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Abstract: In post-stroke motor rehabilitation, treatment dose description is estimated approximately.
The aim of this retrospective study was to quantify the treatment dose using robot-measured vari-
ables during robot-assisted training in patients with subacute stroke. Thirty-six patients performed
fifteen 60 min sessions (Session 1–Session 15) of planar, target-directed movements in addition to
occupational therapy over 4 (SD 2) weeks. Fugl–Meyer Assessment (FMA) was carried out pre- and
post-treatment. The actual time practiced (percentage of a 60 min session), the number of repeated
movements, and the total distance traveled were analyzed across sessions for each training modality:
assist as needed, unassisted, and against resistance. The FMA score improved post-treatment by
11 (10) points (Session 1 vs. Session 15, p < 0.001). In Session 6, all modalities pooled, the number of
repeated movements increased by 129 (252) (vs. Session 1, p = 0.043), the total distance traveled in-
creased by 1743 (3345) cm (vs. Session 1, p = 0.045), and the actual time practiced remained unchanged.
In Session 15, the actual time practiced showed changes only in the assist-as-needed modality:
−13 (23) % (vs. Session 1, p = 0.013). This description of changes in quantitative-practice-related
variables when using different robotic training modalities provides comprehensive information
related to the treatment dose in rehabilitation. The treatment dose intensity may be enhanced by
increasing both the number of movements and the motor difficulty of performing each movement.

Keywords: hemiparesis; robotics; upper extremity; intensity; neurorehabilitation

1. Introduction

Upper limb paresis is the most frequent sequel of a stroke and has a major functional
impact on autonomy and quality of life [1]. Up to 70% of the patients do not recover upper
limb function 6 months after a stroke [2–5]. Improvement of upper limb function is thus a
crucial issue for both clinicians and patients.

Knowledge of neuroplasticity [6,7] and the fact that motor learning may be preserved
after a stroke [6,8–12] led to a real change in the delivery of neurological rehabilitation.
Movement repetition [13–15] and intensity [16–18], along with the level of effectiveness of
the rehabilitation technique or program [19], are essential to driving motor learning.

The definition of a treatment dose in the field of rehabilitation has been widely debated
in recent years but has not yet been resolved [20–23]. In pharmacology, the active compo-
nents and metabolism of medications are known. Therefore, dose modulation is simple [23].
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Repetition and intensity have been clearly identified as relating to the rehabilitation dose,
but their description and quantification remain limited [24]. In the field of rehabilitation,
a new framework was recently proposed by Hayward et al. to establish a standardized
approach to the definition of a treatment dose by providing a description of the different
dimensions of a dose for non-pharmacological interventions [25]. This enriched framework
was designed to collect information from both the peripheral dimensions of a dose (treat-
ment period) and the internal dimensions (task duration, task difficulty, and task intensity).
However, collecting such data, particularly for the internal dimension of a dose, is time
consuming and thus could increase costs.

Technological systems designed for rehabilitation, such as robotic devices and virtual
reality systems, fulfil the criteria required for motor learning [26]. However, the evidence
supporting their use for improving upper limb function is weak. Large meta-analyses
of trials performed since the 1990s have shown that robotic devices can reduce motor
impairment in both the subacute and chronic phase of a stroke. However, the impact on
upper limb function is less obvious [27–29]. The recent RATULS trial included 770 patients
and compared rehabilitation with a robotic device, conventional rehabilitation (occupational
therapy and physiotherapy), and enhanced upper limb therapy [30]. Enhanced upper limb
therapy resulted in significant improvements in upper limb function, while robot training
did not. However, in the robot group, impairment reduced in the muscle groups that were
trained by the robot and this improvement was maintained over time [30]. The conclusions
of this trial are, therefore, not entirely negative; however, the challenge remains to translate
the reduction in impairment into improvements in function [31].

One advantage of robotic devices is that they can easily, objectively, and automatically
record variables that are difficult to measure in clinical practice, such as the duration of
active participation and the number of repetitions [32]. The disadvantage is that the level of
motor difficulty achieved during the sessions is missing. Motor difficulty can be modulated
using the different training modalities available in the robotic system. These data can
provide an objective indication of the motor difficulty of a task; in conventional therapy,
the measurement of task difficulty is usually limited to the subjective impression of the
patient and the therapist.

