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Abstract: Large-scale terminals’ various QoS requirements are key challenges confronting the resource
allocation of Satellite Internet of Things (S-IoT). This paper presents a deep reinforcement learning-
based online channel allocation and power control algorithm in an S-IoT uplink scenario. The
intelligent agent determines the transmission channel and power simultaneously based on contextual
information. Furthermore, the weighted normalized reward concerning success rate, power efficiency,
and QoS requirement is adopted to balance the performance between increasing resource efficiency
and meeting QoS requirements. Finally, a practical deployment mechanism based on transfer learning
is proposed to promote onboard training efficiency and to reduce computation consumption of the
training process. The simulation demonstrates that the proposed method can balance the success rate
and power efficiency with QoS requirement guaranteed. For S-IoT’s normal operation condition, the
proposed method can improve the power efficiency by 60.91% and 144.44% compared with GA and
DRL_RA, while its power efficiency is only 4.55% lower than that of DRL-EERA. In addition, this
method can be transferred and deployed to a space environment by merely 100 onboard training steps.

Keywords: channel allocation; deep reinforcement learning; power control; various QoS; Satellite
Internet of Things; transfer learning

1. Introduction

Satellite Internet of Things (S-IoT) [1] is a wireless communication scenario where
the Internet of Things (IoT) terminals transmit data through satellites. IoT devices are
sparsely deployed in rural areas, including forest, mountains and the sea, with low financial
efficiency. Due to the geographical limitation, it is unrealistic to deploy a Narrowband
Internet of Things (NB-IoT) network in the ocean or mountain areas. Satellite constellations
can be a promising plan to serve IoT devices in remote rural areas. For instance, satellite
constellations such as Orbcomm and ARGOS have already played an indispensable role in
the industry application of remote areas, including mining, oil and gas exploitation, forest
fire prevention, disaster prediction, and environment protection.

Despite its promising prospect, S-IoT still faces technical challenges posed by not merely
the limitations of satellite communication but by traits of the IoT scenario. This paper focuses
on the resource allocation problem [2], whose challenges can be listed as follows.

• To satisfy the requirements on delay, reliability, the bandwidth of various IoT applica-
tions, diverse Quality of Service (QoS) guarantee [3] is a major issue for transmission
mechanisms in IoT systems. More specifically, various types of services in S-IoT
make it necessary for its resource allocation algorithm to pay attention to diverse QoS
requirements of each data transmission.

• Compared with conventional human user terminals, the IoT terminals located in
remote areas are usually battery powered and are thus energy limited, whose energy
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consumption of data transmission is usually inversely proportional to their lifetime.
Therefore, balancing energy saving and transmission rate promotion is necessary
when allocating IoT terminals’ transmission power resources.

• Compared with terrestrial IoT networks, S-IoT achieves wider coverage and supports
massive IoT terminals. As the computational complexity of most resource allocation
algorithms is substantially proportional to the number of users, data transmission of
large-scale terminals [4] imply challenges for dynamic resource allocation.

• In a S-IoT scenario, it is always impractical to obtain perfect global Channel State
Information (CSI). First, the channel quality of S-IoT, whose spectrum band is usually
on Ka, is sensitive to weather conditions, especially to rainfall and snow, leading to
a dynamic transmission environment of S-IoT. Due to the long satellite transmission
link, the reported channel quality information tends to expire due to delay. Moreover,
there are still considerable errors in the channel estimation methods despite the effort
of researchers. As a result, the aforementioned errors in CSI should be considered in
resource allocation.

The challenges mentioned earlier have already captured the attention of scientific
communities. Although much work on resource allocation has examined how to ensure
QoS requirements, deal with time-varying channel quality, save energy, and serve largescale
terminals, most of the existing research has the following limitations.

• Most of the existing QoS-guaranteed resource allocation methods concentrate on a
specific type of QoS metric and is implemented on homogeneous terminals in a local
area. Nevertheless, considering the tens of kilometers of satellite coverage, resource
allocation methods in S-IoT should cope with diverse QoS requirements of massive
amounts of terminals.

• Quite a few researchers have proposed energy-saving resource allocation methods,
whereas they usually focus on the energy efficiency of satellites in a downlink scenario
rather than the energy-saving issue of the terminals.

• The existing model-based methods, limited by the paradigm of optimizing a specific
communication model, are difficult to satisfy the intermittent access of massive ter-
minals. The complexity of the optimization algorithm increases exponentially with
the scale, resulting in difficulties in the real-time allocation of large-scale terminals.
Conversely, data transmission of remote IoT terminals is usually intermittent with
a limited duration, showing that the transmission resource application arrives in an
online manner. However, the model-based methods need to set a fixed number of user
terminals in the initialization process and are thus incapable of such online problems.

• The model-based methods usually build on specific channel model assumptions or
use accurate global CSI as the input of methods. For the first set of methods, when the
real-world channel is different from the predefined channel model due to interference
or weather changes, their performance may severely degrade error. For the first
set of methods that include channel quality, noisy and outdated CSI will lead to an
accumulation of errors.

With regard to the limitations of model-based methods, an intelligent method based on
deep reinforcement learning (DRL) has been introduced to the resource allocation field [5].
The essential idea of DRL is in making decisions based on the observation of the dynamic
environment and adjusting the strategies according to environmental feedback, indicating
that DRL-based resource allocation methods can adjust their strategies with the variation
of channel quality [6]. Furthermore, the DRL, professionally designed to solve sequential
decision problems, is naturally suitable for the online resource allocation problem and
tends to promote the sum of long-term system rewards, rather than immediate revenue. If
the method only focuses on short-term objectives, it may fall into local optima. Such long-
term optimization, which is accomplished by discount factors and the updated formula
of the value function, is the main advantage that makes DRL successful in sequential
decision problems.
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Taking advantage of DRL, we propose an online energy-saving uplink resource alloca-
tion method with diverse QoS guarantees for S-IoT. The proposed method in this paper is
the first to simultaneously address diverse QoS constraints, massive terminal burst data
transmission, and energy efficiency of terminals. The method adopts DRL to construct
an online resource allocation pipeline for large-scale terminals. More specifically, for each
emerging transmission request, the intelligent agent collects its contextual information
and then simultaneously allocates channel and transmission power. The agent can pro-
mote long-term energy efficiency for S-IoT by learning from the feedback of the actual
environment to guarantee diverse QoS.

