) (21)

where the infinite upper limit is replaced by a sufficiently high finite n. The low order of
the approximated model in spectral methods can be achieved because the spatial basis
functions are global, i.e., they are nonzero in the whole domain of interest. On the other
hand, FEM can be understood as a method with local spatial basis functions (nonzero only
within one element). As a result of this, high n is necessary for a good approximation.

However, this high n simplifies the form of the output equation. If the model output
has to correspond with tomography measurements, (i.e., with measurements distributed
within some subdomain such as, e.g., the output boundary), it is enough to take the values
of the elements located in the subdomain of interest, if FEM is used. We obtain a simple
output equation such as Equation (17) where C is zeros and ones matrix. On the contrary,
the construction of the output equation becomes more complicated if any method with
global spatial basis functions is used. Despite this problem, methods with global spatial
basis functions are worthy of research attention because control designs based on models
with thousands of state variables are unlikely to find industrial implementation.

3.2. Control Based on Lumped Parameters Dynamical Models with a Static Model of
Distributed Variables

Although no published paper has ever used spectral and related approximation
approaches in connection with tomography, several papers use methods that are different
in concept but similar in their results. These are the papers by Villegas, Duncan, Wang, and
others focused on the control of batch fluidized bed dryers [67–70]. A schematic sketch of
this dryer and its instrumentation is shown in Figure 5a.
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Such dryers are used in a wide range of industries (food, pharmaceutical, chemical). In
these dryers, solid particles are transformed into a fluid-like state by forcing a gas (typically
air) to flow in an upward direction through the bed. One of their main advantages is that
the high turbulence arising in the bed provides high heat and mass transfer, as well as a
high degree of mixing of the solids and gases within the bed. However, this turbulence
may also result in non-uniform distribution of the solid phase (powder) inside the bed
and local variations of moisture and other physical properties of the powder. This is the
motivation for introducing a tomographic sensor that can observe these local variations
inside the dryer.

There is actually a significant degree of similarity between this process and the con-
centration distribution control process shown in Figure 3. Both of them are fluid flow
processes. Electrical tomography is used to measure a distributed controlled variable.
However, the modeling approach is different. The authors of [69] use a dynamic model
built from the very beginning as a simplified lumped parameters model based on mass
and energy balances of the solid, gas, and bubble phases. Its input variables are inlet air
temperature (T0) and velocity (U0), while output variables are particle moisture (xp) and
temperature (Tp). Although there are two input variables, it was shown by a sensitivity
analysis published in [46] that the inlet air velocity has a much more significant influence on
the performance of a fluidized bed dryer than the inlet air temperature. For this reason, it is
enough to use this velocity as the only manipulated variable while the inlet air temperature
can be kept constant.

The distributed model describes the variation of permittivity and thereby also the
distribution of the particle moisture over the cross-section of the dryer. It is described by
an algebraic expression

ε
(
r, U0, xp

)
= fR

(
U0, xp

)
+

N

∑
i=0

ci
(
U0, xp

)
J0

(
r

λi
R

)
(22)

where R is the radius of the dryer, r ∈ <0,R>, fR and ci are real functions and J0 is the Bessel
function of the order zero, and λi the i-th positive zero of this function. The structure of the
mathematical model combining lumped dynamical model and (22) is shown in Figure 5b.

The choice of Bessel functions in the permittivity distribution model (22) is motivated
by their suitability for cylindrical coordinates. Model (22) is not a first-principles model
but a suitable model structure whose components are to be obtained by identification from
experimental data. This was done in [69] using the data from a small laboratory scale dryer
Sherwood M501. Good approximation was obtained with N = 4 and bivariate polynomials
up to second order in the positions of fR and ci.

It should be noted that if the modeling started from a PDE model and some method
with global spatial basis functions were used for space discretization, there would be
similarities between the resulting model structure and the structure shown in Figure 5b.
Again, it would be a relatively low order lumped parameter dynamical model with a static
output function. This output function could be linear if it directly described the output
variable of interest. However, it would be nonlinear similarly to model (22) if it described
variables such as permittivity or conductivity. This is because of the nonlinearity of the
relationship between variables such as concentration or moisture on the one hand and
conductivity or permittivity on the other hand.

The control objective was to achieve the desired moisture distribution over the cross-
section of the dryer. This desired moisture distribution can be converted into a correspond-
ing desired permittivity shape as expressed by the summation term in model (22). The
authors of [69,70] used offline optimization. They calculated a set of optimal values of U0
corresponding to a set of particle moisture xp values for a specified desired permittivity
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shape and identified coefficients in model (22). The relationship between xp and optimal
U0 opt resulting from this optimization was then approximated by a third-order polynomial

U0 opt = p
(
xp
)
= a3x3

p + a2x2
p + a1xp + a0 (23)

Putting together the descriptions somewhat scattered between [44] and [45], the
resulting control structure can be visualized using the scheme in Figure 6.
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The fluidized bed dryer used for experiments was a laboratory-scale dryer Model 501
produced by Sherwood Scientific. Technical details of this dryer are given by the man-
ufacturer in [71]. This device incorporates an air pump, heating coil, and temperature
measurement (with control and timer) in its basic configuration. Microprocessor control
of airflow, inlet air temperature, and drying period is available. The device configuration
used in the experiments included an optional moisture probe, and it was further equipped
with an ECT system with a data acquisition rate of 120 frames per second [69]. This
instrumentation corresponds to Figure 5a.

A standard humidity probe measures just the humidity of the outlet air and not the
moisture content in the particles being dried. These particles are scattered over the whole
cross-section of the dryer. As a result, their moisture content cannot be measured by a
single-point probe, but electrical tomography must be used instead. On-line evaluation
of the average particle moisture is based on ECT images reconstructed using Landweber
iteration [72]. Therefore, this control is basically a simple cascade control loop with a
single controlled variable in the master loop. However, the tomography sensor evalu-
ating the whole cross-section of the dryer is necessary to obtain the value of this single
controlled variable.

The master controller in the structure shown in Figure 6 and described by polynomial
(23) is a purely static term. It can be understood as a nonlinear version of the proportional
controller. The airspeed, which is the manipulated variable of this controller, must be
limited. In particular, its lower bound is important to ensure that the speed will never fall
below minimum fluidization velocity.

The control objective is to achieve an appropriate moisture distribution, which is
translated into achieving the corresponding reference permittivity shape. It is important
to note that there is no reference input to the controller, but the control objective is ex-
pressed indirectly by the values of coefficients in approximation polynomial (23). If the
desired shape changes, repeated off-line optimization must be performed, and the values
of coefficients in polynomial (23) must be updated accordingly.