The aim of this retrospective study was to establish a comprehensive description of the
internal dimension of the dose related to upper limb robot-assisted therapy (RT) in a sample
of patients with hemiparesis in the subacute phase of a stroke. To accurately characterize the
administered treatment dose with the robotic device, changes across robotic sessions were
analyzed using three quantitative parameters: the actual time patients spent in practice
(actual practice time), the number of repeated movements performed, and the total distance
traveled by the hand. Difficulty in performing motor tasks with the robotic device was
quantified, using these parameters, depending on the physical training modalities offered
by the robot.

2. Materials and Methods
2.1. Participants

This retrospective study included data from inpatients in the subacute phase of a
stroke who were undergoing rehabilitation in the rehabilitation department of the Centre
de Réadaptation Fonctionnelle (CRF) Les Trois Soleils (Boissise-le-Roi, France) between
2009 and 2019. The study was performed in accordance with current French legislation
(reference N◦004 (MR004)) and was granted approval by our internal ethics committee
in line with the Data Protection Act [33]. It was registered on the Health Data Hub
(N◦ F20211012141808).

Patients were included if: (1) they were aged over 18 years and not under legal
protection; (2) they had hemiparesis following a single, unilateral, ischemic, or hemorrhagic
stroke; (3) they had completed 19 ± 4 sessions of upper limb robotic rehabilitation with the
InMotion Arm® (Watertown, MA, USA) between 4 and 23 weeks post-stroke (i.e., subacute
phase); (4) they had undergone Fugl–Meyer Assessment and robot-based evaluation (point-
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to-point) performed ±6 days before and after the intervention; (6) they had spent less than
30% of RT session time on games (non-therapeutic exercises); and (7) their therapist had
complete rehabilitation notes documented for RT.

Patients were not included if: (1) they had been administered anti-spasticity medica-
tion during or before the RT period and (2) they had used another technological rehabilita-
tion device before or during the RT period.

Data from 393 eligible patients who had participated in RT between 2009 and 2019 were
screened; 36 patients meeting the inclusion criteria were included (Figure 1); the mean (SD)
age was 59 (16) years, the mean time since the stroke at program initiation was 54 (26) days,
the mean duration of the RT intervention was 31 (11) days, and the mean initial FMA score
was 23 (17) points (Table 1).
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Figure 1. Flow diagram of the criteria for patient inclusion.

Table 1. Baseline characteristics of participants.

Participants (n) 36
Age (years) 59(16)
Female (n) 15

Side of paresis (n) R (19), L (17)
Etiology (n) I (25), H (11)

Time since the stroke at program initiation (days) 54 (26)
Duration of the program (days) 31 (11)

Initial FMA score (/66 pts) 23 (17)
Results are expressed as the mean (SD). R, right; L, left; I, ischemia; H, hemorrhage; FMA, Fugl–Meyer Assessment.
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2.2. Robotic System

The InMotion Arm® robot (InMotion 2, Interactive Motion Technologies, Inc., Water-
town, MA, USA) is a 2 degrees of freedom planar distal-effector-type manipulator that
trains shoulder and elbow movement in the horizontal plane; an impedance controller is
incorporated in the device, and it has low intrinsic inertia. Sensors continuously record the
kinematic and kinetic parameters of the hand movements performed by the patient during
the session (position, force, and time). These data are used to provide visual feedback
of performance and can also be used to analyze variables of interest. The robotic device
is equipped with a comfortable chair that is mounted on rails to allow adjustment. The
distance between the screen and the patient and the height of the seat are also adjustable.
A thoracic harness prevents compensatory trunk movements. The patient’s forearm rests
in a trough in which the wrist is held in a neutral position. The fingers are flexed around a
vertical handle (end-effector) and are held in place by straps if necessary. Ten minutes of
the 60 min session is spent setting up, providing instructions, and removing the patient
from the device.

2.3. Interventions

The upper limb rehabilitation program involved 60 min/day of RT using the InMotion
Arm® device and 60 min/day of conventional occupational therapy, five times per week, for
4 weeks. Conventional occupational therapy sessions included mobilization and stretching
of the paretic upper limb to improve or maintain a joint range of motion, individual joint
and whole upper limb exercises, fine motor control and grasping, exercises to improve
sensation, and functional and fun exercises involving both motor and cognitive functions.
RT sessions were divided into three phases:

- A warm-up phase involving games (phase 1);
- A training phase based on exercises (phase 2);
- A relaxation phase involving games (phase 3).