The main contributions of the proposed method can be summarized as follows:

• The resource allocation problem in S-IoT was modeled to promote long-term energy
efficiency with various QoS requirements. Taking the energy efficiency of remote IoT
terminals into consideration prolongs the S-IoT terminals’ lifetime. Furthermore, QoS
requirements include the terminals’ diverse requirements on delay, reliability, and
transmission rate rather than on a certain QoS constraint. This model is more suitable
with the S-IoT scenario where heterogeneous IoT applications exist in considerably
broad coverage of the satellite.

• The massive terminals’ resource allocation problem is formulated as the Markov
Decision Process (MDP). In response to currently generated terminal requests of each
time stick, such an online resource allocation framework is more consistent with the
actual practice of IoT systems where terminals always transmit data intermittently.
In addition, this method’s computational complexity remains unchanged with the
increase in IoT terminals, as this pipeline only concerns the currently generated
requests, regardless of the other existing IoT terminals.

• A DRL-based method is proposed to solve the diverse QoS resource allocation problem.
The agent observes contextual information, including channel quality, data transmis-
sion amount, terminal location, and QoS requirement to make an online channel and
power allocation decisions. The agent can learn from the feedback of the environment
and adjust its strategy when the channel quality or transmission traffic changes. The
learning process of the agent does not depend on channel model assumptions or
accurate global CSI.

• A deployment method based on a transfer learning mechanism was proposed to
facilitate implementation in a large-scale LEO satellite constellation. By fixing the
first several convolutional layers and fine-tuning the last layers, the converged DRL
network in the simulation environment can be efficiently transferred to the actual
space environment, thus reducing the computation expense and promoting system
efficiency considerably.

2. Related Work

Large-scale resource allocation for massive IoT devices is one of the challenging issues
that has attracted much attention in S-IoT [7]. Furthermore, De Sanctis et al. provided an
overview discussion on QoS management and resource allocation [8].

Several works have focused on energy-saving issues in the research field of S-IoT
resource allocation. Considering the limited onboard energy of LEO in the S-IoT scenario,
Zhao et al. addressed the energy-saving channel allocation problem with battery load
constraints by adopting DRL and taking the normalized power efficiency and service
blocking rate criteria as reward function components [9]. Li et al. poured their main
attention into the energy-limited remote IoT terminals in rural areas rather than on the
energy-saving issue of satellites [10]. This paper adopted unmanned aerial vehicles (UAVs)
as relays and then proposed an energy-efficient model by jointly optimizing channel
selection, uplink transmission power control, and UAV relay deployment.

QoS is as critically vital as the energy-saving issue in S-IoT, which has been discussed
from different views and approaches in recent decades. Transmission rate and delay are
frequently considered QoS requirements for bandwidth and delay-sensitive services, such
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as environmental management. Jia et al. proposed a delay constraint joint power and band-
width allocation algorithm by analyzing the interactions among inter-beam interference,
delay factor, channel conditions, and traffic demand [11]. Furthermore, Liu et al. focused on
a NOMA-based satellite industrial IoT system and proposed a power proportion optimiza-
tion method for beams and nodes to guarantee the QoS, namely transmission delay and
transmission rate [12]. Different from the aforementioned deterministic QoS constraints,
effective capacity, which holds statistical QoS guarantee, is a more feasible alternative of
QoS requirement with the consideration of the variable quality of the satellite channels.
Considering the delay requirements of S-IoT devices, Yan et al. employed effective capacity
to express delayed QoS requirements and developed a dynamic power allocation strategy
for NOMA by the DRL algorithm [13]. Power allocation factors for NOMA users are
selected dynamically by DRL in each time stick to maximize sum effective capacity while
meeting each user’s minimum capacity demand constraint. Although this method solved
the problems of delay and transmission rate constraints, it ignored network reliability indi-
cators, which are of decisive importance for control applications such as position reporting
in vessel navigation. Another limitation of existing studies is that they are designed to
handle specific QoS requirements for applications of the same type. However, there are
usually IoT devices of heterogeneous applications, and thus with diverse QoS demand, to
access the same satellite in the S-IoT scenario.

As an essential factor influencing communication performance, CSI has constantly
captured researchers’ attention in the resource allocation field of S-IoT. However, in most
existing research, CSI is usually treated as a random variable consisting of large-scale and
small-scale fading.

Therefore, it is difficult to adjust the resource allocation strategy according to the
specific channel quality of a certain moment. There are three alternative ideas to solve
this problem. One is allocating resource flexibly according to a specific channel model,
which is adopted by Jia et al. [11] Nevertheless, they had to repeatedly build the model
and optimize the problem in case the channel quality model changes [14,15], which may be
caused by weather variations or external interference. The second solution, adopted by Sun
et al., is leveraging a deep neural network (DNN) to approximate the SIC decoding order
in NOMA-based S-IoT since the queue state and channel state continually changes [16].
Although such DNN-based methods are efficient and accurate, their accuracy depends
on generating training data with the same distribution as real-world data, which is an
arduous task.

Furthermore, DRL is the third method to tackle dynamic channel quality. Hu et al.
first introduced DRL to the satellite resource allocation and proposed a dynamic chan-
nel allocation method for GEO satellites to decrease long-term blocking probability and
improve spectrum efficiency [17,18]. Then, a multi-agent reinforcement learning-based
bandwidth allocation of each beam was presented to satisfy the varying traffic demand [19].
Zhang et al. studied power allocation and drew support from DRL to adjust each beam’s
transmit power according to the varying traffic demands in cache queue and channel
conditions [20]. In summary, the success of the above DRL-based spectrum and power
allocation methods can be attributed to the interference management and dynamic envi-
ronmental perception ability of DRL. DRL-based methods [21] allocate resources according
to the current specific channel quality and traffic demand, which is similar to optimization
or DL-based methods. Furthermore, DRL-based methods can continuously adjust the
allocation strategy intuitively to promote long-term reward according to the environment’s
feedback. Such characteristics provide them with the following two advantages over DL
or optimization-based ones. The first is that DRL-based methods can perform real-time
adjustments with dynamic channel quality, which is changing continuously. Although the
channel quality is also regarded as the observation of the environment, the DRL method
uses DNN to perceive the environmental information, which shows strong robustness to
noisy and error data. Therefore, it does not completely rely on the accuracy of CSI to ensure
performance. The second is their long-term reward promotion of online multiple decision
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problems, which is precisely needed in large-scale S-IoT terminal access. However, the
DL approach focuses more on current benefits, which may lead to a local optimum when
solving online problems.