Regarding the relationship between the desired and real permittivity shape, the con-
troller can be classified as a feedforward controller whose robustness is inherently limited.
If there is any change in the behavior of the dryer, the functions in the permittivity distribu-
tion model (23) should be updated. However, there is no way for the controller to learn
about this and a mismatch between desired and real permittivity shapes can appear. It



Sensors 2022, 22, 2847 19 of 33

is evident that there are many ways to improve the control. The availability of lumped
dynamical model and electrical tomography sensor and other instrumentation shown in
Figure 5 gives many opportunities for control improvement. However, this is an open
research direction. At this moment, it seems that the research line documented in [67–71]
has not found further continuation, at least as far as the modeling and control approaches
are considered.

3.3. Experimental Approaches: Identified Models, Empirical Controller Tuning
3.3.1. Control of a Wurster Fluidized Bed

However, a continuation of development can be found if the nature of the controlled
process is considered, such as in a recent (2020) paper [73] by H. Wang and others. There
is also a personal continuity because H. Wang was one of the authors of the papers on
the control of fluidized bed drying cited above [67–70]. The process considered by Wang
is similar in many respects to the fluid bed dryer. It is the so-called Wurster fluidized
bed, commonly used for coating pellets in the pharmaceutical industry. This process has a
concentric cylindrical tube (Wurster tube) inside a conical chamber. This internal structure
results in two flow regions: the coating region (inside the Wurster tube) and the annular
region (outside the tube). In this process, a coating solution is continuously sprayed into
the fluidized bed. Pellets are covered with the solution and dried with hot air. Complex
flow behaviors inside this fluidized bed cannot be adequately captured by the local flow
information provided by conventional point-based measurements. For this reason, any
real-time control and optimization are inherently difficult, and the operation of the Wurster
fluid bed coating process involves a significant deal of trial and error.

This motivates the use of electrical capacitance tomography. Similar to the dryer
described above, the ECT images are reconstructed using Landweber iteration. These
images are then processed to obtain information about the flow regime. Several regimes can
exist: bubbling, intermittent, and plug flow. It is important to keep a minimum fluidization
state and avoid intermittent flow, plug flow, and defluidization. Images reconstructed
from ECT measurements are processed to obtain the gas volume fraction in the annular
region and its cycle time (measured from the number of times this signal crosses its average
value). The values of these parameters are specific for different flow regimes, and the
undesirable regimes can be avoided by keeping gas volume fraction and cycle time at
specified set points.

This objective was achieved in [73] by two uncoordinated control loops. PID controller
controlled the gas volume fraction in the annular region using the fluidization air rate as
a manipulated variable. Another control loop used an on-off controller controlling the
cycle time using the pump for spraying coating solutions as an actuator. On-off controllers
do not require any tuning parameters except for hysteresis. PID controller was tuned
experimentally using the Ziegler–Nichols method [74]. This control structure has been
found to be effective for this coating process by the authors. Nevertheless, it is evident
that an advanced tomographic sensor with a sophisticated data analysis algorithm was
connected with a very basic control system.

It is clear that even if this controlled process is quite similar to the fluidized bed
dryer described above, the control design approach is significantly different. Neither
distributed nor lumped dynamical model was used for controller design and tuning. A very
standard PID controller was tuned using old empirical Ziegler–Nichols rules. Tomography
measurements were eventually condensed into one scalar value obtained on the basis of a
reconstructed image that could be used as a controlled variable of the PID control loop.

A similar approach, i.e., identification-based modeling or empirical controller tuning,
is fairly common. We have already seen that this was a considered option in the case of the
swirled separator process. Similarly, the model of the distributed permittivity (22) in the
case of the fluidized bed dryer was also obtained by measurements of the real process.
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3.3.2. Control of Microwave Drying

Furthermore, we have mentioned the microwave drying process. In [56] it is modeled
by the PDE model and feedback-controlled using an LQ controller. Further development
of this research by the same authors can be found in [75]. The conveyor belt microwave
drying process is identified as a state-space model of the order eight with input delays. It
can be described by the following expression:

x(k + 1) = Ax(k) + B1u1(k− Td1)+B2u2(k− Td2)
y(k) = Cx(k)

(24)

where u1 is the power applied to magnetrons, u2 is the average input moisture, and y is the
average permittivity change measured by the ECT sensor corresponding to the change of
average output moisture. The input moisture was calculated on the basis of weighting the
sheets of wet foams on a digital scale and the known weight of dry foam sheets.

Model structure (24) is relatively simple. Average moisture values are used, and
power levels of all magnetrons are changed in the same way, i.e., the power level can
be considered as a single manipulated variable. This approach can be extended into a
more general case, and model (24) can be turned into a multi-input multi-output (MIMO)
system. Paper [75] is focused on identification only. It does not cover controller design.
However, it is more than evident that the 8th order model (24) is a much better starting point
for controller design than the model with order 3670 described in [56]. Input moisture,
which is the second input to model (24) is a disturbance for the controller. Paper [58]
describes a microwave tomography sensor intended to be used for online measuring of
this moisture. In this way, all building blocks for a controller based on an identified model
with measured disturbance feedforward are prepared in the case of the microwave drying
process. The authors of [75] performed the first experiments with implementation and
experimental testing of the controller based on identified model (24) using PID and LQ
control approaches [76]. Although there is space for further development, the controllers
are at least implementable and able to achieve their control objectives, which would be
impossible using the controllers-based high order models described in [56].

3.3.3. Control of Continuous Casting of Metals

Another important process for which tomography-based control was proposed is the
continuous casting process. Continuous casting is very widely used for both ferrous and
non-ferrous metals. Its principle is as follows: molten metal from furnaces is transported to
the top of the casting machine using a large vessel called a ladle, and from this ladle, it is
poured into a reservoir called a tundish. This tundish is the starting point of the casting
process, which is shown in Figure 7.
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The molten metal flows from the tundish into the mold through the so-called sub-
merged entry nozzle. The flow rate through this nozzle is controlled by either a stopper
rod or a sliding gate. The mold is water-cooled. As a result, the liquid metal begins to
cool down and take the shape of the mold. This creates a strand that is later pulled out
through water-cooled rollers until the solidification process is fully complete [77]. Despite
the relative simplicity of this process, it is not so straightforward that a good quality product
is obtained.

Flow phenomena in the mold are complex, and they have a significant effect on the
final product quality [78]. However, the classical non-tomographic measuring techniques
cannot provide information about these flow patterns. For this reason, the problem of
controlling the continuous casting process is usually reduced to controlling the mold level.
This level can be measured, and it is known that its fluctuations have detrimental effects
on product quality. Generally, this level should be as flat as possible to provide a smooth
shell formation of the solidifying metal. Therefore, the literature on continuous casting
control usually focuses on mold level only [79,80]. A variety of methods, including fuzzy
control and model-based control, has been introduced, but the principal limit remains. No
substantial control advancements are possible without tomographic sensing because the
necessary information remains unavailable to the control system.

