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Gdańsk University of Technology, 80-233 Gdańsk, Poland; tegra@eti.pg.edu.pl
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Abstract: In recent years, a number of new research papers have emerged on the application of
neural networks in affective computing. One of the newest trends observed is the utilization of graph
neural networks (GNNs) to recognize emotions. The study presented in the paper follows this trend.
Within the work, GraphSleepNet (a GNN for classifying the stages of sleep) was adjusted for emotion
recognition and validated for this purpose. The key assumption of the validation was to analyze
its correctness for the Circumplex model to further analyze the solution for emotion recognition in
the Ekman modal. The novelty of this research is not only the utilization of a GNN network with
GraphSleepNet architecture for emotion recognition, but also the analysis of the potential of emotion
recognition based on differential entropy features in the Ekman model with a neutral state and a
special focus on continuous emotion recognition during the performance of an activity The GNN
was validated against the AMIGOS dataset. The research shows how the use of various modalities
influences the correctness of the recognition of basic emotions and the neutral state. Moreover, the
correctness of the recognition of basic emotions is validated for two configurations of the GNN.
The results show numerous interesting observations for Ekman’s model while the accuracy of the
Circumplex model is similar to the baseline methods.

Keywords: affective computing; emotion recognition; multi-modality; graph neural network;
biosignals; biosensors; bioelectrical signals

1. Introduction

Automatic emotion recognition is an interdisciplinary research field that deals with the
algorithmic detection of human affect from a variety of sources [1]. In recent years, much
research, motivated by the success of the graph neural network (GNN) model in graph data,
has focused on emotion recognition using GNNs. The GNN is an approach that extends
deep-learning techniques with the ability to operate on data represented as a graph and not
as Euclidean data. In emotion recognition, it is primarily performed on (but not limited to)
EEG (electroencephalography) biosignals, where the relationships between EEG channels
have an influence on the recognized emotions [2]. This is similar to another challenge in
the utilization of EEG biosignals: classifying the sleep stage. The research described in [3]
introduces the GraphSleepNet—a graph convolutional network (GCN)—for this purpose.
The authors of this paper perceived the GraphSleepNet features to be a premise that an
analogous network can be used for emotion recognition. The GraphSleepNet features are
as follows:

• It combines spatial–temporal convolution and spatial–temporal attention mechanisms;
• It represents the pairwise relationship between nodes to dynamically construct an

adjacency matrix;
• It is easy to expand the model by other types of biosignals.
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Emotions can be recognized in various models, with two of the most popular ones be-
ing Ekman’s model describing six basic emotions (happiness, anger, sadness, surprise, fear,
and disgust) [4], often extended with the neutral state, and the Circumplex model [5], where
emotions are represented as two-dimensional vectors of valence (unpleasant/pleasant) and
arousal (deactivation/activation). In the course of this research, the GraphSleepNet neural
network was adjusted to emotion recognition for Ekman’s model and the Circumplex
model, then named the GraphEmotionNet.

One of the motivations of the work was to study the aptitude of applying the ar-
chitecture of the GNN network utilized in GraphSleepNet for emotion recognition. No
less important a motivation, but less technical, was the aim to study the potential of the
architecture and applied differential entropy (DE) features in recognizing the six basic emo-
tions and the neutral state continuously while performing activities. This was particularly
important, as research often utilizes DE features for recognizing emotions, but mainly in the
Circumplex model [6,7] or for three emotional states (positive, neutral and negative) [7–11]
and, to the best of our knowledge, none apply the Ekman model. Moreover, because a
person can feel and express more compound emotions, we wanted to apply a solution
which does not return only one of the basic emotions or the neutral state, but an emotion
state vector defined as a set of values from a specific range assigned to the emotional
states [12].

The goal of the research is to validate GraphEmotionNet for automatic emotion
recognition. It is assumed that the goal of the research is fulfilled when the answers
to the following research questions are found:

1. RQ1—What is the accuracy of the valence and arousal predicted by GraphEmotionNet?
2. RQ2—What is the correctness of the emotion state vectors for Ekman’s model with

the neutral state predicted by GraphEmotionNet for a single moment of time?
3. RQ3—In what way do the modalities used in GraphEmotionNet and the emotion

recognized influence the answers of RQ2?

To find the answers to these questions, the research methodology depicted in Figure 1
was applied. The following tasks were designed:

1. Transformation of the GraphSleepNet GNN to GraphEmotionNet and then further
preparation of the GNN to work in two configurations utilizing the unimodal and
multimodal approaches.

2. Selection of a dataset that provides continuous annotations, as much as possible,
and obtaining emotions treated as ground truth continuously while performing
the activity.

3. GraphEmotionNet validation for the Circumplex model to prove its applicability for
emotion recognition. The aim of this task was not to improve the accuracy in relation
to the baseline methods, but to show a similar accuracy to other research. Within this
task, two substasks were performed:

• Configuration and training of GraphEmotionNet for the Circumplex model for
the unimodal approach (EEG only) and multimodal approach (EEG with at least
two other biosignals).

• Analysis of the accuracy of the recognized quadrants in the Circumplex model,
where the quadrants are understood in terms of high or low values of valence
and arousal. This analysis was performed with respect to baseline methods.

4. Analysis of the recognized emotion state vectors representing the six basic emotions
and the neutral state. The aim of this task was to check the correctness of the recog-
nized emotion state vectors and provide the main contribution of this paper: results
showing which basic emotions can be recognized with the highest correctness utiliz-
ing DE features in GraphEmotionNet and in what way the used modalities influence
this. Within this task, three subtasks were performed:
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• Determination of the method for measuring the correctness of the recognized
emotions, which was achieved by choosing the similarity measure, allowing for
the comparison of the two emotion state vectors.

• Configuration and training of GraphEmotionNet for the Ekman model with a
neutral state for the unimodal approach (EEG only) and multimodal approach
(EEG with at least two other biosignals).

• Analysis of the chosen similarity measure of the recognized emotion state vec-
tors, which made it possible to draw some conclusions. This analysis was not
performed with respect to baseline methods, as to the best of our knowledge no
similar analysis has been published.

Figure 1. Research methodology.

The paper is organized as follows. Section 2 describes recent trends in automatic
emotion recognition with a special focus on the application of graph neural networks. The
description of GraphSleepNet and the steps performed to build GraphEmotionNet can be
found in Section 3. In Section 4, the design of the experiments to analyze the accuracy of the
recognized quadrants in the Circumplex model and to analyze the recognized emotional
state vectors is described. The results of the performed analysis are presented in Section 5.
Finally, the results are discussed in Section 6.