3. System Model and Optimization Formulation
3.1. System Model

This paper explores an uplink scenario where the multibeam LEO constellation pro-
vides services for heterogeneous remote IoT terminals with various QoS requirements. As
shown in Figure 1, each multibeam of LEO satellites provides data transmission services
for remote IoT terminals within its beam coverage, such as forest fire monitoring sensors
and hydrological sensors. As network access selection has not been studied in this paper, it
is assumed that all IoT terminals access their nearest satellite. Therefore, for IoT terminals,
it can be assumed that there is only one satellite above it, regardless of other satellites in
the LEO constellation. LEO satellites share the spectrum of the Ka-band and implement a
direct forwarding mechanism. Furthermore, another assumption in this scenario is that the
terminal remains stationary and is equipped with a single antenna.

Figure 1. S-IoT scenario based on multibeam LEO satellite constellation.

Multiple power amplifiers on satellites receive uplink signals from IoT terminals, which
are located in the geographical area of multiple corresponding beams. Let K and N denote
the number of IoT terminals and beams, respectively. Consequently, the sets of IoT terminals
and beams can be denoted by U = {uk|k = 1, 2, · · · , K} and B = {bn|n = 1, 2, · · · , N},
respectively. More specifically, the terminal’s beam allocation depends on their location and
can be represented by xk = [xk,1, xk,2, · · · xk,N ], xk,n ∈ {0, 1}, where xk,n = 1 denotes that
terminal uk is located in the coverage of the nth beam and accordingly transmits data to
the nth antenna element of the satellite. The maximum forwarding power of a single beam
antenna is PB, while the maximum forwarding power of the whole satellite is Ptotal.

The overall transmission process of uk’s intermittent uplink data transmission request
can be divided into the following processes. Firstly, uk employs a control channel to send
access requests in the access process, containing its specific QoS requirements QoSk and
the amount of data Dk to be transmitted. Then, the Centralized transmission control unit
(CTCU) on the satellite will take charge of channel assignment and power control to allocate
specific channel ck,S and power pk,S for uk. Subsequently, uk transmits its data with power
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pk,S on channel ck,S in the data transmission process. This paper focuses on the joint channel
allocation and power control decision in the second step of the process.

For spectrum resources, the total bandwidth is divided into an independent control
channel and M data transmission channels according to the frequency division multiple
access (FDMA) paradigm. The available channel set for transmission can be denoted as
C = {cm|m = 1, 2, · · · , M}, where each channel enjoys the bandwidth of B. Therefore, the
channel allocation aims to select a channel from the channel set C for IoT terminal uk, which
can be denoted as a channel allocation vector wk = [wk,1, wk,2, · · ·wk,M]Twk,m ∈ {0, 1}, where
wk,m = 1 indicates that the mth channel cm is allocated to IoT terminal uk. Hence the channel
allocation result of all the terminals can be expressed as W = [w1, w2, · · · , wM], W ∈ RK×M.

In terms of power resource, Pk denotes the maximum transmission power of the
IoT terminal uk. Though power is theoretically a continuous variable, it is usually dis-
cretized in practice in satellite communication scenarios to reduce the computational
complexity of a satellite control system. We thus assume that transmission power of IoT
terminals is selected from the power set of Np power levels, which can be denoted as

Pset =
{

1
Np

Pk, 2
Np

Pk, · · · , Np−1
Np

Pk, Pk

}
. According to the above definition, the uplink power

control problem is also resolved in this paper. An appropriate power level has been selected
for uk from the power set Pset. Such result of power allocation can be denoted in vector
manner as pk =

[
pk,1, pk,2, · · · pk,NP

]T , pk,nP ∈ {0, 1}, where pk,np = 1 denotes that the

transmission power of IoT terminal uk is pk,S =
np
Np

Pk. The power allocation result of K

terminals can then be denoted as P = [p1, p2, · · · , pK], P ∈ RK×Np .
In summary, for IoT terminals, the channel and power allocation matrix, W and P,

represent their power and channel allocation results, respectively.
From IoT terminal uk to bth satellite antenna, the entire link gain can be modeled as

Gk,b = Gkgk,bn(t)Gb(ϕk,bn) (1)

In Equation (1), Gk is the transmit antenna gain of terminal uk, while Gb(ϕk,S) repre-
sents the receiving gain of satellite antenna, where ϕk,S is the angel between terminal uk
and the antenna center of bk. Furthermore, gk,b(t) is the channel power gain and can be
given by gk,b(t) = PLk

∣∣hk,b(t)
∣∣2, where PLk is the large-scale fading component and hk,b(t)

captures all time-varying small-scale fading effects. The small-scale fading is composed
of multipath fading and atmospheric attenuation of the satellite link, such as gaseous
absorption, cloud attenuation, and rain attenuation Those time-varying components are
affected by ever-changing weather and atmospheric conditions.

According to the denotations mentioned above, the received Signal to Interference
plus Noise Ratio (SINR) [17] of terminal uk can be expressed as

SINRk =
pkGk,bk

K
∑

j=1,j 6=k
wj,ck pjGj,bk

+ σ2
(2)

Consequently, following [19], the transmission rate achieved by terminal uk is given as

Ck = B log2(1 + SINRk)

= B log2

1 +
pkGk,bk

K
∑

j=1,j 6=k
wj,ck

pjGj,bk
+σ2

 (3)

3.2. Diverse QoS Constraints of Multiple Requests

In remote S-IoT scenarios, requests of heterogeneous devices have different QoS
requirements. For stream transmission services, such as continuous data collection and
surveillance services in the forest, QoS requirement is mainly on the available data transmis-



Sensors 2022, 22, 2979 7 of 20

sion rates, which should exceed data emerging rates to avoid data discarding. Furthermore,
monitoring services, such as disaster identification, agricultural machinery control, and
industrial monitoring, may have stringent requirements on delay and reliability. As various
QoS requirements on transmission rate, latency, and reliability should be simultaneously
guaranteed for multiple types of services in remote S-IoT, we analyze the diverse QoS
constraints in this section.

3.2.1. Transmission Capacity Requirement

For real-time services such as video surveillance or continuous data collection, their
QoS requirement on data transmission rate can be illustrated as

Ck > Creq,k (4)

where Creq,k is the minimum transmission rate requirement of the service sk of terminal uk.