The user interfaces for games and exercises are displayed in Figure 2. The exercises
(Phase 2) are a greater practice time than the games. The display for the exercises is
composed of 8 targets distributed around a 14 cm radius circle, and the starting position
is in the center. The therapist sets the number of movement repetitions and distance to
be covered to reach the target (3/5/10/14 cm in all directions; Figure 2). The training
modality affects the patient’s motor skills by increasing the difficulty level for performing
the exercise. There are three:

- Assist-as-needed modality: The patient has to reach the target with assistance tailored
into the performance;

- Unassisted modality: The patient has to reach the target without any assistance;
- Against resistance: The patient has to reach the target against a resistance.
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The therapist thus chooses the training modality that ensures that the exercises are
always challenging. The progression of the difficulty is, therefore, from the assist-as-needed
modality to unassisted and then against resistance. The level of therapist control over the
games is lower, and fewer data are recorded. Therefore, the intensity of the games cannot
be accurately determined.

2.4. Clinical Evaluation Procedure Pre- and Post-Intervention

Upper limb impairment was evaluated before and after the intervention. Impairment
was evaluated using the upper limb section of the Fugl–Meyer Assessment (FMA). This
tool is reliable and sensitive to change and has been validated for use in spastic paresis in
the subacute phase of a stroke [34–36]. The upper limb section is scored out of 66 points,
and higher scores indicate lower levels of impairment.

2.5. Data Collected during Interventions

Only data from RT sessions were collected as data from occupational therapy were
not available. For each game (Phases 1 and 3), only the actual practice time (normalized to
a session length of 60 min) was collected, the level of therapist control over the games was
lower, and fewer data were recorded. The actual practice time in games and in exercises
represented the time during which patients were active; the remaining time represented
inactive time. During Phase 2, for each RT session, several exercises were performed with
various training modalities. Thus, for each exercise, the following data were collected:

- The number of movements performed by the patient in each training modality used
(assist as needed, unassisted, or against resistance);

- The actual practice time in each training modality used (assist as needed, unassisted,
or against resistance (in min);

- The distance to be covered to reach the target used (defined by the therapist before
each exercise).

Then, the total distance traveled parameter (in cm) was calculated for each RT session
as the sum of the product of the distance to be covered to reach the target used and the
number of movements performed for each exercise.

Based on these data, three robot-based variables were analyzed per RT session:

- The mean number of repeated movements in each training modality used;
- The mean actual practice time in each training modality used (in percentage; normal-

ized to a session length of 60 min);
- The mean total distance traveled in each training modality used (in cm).

2.6. Statistical Analysis

Student’s t-test was used to analyze the effects of the intervention on the FMA score.
Repeated measures analysis of variance (ANOVA) was used to analyze change across
the sessions for three robot-based variables (mean number of repeated movements, mean
actual practice time, and mean total distance traveled). Session (Session 1–Session 15) *
modality (assist as needed, unassisted, or against resistance) interactions were analyzed
based on these variables using the two-factor ANOVA. A Bonferroni correction was applied
for multiple comparisons. Significance was set to p < 0.05, and SPSS 17.0 was used for
all analyses.

3. Results
3.1. Clinical Outcomes Pre- and Post-Intervention

Changes in the FMA score and sub-scores are summarized in Table 2. From pre- to
post-intervention, the FMA score improved by a mean 11.2 (SD 9.6) points (+17%, p < 0.001).
Shoulder/elbow, wrist, hand, and coordination velocity sub-scores also increased: +6.3 points
(+18%, p < 0.001); +1.7 points (+17%, p < 0.001); +2.6 points (+19%, p < 0.001), and +0.5 points
(+9%, p = 0.013), respectively.
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Table 2. Clinical outcome.

Fugl–Meyer Pre-Intervention Post-Intervention Gain p-Value

Overall (66 points) 23.1 (16.8) 34.3 (18.9) 11.2 (9.6) <0.001
Shoulder/elbow (36 points) 14.6 (8.8) 20.9 (9.4) 6.3 (5.4) <0.001

Wrist (10 points) 2.5 (3.4) 4.2 (3.8) 1.7 (2.1) <0.001
Hand (14 points) 4.3 (4.5) 6.9 (5.2) 2.6 (3.3) <0.001

Coordination velocity (6 points) 1.8 (1.6) 2.3 (1.8) 0.5 (1.2) 0.013
Results expressed as the mean (SD). In the first column, the total score and sub-scores are indicated with each
corresponding maximal possible score in parentheses. Pre vs. Post: p < 0.05.