2. Related Work

To familiarize the readers with the topic of automatic emotion recognition, two main
aspects are presented. Firstly, Section 2.1 shows recent trends in automatic emotion recog-
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nition from physiological channels. Secondly, the approaches taken in the usage of graph
neural networks to recognize emotions are presented in Section 2.2.

2.1. Automated Emotion Recognition from Physiological Channels

Following [13], automatic emotion recognition is a collection of methods that enables
the processing and classification of various signals to detect a given emotion from a set of
available emotions. The aim of studies focusing on automatic emotion recognition is always
the same, however they differ in terms of recognized emotions, observation channels used,
utilized techniques, used dataset, and applied unimodal or multimodal approach [14–16].

2.1.1. Models for Representing Emotions

Following [17], there are three major model types for representing emotions: discrete,
dimensional and componential [18]. Discrete models distinguish a set of basic emotions
and describe each affective state as belonging to a certain emotion from the predefined set.
One of the best-known and extensively adapted discrete representation models is Ekman’s
six basic emotions model, which includes happiness, anger, disgust, surprise, sadness, and
fear [4]. Dimensional models represent an emotional state as a point in a multi-dimensional
space and the most adapted model uses continuous valence and arousal dimensions, which
are also frequently extended with an additional dimension of dominance [5]. Componential
models use several factors that constitute or influence the resulting emotional state and
the most adopted OCC model defines a hierarchy of emotion types representing all the
possible states that might be experienced [19]. The analysis of the emotion recognition
solutions reveals that there is no single commonly accepted standard model for emotion
representation. The continuously adapted Ekman’s six basic emotions and valence-arousal
(also called Circumplex) models are widely used in emotion recognition solutions [18].
Recently, more papers have been discussing the nature and modeling of emotions in
affective computing [20,21], but most of the research is still focused on dichotomous models
of emotions [22].

2.1.2. Observation Channels

During the emotion recognition process, various life activities (conscious and un-
conscious actions of a human body, which generate specific symptoms of an emotional
state) [23] are analyzed. To the most-analyzed life activities belong: various types of move-
ment, a sound made by the person, physiological activities such as heart and brain activity,
unconscious muscle activity, respiration, and perspiration or thermal regulation. The life ac-
tivities might be recorded via observation channels, which are mediums for the registration
of a signal holding information on observable symptoms. The observation channel refers to
a type of signal obtained rather than a physical medium. Analysis of psychological observa-
tion channels is an alternative to movement and sound analysis. People control movements
and sounds so it is easy to manipulate them [24,25]. This analysis is also suitable for those
who are not able to express emotions in other ways. The most widely used physiological
observation channels in emotion recognition include EEG (electroencephalography), ECG
(electrocardiography), and GSR (galvanic skin response, often called EDA-electrodermal
activity in recent works), but are not limited to these alone (e.g., there is also temperature,
chest size, EMG-electromyography, and BVP-blood volume pulse).

The EEG observation channel is used in emotion recognition because it reflects in some
way a person’s thoughts [26,27]. Therefore, EEG is widely used in emotion recognition
as an observation channel of brain activity and the studies focused on this channel are
described in recent surveys [24,28,29]. Knowing that the heart is connected with the brain
via the autonomic nervous system (ANS), emotional experience causes some changes in
heart rhythm, which can be detected through ECG readings [25]. The current research
on automatic emotion recognition focused on ECGs are reviewed in [25,30,31]. The other
widely used channel for emotion recognition is GSR, which is mainly a result of two things.
Firstly, research [32] has shown that GSR is a reliable identifier of physiological arousal,
and secondly, devices that measure GSR are more widely available [33] and wearable
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technologies provide more opportunities to measure GSR in real-world contexts [34,35].
The recent research reviews can be found in [35–37].

2.1.3. Techniques and Approaches for Multimodal Processing

Various techniques for automatic emotion recognition are used. The classification
introduced in [24] introduces Deep Machine Learning-based systems and Shallow Ma-
chine Learning-based systems. Deep learning-based systems, among others, include CNN
(Convolutional Neural Network), DNN (Deep Neural Network), RNN (Recurrent Neural
Network), and GNN. On the other hand, shallow learning-based systems include SVM
(Support Vector Machine), kNN (k Nearest Neighbor), DT (Decision Tree), etc. The main
difference between the shallow and deep learning methods is the different features utilized.
Shallow learning is based on predefined mathematical features. On the contrary, the deep
learning models derive their own features (directly from the data) to create the best model.

Two main approaches to multimodal emotion recognition can be distinguished: early
fusion and late fusion [38]. Early fusion is a process of combining features from diverse
types of modalities for further analyses using statistical or machine learning techniques.
This makes it possible to find interrelationships in modalities at the initial phase. On the
other hand, late fusion focuses on the processing of each modality separately using different
models for different modalities. After that, a new emotion is determined using different
machine learning techniques using previously recognized emotions. Moreover, there is also
a hybrid version of these approaches [39]. In this approach, some features can be combined
as an input for a machine learning model (early fusion), after which late fusion is applied.

2.1.4. Datasets

The comprehensive review of affective datasets [40] published in 2019 lists five multi-
modal datasets that contain bioelectrical signals of interest.

To familiarize the reader with the data, a basic comparison of the most popular
affective datasets has been prepared in Tables 1 and 2. Table 1 lists other works regarding
emotion recognition that made use of said datasets as training data along with the predicted
labels. Table 2 lists the bioelectrical signals found in each dataset along with the number of
participants and a short description of the stimuli used to elicit emotional reactions.

Table 1. Recognized emotions from datasets.

Article Recognized Emotion Predicted Label Dataset

[41] positive, neutral, negative single label SEED

[14] Ekman model (6 basic emotions) single label DEED, MPED

[42] positive, neutral, negative single label SEED, RCLS

[15] valence and arousal multiple labels DEAP, ASCERTAIN

[16] valence and arousal multiple labels AMIGOS

2.2. Graph Neural Networks for Automatic Emotion Recognition

A graph neural network is a method of deep learning used for graph data structures [43].
Given the fact that presently, more and more works use data represented as graphs instead
of Euclidean data, this provides an opportunity to use the unique properties of graph neural
networks not only in the field of emotion recognition with the usage of bioelectrical sensors [2],
but also in the domain of facial expression detection (facial emotion recognition) [44],
emotion context detection in dialogue/conversation between humans [45,46], and emotion
recognition from speech [47] with the use of a skeleton model to recognize emotions on the
basis of gestures/body layout [48] or a fusion of two or more emotion detection methods,
e.g., from visual and audio inputs [49,50].
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Table 2. Basic description of five multimodal affective datasets.