3.2.2. Reliability Requirement

For reliability demanding services, we employ the outage probability as the transmis-
sion reliability metric to be guaranteed. With outage threshold γ0 and tolerable outage
probability pO

k of service sk, the reliability requirement can be expressed as,

P{SINRk 6 γ0} 6 pO
k (5)

According to [22], reliability constraint in Equation (5) can be transformed into

SINRk > γeff =
γo

ln
(

1
1−pO

k

) (6)

3.2.3. Latency Requirement

Due to long communication links, satellite networks should not be expected to provide
ultra-low delay guarantee within 1 ms, as 5G terrestrial facilities do. However, S-IoT should
still provide multiple levels of delay guarantee for various delay-sensitive services. The
latency requirement of services is denoted as Treq,k for terminal uk’s service sk.

Strictly speaking, different from the transmission rate and reliability requirements, the
end-to-end delay of S-IoT data transmission is not only decided by a resource allocation
strategy, but by the routing algorithm as well. The intuitive idea to satisfy end-to-end delay
requirements is to guarantee each independent process. This paper, therefore, focuses on
the latency guarantee of the uplink transmission process between the remote IoT terminal
uk and the satellite, which mainly consists of transmission latency and signal propagation
latency. The uplink latency, denoted as Tk, can be presented as:

Tk = TP + Lk

/
Ck

(7)

where Lk and Ck are the traffic data size and transmission rate of terminal uk, respectively.
In addition, Tp is the propagation delay of signal transmitting. Decided by the distance
between satellite and terminal uk, Tp can be approximately regarded as a constant value
due to the high satellite orbit.

Thus, the latency requirement can be written as Tk 6 Treq,k, where Treq,k is the maxi-
mum tolerable uplink latency of the service sk provided by terminal uk.

4. Problem Formulation

The S-IoT uplink resource allocation algorithm needs to employ limited channel and
power resources to guarantee IoT services’ diverse QoS requirements and promote system
performance on the following objectives. Terminal power efficiency needs to be optimized
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to prolong the terminals’ lifetime. Conversely, the algorithm intuitively needs to maximize
the probability of successful data transmission from IoT terminals.

The energy efficiency of terminal uk is defined as:

EEt
k =

Ct
k

pt
k,S

(8)

where Ct
k represents the transmission capacity of terminal uk in the tth time stick, which

may fluctuate according to channel quality and co-channel interference of other recently
allocated terminals pk denotes the transmit power of terminal uk.

For transmission success index, At
k indicates whether the data transmission request of

uk succeeds, which depends on whether the SINR exceeds the threshold.

At
k =

{
0, i f SINRt

k < δth
1, i f SINRt

k ≥ δth
(9)

The optimization problem of the QoS-guaranteed uplink power and spectrum alloca-
tion for S-IoT terminals is formulated in Equation (10).

opt.P1 = max
T−1
∑

t=0

K
∑

k=1
At

k

P2 = max
T−1
∑

t=0

K
∑

k=1
EEt

k

s.t.
K
∑

k=1
pt

k,S ≤ Pmax
total , ∀t

K
∑

k=1
xk,n pt

k,S ≤ Pmax
B , ∀t∀n

Ct
j ≥ δth, ∀t∀uj ∈ Ut

On
Np

∑
np=1

pk,np = 1, pk,np ∈ {0, 1}, ∀t, ∀k ∈ U

M
∑

m=1
wk,m = 1, wk,n ∈ {0, 1}, ∀t, ∀k ∈ U

(4)(6)(7)

(10)

The optimization objectives P1 and P2 in the above problem represent the maximiza-
tion of the long-term transmission success rate and power efficiency, respectively. The
first constraint indicates that the sum of the total uplink power of all terminals should not
exceed the satellite’s capacity, as the satellite’s maximum forwarding power limits the sum
of the uplink power received by the antenna in the direct forwarding mechanism. Similarly,
the second constraint limits the uplink power of all terminals in each beam. The third
constraint demands that the current resource allocation result should not interfere with the
normal transmission of the existing terminals (i.e., the co-channel interference should not
exceed the threshold). The following two constraints denote that only one channel and one
power level are allocated to each terminal. The last three constraint items represent the
heterogeneous QoS requirement on transmission rate, delay, and reliability, respectively.

The formulated problem is hard to be directly optimized for the following reasons.
First and foremost, the transformation from the long-term optimization objective to a
series of sub-problems on time slots needs strenuous effort. Second, the channel and
power allocation indicators are binary variables, resulting in a mixed-integer nonlinear
programming problem with multiple constraints. In addition, the perfectly known real-time
CSI, which is the normal premise of the conventional optimization method, is unrealistic
in the S-IoT scenario due to the long transmission delay. Consequently, an intelligent
model-free DRL-based approach is proposed in this paper to solve the formulated problem,
as further elaborated in Section 5.
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5. DRL-Based Online Resource Allocation

The original problem in Equation (10) is first formulated through MDP in this section.
Afterward, a DRL-based resource online allocation algorithm called DRL-QoS-RA is elabo-
rated, including action space, state space, immediate reward, and operating process. We
also propose a transfer learning-based deployment mechanism in Section 5.4 to reduce
computational complexity and promote efficiency.

5.1. Algorithm Framework

To address the challenges of massive terminals’ intermittent transmission requests,
this paper employs an online pipeline. The resource allocation problem is defined in
Equation (10) as a sequence decision-making problem driven by data transmission requests
rather than by the conventional maintenance pipeline of resource allocation methods.
At each time stick, currently generated terminal requests will be sequentially allocated
resources according to the dynamic environment.

Such an online resource allocation problem can be intuitively regarded as a sequential
decision problem and further formulated to MDP, in which an agent in CTCU makes a
decision to maximize the long-term reward according to the changing environment.

5.2. Mechanism of DRL

Section 5.1 illustrates the necessity and advantage of the online mechanism and further
briefly introduces the MDP problem. This section will further elaborate on the essential
elements of the MDP problem and DRL method, namely action space, state space, and
immediate reward.

5.2.1. Action Space

The intelligent resource allocation agent decides the terminal’s transmission power and
channel for S-IoT terminals. More specifically, the joint resource allocation action can be in-
tuitively defined as a =

{
ap, ac

}
, where ap and ac denotes the power and channel allocation

action, respectively. Consistent with notation in Section 3, the action space can be denoted as
Cset ×Pset, where Cset = {cm|m = 1, 2, · · · , M} and Pset =

{
1

Np
Pk, 2

Np
Pk, · · · , Np−1

Np
Pk, Pk

}
represent the available channel set and transmit power set of the terminals, respectively.
As a result, the size of the action space is A = M× Np.