3.2. Practice Time during Robot-Assisted Therapy Session

Results are summarized in Figure 3. With all sessions pooled, patients produced active
movements for a mean 57 (14) % of each 60 min session, 6 (7) % of which involved games
and 51 (14) % exercises.
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3.3. Outcomes with All Robotic Training Modalities Pooled

Results are summarized in Table 3. From Session 1 to Session 15, changes were
observed in the mean number of repeated movements (main effect, p < 0.001; Session 1 vs.
Session 15, +46%, p = 0.008) and the mean total distance traveled (main effect, p < 0.001;
Session 1 vs. Session 15, +140%, p < 0.001) but not in the mean actual practice time (main
effect, ns). Changes occurred from the 6th session for the mean number of repeated
movements (+38%, p = 0.043) and the mean total distance traveled (+100%, p = 0.045;
multiple comparisons, Table 3).

3.4. Outcomes for Each Robotic Training Modality

The results are summarized in Figure 4. From Session 1 to Session 15, changes in the
mean actual practice time (main effect, p < 0.001), the mean number of repeated movements
(main effect, p ≤ 0.001), and the mean total distance traveled (main effect, p = 0.004) de-
pended on the training modalities. Only the mean actual practice time changed significantly
in the assist-as-needed modality: it decreased by 26% in Session 15 (vs. Session 1, p = 0.013),
by 26% in Session 15 (vs. Session 2, p < 0.001), by 22% in Session 14 (vs. Session 2, p = 0.035),
and by 26% in Session 12 (vs. Session 2, p = 0.005).
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Table 3. Robot-based variables (all training modalities pooled) over 15 sessions of RT.

Mean Actual Practice
Time (%)

Mean Number of
Repeated Movements

Mean Total Traveled
Distance (cm)

Main effect p-value ns <0.001 <0.001
Session 1 47 (16) 624 (308) 6766 (4510)
Session 2 50 (14) 674 (264) 7294 (4437)
Session 3 49 (15) 676 (321) 7476 (4975)
Session 4 47 (14) 694 (282) 7422 (4436)
Session 5 46 (12) 725 (258) 7887 (4211)
Session 6 50 (13) 754 (318) a 8508 (4775) a

Session 7 50 (14) 772 (322) a 9007 (5045) a

Session 8 49 (13) 771 (336) a 8991 (5131) a

Session 9 51 (16) 797 (360) a,b,c 9338 (5555) a,b,c,d

Session 10 51 (15) 777 (362) a 9403 (5494) a,b,c,d

Session 11 51 (15) 805 (389) a 9955 (5818) a,b,c,d,e

Session 12 50 (14) 754 (342) 9096 (4941) a

Session 13 52 (12) 806 (391) a 10104 (5677) a,b,c,d,e

Session 14 50 (13) 796 (364) a,b,c 9999 (5123) a,b,c,d,e

Session 15 46 (13) 764 (373) a 9593 (5141) a,b,c,d

Session 1–Session 15 changes −1 (20) 140 (381) 2828 (4943)

Results are expressed as the mean (SD). a vs. Session 1: p < 0.05; b vs. Session 2: p < 0.05; c vs. Session 3: p < 0.05;
d vs. Session 4: p < 0.05; e vs. Session 5: p < 0.05.
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are expressed as the mean (SEM). Parentheses and *, significance of the difference in the evolution
between the three training modalities from Session 1 to Session 15; *, significance of the difference in
the evolution between sessions (multiple comparisons).

4. Discussion

The aim of this retrospective study was to quantify the treatment dose during upper
limb RT sessions using the data recorded by the rehabilitation robot. The measurement of a
large amount of continuous activity data by a rehabilitation robot allowed the objective
quantification of the internal dimension of the treatment dose administered; otherwise,
this dimension is usually low in accessibility. The results showed that training, associating
RT and occupational therapy, was characterized on the robot by a decrease in the time
spent using the assist-as-needed modality and by an increase in both the mean number of
repeated movements and the mean total distance traveled during the training time for all
modalities pooled. In addition, the reduction in motor impairment, as measured by the
FMA, was observed after 15 sessions of each therapy.