Name Type of Signal Number of Participants Type of Videos Watched

AMIGOS EEG (14 channels), ECG (2 channels), GSR (1 channel) 40 16 movie clips with lengths between 50 and 150 s

DEAP EEG (32 channels), ECG (2 channels), GSR, EOG 32 40 one-minute long music videos

ASCERTAIN EEG, ECG, GSR, facial features 58 36 movie clips with lengths between 51 and 127 s

DREAMER EEG (14 channels), ECG (2 channels) 23 18 movie clips with lengths between 65 and 393 s

SEED EEG (62 channels) 15 15 movie clips (duration of every video approx. 4 min)

Besides the application of graph neural networks in emotion recognition, there are
other various applications, such as analyzing the structures of a given graph (graph
mining) [51], recognizing relationships between words in text classification [52], and draw-
ing relations between objects in image classification [53]. One of the advantages of graph
neural networks is the assumption that data instances are related to each other by specific
relationships [54]. This unique property enables us to operate with a new type of data:
data that can have relations between each other, for example bioelectrical signals, social
interactions, natural language processing, etc. In this study, the focus has been set on the
use of graph neural networks in the field of affective computing, or to be more precise,
to automatically recognize emotions from various bioelectrical signals such as EEG, ECG,
and GSR.

The common approaches to using GNNs for emotion recognition differ by the used
modalities, methods of graph construction and, in the case of multimodal solutions, the
approach to data fusion. The method of graph construction can be classed as either static
or dynamic. A statically constructed graph has edge weights determined by features of the
data that remain unchanging during the training process.

Statically constructed graphs are based on a priori knowledge of the relations between
the nodes and most commonly express distances between specified points in physical space,
such as relations between points of the human body. These can be used to summarize video
footage of a persons gait by creating a spatial–temporal graph based on joint positioning, or
footage of the face by assigning graph nodes to specific features of the face and expressing
distances between them using edges [48,55–57]. Included in this category are also the
positions of sensors used to collect data, such as EEG electrodes [58–60], or even calculated
values expressing relations between segments of data [61,62]. Any models that are fed a
ready adjacency matrix as opposed to the adjacency matrix being a product of the network
are considered to be static.

Dynamically constructed graphs are graphs whose adjacency matrix constructions are
learned during model training and dynamically changed to maximize specific
metrics [3,63–65]. These methods make no prior assumptions about the existing rela-
tions between the nodes and instead learn them based on the training data. These are most
commonly used with multichannel unimodal data—such as EEG—which allows for the
easy definition of graph nodes and the extraction of common features that can be used for
training the graph edges.

In terms of modality, the training data can be either unimodal or multimodal, and for
the multimodal approach some kind of fusion is applied. In the work of [57], the integration
of multimodal data from videos, audio, and text was used as a late fusion model for emotion
prediction into four classes (happy, sad, angry, and neutral). Ref. [15] uses late fusion
with modalities for the emotion recognition task. The research described in [66] also uses
late fusion of the gate and EEG modalities, where the use of a graph neural network was
applied for feature extraction of the skeleton frames (gait). The solution presented in [67]
utilizes early fusion of modalities for multimodal emotion recognition, where a graph
neural network is used to model the correlation between neurons and emotion recognition.

3. Graph Neural Network

This section describes the performed piece of works related to the task involving the
adjustment of GraphSleepNet to GraphEmotionNet and the two concerning the configura-
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tion and training of the unimodal and multimodal GraphEmotionNet network for both
models. The graph neural network model used is based heavily on the GraphSleepNet
model [3], which is used to classify sleep stages with the use of both spatial–temporal
convolution and spatial–temporal attention mechanisms. This model was chosen due to its
use of EEG data and high classification accuracy (88.90%). For the purposes of this study,
the model was adapted to classify emotions.

3.1. GraphSleepNet Model

The GraphSleepNet model is an adaptive Spatial-Temporal Graph Convolutional
Network (ST-GCN) used on electroencephalogram (EEG) data for sleep stage classification.
It extracts the intrinsic connections of the EEG channels, creating an adjacency matrix.
Instead of using a predefined connection structure, the graph edges between individual
signal channels are learned adaptively. This means that the graph structure is created
dynamically during the learning process. Moreover, it successfully captures both the spatial
features of the signal and the timed changes of the signal using spatial and temporal
convolutions, respectively. The spatial features are determined from each sleep stage
network by aggregating information from neighbor nodes. In contrast, the temporal
dependencies from the neighbor sleep stages are used to extract the temporal features.

The overall structure of the GraphSleepNet model remains unchanged for the purposes
of emotion classification. The adaptive graph learning layer produces the adjacency matrix
from the input data by minimizing the graph learning loss function. The loss function was
designed to generate larger edge weights between nodes represented by feature vectors
that are close together in terms of euclidean distance. It also contains a term that grows
along with the total weights to avoid creating a fully connected graph. To avoid the trivial
solution of setting all of the weights (and consecutively, all of the edges) to zero, a cross
entropy loss is also added.

A detailed description of the GraphSleepNet architecture is provided in the paper [3].

3.2. Adaptation of the GraphSleepNet to Recognize Emotions—GraphEmotionNet

To conduct the experiments, a modified version of the aforementioned GraphSleepNet
model was used. The GraphEmotionNet overall architecture is shown in Figure 2. Firstly,
the differential entropy (DE) features are extracted from EEG or a combination of EEG,
ECG, and GSR biosignals. Then comes the adaptive emotion graph learning process. Next,
the combination of extracted DE features and brain connection structure serves as an input
to the Spatial–Temporal Graph Convolution. The final stage is emotion classification to the
Ekman model, with an additional neutral stage as shown in Figure 2, or to the Circumplex
model. The results from the network are given as a vector of the probabilities of belonging
to the emotion classes.

The modified network takes only the extracted DE features [68] from the EEG signal
or from the combination of EEG, ECG, and GSR signals as an input. The variant of the
network that processes all three modalities does so by constructing a single 17-node graph
that combines all of the channels. As stated in [69], DE has the property of measuring the
average information of a random variable which is capable of separating EEG signals from
low and high frequency energy.
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Figure 2. Overall architecture of GraphEmotionNet (own elaboration based on GraphSleepNet [3]).