If desirable flow characteristics are to be achieved, it is necessary to extend not only the
measuring equipment but also the actuating equipment of the process. Enhanced control
over the flow in the mold can be achieved by using electromagnetic actuators besides the
standard stopper rod. These actuators can be either electromagnetic stirrers or electro-
magnetic brakes. Stirrers create a rotating magnetic induction field, while electromagnetic
brakes generate a static magnetic field to modify the fluid motion in the mold. Real-time
measurement of these phenomena is not possible using conventional sensors. For this
reason, electromagnetic actuators are normally operated as open-loop devices. One of the
rare exceptions where electromagnetic actuators are used in a closed-loop arrangement is
the research described in [81]. However, it should be noted that the configuration proposed
in this paper uses sensing, which is very similar to tomography. The flow patterns in the
mold are observed using a multitude of temperature sensors distributed over the mold
plate (more than 2500 sensors). The flows are estimated based on the sharp thermal image
of the mold obtained from these sensors.

Observation of the flow in the mold of a continuous casting machine was already
mentioned in Section 2 of this paper when discussing tomography data processing and
alternatives to computationally demanding and ill-conditioned image reconstruction. It
is very important to achieve the desirable double roll flow pattern as shown in Figure 1a,
while several numerical and controllable characteristics can be used to assess whether
it was really achieved. The first such characteristic is the jet flow angle as shown in
Figure 1b. Further characteristics, as described by Abouelazayem et al., in [41,44,82,83],
include meniscus velocity, jet velocity, and jet impingement point.

All of these characteristics can be obtained from raw measurement data using para-
metric modeling, i.e., avoiding the image reconstruction step. The manipulated variables
can be stopper rod position, electromagnetic brake current, or both. The cited papers
used several configuration variants considering both SISO and MIMO control loops. The
common feature was the use of models identified on the basis of measured data. These
data were obtained from a small-scale continuous casting facility called Mini-LIMMCAST
located at Helmholtz-Zentrum Dresden—Rossendorf. The description of this facility can
be found in [44].

In all cases, a satisfactory modeling quality could be achieved with models of low
order up to three. Mostly linear models were used; the most substantial non-linearities
were modeled using Wiener models where static nonlinearity was expressed either by
simple analytical function or using a neural network. Unlike previously mentioned appli-
cations of MPC, these papers used fully-fledged MPC, including all necessary constraints
considering both limited magnitudes and rates of change of both the stopper rod position
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and electromagnetic brake current. The control based on UDV measurements has recently
been extended to using contactless inductive flow tomography [84].

3.3.4. Control of Hydrocyclone Separators

Control of hydrocyclone separators, which use somewhat similar concepts as the
separator process described in some detail in Section 3.1.3, was also considered using PID
controllers and electrical impedance tomography in the position of the measuring device.
Such application is described in [85], while some preliminary concepts were outlined
already in [86,87]. The controlled process is the solid–liquid separator. The proposed
control system uses the fact that air-core size can be correlated with separation efficiency.
Hence air-core size obtained from the electrical impedance tomography image is used as a
controlled variable. The authors propose the use of a digital PID controller with a filtered
derivative for this process while the tuning is left to experimental methods. Although
paper [85] published in 2008 is based on a relatively long line of publications spanning
more than one decade, the research presented there does not seem to have found any
real continuation.

3.4. Knowledge-Based Control, Fuzzy Logic and Artificial Intelligence Approaches

As can be seen from the previous sections, in many cases, control with tomographic
sensors is essentially real-time quality control, and its objectives are rather qualitative than
quantitative. For instance, we need to achieve a good quality product from continuous
casting or good separation efficiency. On the other hand, standard control assumes a
specified set-point and feedback control loop that aims to have controlled variable(s) equal
to set-point(s). Qualitative requirements must be first translated into standard control
engineering terms and control objectives. In this regard, there is no difference between
conventional PID control and advanced model-based control approaches such as MPC.

On the contrary, approaches based on fuzzy logic, artificial intelligence, and similar
methods can be less rigid in their structure and specifications of objectives. Moreover, they
can be designed and implemented without accurate mathematical models. This point is
crucial. It is evident that even very simplified mathematical models of most of the processes
considered here are very complicated.

Fuzzy control may be briefly introduced as an example of a control approach that can
be used even if the process model is unknown or so complicated that controller design
based on it would be totally impractical. Just the main ideas can be outlined in this paper.
However, there are many good textbooks that can be used for further reference, e.g., recent
titles [88,89].

It is well known that even very challenging processes can be controlled by human
operators using their experience and expert knowledge. For instance, automatic systems
cannot safely control aircraft takeoff and landing, but human operators (pilots) can handle
even these flight phases. A fuzzy control system can be understood as a system implement-
ing such expertise of a human operator. This expertise is not represented by differential
equations or controller parameters but rather by situation/action rules. The operators are
experts in operating their processes, and they know what to do under various circum-
stances. However, their knowledge is not expressed in precise rules such as, e.g., if the
temperature is above 80 ◦C, set the heater power to 1 kW. Their rules are rather qualitative
and imprecise. If we consider a really simple control task such as temperature control, we
can say that the operator knows what to do, e.g., if the temperature is decreasing fast or if
it becomes too high, while the term too high does not simply mean just higher than a single
specific threshold.

Fuzzy rules are expressed in the same way as the rules in the minds of human operators.
That means they are articulated using qualitative linguistic variables. Examples of typical
fuzzy rules can be defined in the following way:

If the temperature is high and increasing, then reduce heater power fast.
If the temperature is high and constant, then reduce heater power slowly.
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When fuzzy control is used for standard control tasks, it must be further considered
that a fuzzy controller is similar to a human expert operator also in the sense that it looks
at exact measured data, and if it performs a control action, this action is precisely specified.
The measured temperature is a single numerical value, and the power of an electric heater
can always be set only at one specific (crisp) value. It cannot be just low or high. For
this reason, the fuzzy inference mechanism consisting of qualitative fuzzy rules must be
connected to the real world by operations called fuzzification and defuzzification. This
structure is shown in Figure 8.
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The input to the fuzzification block is the measured values of controlled variables,
e.g., temperature. Fuzzification means conversion to qualitative variables. It is done using
the so-called membership functions, which convert the measurement into a degree of
membership. An example of such a membership function is shown in Figure 9.
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Assuming that the measured temperature is, e.g., 80 ◦C, this temperature is normal to
a degree of 0.2, high to a degree of 0.8, and low to a degree of 0, where 1 represents full
membership and 0 no membership. This expresses that in the considered control task, the
human expert would regard 80 ◦C to be well above normal operating temperature. That
means this temperature is definitely not low, rather high than normal, but on the other
hand, the temperature could become even higher. Membership functions conceived in this
way correspond to qualitative human reasoning where no strict boundaries exist between
qualitative notions such as normal, high, too high, etc. The membership function is based
on simple “expert” knowledge in this example. Defining these functions and inference
rules in more complex tasks may not always be easy. For this reason, fuzzy control is
also sometimes connected to other artificial intelligence approaches, especially with neural
networks into neuro-fuzzy control [90].

