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Abstract: The timely detection of seizure activity in the case of newborns can help save lives. Clinical
signs of seizures in newborns are difficult to observe, so, in this study, we propose an automated
method of detecting seizures in newborns using multi-channel electroencephalogram (EEG) recording
acquired from 36 newborns admitted to Royal Women’s Hospital, Brisbane, Australia. A novel set of
time-frequency marginal features are defined to detect seizure activity in newborns. The proposed
set is based on the observation that EEG seizure signals appear either as a train of spikes or as
a summation of frequency-modulated chirps with slow variation in the instantaneous frequency
curve. The proposed set of features is obtained by extracting the time-frequency (TF) signature of
seizure spikes and frequency-modulated chirps by exploiting the direction of ridges in the TF plane.
Based on extracted TF signature of spikes, the modified time-marginal is computed whereas based
on the extracted TF signature of frequency-modulated chirps, the modified frequency-marginal is
computed. It is demonstrated that features extracted from the modified time-domain marginal and
frequency-domain marginal in combination with TF statistical and frequency-related features lead to
better accuracy than the existing TF signal classification method, i.e., the proposed method achieves
an F1 score of 70.93% which is 5% greater than the existing method.

Keywords: time frequency; EEG; newborns; seizure; classification; detection

1. Introduction

Timely detection of seizures in newborns can help to save lives [1]. Clinical signs of
seizures in newborns are difficult to observe, so, in this study, we propose an automated
method of detecting seizures in newborns using multi-channel electroencephalogram (EEG)
recording. Seizure detection usually requires monitoring of electroencephalogram (EEG)
signals by an expert neurophysiologist. So, there is a need to develop an automated seizure
detection algorithm. Machine learning based seizure detection algorithms usually involve
the extraction of features from signal representation followed by training of a classifier
signal [2,3]. The performance of such methods mainly depends on the discriminatory
performance of extracted features. For feature extraction, the following forms of signal
representations can be used: (a) time-domain, (b) frequency-domain, and (c) joint time-
frequency (TF) domain [4–8]. It has been demonstrated in earlier studies that extracting
features from TF features generally leads to better performance than time-domain features
or frequency domain features [9,10]. One alternative to extracting features from joint TF
representations is to first employ signal decomposition methods such as empirical mode
decomposition to decompose signals into their components and then extract features from
each component separately [1,11,12].

Recently, deep learning methods are employed for the automated detection of seizures.
These methods do not require domain knowledge of an analyst to define features; rather,
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deep learning architectures automatically learn features from signal representation [13–18].
However, these methods usually require the availability of large databases.

We propose a novel approach to extracting features from joint TF representation. The
proposed method is based on the observation that seizures either appear as a train of
spikes or a summation of piece-wise linear frequency modulated chirps with slow variation
in instantaneous frequency [6]. The TF signature of such signals is composed of ridges
that are either aligned to the time axis or to the frequency axis [19,20]. The mathematical
representation for a class of seizures that are modeled as a train of impulses is given as:

x(t) =
N

∑
n=1

δ(t− tn) (1)

and the mathematical modulation of EEG seizures modeled as a summation of frequency-
modulated chirps is given as:

x(t) =
N

∑
n=1

cos(2π f0(t)tn) (2)

where fo(t) is the instantaneous frequency of fundamental component. It is usually mod-
eled as a piece-wise linear frequency modulated chirp [8]. To exploit this information, we
extract features (a) from the modified time-marginal that extracts the time-domain signature
of only spikes, (b) the modified frequency-marginal that extracts frequency-domain signa-
tures of frequency-modulated chirps, and (c) from filtered TF representation that extracts
the TF signature of seizure signals. Experimental results indicate that the proposed method
achieves better performance than a state of the art in terms of F1-score. The proposed
method achieves an F1-score of 0.709 whereas the F1-score of the existing method is 0.65.

The organization of the remainder of the article is as follows. Section 2 presents
details of the methodology for extracting the proposed features for seizure detection. To
assess the performance of the seizure detection scheme, numerical results are presented in
Sections 3 and 4 concludes the article.

2. Methodology

Multi-channel EEG signals are acquired and signals from all channels are averaged
to get the signal x(t). The remaining process is performed on the averaged signal. The
proposed system is illustrated in Figure 1 and the main steps are explained in the follow-
ing sections.

Figure 1. Illustration of the proposed system for detection of seizures in newborn EEG signals.
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2.1. Time-Frequency Analysis of EEG Signals

EEG signals, because of their non-stationary characteristics, are best analyzed in the
joint TF domain using TF representations. Previous studies have shown that analyzing
seizure signals in the joint TF domain reveals important features that can be used for their
classification [21,22]. TF representations are generally classified into linear and quadratic
classes [23]. We have employed quadratic TF representations because they represent the
distribution of signal energy in the TF domain [23].

Wigner Ville distribution (WVD) is a core TF distribution of quadratic class de-
fined as [24]:

W(t, f ) =
∫

z(t +
τ

2
)z∗(t− τ

2
)e−j2π f τdτ (3)

where z(t) is the analytic associate of a real-life signal x(t). The WVD has high energy
concentration for mono-component linear frequency modulated signals but it produces
cross-terms for multi-component and non-linear frequency modulated signals [23]. The
cross-terms in the WVD are typically reduced by convolving them with signal-dependent
or independent kernels [25].

In our earlier studies, we demonstrated that an effective method to reduce cross-
terms in WVD is through the application of signal-dependent adaptive directional kernel
whose principal direction is adjusted at each TF point. TFDs obtained as a result of
adaptive directional smoothing are called adaptive directional time-frequency distributions
(ADTFDs) [26].