The output layer returns the emotion classes from the selected model depending on
the experiment’s assumptions. Both the six classes of emotions specified in Ekman’s model
extended with the neutral emotion, and the quadrants in the Circumplex model (high
valence high arousal (HVHA), low valence high arousal (LVHA), high valence low arousal
(HVLA), and low valence low arousal (LVLA), were used.

To avoid overfitting, the input data was divided into training and validation sets
using a 49-fold cross-validation strategy. Each fold in the dataset consisted of data from
11 viewing sessions (as defined in the AMIGOS dataset as a participant viewing a single
video). The viewing sessions were of different lengths and therefore resulted in a different
number of samples per fold. The training was therefore performed 49 times with the final
reported results being the total of all the validation folds from their respective training
sessions. The case of underfitting was addressed by training the data over 50 epochs, and
the callback mechanism was used to obtain the model with the highest accuracy score. The
used hyperparameters are presented in Table 3.

Table 3. Hyperparameters in the model that predicts emotions to Ekman’s model with additional
neutral emotion.

Hyperparameter Description Value

Layer number of ST-GCN 1

Standard convolution kernels 10

Graph convolution kernels 10

Chebyshev polynomial K 3

Regularization parameter 0.001

Dropout probability 0.4

Batch size 2048

Learning rate 0.001

Optimizer Adam

In the case of predicting emotions to the appropriate quadrant in the Circumplex
model, the performance of the prepared GNN was evaluated with 10-fold cross-validation.
The training and test set was randomly chosen by subject-independent schemes. The used
hyperparameters are presented in Table 4.
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Table 4. Hyperparameters in the model that predicts emotions to Circumplex model.

Hyperparameter Description Value

Layer number of ST-GCN 1

Standard convolution kernels 10

Graph convolution kernels 10

Chebyshev polynomial K 3

Regularization parameter 0.001

Dropout probability 0.5

Batch size 512

Learning rate 0.001

Optimizer Adam

4. Experiments Design

According to the designed research methodology depicted in Figure 1, performing
the experiments demands first Dataset selection and Preparation, which is described in
Sections 4.1 and 4.2. The tasks Graph EmotionNet validation for Circumplex model and
Analysis of recognized emotion state vectors representing six basic emotions and neutral
state also require the configuration and training of the GraphEmotionNet. These issues
were described in Section 3. Thus, the analysis design is presented in Section 5.3. Section 5.1
first presents the design steps for Determining the method of measuring correctness of
recognized emotions and secondly the design of the Analysis of correctness of recognized
emotional state vectors.

4.1. Dataset

Following [70], the AMIGOS dataset is designed for research on affective reactions
based on neurophysiological signals and video recordings of the face and whole body.
The collected data comes from experiments in which participants individually or in small
groups watched short and long movies that evoke strong emotions. This makes it possible
to analyze the video duration and the impact of social context on the participants’ emotional
state. Moreover, the dataset provides information about personality and mood for each
of them.

The collected data in the dataset consists of participant profiles, neurophysiological
signals, participant videos, and emotional state assessments.

AMIGOS provides three types of neurophysiological signals:

1. Electroencephalogram (EEG) that contained fourteen channels (AF3, F7, F3, FC5, T7,
P7, O1, O2, P8, T8, FC6, F4, F8, AF4);

2. Electrocardiogram (ECG) that contained two channels;
3. Galvanic skin response (GSR) with only one channel.

The signals are available in the originally received form, and in a preprocessed and
segmented form.

The participants were recorded using a HD frontal camera pointed at the face and
a second camera capturing RGB and depth videos covering the whole body. All video
recordings were precisely synchronized with the neurophysiological signals.

The emotional state assessments were obtained using two methods:

1. The self method was obtained from the participants’ self-assessment made by com-
pleting special questionnaires about their emotional state at the beginning of each
experiment and about their emotional state, video liking, and familiarity at the end of
each experiment.

2. The external method was based on ratings of the arousal and valence levels made by
three independent annotators every 20 s using the participants’ face recordings.
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The data from the scenario of the short videos experiment was chosen for the designed
experiments. It involved 40 participants, where each individually watched a set of short
recordings with a duration not exceeding 250 s. These recordings were taken from feature-
length films and were selected to evoke specific affective states. Each was classified into
one of four categories: HVHA, HVLA, LVHA, and LVLA, referring to the quadrants of the
two-dimensional model of emotion representation (where the letters V and A stand for
valence and arousal, while H and L indicate high and low levels of the given feature). The
list of movies used in the study included 16 positions, four for each category. The order in
which they were viewed differed for each participant [71].

The AMIGOS dataset was chosen from the set of multimodal datasets mentioned in
Section 2 due to the fact that it contains all of the necessary modalities that are essential
to conduct multimodal experiments, and it is a relatively good quality dataset with pre-
processed data. The DEAP dataset was not chosen because it is a relatively old dataset
(2012). The SEED dataset contains data collected only from the EEG modality, so this
dataset would be insufficient for the experiments conducted in this article. The ASCER-
TAIN dataset contains all of the necessary modalities (EEG, ECG, GSR), so theoretically
could be used in this article. However, it does not contain preprocessed data like the
AMIGOS dataset. Furthermore, the EEG modality was obtained at a frequency 32 Hz,
whereas the AMIGOS dataset contained EEG data obtained with a sampling rate of 128 Hz,
which is the minimum frequency for obtaining the range of all wave types from an EEG,
based on the given articles [72,73]. Another advantage of the AMIGOS dataset was the
continuous annotations made by three external annotators in 20-s time intervals. To the best
of our knowledge, only the AMIGOS dataset from the above-mentioned datasets contains
continuous external annotations in the given time period. In summary, the decision to use
the AMIGOS dataset was made due to its higher sampling frequency and availability of
preprocessed multimodal bioelectrical data.