Since the online allocation pipeline (as illustrated in Section 5.1) is adopted to se-
quentially allocate resources to the newly generated data transmission, each decision only
focuses on the terminal of the current request, rather than allocating resources to each
terminal. Thus, the action space is defined for the current terminal.

5.2.2. State Space

In addition to the action space, another essential issue in DRL is constructing appro-
priate state space, which can be divided into the following two steps, choosing the related
information and constructing these elements to feature the input of the DNN. Based on
the analysis in Section 3, in the S-IoT scenario, the state st should include the information
of channel quality, current arrival terminal uk,t, and the terminal set UOn

t , which contains
terminals that have been allocated resource and are still transmitting data to the satellite.

The information of the current arrival request uk,t consists of its location cordk, QoS
requirement Qkt , and its maximum transmission power Pk, which can be denoted as
infokt =

{
cordk, Pk, Qkt

}
.

For terminals that are still transmitting data to the satellite, namely kOn
t ∈ UOn

t ,
the involved information includes their location cordkOn

t
, QoS requirement QkOn

t
, and the

occupied channel ckOn
t

and transmission power pkOn
t

. Therefore, for services kOn
t ∈ UOn

t , the

state information is denoted as infokOn
t

=
{

cordkOn , ckOn
t

, pkOn
t

, QkOn
t

}
.
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Based on the above analysis, the state at time stick t can be expressed as
st =

{
CSIt, infokt , infoUOn

t

}
. Note that although the agent’s observation of the environ-

ment includes CSI, there can be noise and error without the assumption that global CSI is
perfectly known.

Then, to make the feature better observed by the DNN, we reformulate the elements of
state information from structural representation to tensor manner, as shown in Algorithm 1.

Algorithm 1: Formulate State Information

Divide all the in-service terminals into M groups as the interference merely occurred between co-channel terminals, as U t
cm

.
For m =0, 1, . . . . . . M:

Rank the terminals using channel cm according to the distance between them and the current arrival request′s terminal ut
k.Get the

top KN nearnest terminals as U t
cm

.
If U t

cm
6= ∅:

For each terminal uj ∈ U t
cm

:
Construct uj

′s contextual information Duj−ut
k
, pt−1

j,S , Dk, Csit−1
j,S , Ct−1

j , EEt−1
j , Rct

j ,Rdt
j , Rrt

j as feature vector st
j ,

where Disuj−ut
k

denotesthe distance between uk and uj, pj,Sdenotes the transmissionpower of uj, Dk

denotesthe data transmission amount of uj, Csit−1
j,S denotes the data transmission of last time stick, EEt−1

j
denotes the energy efficiency of lasttime stick, Rct

j , Rdt
j , and Rrt

j denotes the QoS requirement on transmission
rate, delay and reliability of terminal uj respectively.

Arrange the state information vector st
j of the KN terminals as a matrix st

cm
∈ RKN×9, which contains the

contextual information on channel cm at time stick t.
Construct the state information matrix st

cm
of each channel to tensor manner and getst

ts ∈ RKN×9×M as the input of DQN

Through the above process, the state information st =
{

CSIt, infokt , infoUOn
t

}
is for-

mulated as a KN × 9×M tensor.

5.2.3. Immediate Reward

To maximize the terminals’ long-term energy efficiency with diverse QoS requirements
guaranteed, we attach the QoS constraints to the objective of Equation (10) and reconstruct
the objective as

O =
T−1

∑
t=0

(
a1

K

∑
k=1

EEt
k + ∑

k∈U1

G
(

a2

(
Ct

k − Creq,k

))
+ ∑

k∈U2

G
(
a3
(
SINRt

k − γeff
))

+ ∑
k∈U2

G
(

a4

(
Tt

k − Treq,k

)))
G(x) is the piece-wise function, whose expression is,

G(x) =
{

A, x > 0
x, x < 0

(11)

The objective is composed of four parts. The first one corresponds to the terminals’
energy efficiency, while the second to the fourth one indicate the penalty of unsatisfied QoS
requirement on transmission rate, outage probability, and latency. The purpose of weight
a1 is to balance the promotion of revenue and the penalty of QoS unsatisfaction, whereas
a2 · · · a4 aim to normalize the penalty parts. This long-term objective can be divided into
that of each time stick in the process of online resource allocation, which can be expressed as

Ot = a1

K

∑
k=1

EEt
k + ∑

k∈U1

G
(

a2

(
Ct

k − Creq,k

))
+ ∑

k∈U2

G
(
a3
(
SINRt

k − γeff
))

+ ∑
k∈U2

G
(

a4

(
Tt

k − Treq,k

))
(12)

To present short-term benefits achieved by making a resource allocation decision for a
specific arrival terminal service, we intuitively adopt ∆Ot = Ot+1 −Ot as the immediate
reward to inform the agent how much the total goal increases or decreases because of
action at.
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Notice that if the action can’t satisfy the QoS requirements of arrival service and
existing services, the action will not be carried out, meaning that the resource will not be
allocated. The reward of the actions is thus equivalent to

rt =


a1

(
K
∑

k=1
EEt+1

k −
K
∑

k=1
EEt

k

)
i f at ∈ Φt

satis f y

∑
k∈U1

G
(

a2

(
Ct

k − Creq,k

)
+ a3

(
SINRt

k − γeff
)
+ a4

(
Tt

k − Treq,k

))
i f at /∈ Φt

satis f y

(13)

where Φt
satis f y denotes the action set which can satisfy the QoS requirement of existing and

arrival services at time stick t.

5.3. Process of DRL-Based Online Resource Allocation

Following the conventional training pipeline of DRL, this section presents the training
process of the proposed DRL-QoS-RA algorithm. As illustrated in Figure 2, the agent
observes environmental information st, including channel information, QoS requirement,
data amount, and existing terminals’ resource occupation. Then based on a certain policy π,
the resource allocation action at is determined, and then the current reward rt is collected,
with the environment changing to st+1. Each time the agent goes through the above process,
the experience {st, at, rt, st+1} is collected and put into the experience pool, from which
the agent can periodically sample experience data and train the policy neural network
to optimize long-term benefits. The converged strategy neural network promotes energy
efficiency and transmission success rate with QoS requirements guaranteed.