The output from the fuzzy inference mechanism combines all fuzzy rules together,
and it is again a qualitative variable described by its membership function. Obviously,
this function is not constant, but as the controlled variable(s) vary, fuzzy inference yields
different results, and this output membership function also varies. This output must be
defuzzified, i.e., converted to an exact numerical value that can be sent to the physical
actuator, (e.g., heater). Defuzzification can be done in several ways. The most widely
used method is the so-called centroid defuzzification which calculates the center of gravity
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(COG) of the membership function corresponding to the output variable along the x-axis.
This defuzzification approach can be expressed by the formula

COG =

∫ b
a µA(x)xdx∫ b
a µA(x)dx

(25)

where µA is the output membership function defined in the range from a to b. An example
of this defuzzification method for one specific output membership function is shown in
Figure 10.

Sensors 2022, 22, x FOR PEER REVIEW 25 of 35 
 

 

 
Figure 10. Defuzzification example resulting in a single numerical value of manipulated variable 
(heater power). 

The example with temperature control is a simple standard control task where pre-
cise temperature measurement must be fuzzified. An output from a tomographic sensor 
often gives directly qualitative information, e.g., a flow pattern. Although various flow 
patterns are clearly different if fully developed, the transitions between them may often 
be gradual and hence naturally fuzzy. For this reason, fuzzy control may be even more 
suitable for complex tomography-based control tasks than for simple standard control. 
Therefore, it is not surprising that control approaches from this category have been con-
sidered since the very beginnings of process tomography. An important application area 
has been pneumatic conveying, i.e., a process where an air (or other inert gas) stream is 
used as a transportation medium to transport various granular solids and dry powders. 
The most common variant of this process is the dilute phase pneumatic conveying where 
the conveyed particles are uniformly suspended in the gas stream. 

This process has many advantages in terms of routing flexibility and low mainte-
nance costs. However, an appropriate flow regime with a homogeneously dispersed flow 
must be continuously maintained. Otherwise, several issues may arise such as discrete 
plugs of material, rolling dunes with a possible high increase in pressure and a blockage, 
and unstable flow with violent pressure surges resulting in increased plant wear and 
product degradation. For this reason, standard uncontrolled pneumatic conveying pro-
cesses can normally be used only for the specific solid materials for which they were de-
signed, and airspeed must be rather high to avoid potential blockage problems. This high 
speed increases power demands and makes this process less energy efficient than it could 
be [91]. 

This is a motivation for closed-loop control. It is a non-standard control task. The 
control objective is to maintain a suitable flow pattern. There is no numerical-valued 
controlled variable with a specified set-point. Following [92,93], it is possible to identify 
several flow regimes besides the desired dilute phase flow achieved at a higher airspeed. 
If the airspeed becomes smaller, it reaches a point (so-called saltation velocity) where an 
abrupt change from dilute to dense phase flow occurs and the solid particles begin to 
settle out. This is marked by saltating flow and dune formation. If the speed is further 
decreased, so-called dune flow and plug flow can exist, and a significant danger of pipe 
blockage occurs. 

The control of pneumatic conveying was treated by several research groups. The 
measurement system was always an ECT sensor, but different ECT data processing and 
control approaches were used. An earlier paper [92] by Deloughry, Ponnapalli, and oth-
ers attempts to interpret the task of keeping the desirable flow regime as a standard con-
trol task with numerical-valued variables. It considers an experimental pneumatic con-
veying process where polyethylene nibs are transported. The tomographic image of the 

Figure 10. Defuzzification example resulting in a single numerical value of manipulated variable
(heater power).

The example with temperature control is a simple standard control task where precise
temperature measurement must be fuzzified. An output from a tomographic sensor often
gives directly qualitative information, e.g., a flow pattern. Although various flow patterns
are clearly different if fully developed, the transitions between them may often be gradual
and hence naturally fuzzy. For this reason, fuzzy control may be even more suitable for
complex tomography-based control tasks than for simple standard control. Therefore, it is
not surprising that control approaches from this category have been considered since the
very beginnings of process tomography. An important application area has been pneumatic
conveying, i.e., a process where an air (or other inert gas) stream is used as a transportation
medium to transport various granular solids and dry powders. The most common variant
of this process is the dilute phase pneumatic conveying where the conveyed particles are
uniformly suspended in the gas stream.

This process has many advantages in terms of routing flexibility and low maintenance
costs. However, an appropriate flow regime with a homogeneously dispersed flow must
be continuously maintained. Otherwise, several issues may arise such as discrete plugs
of material, rolling dunes with a possible high increase in pressure and a blockage, and
unstable flow with violent pressure surges resulting in increased plant wear and product
degradation. For this reason, standard uncontrolled pneumatic conveying processes can
normally be used only for the specific solid materials for which they were designed, and
airspeed must be rather high to avoid potential blockage problems. This high speed
increases power demands and makes this process less energy efficient than it could be [91].

This is a motivation for closed-loop control. It is a non-standard control task. The
control objective is to maintain a suitable flow pattern. There is no numerical-valued
controlled variable with a specified set-point. Following [92,93], it is possible to identify
several flow regimes besides the desired dilute phase flow achieved at a higher airspeed.
If the airspeed becomes smaller, it reaches a point (so-called saltation velocity) where an
abrupt change from dilute to dense phase flow occurs and the solid particles begin to
settle out. This is marked by saltating flow and dune formation. If the speed is further
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decreased, so-called dune flow and plug flow can exist, and a significant danger of pipe
blockage occurs.

The control of pneumatic conveying was treated by several research groups. The
measurement system was always an ECT sensor, but different ECT data processing and
control approaches were used. An earlier paper [92] by Deloughry, Ponnapalli, and others
attempts to interpret the task of keeping the desirable flow regime as a standard control
task with numerical-valued variables. It considers an experimental pneumatic conveying
process where polyethylene nibs are transported. The tomographic image of the pipe cross-
section has a total of 816 pixels, and the number of pixels that contain these polyethylene
nibs (pixel density) can be used as a measure of the current level of sedimentation (dune
formation) inside the pipe. This allows the use of a conventional PID controller whose
set-point is set to a sufficiently small number to prevent dune formation. This objective
was achieved with set-point 20, while set-point values higher than 50 usually resulted in
pipe blockage. A substantial part of this paper discusses the influence of the PID controller
parameters on the controller’s ability to prevent dune formation and blockage for different
set-point values.