4.2. Preprocessing

The analysis of the correctness of the recognized emotional state vectors requires the
training and test set to be prepared as a time series of vectors of Ekman’s emotions with the
neutral state. The AMIGOS dataset provides two types of annotations—self and external.
Only self-annotations provide Ekman’s emotions. However, self-annotations are associated
with the whole video, and there is no information on how the emotions changed over time
while watching. Thus, the frontal face videos were processed by the Noldus Face Reader
software, which is software developed by Nodulus to recognize emotions from videos
of faces. It analyzes facial expressions to determine the emotional state of a person on a
recording. As a result, the emotion recognition solution returns a vector of the classified
emotions in up to six categories according to the Ekman model (happiness, sadness, fear,
disgust, anger and surprise) with the additional neutral emotion. Additionally, Face Reader
provides estimated valence and arousal. All Ekman’s emotions, neutral state, as well
as valence and arousal, have 1 s sampling rates and take values between 0 and 1 (the
only exception is valence, where the value range is <−1, 1>). Face Reader also provides
information about the detected Ekman’s emotions with the neutral state and times when
these emotions are detected.

Consistency between the recognized emotions and annotations were achieved. In the
first step, the consistency analysis between the self-annotations and Ekman’s emotions
with the neutral state predicted by Face Reader was performed. To do this, the information
from Face Reader about the detected emotions was used. Exemplary information about
the detected emotions by Face Reader for the first participant watching the 80th movie is
presented in Listing 1.
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Listing 1. Emotions recognized by Face Reader for the first participant watching the 80th movie.

Video Time Emotion
00:00:00.000 Unknown
00:00:01.083 Neutral
00:00:03.750 Unknown
00:00:07.833 Neutral
00:00:09.500 Disgusted
00:00:14.416 Neutral
00:00:16.958 Disgusted
00:00:17.541 Surprised
00:00:20.000 Neutral
00:00:29.166 Surprised
00:00:31.000 Neutral
00:00:35.958 Disgusted
00:00:36.791 Surprised
00:00:41.166 Neutral
00:01:31.625 Happy
00:01:32.875 Neutral
00:01:42.791 END

For each participant and each video, a binary matrix m1 of detected emotions was
generated with one set when the specific emotion was detected while watching the specific
video, and 0 otherwise. In Listing 1, it is seen that disgust, surprise, happiness, and the
neutral state were recognized, resulting in the m1 matrix row depicted in Table 5. This
matrix was compared with the analogical binary matrix m2 of self-annotations. The row
representing the annotated emotions corresponding to those depicted in Table 5 is presented
in Table 6 (only anger was annotated).

Table 5. Matrix row representing emotions detected by Face Reader for the first participant watching
the 80th video.

Part. Movie Neutral Disgust Happiness Surprise Anger Fear Sadness

... ... ... ... ... ... ... ... ...

1 80 1 1 1 1 0 0 0

... ... ... ... ... ... ... ... ...

Table 6. Matrix row representing annotated emotions for the first participant watching the 80th video.

Part. Movie Neutral Disgust Happiness Surprise Anger Fear Sadness

... ... ... ... ... ... ... ... ...

1 80 0 0 0 0 1 0 0

... ... ... ... ... ... ... ... ...

The consistency measure was calculated for each emotion separately and expresses
for each specific emotional state the percentage of correctly detected 1 s, i.e., the number of
1 s in the column representing the particular emotion in the m1 AND m2 (a logical AND
is performed for the values of the corresponding cells in both matrices) matrix out of all
annotated 1 s (i.e., the 1 s in the analogical column of m2). This consistency is low for all
emotions except for the neutral state. For the neutral state it is equal to 93%, for happiness
14%, for disgust and sadness 7%, for surprise 4%, for fear 3%, and for anger 2%.

Such low consistency of recognized emotions resulted in an analysis of the internal
consistency of the self-annotations being performed. This analysis checks the consistency
between the self-annotated values of valence and arousal with the self-annotated Ekman’s
emotions. In this analysis, the mappings of Ekman’s emotions to the Circumplex model are
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used. Happiness is in the HVHA quadrant; sadness in LVLA; fear, anger and disgust in
LVHA, and surprise when the valence is in the middle of the range of the values and arousal
is high, as presented in Figure 3. This rule was used for the analysis of the self-annotations
with a deviation of 10% on the plus and minus from the middle of the range for valence
when surprise is analyzed. For each annotated valence, arousal and Ekman’s emotions,
it is checked whether any of the possible Ekman’s emotions with respect to the valence
and arousal values are annotated (if yes, the annotation is treated as consistent). In Table 7,
an example of checking the internal consistency of self-annotations is presented. After
watching the nineteenth movie, the first participant annotated valence to 1 and arousal
to 6.46 (the range of values is <0, 10>). This correlates with the LVHA quadrant. In this
quadrant, there are three Ekman’s emotions: fear, anger, and disgust. The annotated
external emotions were disgust and fear. According to the rule, if at least one emotion
from those possible is annotated, the annotation is treated as consistent, and the case is
determined as consistent.

Table 7. Example showing the method of determining internal consistency of self-annotations.

Participant 1

Movie 19

Annotated Valence 1.00

Annotated Arousal 6.46

Quadrant LVHA

Possible Ekman emotions Disgust, Anger, Fear

Annotated Ekman emotions Disgust, Fear

Consistent Yes

The percentage of consistent annotations was 17.8%. These results confirm that
post-stimuli self reports can be imprecise, e.g., due to the time-varying nature of human
emotions [74–76].

In consequence, an analysis of the consistency between the external-annotations and
the recognized valence and arousal by Face Reader was performed. In AMIGOS, external
annotations are made by three experts every 20 s. Thus, for each timestamp the valence and
arousal were averaged and mapped to 1 s samples. These values were compared with those
predicted by Face Reader. The consistency of valence and arousal were analyzed separately
as well as the consistency of the obtained quadrants. If the external annotations and
estimates obtained from Face Reader for valence/arousal belonged to the same class (high
or low) then the sample was treated as consistent. The consistency for valence was 72%,
and for arousal was 78%. When the recognized and annotated quadrants were compared,
the consistency was equal to 63%. These values reflect typical accuracy for the AMIGOS
dataset [77–80] which allowed us to use Ekman’s emotions obtained from Face Reader in
the experiments.