Figure 2. Framework of DRL_CAPC algorithm.

The goal of this paper is to optimize long-term reward.

max
π

T

∑
t=0

rt (14)

However, since the system operates continuously rather than in a limited time, RL’s
classical theory adds the discount factor γ to Equation (14) to make the long-term reward
more meaningful. γ ∈ (0, 1] is used to adjust the short-term and long-term impact [23],
in other words, how far the agents consider when making decisions. In terms of intuitive
perspective, it makes the agent pay more attention to the impact of its action on the near
future state. From the perspective of the agent’s training process, Tlen = 1/(1− γ) can be
used to estimate the number of steps that the agent considers in the future when making
decisions. For t > 1/(1− γ), the discount parameter γt is almost 0. It means that the
agent’s action selection does not consider its influence on the state beyond the T range,
which benefits the convergence of RL methods. Therefore, with discount factor γ, the
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optimization goal is Vπ(s) = E

[
t0+Tlen

∑
t0

γt−t0 rt

]
, which indicates that the agent optimizes

the long-time revenue by optimizing the discounted reward of the future T steps at each
time stick. As a result, the larger that γ is, the more steps the agent takes into consideration
with more difficulty of the training process. The smaller that γ is, the more the agent pays
attention to the immediate interests. The long-term revenue to be optimized can be denoted
as:

max
π

E

[
T

∑
t=0

γtrt

]
(15)

where E[·] denotes expectation and π denotes a specific strategy.
For a certain state, the optimization objective is defined as the state value function in

RL theory Vπ(s), which denotes the long-term reward of a specific strategy from state s.
Owing to Markov property, Vπ(s) can be represented as

Vπ(st) = rt + γ ∑
st+1

P(st+1|st, π(st) )V(st+1, π) (16)

In RL theory, the state-action value of action at and state s is also defined as Q(st, at),
which is the accumulated reward if action at is chosen by the agent.

Qπ(st, at) = rt + γ ∑
s′∈S

P(st+1|st, a )Vπ(st+1) (17)

The goal of RL agent is to learn to perform actions to maximize the sum of benefits
received in the long term. To achieve this goal, RL methods use different ways to estimate
the state value function Vπ(s) or state-action value function Qπ(s, a). For example, Q
learning, as a popular method of RL, adopts a Q value table to estimate Qπ(s, a).

When the state space becomes huge, the value function approximation methods based
on table form encounter a dimensional disaster problem and are thus no longer applicable.
To solve this problem, a deep neural network is implemented as the mapping function from
state to value Vπ(s) or Qπ(s, a). RL methods that approximate value function through
a deep neural network are called ‘deep RL’ (DRL), which are still based on the classical
theory of RL, but facilitate deep learning to replace the original tabular value function
estimation module.

Deep Q-network (DQN) [24] is a popular method of DRL, which improves the Q-
learning method by introducing a neural network to estimate the state action value Qπ(s, a)
instead of a Q-value table. The deep neural network in DQN is called the Q network,
whose parameter of neurons is denoted by θ. The input of the Q network is the state st,
while the output of the network is the Q value of each action under the state st. More
specifically, the Q value of each state–action pair 〈st, at〉 denotes the long-term reward of
choosing the action at in state st.

The essential idea of DQN is the same with Q learning, which is to determine the
Q value of each action under a specific state when the state transition probability P is
unknown, so as to obtain the optimal decision. The optimal strategy is to choose the action
with the largest Q value.

π∗(st) = argmax
a∈A

Q∗(st, a) (18)

With this strategy, the state value of st can be denoted as

Vπ(st) = max
a∈A

Q∗(st, a) (19)
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The optimal Q value can be obtained by iteratively calculating Equations (17) and (19).
More specifically, the estimated value of Q network can be calculated by

yt = rt + γ max
at+1∈A

Q̂
(
st+1, at+1

∣∣θ− ) (20)

Therefore, the difference between the estimated and prediction value of Q network
can be denoted as

L(θ) = E
[
(yt −Q(st, at|θ))2

]
(21)

This section adopts a gradient decent method to train the Q network, with L(θ) em-
ployed as a loss function. The procedures of the DRL-based online resource allocation
algorithm (DRL-QoS-RA) are elaborated in Algorithm 2.

Algorithm 2: Implementation of DRL-QoS-RA

Parameter initialization.
Initialize network Q and Q′ with random weight.
Initialize DRL training parameters, such as target network update step NQ, greedy exploration probability ε, Buffer size NB, replay

start size NIS, and batch size NBS.
Initialize the S-IoT environment parameter.

For time_stick t = 1, T do
Collect new data transmission request into set U t

new
Collect the suspended data transmission into set U t

On and release the resource occupied by them.
If U t

new 6= ∅:
For each data transmission request ut

k,

Reformulate state information st =
{

CSIt, infokt , infoUOn
t

}
into tensor mannerFeaturek,t.

Calculate a candidate action set Φt
satis f y

Adopt the tensor feature Featurek,t as the input of the action-value network Q and obtain the output of network Q as
vat = Q

(
st

ts
∣∣θ)

With probability 1− ε to decide at = argmaxvat , otherwise randomly choose at.
If a ∈ Φt

satis f y : allocate resource for ut
k according to at.

Collect environmental information st+1, then formulate to Featurek,t+1 and calculate rt
Store this experience

(
Featurek,t, at, rt, Featurek,t+1

)
into experience pool D

If the sample of D is more than this, replay start size NIS:
Sample NBS experience

(
Featurek,t, at, rt, Featurek,t+1

)
from D

Calculate yt and L(θ) by Equation (20) and Equation (21) respectively.
Update the weights of Q by minimizing L(θ)

Every NQ steps, update Q̂ using weight of Q

Therefore, by learning the Q network, the network can select the action that can maxi-

mize the V value according to the current state, which is max
π

E
[

T
∑

t=0
γtrt

]
. The optimization

of the long-term reward can be realized by making decisions in this way at every mo-
ment. The agent pays attention not only to the immediate rewards concerning the current
allocation to the current terminal, but also to the long-term impact of its occupied resources.

5.4. Deployment Mechanism Based on Transfer Learning

Despite its advantages in learning from the feedback of the environment, the proposed
DRL-QoS-RA method still has limitations when deployed in the S-IoT system. The reason
can be attributed to the time and calculation expense of the DRL method’s training process,
which is further illustrated as follows:

• If the training process is implemented on the satellite, and the system suffers from
the agents’ decision-making errors during the training process, which will result in
the failure of IoT data transmission and a waste of system resources. If the training
process is implemented in the simulation environment of the ground control center,
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the accuracy of the algorithm will suffer from the difference between the simulation
environment and the actual onboard environment.