In the end, PID control was not found to be an adequate approach, and later the
authors of [92] proposed a neural network inverse model controller [93]. ECT image
was evaluated in the same way, i.e., by counting the pixels. The authors of [93] used the
procedure of inverse plant identification [94]. That means they performed a wide range
of experiments with the laboratory-scale pneumatic conveying process around the critical
saltation speed. Data obtained from these experiments were first used to train a neural
network modeling the process in forward configuration, i.e., current and past values of air
blower speed and past values of pixel density were inputs, while the current value of pixel
density was output.

The purpose of the forward model was to find suitable neural network parameters
(number of hidden neurons and past values). The network with the parameters that turned
out to be the best for modeling the process (6 hidden neurons and 13 past values) was
then trained in the inverse configuration where the current value of the blower speed (i.e.,
manipulated variable) is the output. Since the output of this model is the manipulated
variable, and the set-point can be fed into the current pixel-density input, this neural inverse
model can be understood and used as a controller. These model structures are illustrated in
Figure 11.
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The paper concludes that this controller was able to clear the dunes automatically while
maintaining the air velocity at a minimum value necessary to keep the flow homogeneous.
In this respect, it was able to outperform the PI/PID controller. This neural controller
responds in some way to changes in flow patterns, but this response is implicit and hidden
in the internal structure of the network. There is no direct and explicit identification of
these regimes.

An alternative approach is followed by Williams, Owens, and others in [91]. It uses
an explicit classification of flow regimes. The ECT data are processed to obtain the void
fraction, i.e., a signal that can be considered complementary to the pixel density, which
evaluated the number of occupied pixels. Both magnitude and frequency of changes of
void fraction signal are important. Classification of flow regimes is performed by a neural
network. The authors then develop an idea of a two-level control strategy. Low-level
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control with a very fast response does not use ECT measurements. Only flow rate and
pressure measurements are used to quickly prevent any blocking tendencies.

High-level control is based on fuzzy logic, and it uses flow classification from neural
networks and data from other sensors to keep the desired flow regime and retune the low-
level controller. The classification of flow regimes seems to be really tested and working.
On the contrary, the control structure proposed by the authors is rather a concept, which
is proposed, but not really implemented. This concept does not seem to be ever used for
control of the pneumatic conveying process. Papers [93,94] are later (2001 and 2007), and
they use a different approach without even citing [91] (1999). Despite this, the approach
taken in [91] turned out to be pretty fruitful and even paradigmatic for controlling other
processes. Its main principle can be characterized as the classification of the selected
phenomena (in this case, flow patterns) in the tomography data as a first stage and fuzzy
or other rule-based systems as a second stage in the control strategy.

This concept is used in [95] to control oil separators based on ECT images. The ECT
images are classified using the principal component analysis approach. The results from
this classification are then used as input to a controller based on expert rules. This controller
was applied to a laboratory-scale separator process. In Section 2 of the present paper, we
have already mentioned paper [40] where the classification of flow patterns was done using
both neural networks and cascades of Support Vector Machines. These classified patterns
were then used as inputs to model-free adaptive controllers based on deep belief networks.
Model-free adaptive control [96] is a control approach that might be very suitable for use
with tomography because, as we could see, the models are notoriously difficult to obtain.
It is hard to tell how this approach is applied in [40] because the paper focuses mostly on
the classification of flow patterns while the control itself is only outlined. Nevertheless, it
is easy to see that the paper again follows the same structure: flow patterns classification
using artificial intelligence methods as a first stage and fairly non-classical controller as a
second stage.

A similar structure is followed also by [97], where the focus is on control of the polymer
extrusion molding process. ECT tomography is used as the only sensor that can measure
the internal temperature in a cross-section of a polymer extrusion process. In this way, ECT
enables feedback control of this process normally operated by trial and error. The melt
temperature field is obtained from the reconstructed ECT image measured. The difference
between the measured and reference temperature fields is then used as input information for
a knowledge-based control system. This system uses process variables such as temperature
in different sections along the barrel and the screw rotating speed as manipulated variables.
That means there is an implicit cascade control structure where this knowledge-based
controller is the master controller calculating set-points for slave controllers in the polymer
extruder. Similar to most of the previous papers cited in this section, this knowledge-based
controller is a proposed concept but was neither implemented nor tested.

4. Discussion and Future Research Directions

A very recent survey paper on fast tomographic imaging techniques written by the
leading experts in the field [4] concludes that the tomography hardware, as well as the
standard image reconstruction and data processing methods, have by far reached at least
the technology readiness level (TRL) 7 (System prototype demonstration in operational
environment) in terms of process diagnostics. It is more than evident from the previ-
ous section that the development of closed-loop control applications of tomography lags
significantly behind the development of hardware and data processing technology.

Considering the papers cited in the previous pages, there is no doubt that all of them
correspond at least to TRL 2 (Technology concept formulated). However, some of them,
and this is especially true of most of the papers mentioned in the subsection on knowledge-
based control and artificial intelligence approaches, do not really go beyond formulating
the concept, i.e., beyond TRL 2. Fortunately, other papers, and some of them in this special
issue, tested the validity of their concepts using experiments either in simulation or with
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laboratory-scale processes. Hence, in general, we can say that the TRL of closed-loop
control with tomographic sensors is somewhere between TRL 3 and 4 (Experimental proof
of concept, Technology validated in a lab). Therefore, significant future research effort is
still needed to make control with tomographic sensors a standard industrial technology.

Although true, such a conclusion would be too vague. Section 3 gives an almost
complete list of papers on tomography applications for closed-loop control, allowing a
more detailed analysis.

One of the most specific features of tomographic sensors is their ability to observe
multidimensional space-distributed variables. This may lead to the conclusion that the
most fruitful control concept is likely to be the connection with the automatic control
methods for the control of distributed parameters systems. A significant part of published
papers has chosen to go this way, and we discussed their results in Section 3.1. All of
these papers decided to use the early lumping approach. PDEs describing the process were
converted into high-order state-space models using FEM or similar methods. State-space
models allow seamless connection with data reconstruction using state estimation and with
many advanced control methods based on state-space models. As a whole, this approach
exhibits a significant degree of mathematical elegance.

Despite this, it is uncertain whether this line of research can ever proceed to the stage
of industrially applicable technology. In Section 3.1., we considered relatively simple
processes, and the order of the state-space models was in the range of thousands. In the
research done by the authors of the present paper, an attempt was made to apply the same
approach to the continuous casting process with its complicated flow patterns [98]. Despite
numerous simplifications, the order of the state-space model was in the range of tens of
thousands. Implementation of control based on such models is virtually impossible because
of ill-conditioning problems, and no future advances in computing power can change this
principal issue.