The raw bioelectrical signals divided into one second epochs were processed to extract
DE features for each channel of EEG, ECG, and GSR from nine crossed frequency bands:
0.5–4 Hz, 2–6 Hz, 4–8 Hz, 6– 11 Hz, 8–14 Hz, 11–22 Hz, 14–31 Hz, 22–40 Hz, and 31–50 Hz.
In the case of the ECG signal, the DE features were extracted from its NN interval—the
intervals between consecutive heartbeat detections— and converted to the 128 Hz sampling
rate using cubic interpolation. The processed biosignal data were used as an input into
GraphEmotionNet in both analyses. Additionally, in the analysis of the accuracy of the
recognized quadrants in the Circumplex model, a 50% overlap was applied during the
division into epochs that were split into 2 s epochs to improve the model training. The
DE values can be highly responsive to the length of the signal and applying an overlap
makes it possible to verify different lengths of segments without reducing the sample size.
The improvement was within the experimental error and therefore was not reproduced for
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Ekman labels. Applying an overlap for the Ekman labels corresponding to 1-s-long signal
segments would additionally require the use of interpolation methods.

Figure 3. Ekman’s emotions on Circumplex model (own elaboration based on [81]).

Analysis of the Accuracy of Recognized Quadrants in the Circumplex Model

Within this analysis, GraphEmotionNet provides the probabilities of classification
to the specific quadrant. The one with the highest probability is chosen. The aim of the
analysis is to calculate the accuracy metric of this classification and compare them with
baseline methods to show the applicability of GraphEmotionNet for emotion recognition.
The two experiments were designed as depicted in Table 8. The first experiment applies the
unimodal approach and the second applies the multimodal approach. In Experiment 1, the
model takes the extracted DE features for the EEG signal. When the multimodal approach
is applied in Experiment 2, the model takes the extracted DE features for the combination
of the EEG, ECG, and GSR bioelectrical signals.

The ground truth data for these experiments, analogically as for the analysis of the
consistency between the external annotations and the recognized valence and arousal
by Face Reader, are derived from the external annotations. The values of the external
annotations were averaged (average value calculated from the annotations made by the
three experts). The average value was mapped to 1-second samples and for each sample
the quadrant in the Circumplex model was determined.

Table 8. Experiments specification for analysis of accuracy of recognized quadrant in Circumplex model.

Exp. ID Emotion Model Channels Data Network Parameters

Exp. 1
Circumplex model

EEG
Data annotated with valence and arousal Table 4

Exp. 2 EEG, ECG, GSR

4.3. Analysis of Recognized Emotion State Vectors Representing Six Basic Emotions and
Neutral State
4.3.1. Determining the Method of Measuring Correctness of Recognized Emotions

The emotion state vector is recognized by the GNN in each moment of time. Its
correctness is checked by calculating the cosine similarity for each sample. The cosine
similarity was chosen as a similarity measure taking into account both the values assigned
to the specific points as well as the direction of the resultant vector, which is especially
important when small values are recognized for the compared vectors and the Euclidean
distance may vary slightly.

Two approaches for cosine similarity analysis are applied. Firstly, the averaging of the
cosine similarity is analyzed. Secondly, the thresholds that make it possible to categorize
samples as consistent, semi-consistent, or inconsistent are determined, and then the sizes
of particular classes are further analyzed. To determine the thresholds the following steps
are performed:
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1. A set of about 100 pairs of emotion state vectors is obtained (one vector is recognized
by Face Reader and the other one is generated by GraphEmotionNet). The pairs are
chosen in such a way that for each dominant emotion (the one with the highest value
representing the probability assigned), the number of pairs is the same.

2. Five persons, not knowing the value of the cosine similarity, independently annotate
each pair using the values 0, 1, and 2 to denote the pair as non-similar, semi-similar,
and similar, respectively.

3. The class of the pair is determined based on the average value of the annotated values;
if the average value is ≥1.5, the pair is found to be consistent, if the average value is
in the range <0.5, 1.5), the sample is found to be semi-consistent, and if the average
value is <0.5, the sample is found to be inconsistent.

4. The tresholds are determined based on the distribution of values of cosine similarity
within each class and the minimum value of cosine similarity within these classes.

4.3.2. Analysis of Correctness of Recognized Emotional State Vectors

As depicted in Table 9, the four experiments (3–6) predicting the emotions in Ekman’s
model with the additional neutral emotion were designed. Two of these experiments
applied the unimodal approach (Exp. 3 and Exp. 5), and the other two applied the
multimodal approach (Exp. 4 and Exp. 6). Analogically as for the Circumplex model, in
the experiments with one modality, the model takes the extracted DE features for the
EEG signal. When the multimodal approach is applied, the model takes the extracted DE
features for the combination of EEG, ECG, and GSR bioelectrical signals.

In this analysis, the ground truth data are the emotion state vectors obtained from Face
Reader. The experiments return the probability distribution of the six Ekman’s emotions
and the neutral state. In the 5th and 6th experiments, the same model architecture, input,
and target data are used as in the 3rd and 4th experiments. However, the training of the
model is changed to use class weights that make the model eight times more sensitive to
emotions other than neutral. The reason for changing the sensitivity is the vast number of
samples in which the neutral state is a dominant emotion. The percentage of samples for
the specific dominant emotions are depicted in Figure 4.

Table 9. Specification of experiments.

Exp. ID Emotion Model Channels Data Network
Parameters

Exp. 3 Ekman model
with neutral
emotion

EEG Data annotated with
emotions obtained
from facial
expression analysis

Table 3
Exp. 4

EEG,
ECG,
GSR

Exp. 5
Ekman model
with neutral
emotion

EEG Data annotated with
emotions obtained
from facial
expression analysis

Table 3 and also
class weights that
increase sensitivity
of Ekman’s
emotions

Exp. 6

EEG,
ECG,
GSR
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Figure 4. Percentage of samples for the specific dominant emotions.

5. Experiments Results

The results of the experiments are separately described for the analysis of accuracy of
the recognized quadrants in the Circumplex model in Section 5.1 and the analysis of the
recognized emotion state vectors representing the six basic emotions and neutral state in
Section 5.3.

5.1. Analysis of the Accuracy of the Recognized Quadrants in the Circumplex Model

The results of the accuracy analysis are presented first in the form of confusion matrices
for both experiments, and second in comparison to other baseline methods. It is worth
remembering that the aim of this analysis is to prove the applicability of GraphEmotionNet
for emotion recognition in order to utilize it in the next step for the analysis of the recognized
emotion state vectors representing the six basic emotions and the neutral state.

Figures 5 and 6 show the confusion matrices for experiments 1 and 2, respectively.
As can be observed in their differences, the addition of the ECG and GSR bioelectrical
signals yielded an increase in correctly classified high-arousal classes for both low and
high valence. This is an increase of approximately 15 percentage points for the low valence
samples and 18 percentage points for the high valence samples. High arousal classes were
less often confused for low arousal classes; however, the misclassification of high arousal
samples as their corresponding opposite valence state increased slightly.