4.1. Measurement of Dimensions of Dose Using a Robotic Device?

This work shows the advantages of using technology to automatically record all data
during exercise in robot-mediated therapy (input) and to measure changes in performance
across sessions (output). The recent recommendations for the development of standardized
studies in rehabilitation highlight the importance of providing a systematic, exhaustive
description of the content of rehabilitation sessions, which also indicates the dose of the
treatment administered [25]. This framework, which is validated by international experts,
defines the multiple dimensions of the intervention dose. The variables measured by the
robotic device in this study provide an instantaneous and simultaneous representation
of the three characteristics of training, the internal dimensions: duration (mean actual
practice time), difficulty (physical modality used), and intensity (mean number of repeated
movements). The time spent actively training and the number of movements performed in
each modality provide an objective description of one aspect of difficulty. In our opinion,
the mean total distance traveled, which is not considered in the framework proposed, is
an important variable that is specific to the pointing task performed during the RT. The
distance between the starting point and the center of the target is one of the components
of Fitts’ law. Altering target size and distance would provide another means of changing
task difficulty [37–39]. However, the robotic system used in this study does not currently
permit modulation of target size or distance. This could be considered by manufacturers to
provide another means to modulate the difficulty of the exercise. To date, there is a random
mode on the direction of the targets to be reached but always with the same distance and
the same target size. Still in connection with the law of Fitts, it would be relevant to be able
to influence the parameters of the distance to the target and the size of the target to make
them vary randomly. This could further enhance motor learning by increasing contextual
interference [40,41].

The description of the internal dimension of the intervention dose in this study is based
on three parameters according to the training modality used: the mean actual practice time,
the mean number of repeated movements, and the mean total distance traveled. The mean
actual practice time is accurately recorded by the robotic system. However, the count of
the number of movements is not entirely accurate. Only movements in which the target is
reached are counted. Therefore, the mean number of repeated movements in the unassisted
and against-resistance modalities may be underestimated if the patient does not reach the
target in each attempt. This may explain the similar visual appearance of the curves for
the mean number of repeated movements and the mean total distance traveled over time
in Figure 3. Nevertheless, the patients performed on average more than 600 movements
per session during RT. This number is comparable to that achieved by the patients who
underwent the most intensive RT program in the study by Hsieh et al. (2012) [42].
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4.2. A New Paradigm for a Combined and Progressive Approach to the Use of the Training Modalities?

Over the course of the rehabilitation program (with all modalities pooled), the mean
number of repeated movements and the mean total distance traveled increased significantly,
while the mean actual practice time remained constant. The mean actual practice time
decreased only in the assist-as-needed modality. The patients thus covered an increasingly
greater distance (number of movements multiplied by the distance to reach the target)
while progressively using less robot assistance. The treatment intensity was thus increased
by combining the quantitative (number of movements) and qualitative (motor difficulty of
performing each of these movements) aspects of training. The paradigm applied, there-
fore, focused on the difficulty and intensity of movement performance, in contrast to
traditional techniques, such as facilitation and neuromotor reprograming methods. A
meta-analysis confirmed that repetitive task training has positive immediate and long-term
(up to 6 months post-stroke) effects on upper and lower limb function [43].

The mean number of repeated movements and the mean total distance traveled
changed over the course of the program, although not significantly: the mean number of
repeated movements and the mean total distance traveled decreased in the assist-as-needed
modality, while they increased progressively in the unassisted and against-resistance modal-
ities. This demonstrates the importance of increasing the motor difficulty of the exercises
by advancing the training modality. Although there is currently no consensus for the
optimal use of training modalities to increase the difficulty of the exercises as the patient
progresses [44], the use of the assist-as-needed modality alone is not recommended [31]:
over-assisting movement during rehabilitation could have a deleterious effect on patient
progress. Indeed, assistance could minimize the patient’s effort and reduce cortical activa-
tion [45]. It is important to administer unassisted exercises to ensure a sufficient level of
motor difficulty [46]; the ultimate progression is the addition of resistance to the patient’s
movement. Active voluntary movement is crucial for the recruitment of brain areas and
to induce neuroplasticity by motor learning [47]. Most studies of robotic rehabilitation
use only one control modality, often the assist-as-needed modality, except for the study
by Stein et al. (2004), which combined the use of the assistance-as-needed modality with
the counter-resistance modality [48]. To date, no studies have evaluated the impact of
combining different modalities to increase the motor difficulty as the patient’s performance
improves. It is beyond the scope of the present study to discuss the value of such an
approach since the number of patients in each sub-group is small.

4.3. Optimizing Session Productivity?

The mean actual practice time of RT (exercises and games) per session in the present
study was 34 ± 8 min of the 60 min session. There was, thus, an average loss of 43% of
session time. Although the practice time (57%) was satisfactory compared to the percentage
of active time reported in a literature review for conventional therapy sessions (between
2% and 10% in physiotherapy and between 23% and 70% in occupational therapy) [24], the
percentage of lost time was far greater than that reported in a previous study that did not
involve a robotic device (between 21% and 30% of an hour session, [49]). Even if the set-up
time is not counted (−10 min), the proportion of lost time was high (32%).