In Section 3.1.4, we discussed the possibility of replacing FEM with spectral and other
space-discretization methods using global spatial basis functions. These approaches result
in relatively lower-order models. To the best of our knowledge, there is no paper that
would use this class of approaches in connection with tomographic sensors. In spite of
that, this may be one of the viable methods to respect the fact that tomographic sensors
can sense distributed variables and that the underlying dynamics are a PDE system while
keeping the model order low enough. Similarly, we can appreciate the approach described
in Section 3.2. This approach is actually hybrid in a sense because a lumped dynamical
model is connected with a static function modeling the distributed variable. Thus, only
the control relevant distributed aspects of the process are kept, and the resulting model is
simple enough to be used for control.

In 2018 an important and widely cited paper, “Applying industrial tomography to
control and optimization flow systems”, was published [99]. Quite characteristically, it
discusses almost exclusively tomography hardware and data processing methods. Never-
theless, it rightly demands that the concept of the process control based on tomography
requires, among other developments, also a correct extension of the classical control theory
because this theory is not sufficiently developed for a large amount of sensor data.

The approaches mentioned above, i.e., space-discretization methods using global
spatial basis functions and hybrid approaches keeping only the most relevant distributed
aspects of the process, may be one of the responses to this demand. It is important to
note that it is a relatively transparent and mathematically consistent response, unlike black
box and artificial intelligence approaches. On the contrary, FEM discretization of PDE
models may be more straightforward and with larger support in software packages, but
it is unlikely to produce useful control-oriented models. Similarly, we have mentioned
in Section 2 that also late lumping approach exists, and it can be an alternative to early
lumping methods. However, given its complexity, it may be an interesting niche for basic
research, but at this moment, it is unlikely to be a suitable way to push tomography-based
control to higher TRL levels.
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Further, it is pretty clear that the research direction outlined above, though potentially
fruitful, definitely is not a panacea. It assumes first-principles modeling as a first step. Even
if we consider the famous quote: “All models are wrong, but some are useful”, we can
say that many of the processes described above are so complex that finding mathematical
first-principles models that would be at least somewhat useful is virtually impossible.

Thus, it is not surprising that most of the closed-loop control applications described
above that were either experimentally tested or came close to experimental testing were
based on models obtained through system identification. Even the hybrid model of flu-
idized bed dryer was partly identification-based because the values of coefficients in (17)
were obtained experimentally. Usually, the papers used standard identification methods as
available in the respective Matlab toolbox. However, the field of identification is constantly
developing, and new, more powerful methods particularly suitable for the identification of
state-space models appear (e.g., [100] and references therein). For these reasons, the use of
identification-based models for control with tomographic sensors is not the last resort but
potentially a fruitful research direction.

Models can be obtained in different ways. However, if we consider conventional (i.e.,
not fuzzy, neural, and similar models) mathematical models, it should be pretty clear from
this paper that if an advanced model-based control is to be used, there is not much point
in using LQ control and any other method than MPC. MPC is the only method that can
respect all process constraints, and that is flexible enough to accommodate a wide range of
various control objectives.

Perhaps the most surprising result from this review is the content of Section 3.4. It
shows that artificial intelligence methods, fuzzy control, knowledge-based control, and
other similar control methods are rarely connected with tomographic sensors. Moreover,
most of the references that could be cited in this section are rather old. Mostly they describe
research that started in the mid-1990s, was published in the first decade of the 21st century,
and then did not continue further. This is unexpected considering how complex and not
well amenable to modeling are many of the processes that can benefit from tomography-
based control. Fuzzy modeling, neural networks, or model-free approaches such as [96]
seem to be a natural answer to this situation. Model-free adaptive control [96] is very
attractive because of its purely data-driven model-free feature. Its use in connection with
process tomography was rather just mentioned than really implemented in [40] and the
way to applications is likely to be longer. However, the use of neural networks and fuzzy
approaches for control is now well established [101,102], and this research direction is now
perhaps at the same time both the most underutilized one and the one most likely to bring
relevant results in a not too long time.

The fact that such results are needed is beyond any doubt. Although the present paper
focused primarily on automatic control methods, it has also shown many processes for
which tomography-based control is beneficial. Beneficial is a general and ambiguous term.
However, in this concluding part of the paper, it can be stated more precisely what should
be understood under the term beneficial.

We reviewed several closed-loop control applications of tomographic sensors. Concen-
tration distribution control was a simple generic example of how controller design based
on the early lumping approach can be applied to processes governed by the convection-
diffusion equation. However, all other applications were applications to important pro-
cesses widely used in different branches of industry. Standard instrumentation of most of
these processes includes a certain number of non-tomographic sensors and control loops.
Comparison of control based on tomographic sensors with these conventional control loops
is a complex question, and something such as direct comparison is virtually impossible.
Tomographic sensors are not introduced to replace the conventional sensors and achieve
more or less the same control objectives, perhaps somewhat better. Their purpose is to
open new control perspectives and enable new objectives that were unthinkable with
conventional sensors.
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One example can be the continuous casting process discussed in Section 3.3.3. Con-
ventional control is based on the requirement that the liquid level in the mold should be as
stable as possible to guarantee that the formation of the solidifying shell will be smooth.
That means conventional control can use more or less advanced and sophisticated methods,
but it is still simply a mold level control based on a mold level sensor. As such, it has no
access to the processes under the surface of the metal in the mold. On the contrary, tomog-
raphy opens direct access to the flows in mold, and the control loop can be closed based on
these measurements. The reviewed papers condensed the tomographic measurements into
relatively simple numerical characteristics. This class of approaches is not the only option.
It would also be possible to evaluate and classify the control patterns similarly as it was
done with the pneumatic conveying process. In any event, regardless of which approach
to working with tomographic measurements is used, tomography enables us to specify
entirely new control objectives and control such aspects of the continuous casting process
that are otherwise uncontrollable.

Similar conclusions can be drawn from the other processes described in this paper.
Tomography-based control of the inline fluid separator can be much more direct than
the control based on pressure drop ratio. The potential benefits of tomography-based
control are even higher in the case of microwave drying. Process tomography is the only
technology that can measure the moisture distribution inside the material (avoiding hot
spots and ignition danger), while alternative sensor technologies provide only surface-
related information. Hence, the main conclusion from this paper is not that conventional
control objectives can be achieved better if tomography-based control is used, but that
entirely new control perspectives can be opened by process tomography.

The above discussion of the future potential of the various automatic control methods
for tomography-based control is summarized in Figure 12. This figure starts on the left side
with different models or, more generally, with different pieces of input information that
can be used for controller design. Then it continues with various transformations of this
input information that is necessary so that it can be used for controller design. On the right
side, the future potential of each specific way from input information to closed-loop control
is estimated.
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Similar conclusions can be drawn from the other processes described in this paper. 
Tomography-based control of the inline fluid separator can be much more direct than the 
control based on pressure drop ratio. The potential benefits of tomography-based control 
are even higher in the case of microwave drying. Process tomography is the only tech-
nology that can measure the moisture distribution inside the material (avoiding hot spots 
and ignition danger), while alternative sensor technologies provide only surface-related 
information. Hence, the main conclusion from this paper is not that conventional control 
objectives can be achieved better if tomography-based control is used, but that entirely 
new control perspectives can be opened by process tomography. 