• Each satellite of a large-scale LEO constellation faces a unique environment to learn
from. Thus, the computational expense of training can be tremendous if added up in a
massive satellite constellation.

Concerning the shortcomings mentioned above, this section embraces transfer learning
and proposes a deployment mechanism for DRL-QoS-RA, whose essential idea is that the
filters of deep CONV network are learned to observe the environment feature and can be
adapted (or transferred) to another similar environment.

As present in Algorithm 3, by fixing the first several CONV layers, the knowledge
learned by the agent in the simulation environment can be preserved. Then, by fine-
tuning the last fully connected layers, the Q network can adapt to the target environment.
Compared with direct deployment, merely fine-tuning the fully connected layers can
reduce the computation expense and promote system efficiency.

Algorithm 3: Deployment process of DRL-QoS-RA

Build simulation environment in ground control center based on the historical channel state,
terminal location and IoT request distribution.
Train the model Q

(
Featurek,t|θ

)
to convergence in a simulation environment

For satellite = 0, 1, 2 . . . . . . :
Copy the weight θ of the DQN Q
Fix the conv layers in the deep convolutional network and only fine-tune the
last few convolutional layers until the agent converges to obtain Q

(
Featurek,t|θ′

)
6. Simulation Result and Analysis

In this section, the S-IoT environment and DRL parameters are introduced first. Then,
the results and analysis of transmission success rate and energy efficiency are given. Finally,
the performance of the transfer learning-based deployment mechanism is illustrated.

6.1. Experiments Establishment
6.1.1. Scenario Parameters

In this paper, a multibeam LEO satellite is used to simulate the experimental envi-
ronment of S-IoT, whose detailed parameters are listed in Table 1. The limited backhaul
transmission power of the satellite limits the IoT terminals that the system can support.

Table 1. Detailed parameters of S-IoT scenario.

Parameters Value

Satellite altitude 550 km
Beams 19

Data transmission channels 8
Channel bandwidth 10 KHz

Frequency band 14 GHz
Terminals’ antenna max power 300 mW
Terminals’ antenna power level 3

Terminals’ antenna gain 10 dBi
Satellite receiving antenna G/T 3.7 db

Path loss 170.38 db
Satellite backhaul power limitation 300 W

Beam power limitation 25 W
Satellite amplifier magnification 5

SINR threshold 1.1

Furthermore, in the simulation environment, 10,000 IoT terminals are unevenly dis-
tributed in the total beams of a single satellite, whose request arrival follows the Poisson
distribution with λ times per hour.
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6.1.2. DRL Training Parameters

The adopted DQN structure is a convolutional neural network with an input layer, two
convolutional layers and two fully connected layers. The conv layers consist of 16 3 × 3 filters
and 32 2 × 2 filters. The number of neurons in the hidden layer is 128 and 48, while the ReLu
is utilized as the activation function. All other parameters related to the DQN are listed in
Table 2. Note that the listed parameters are selected from multiple simulation tests to balance
the complexity and performance of the DRL algorithm.

Table 2. DRL-QoS-RA algorithm parameters.

Algorithm Parameters Value

Replay start size 2000
Replay memory 20,000

Batchsize 32
Target network update step 50

Discount factor 0.99
Initial exploration rate 1.0
Final exploration rate 0.01

Exploration rate decay 5 × 10−4

Learning rate 0.001

6.1.3. Comparative Methods

To evaluate the performance of the proposed DRL-QoS-RA algorithm, this section
compares it with the following methods,

(1) Genetic algorithm: In the GA-based [25,26] online resource allocation method, the
normalized weighted objective. α1P1 + α2P2 is adopted as the optimization objective
with the number of parents Np = 200, probability of variation pM = 0.005, crossover
probability pC = 0.05, and number of iterations NI = 800.

(2) DRL-EERA: DRL-based Energy-efficient resource allocation method. DRL-EERA
improves the method proposed in [3] by taking power control into consideration,
as [3] only considers the channel allocation problem. More specifically, DRL_EERA
adopts the state representation and instant reward in [3], while adding power control
in action space to allocate transmission power and channel simultaneously. The
training parameters of DRL are consistent with the DRL-QoS-RA method, where the
deep neural network includes four layers, namely two convolution layers and two
fully connected layers.

(3) DRL-RA: DRL-based resource allocation method. Similar to DRL-EERA, the action de-
sign was modified to simultaneously allocate power and channel based on [9]. Moreover,
the training parameters and network structure are consistent with DRL-QoS-RA.

(4) Random method: Power and channel of the current terminal are randomly allocated.

6.2. Convergence Analysis of DRL-QoS-RA Method

Figure 3 shows the changing of reward through a training process when the terminals’
data transmission frequency is five per hour, representing the convergence effect of the
methods. The horizontal axis represents the number of transmission requests, while the
vertical axis indicates the value of the reward. The shaded area is drawn according to the
standard deviation of rt to show its fluctuation.
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Figure 3. Convergence process of DRL-QoS-RA method.

The replay start size of DRL-QoS-RA is set to 2000. The agent uses random decision
mechanisms for the environment exploration and experience gathering when the number
of requests is below 2000. As a result, the reward is not significantly improved in this
stage. Then, the value of the reward shows significant growth, indicating the improved
performance of the algorithm. After the number of requests reaches 8000, the fluctuation of
rt is reduced, implying the convergence of DRL-QoS-RA.

Figure 4 shows each methods’ performance on the reward rt. Similar to Figure 3, the
horizontal axis represents the number of transmission requests, while the vertical axis
denotes reward rt, which is drawn by averaging steps of 100.

Figure 4. The simulation process of each methods’ training process.

First of all, the performance of the three methods based on DRL, namely DRL-QoS-
RA, DRL-RA, and DRL-EERA, is similar to that of the random mechanism before the
training process of DRL. The reward of the three methods increases with the number of
iterative steps.