RT should be provided in addition to conventional therapy: substituting conven-
tional rehabilitation with RT does not improve outcomes more than conventional therapy
alone [50]. The fact that a large proportion of session time is lost should, therefore, not
call into question the concept of a combined program, but it is necessary to understand
how to optimize rehabilitation time by using a robotic device. Providing additional daily
rehabilitation time is one way to increase rehabilitation intensity. However, it is likely that
60 min of intensive rehabilitation with a robotic device is too long for patients. Although it
has been shown in the literature that this type of intensive therapy is well tolerated [51–53],
the mean actual practice time is rarely calculated.

In the present study, the lost time could be the rest time that is necessary to recover
from the effort of each exercise. Future studies should attempt to characterize lost time
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as well as evaluate the influence of rest time during sessions on training with high motor
difficulty. By shortening the session time, the lost time may be reduced without reducing
the mean actual practice time. Adjusting the duration of RT sessions could, therefore,
impact motor outcomes: controlling session duration as well as resting time would help to
better control the dose delivered to patients.

4.4. What Are the Clinical Benefits of Combining RT with Conventional Upper Limb Therapy?

At the end of the combined upper limb rehabilitation program involving occupa-
tional therapy and RT, all sub-scores on the FMA had improved and the total FMA score
(+11 points) exceeded the minimal clinically important difference [54]. Although a compar-
ison with previous studies must be performed cautiously due to different demographics
(discussed in the limitations section), the magnitude of recovery exceeded that expected for
spontaneous recovery. The improvements in the FMA score are close to those reported after
other intense rehabilitation programs involving the same robotic system [55,56]. The signif-
icant improvement in all the FMA sub-scores shows that the improvement was not limited
to the joints that were principally trained by the robot. This is likely, at least partly, owing
to the inclusion of conventional occupational therapy in the program. The repetitive and
difficult training of shoulder and elbow joint movement by the robot was complemented by
functional practice in conventional occupational therapy sessions, which included reaching
and grasping tasks, as recommended by many studies, including the recent large RATULS
study [57–60]. The results of the present study are, therefore, consistent with the literature
and highlight the value of combining intense training of shoulder and elbow movements
using a robotic device with functional training including the hand in occupational ther-
apy. Such a “bottom-up” approach should enable improvements in motor function to be
translated into increases in functional capacity [61].

4.5. Limitations

Methodologically, this work is a retrospective study, which could impact the outcomes
observed. The demographic characteristics of our sample differ from those of studies
that have reported motor recovery profiles following a stroke [2,4,62,63], and the mean
age of the sample (n = 36; 59 ± 16 years) was lower than the mean age at stroke on-
set in France in 2014 [64]. The patients were also younger than those in the studies by
Duncan et al. (2000) [5] (mean age 70 years) and Wade et al. (1983) [2] (mean age 67 years).
This is important because the aging process has a negative impact on motor learning
capacity [65]. Furthermore, the combined rehabilitation program was performed during
the subacute phase of the stroke, a period during which the mechanisms of spontaneous
plasticity are still actively at work. The improvement in impairment may therefore be, at
least partly, the result of lesion-induced plasticity. Although the FMA is strongly related
to a functional scale [66] (modified Frenchay Activities Index [67]), we did not evaluate
function. It is essential that future studies include evaluations that cover all the domains
of the International Classification of Function. This work presents a rare description of
accurate data regarding the treatment actually administered to patients enrolled in the
combined program. This in-depth exploration constitutes a first step in understanding the
relationship between treatment dose and the effects on motor capacity.

5. Conclusions

This study highlights the unparalleled value of rehabilitation robots for describing
as comprehensively as possible the dose of physical treatment administered to patients
during rehabilitation sessions using a robotic device. This work tries to approach as well as
possible the different dimensions of the dose delivered by a non-pharmacological treatment.
It shows the significance of the standardized use of control modalities. To maintain a
sufficient level of difficulty of the rehabilitation motor exercises as the patient progresses, it
is possible to combine these modalities. Objectively, intensification is achieved through an
increase in the mean number of repeated movements and the mean total distance traveled
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in all modalities and through a decrease in the mean actual practice time in the assist-as-
needed modality. In coherence with the literature, this work shows again the significance
of robotic devices used as adjuvant treatment to intensify and densify the management of
patients in the subacute phase following a stroke.
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