A comparison of the accuracy results for valence and arousal with baseline methods
can be found in Table 10. The works in question are: End-to-end facial and physiological
model for Affective Computing and applications’ [77], An Attribute-invariant Variational
Learning for Emotion Recognition Using Physiology [78], Using Deep Convolutional
Neural Network for Emotion Detection on a Physiological Signals Dataset (AMIGOS) [80],
and An inter-domain study for arousal recognition from physiological signals [79]. The
comparison of the graph neural network for emotions was done with these baseline models
that perform emotion classification using bioelectrical signals from the AMIGOS dataset.
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Figure 5. Confusion Matrix for Experiment 1.

Figure 6. Confusion Matrix for Experiment 2.

The presented results show accuracy similar to the other baseline method, which
allows GraphEmotionNet to be utilized in the analysis of the recognized emotion state
vectors representing the six basic emotions and neutral state.

Table 10. Comparison of accuracy found in the literature.

Method Valence Acc Arousal Acc

[77] AE 65.05% 87.53%

[78] AI-VAE 68.80% 67.00%

[79] DCNN 76.00% 75.00%

[80] AdaB - 56.00%

Our method
(unimodal) GNN 67.20% 75.88%

Our method
(multimoadl) GNN 69.71% 70.75%
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5.2. Determining the Method of Measuring Correctness of Recognized Emotions

Having a set of about 100 pairs of emotional state vectors annotated by five persons
and the average value calculated, three classes of pairs were determined. In the class
with consistent pairs (with the average value of annotations equal to 1.5), all pairs have
a similarity measure greater than 0.8. In the class with the inconsistent pairs (with an
annotation average value less than 0.5), about 40% of pairs have a similarity measure less
than 0.5. There are no other classes where such pairs exist. Neither the consistent one
nor the semi-consistent one contains pairs where the similarity measure is less than 0.5.
The semi-consistent class (with an annotation average value in the range <0.5, 1.5) has
the highest standard deviation for annotations (0.3 versus 0.19 and 0.14 for the consistent
and inconsistent classes, respectively). This shows that this class is most subjective. These
experimental premises were used to designate thresholds:

• consistent class-cosine similarity ≥ 0.8;
• semi-consistent class-cosine similarity in the range <0.5, 0.8);
• inconsistent class-cosine similarity < 0.5.

5.3. Analysis of Correctness of Recognized Emotional State Vectors

The analysis of the correctness of the recognized emotions is done using the cosine
similarity measure and determined thresholds. It is worth remembering that the analysis
does not compare the results with baseline methods as, to the best of our knowledge, DE
features have only been used to recognize emotions in Circumplex models or for three
emotions categories (positive, negative, and neutral). The presented analysis is mainly
focused on the new finding connected with Ekman’s emotion recognition based on DE
features and the GNN, which are discussed.

The results of the analysis are presented in Tables 11 and 12 for Experiments 3–6,
respectively. When the average cosine similarity is calculated for the specific emotion, those
samples are taken into account for which the dominant emotion is the same. The percent-
ages of consistent samples are depicted on density plots, in additional to Tables 11 and 12.
The density plots are prepared for a sliding window with a size 0.5 and are depicted in
Figures 7–10 for Experiments 3–6, respectively.

For Experiments 3 and 4, the average cosine similarity, as well as the percentage of
consistent samples, is very high. This results from the fact that for about 91% of samples,
the neutral emotional state is dominant. When the neutral state is dominant, the average
cosine similarity is very high (96%/97% for the unimodal/multimodal approach). For the
basic Ekman’s emotions, the average cosine similarity is the highest for fear and disgust
when the unimodal approach is applied, and for anger and surprise in the multimodal
approach. However, the average cosine similarities for fear and disgust are almost equal
to that for surprise. Using the multimodal approach results in higher values of the cosine
similarity. Adding new modalities influences the value of the average cosine similarity for
anger the most. There is quite an interesting observation that the average cosine similarity
is lowest for the happiness emotion.

Analyzing the percentage of consistent samples, it can be noticed that adding new
modalities increase these percentages for all dominant emotions. The smallest difference in
this percentage is for the fear emotion (analogically, the difference in the cosine similarity
for fear is the lowest). Even more interesting is the fact that only the fear emotion has
the highest percentage of consistent samples for the unimodal approach, which is not the
case when the ECG and GSR observation channels are also analyzed. For the multimodal
approach, the percentage is the highest for anger, but disgust and surprise also have
higher percentages of consistent samples than fear. The cosine similarity threshold of 0.5 is
exceeded by more than 80% of samples for anger, disgust, surprise, and fear in both the
unimodal and multimodal approaches.

In the case of weighted classes, comparing the average cosine similarity for one
modality used (Experiment 5) with those obtained in experiment 3, it can be noticed that
the average cosine similarity increased for happiness, anger, surprise, and sadness. It is
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lower for the two highest obtained in Experiments 3 (i.e., disgust and fear). Comparing the
average cosine similarity for the multimodal approach (Experiments 4 and 6), it is lower in
Experiment 6 for all emotions but happiness and anger. Additionally, no significant change
was observed to the cosine similarity values of the happiness, surprise, and sadness emotion
classes when comparing the unimodal and multimodal approaches in Experiments 5 and 6.
However, there was a difference in the cases of the remaining classes—anger, disgust, and
fear. As can be seen in Table 12, both anger and disgust show marginal improvement, while
the resulting cosine similarity for fear worsened. The percentage of non-consistent samples
is lower for all emotions except for fear in the multimodal approach.

Table 11. Analysis of cosine similarity for Experiments 3 and 4.

Average Cosine
Similarity

Percentage of Consistent
Samples

Percentage of Semi-
Consistent Samples

Percentage of Non-
Conistent Samples

EEG EEG, ECG, GSR EEG EEG, ECG, GSR EEG EEG, ECG, GSR EEG EEG, ECG, GSR

Happiness 0.4570 0.5499 02.13% 16.32% 45.77% 44.15% 52.09% 39.53%

Anger 0.6663 0.8246 19.49% 63.34% 64.31% 32.57% 16.21% 04.09%

Disgust 0.6950 0.7755 21.87% 50.83% 68.09% 42.41% 10.04% 06.77%

Surprise 0.6625 0.7893 05.94% 53.00% 83.33% 42.72% 10.72% 04.28%

Sadness 0.5251 0.6369 00.82% 16.49% 61.58% 62.70% 37.60% 20.81%

Fear 0.7527 0.7676 34.26% 38.68% 60.19% 59.43% 05.56% 01.89%

Neutral 0.9635 0.9707 98.07% 98.59% 01.92% 01.37% 00.01% 00.04%

All 0.9270 0.9457 89.29% 93.00% 08.12% 05.41% 02.59% 01.59%

Table 12. Analysis of cosine similarity for Experiments 5 and 6.