The above discussion of the future potential of the various automatic control 
methods for tomography-based control is summarized in Figure 12. This figure starts on 
the left side with different models or, more generally, with different pieces of input in-
formation that can be used for controller design. Then it continues with various trans-
formations of this input information that is necessary so that it can be used for controller 
design. On the right side, the future potential of each specific way from input information 
to closed-loop control is estimated. 

 
Figure 12. Potential of modelling and control approaches for tomography-based control. Figure 12. Potential of modelling and control approaches for tomography-based control.
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FEM Finite Element Method
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41. Abouelazayem, S.; Glavinić, I.; Wondrak, T.; Hlava, J. Control of Jet Flow Angle in Continuous Casting Process Using an

Electromagnetic Brake. IFAC-PapersOnLine 2019, 52, 88–93. [CrossRef]
42. Choi, Y.J.; Mccarthy, K.L.; Mccarthy, M.J. Tomographic Techniques for Measuring Fluid Flow Properties. J. Food Sci. 2002, 67,

2718–2724. [CrossRef]
43. Tan, C.; Murai, Y.; Liu, W.; Tasaka, Y.; Dong, F.; Takeda, Y. Ultrasonic Doppler Technique for Application to Multiphase Flows: A

Review. Int. J. Multiph. Flow 2021, 144, 103811. [CrossRef]
44. Abouelazayem, S.; Glavinić, I.; Wondrak, T.; Hlava, J. Flow Control Based on Feature Extraction in Continuous Casting Process.

Sensors 2020, 20, 6880. [CrossRef]
45. Simon, D. Optimal State Estimation Kalman, H∞ and Nonlinear Approaches; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2006;

ISBN 978-0-471-70858-2.

http://doi.org/10.3390/s20216069
http://doi.org/10.1016/j.applthermaleng.2020.115311
http://doi.org/10.1016/j.ces.2020.116236
http://doi.org/10.1109/JSEN.2017.2682929
http://doi.org/10.1088/1361-6501/aa7107
http://doi.org/10.1007/978-1-0716-0590-5
http://doi.org/10.1109/CDC.1995.478540
http://doi.org/10.3390/math9243180
http://doi.org/10.1016/S1474-6670(17)38595-6
http://doi.org/10.1088/0964-1726/24/8/085006
http://doi.org/10.1016/S1385-8947(99)00137-0
http://doi.org/10.1088/0957-0233/9/9/018
http://doi.org/10.1016/S0955-5986(00)00023-6
http://doi.org/10.1016/S0894-1777(02)00186-3
http://doi.org/10.1016/j.ifacol.2020.12.681
http://doi.org/10.1016/j.ifacol.2019.09.169
http://doi.org/10.1111/j.1365-2621.2002.tb08804.x
http://doi.org/10.1016/j.ijmultiphaseflow.2021.103811
http://doi.org/10.3390/s20236880


Sensors 2022, 22, 2847 32 of 33

46. Ruuskanen, A.R.; Seppänen, A.; Duncan, S.; Somersalo, E.; Kaipio, J.P. Using process tomography as a sensor for optimal Control.
Appl. Numer. Math. 2006, 56, 37–54. [CrossRef]

47. Ruuskanen, A.R.; Seppänen, A.; Duncan, S.; Somersalo, E.; Kaipio, J.P. Using tomographic measurements in process control.
In Proceedings of the 43 IEEE Conference on Decision and Control, Nassau, Bahamas, 14–17 December 2004; pp. 4696–4701.
[CrossRef]

48. Ruuskanen, A.R.; Seppänen, A.; Duncan, S.; Somersalo, E.; Kaipio, J.P. Optimal control in process tomography. In Proceedings of
the 3rd World Congress on Industrial Process Tomography, Banff, AB, Canada, 2–5 September 2003; pp. 245–251.

49. Duncan, S. Regulating concentration profile in fluid flow using process tomography. IFAC Proc. Vol. IFAC-PapersOnline 2002, 151,
449–454. [CrossRef]

50. Duncan, S. Using process tomography as a sensor in a system for controlling concentration in fluid flow. In Proceedings of the
2nd World Congress on Industrial Process Tomography, Hannover, Germany, 29–31 August 2001; pp. 378–386.

51. Kaasinen, A. Optimal Control in Process Tomography. Ph.D. Thesis, University of Eastern Finland, Kuopio, Finland, 2013.
Available online: https://core.ac.uk/download/pdf/32423406.pdf (accessed on 3 April 2022).

52. Seppänen, A.; Heikkinen, L.; Savolainen, T.; Voutilainen, A.; Somersalo, E.; Kaipio, J.P. An Experimental Evaluation of State
Estimation with Fluid Dynamical Models in Process Tomography. Chem. Eng. J. 2007, 127, 23–30. [CrossRef]

53. Kaipio, J.P.; Seppänen, A.; Voutilainen, A.; Haario, H. Optimal Current Patterns in Dynamical Electrical Impedance Tomography
Imaging. Inverse Probl. 2007, 23, 1201–1214. [CrossRef]

54. Normey-Rico, J.E.; Camacho, E.F. Control of Dead-Time Processes; Springer: Berlin/Heidelberg, Germany, 2007; ISBN 978-1-84628-
829-6.

55. Stengel, R.F. Optimal Control and Estimation; Dover Publications: New York, NY, USA, 1994; ISBN 978-0-48668-200-6.
56. Hosseini, M.; Kaasinen, A.; Link, G.; Lähivaara, T.; Vauhkonen, M. LQR Control of Moisture Distribution in Microwave Drying

Process Based on a Finite Element Model of Parabolic PDEs. IFAC-PapersOnLine 2020, 53, 11470–11476. [CrossRef]
57. Roussy, G.; Bennani, A.; Thiebaut, J. Temperature Runaway of Microwave Irradiated Materials. J. Appl. Phys. 1987, 62, 1167–1170.

[CrossRef]
58. Yadav, R.; Omrani, A.; Link, G.; Vauhkonen, M.; Lähivaara, T. Microwave Tomography Using Neural Networks for Its Application

in an Industrial Microwave Drying System. Sensors 2021, 21, 6919. [CrossRef] [PubMed]
59. Garcia, M.M.; Sahovic, B.; Sattar, M.A.; Atmani, H.; Schleicher, E.; Hampel, U.; Babout, L.; Legendre, D.; Portela, L.M. Control of a

gas-liquid inline swirl separator based on tomographic measurements. IFAC-PapersOnLine 2020, 53, 11483–11490. [CrossRef]
60. Sahovic, B.; Atmani, H.; Sattar, M.A.; Garcia, M.M.; Schleicher, E.; Legendre, D.; Climent, E.; Zamansky, R.; Pedrono, A.; Babout,

L.; et al. Controlled Inline Fluid Separation Based on Smart Process Tomography Sensors. Chem. Ing. Tech. 2020, 92, 554–563.
[CrossRef]

61. Vallabhan, M.K.G.; Matias, J.; Holden, C. Feedforward, Cascade and Model Predictive Control Algorithms for De-Oiling
Hydrocyclones: Simulation Study. Model. Identif. Control 2021, 42, 185–195. [CrossRef]

62. Skogestad, S.; Poslethwaite, I. Multivariable Feedback Control Analysis and Design, 2nd ed.; Wiley: Hoboken, NJ, USA, 2007;
ISBN 13-978-0-470-01168-3.