On the training process, when the request number is between 2000 and 6000, DRL-RA
and DRL-EERA take about 4500 training times to achieve convergence, while DRL-QoS-
RA only needs 2000 training times. Such an improvement on convergence efficiency can
be mainly attributed to the following two points: (1) Compared with DRL-EERA and
DRL_RA, DRL-QoS-RA formulates the condensed feature tensor rather than the intuitive
location-based zero-padding mechanism, which is used by DRL-EERA and DRL_RA. As
a result, the deep network can perceive the critical information more easily and reduce
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the number of parameters that the deep network needs to train. (2) The state space of
DRL-QoS-RA contains more contextual information, such as the amount of data to be
transmitted, channel quality, and QoS requirement.

When the request number is more than 6000, all four methods obtain convergence.
Compared with the GA method, the reward after convergence of DRL-RA is lower by
14.3%, and the DRL-EERA method achieves similar performance, while the reward of the
proposed DRL-QoS-RA method is 11% higher than that of GA.

6.3. Deployment Process Simulation Based Transfer Learning

To demonstrate the adaptability of our deployment mechanism based on transfer
learning, we evaluate our method in the transfer learning setting to test the transfer
mechanism proposed in Section 5.4. Specifically, the network environment is changed after
the 10,000th terminal request, including the quantity and distribution of terminals, their
data transmission parameters, and channel quality.

As shown in Figure 5, it takes 4000 times to train DRL-QoS-RA from the initial state
to converge. As for the transfer stage, only 1000 times or even about 100 times of training
are needed for adapting to the new environment with different distribution and to reach
acceptable performance. Furthermore, Figure 5 shows the performance of a transferred
neural network. Compared with DRL-QoS-RA trained from the initial state, the transferred
one achieves an approximate effect on transmission success rate and power efficiency. To
sum up, the transfer mechanism can effectively reduce the onboard training time and
computing expense in system deployment.

Figure 5. Deployment training process based on transfer learning.

6.4. Transmission Success Rate and Power Efficiency

The simulation result of transmission success rate is illustrated in Figure 6a, where the
horizontal axis denotes the terminals’ average arrival and thus shows the IoT transmission
traffic. When the traffic load exceeds a certain limit, the transmission success rate of all
methods begins to decrease with the increase in traffic. The DRL-RA, which takes the
success of the current transmission as the immediate benefit, achieves the best effect. The
proposed DRL-QoS-RA algorithm can also achieve a higher transmission success rate than
the DRL-EERA and GA. For example, when the transmission success rate is 0.8, DRL-RA
achieves the traffic arrival rate λ = 10.90, whereas DRL-QoS-RA, DRL-EERA and GA can
carry the traffic with the arrival rate λ = 8.48, λ = 4.87, and λ = 5.21, respectively. In
other words, the proposed DRL-QoS-RA method can improve transmission success rate
by 74.12% and 62.76% compared with DRL-EERA and GA, respectively. The reason why
DRL-RA achieves better performance than the other methods may lie in the fact that its
reward concentrates on success rate.
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Figure 6. Methods’ performance with requested traffic increase. (a) The trend of transmission success
rate with traffic increase. (b) The trend of energy efficiency with traffic increase.

Figure 6b shows the trend of the terminals’ energy efficiency with the gain of beam traf-
fic. With the increase in the average transmission rate of the terminal, the power utilization
rates of DRL-QoS-RA, DRL-EERA, DRL-RA, and GA show a similar trend. After a slight
increase, they decrease and become stable eventually. The reason for the subsequent de-
cline stage is that with the increase in requests, co-channel interference inevitably increases,
and thus the increase in throughput is less than the power consumption. Then, with the
continuous increase in traffic flow, the system becomes saturated by rejecting many new
transmission requests. As a result, the power utilization rate of the system appears to be
stable. Concerning the power efficiency of S-IoT’s normal operation condition, when we can
find that the proposed DRL-QoS-RA is 0.66 Mbit/(Joule), while that of DRL-EERA, GA and
DRL-RA is 0.69 Mbit/(Joule), 0.41 Mbit/(Joule), and 0.27 Mbit/(Joule), respectively. The
proposed method can improve the power efficiency by 60.91% and 144.44% compared with
GA and DRL_RA, while its power efficiency is only 4.55% lower than that of DRL-EERA.

Although DRL-EERA and DRL-RA achieve the best performance in energy efficiency
and success rate, respectively, the proposed DRL-QoS-RA better achieves a trade-off be-
tween energy saving and transmission QoS satisfaction.

Table 3 shows the success rate, energy efficiency and computational time of the above
six optimization algorithms under different transmission frequencies. The calculation
time of the GA method increases greatly with the increase in terminal request’s frequency;
thus, it is not suitable for S-IoT. The calculation time of the four DRL-based methods
remains stable with the increase in in-service terminal. As DRL-QoS-RA transferred
adopts the transfer learning mechanism, its training steps are lower than the other three
DRL-based methods and can achieve a favorable transmission success rate and energy
efficiency with lower calculation cost. Similar to the performance in Figure 6, the proposed
DRL-QoS-RA and DRL-QoS-RA-transferred can effectively achieve the tradeoff between
energy utilization and transmission success rate. Such a promotion is presented with
either low terminal transmission frequency (when S-IoT is relatively idle) or high terminal
transmission frequency (when S-IoT tends to be saturated).

Table 3. Performance of comparative methods with different request arrival rates.

Methods
λ = 1.5 λ = 9.75

Success Rate Energy Efficiency Computational Time (s) Success Rate Energy Efficiency Computational Time (s)

random 0.94 0.16 - 0.34 0.12 -
GA 0.99 0.41 3.24 × 103 0.53 0.22 1.67 × 104

DRL-RA 1 0.27 64.77 0.89 0.23 64.77
DRL-EERA 1 0.69 71.52 0.48 0.38 71.52

DRL-QoS-RA 1 0.66 78.31 0.71 0.33 78.31
DRL-QoS-RA-transferred 1 0.64 11.53 0.72 0.31 11.53
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7. Conclusions

Aiming to solve the uplink channel allocation and power control problem of large-
scale terminals with various QoS requirements in the S-Iot system, this paper proposes
the DRL-QoS-RA method for online joint resource allocation based on DRL. Compared
with conventional DRL methods, the success of DRL-QoS-RA can be attributed to (1) the
comprehensive reward concerning QoS requirement, transmission success rate, and energy
efficiency; and (2) contextual information, including location, resource occupation, CSI,
and QoS requirement. Furthermore, a deployment mechanism based on transfer learning
is proposed to facilitate practical usage in the real satellite system, effectively promoting
efficiency and thus saving precious onboard computational resources.
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