Average Cosine
Similarity

Percentage of Consistent
Samples

Percentage of Semi-
Consistent Samples

Percentage of Non-
Conistent Samples

EEG EEG, ECG, GSR EEG EEG, ECG, GSR EEG EEG, ECG, GSR EEG EEG, ECG, GSR

Happiness 0.6076 0.6084 22.71% 21.66% 43.54% 47.34% 33.75% 31.00%

Anger 0.8069 0.8357 59.07% 66.69% 33.78% 26.72% 07.15% 06.59%

Disgust 0.6824 0.7255 19.68% 34.70% 68.96% 55.15% 11.36% 10.16%

Surprise 0.7211 0.7207 32.67% 33.19% 57.95% 60.31% 09.38% 06.50%

Sadness 0.6147 0.6178 17.77% 18.01% 56.23% 58.60% 25.99% 23.39%

Fear 0.6158 0.5743 06.48% 08.33% 75.00% 63.89% 18.52% 27.78%

Neutral 0.9088 0.9091 90.52% 89.19% 08.68% 10.09% 00.80% 00.72%

All 0.8868 0.8880 84.53% 83.72% 13.00% 13.99% 02.47% 02.29%
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Figure 7. Density plot for Ekman’s emotions with neutral state in Experiment 3.

Figure 8. Density plot for Ekman’s emotions with neutral state in Experiment 4.

To summarize, the following observations were made:

• The cosine similarity for happiness and sadness is lower compared to the other basic
emotions—this may be explained by the fact that the recognized facial expressions
typical for sadness and happiness may have no reflection in a person’s emotions
(e.g., the person can smile but she/he does not have to feel happy); there may be no
correspondence between a person’s facial expressions and the emotions reflected in
physiological signals;

• The best recognized emotion is anger, which may be a premise to formulate the
conclusion that DE features convey much information about this emotion;

• Adding the ECG and GSR modalities in the process of emotion recognition increases
the cosine similarity for almost all basic emotions except for fear. This may be ex-
plained by the fact that the emotion of fear is better reflected in EEG biosignals than
in ECG or GSR; however, this result must be confirmed with additional research;
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• Setting the class weights to increase the sensitivity of Ekman’s emotions increases
the cosine similarity for happiness and sadness, but their cosine similarity is still the
lowest of all of the basic emotions;

• Setting the class weights to increase the sensitivity influenced the percentage of consis-
tent samples for the one modality (EEG) approach most—it increases this percentage
significantly for happiness, anger, surprise, and sadness while in the same time reduc-
ing it by almost 30% for fear.

Figure 9. Density plot for Ekman’s emotions with neutral state in Experiment 5.

Figure 10. Density plot for Ekman’s emotions with neutral state in Experiment 6.

6. Discussion

This study presents an approach based on GraphSleepNet for emotion recognition.
The GraphEmotionNet graph neural network was constructed by adapting GraphSleepNet.
The answers to the research questions made it possible to validate the presented approach.

First, to answer RQ1 (What is the accuracy of valance and arousal predicted by
GraphEmotionNet?), two experiments (1 and 2) were conducted. Within these experiments,
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the accuracies for both the unimodal and multimodal approaches were calculated. The
results show accuracy similar to other baseline methods which permits GraphEmotionNet
to be utilized for emotion recognition.

Second, to answer RQ2 (What is the correctness of the emotion state vectors for Ek-
man’s model with the neutral state predicted by GraphEmotionNet for a single moment of
time?) and RQ3 (In what way do the modalities used in GraphEmotionNet and the emotion
recognized influence the answers of RQ2?), three experiments (3–6) were conducted. Within
these experiments, the cosine similarities of the obtained vectors were analyzed. Moreover,
the thresholds allowing for the classification of samples as consistent, semi-consistent, and
non-consistent were settled and the percentages of samples classified to these classes were
calculated. Some observations were made in addition to the numerical metrics.

The study allowed us to answer the research questions RQ1, RQ2, and RQ3, and as a
main contribution to the knowledge, formulate some observations about the recognition of
the six basic emotions from the DE features. Still, the research has some limitations. The
ground truth was obtained in the process of emotion recognition from facial expressions.
This can, in some cases, be invalid as not all facial expressions must be reflected in the
physiology. However, assuming that such cases can take place, the observations are still
valuable as the accuracy of the emotion recognition from Face Reader for the AMIGOS
dataset with respect to external annotations is 72% and 78% for valence and arousal,
respectively. It is worth noting that the accuracy is calculated for the Circumplex model
and not the Ekman one. What is more, the observations are currently identified based on
the analysis of only one dataset. Taking the above into consideration, the observations must
be treated as new detections and not general rules. To prove detections and define more
general conclusions, the research should be repeated for at least two other datasets and it
would be best for the ground truth to be obtained from various annotations (both self and
external). Such an approach, however, demands a dataset to be annotated continuously in
the Ekman model, and such datasets are currently not available.

Further to the obtained observations, the study also provides some knowledge about
the similarity of emotional state vectors. It is difficult to set the thresholds unambiguously,
even by carrying out experiments, as the perception of emotions is subjective, and the
same feature influences the values of annotations describing the similarity of emotion
state vectors.

The last significant achievement of the study is the validation of the GNN network
for emotion recognition built for both the unimodal and multimodal approaches based on
DE features.

The study also opens up new possibilities for further research. There are works
planned to explore at least the following areas. It would be interesting to explore whether
adding the contextual information about the obtained physiological signals (information
characterizing their origin and meaning) can improve the correctness of GraphEmotionNet.
Another approach that could be taken into consideration is the change of extracted features
from the bioelectrical signals, using other features such as Power Spectral Density (PSD).
It would also be worthwhile to check the correctness from a different perspective, that
is, the correctness of the whole time series representing the emotional states during the
whole activity (not only in a single moment of time). To sum up, the presented research
provides some new insights, especially in the context of Ekman’s emotion recognition from
physiological signals.
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