63. Rakovic, S.V.; Levine, W.S. Handbook of Model Predictive Control; Birkhäuser: Basel, Switzerland, 2019; ISBN 978-3-319-77488-6.
64. Sbarbaro, D.; Vergara, S. Design of a Control System Based on EIT Sensors: An Optimization Based Approach. IFAC-PapersOnLine

2015, 48, 218–222. [CrossRef]
65. Li, H.-X.; Qi, C. Modeling of Distributed Parameter Systems for Applications—A Synthesized Review from Time–Space Separation.

J. Process Control 2010, 20, 891–901. [CrossRef]
66. Hoo, K.A.; Zheng, D. Low-Order Control-Relevant Models for a Class of Distributed Parameter Systems. Chem. Eng. Sci. 2001, 56,

6683–6710. [CrossRef]
67. Villegas, J.A.; Li, M.; Duncan, S.R.; Wang, H.G.; Yang, W.Q. Feedback Control of Moisture in a Batch Fluidised Bed Dryer

Using Tomographic Sensor. In Proceedings of the 5th World Congress on Industrial Process Tomography, Bergen, Norway, 3–6
September 2007; pp. 405–413.

68. Villegas, J.A.; Li, M.; Duncan, S.R.; Wang, H.G.; Yang, W.Q. Modeling and Control of Moisture Content in a Batch Fluidized
Bed Dryer Using Tomographic Sensor. In Proceedings of the American Control Conference, Seattle, WA, USA, 11–13 June 2008;
pp. 3350–3355. [CrossRef]

69. Villegas, J.A.; Duncan, S.R.; Wang, H.G.; Yang, W.Q.; Raghavan, R.S. Distributed Parameter Control of a Batch Fluidised Bed
Dryer. Control Eng. Pract. 2009, 17, 1096–1106. [CrossRef]

70. Wang, H.G.; Senior, P.R.; Mann, R.; Yang, W.Q. Online Measurement and Control of Solids Moisture in Fluidised Bed Dryers.
Chem. Eng. Sci. 2009, 64, 2893–2902. [CrossRef]

71. Sherwood Scientific, Model 501 Fluid Bed Dryer-Lab-Scale, Programmable & Analytical, Information Brochure. Available
online: https://www.sherwood-scientific.com/wp-content/uploads/2020/01/Fluid-bed-dryer-brochure.pdf (accessed on 5
February 2022).

72. Li, M.; Duncan, S. Dynamic Model Analysis of Batch Fluidized Bed Dryers. Part. Part. Syst. Charact. 2008, 25, 328–344. [CrossRef]
73. Che, H.; Wang, H.; Ye, J.; Yang, W. Control of Pellets Coating in a Wurster Fluidised Bed by Means of Electrical Capacitance

Tomography. Trans. Inst. Meas. Control 2020, 42, 729–742. [CrossRef]
74. Ziegler, J.G.; Nichols, N.B. Optimum Settings for Automatic Controllers. Trans. ASME 1942, 64, 759–768. [CrossRef]

http://doi.org/10.1016/j.apnum.2005.02.011
http://doi.org/10.1109/CDC.2004.1429532
http://doi.org/10.3182/20020721-6-ES-1901.00486
https://core.ac.uk/download/pdf/32423406.pdf
http://doi.org/10.1016/j.cej.2006.09.025
http://doi.org/10.1088/0266-5611/23/3/021
http://doi.org/10.1016/j.ifacol.2020.12.586
http://doi.org/10.1063/1.339666
http://doi.org/10.3390/s21206919
http://www.ncbi.nlm.nih.gov/pubmed/34696133
http://doi.org/10.1016/j.ifacol.2020.12.588
http://doi.org/10.1002/cite.201900172
http://doi.org/10.4173/mic.2021.4.4
http://doi.org/10.1016/j.ifacol.2015.11.089
http://doi.org/10.1016/j.jprocont.2010.06.016
http://doi.org/10.1016/S0009-2509(01)00357-8
http://doi.org/10.1109/ACC.2008.4587009
http://doi.org/10.1016/j.conengprac.2009.04.012
http://doi.org/10.1016/j.ces.2009.03.014
https://www.sherwood-scientific.com/wp-content/uploads/2020/01/Fluid-bed-dryer-brochure.pdf
http://doi.org/10.1002/ppsc.200800033
http://doi.org/10.1177/0142331219875349
http://doi.org/10.1115/1.2899060


Sensors 2022, 22, 2847 33 of 33

75. Hosseini, M.; Kaasinen, A.; Aliyari Shoorehdeli, M.; Link, G.; Lähivaara, T.; Vauhkonen, M. System Identification of Conveyor
Belt Microwave Drying Process of Polymer Foams Using Electrical Capacitance Tomography. Sensors 2021, 21, 7170. [CrossRef]

76. Hosseini, M.; Kaasinen, A.; Shoorehdeli, M.A.; Link, G.; Lähivaara, T.; Vauhkonen, M. Tomography-assisted control for the
microwave drying process of polymer foams. J. Process Control, 2022; submitted.

77. Thomas, B.G. Review on Modeling and Simulation of Continuous Casting. Steel Res. Int. 2018, 89, 1700312. [CrossRef]
78. Zhang, T.; Yang, J.; Jiang, P. Measurement of Molten Steel Velocity near the Surface and Modeling for Transient Fluid Flow in the

Continuous Casting Mold. Metals 2019, 9, 36. [CrossRef]
79. Kim, M.; Moon, S.; Na, C.; Lee, D.; Kueon, Y.; Lee, J.S. Control of Mold Level in Continuous Casting Based on a Disturbance

Observer. J. Process Control 2011, 21, 1022–1029. [CrossRef]
80. Furtmueller, C.; del Re, L. Control Issues in Continuous Casting of Steel. IFAC Proc. Vol. 2008, 41, 700–705. [CrossRef]
81. Sedén, M.; Jacobson, N. Online Flow Control with Mold Flow Measurements and Simultaneous Braking and Stirring. IOP Conf.

Ser. Mater. Sci. Eng. 2018, 424, 012015. [CrossRef]
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