ρ(t, f ) = W(t, f ) ∗
t
∗
f

γθ(t, f ), (4)

where γθ(t, f ) is given as:

γθ(t, f ) =
ab
2π

e−a2t2
θ−b2 f 2

θ (1− a2k2
θ) (5)

where tθ = t cos(θ) + f sin(θ) and fθ = f cos(θ)− t sin(θ), θ is the direction of γθ(t, f ), a
determines the extent of smoothing along the major axis, and parameter b determines the
extent. We adjust the direction of γθ(t, f ) at each TF point to align its principal direction
with the major axis of ridges. The direction of principal axis of ridges is estimated as [26]:

θ(t, f ) = arg max
θ

∣∣∣∣|ρ(t, f )| ∗
f
∗
f

γθ(t, f )
∣∣∣∣, (6)

where θ is varied from 0◦ degree to 180◦ degree with the step size of 3◦.
EEG seizure signals are modeled as either train of impulses or as the sum of har-

monically related frequency modulated chirps, whereas background appears as noise.
To enhance discriminatory characteristics of seizures, EEG signals are first pre-processed
through differentiator filter [27] as: d

dt x(t). This differentiation implementation can be
implemented digitally as x(n)− x(n− 1). Let us analyze two types of EEG seizure signals
and EEG background signals in the joint TF domain using the ADTFD. Figure 2a illustrates
a TF representation of EEG seizure signal with spiky characteristics, Figure 2b illustrates TF
representation of seizure signal composed of frequency-modulated chirps, and Figure 2c
illustrates TF representation of non-seizure signal.

It is observed that the TF signature of EEG seizures is composed of ridges that are
either aligned to the time axis due to spikes or aligned to the frequency axis due to
frequency-modulated chirps. However, in the case of background ridges, they can follow
any random direction.
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(a)

(b)

(c)

Figure 2. (a) EEG seizure composed of frequency modulated chirps, (b) EEG seizure composed of
spike, (c) EEG background.

2.2. Modified Time-Marginal and Frequency-Marginal Features

In this study, we develop a novel approach to compute modified time-marginal and
modified frequency marginal for extracting features from EEG signals. From TFDs, that
satisfy marginal properties, time-marginal can be estimated from TFD as [23]:

|z(t)|2 =
∫

ρ(t, f )d f (7)

or similarly, frequency-marginal can be estimated as:

|z( f )|2 =
∫

ρ(t, f )dt (8)

We define modified marginals to extract the time-domain signature of epileptic spikes
or frequency-domain signatures of frequency-modulated chirps.
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2.2.1. Time Marginal Feature

Let us define a TF distribution, i.e., (ρt(t, f )), that preserves only those ridges that are
aligned to the frequency axis and has 0 value for all other TF points [28].

ρt(t, f ) =ρ(t, f ) 80◦ < θ(t, f ) < 100◦

ρt(t, f ) =0 otherwise

The time-domain signature of spikes can then be extracted from ρt(t, f ):

s(t) =
∫

ρt(t, f )d f , (9)

Let us consider a TF signature of EEG seizure signal with spiky characteristics as
shown in Figure 3a. The TF signature of spikes is extracted by ρt(t, f ) as shown in Figure 3b.
The time-domain marginals obtained from ρ(t, f ) and ρt(t, f ) are illustrated in Figure 3c.
Note that time-marginal obtained from ρ(t, f ) contains energy from both spike and tone
components whereas the time-marginal obtained from ρt(t, f ) only has energy from spikes.

(a)

(b)

Figure 3. Cont.



Sensors 2022, 22, 3036 6 of 15

(c)

Figure 3. (a) ρ(t, f ) of EEG seizure composed of tone and spike, (b) ρt(t, f ) of the EEG seizure signal,
(c) time-domain marginal.

Note that s(t) only contains spike components. We estimate the features from time-
domain marginal of s(t) by dividing them into 4 non-overlapping equal segments and then
estimating energy in each segment as:

Tk =
∫ 2(k+1)

2k
s(t)dt, (10)

where k = 0, 1, 2, 3.

2.2.2. Frequency Marginal Feature

We adopt a similar approach to extract modified frequency-marginal. Let us define a
TF representation that preserves ridges aligned with time-axis

ρ f (t, f ) =ρ(t, f ) θ(t, f ) < 10◦ or θ(t, f ) > 170◦

ρ f (t, f ) =0 otherwise

We extract the frequency-domain marginal as:

s( f ) =
∫

ρ f (t, f )dt (11)

We define features from modified frequency-domain marginal, i.e., s( f ), by estimating
energy from the sub-bands (0 Hz to 1 Hz), (1 Hz to 2 Hz), (2 Hz to 3 Hz), (3 Hz to 4 Hz),
(4 Hz to 8 Hz), and (8 Hz to 16 Hz). The modified frequency marginal features are given
in Table 1.

Table 1. Modified frequency marginal features.

S. No Formula

1 F1 =
∫ 1

0 s( f )df

2 F2 =
∫ 2

1 s( f )df

3 F3 =
∫ 3

2 s( f )df

4 F4 =
∫ 4

3 s( f )df

5 F5 =
∫ 8

4 s( f )df

6 F6 =
∫ 16

8 s( f )df
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2.3. Time-Frequency Statistical and Time-Frequency Signal Features

Let us define the TFD that preserves ridges that are either aligned to the time axis or
the ridges that are aligned along the frequency axis [20], i.e.,

ρFIL(t, f ) = ρt(t, f ) + ρ f (t, f ). (12)

Figure 4 illustrates ρFIL(t, f ) and ρ(t, f ) for both background and seizure signals. It
is observed that for seizure signals ρFIL(t, f ) ≈ ρ(t, f ). However, for EEG background,
ρFIL(t, f ) is significantly different from ρ(t, f ).

Based on this observation, we employ ρFIL(t, f ) instead of ρ(t, f ) for extracting TF
statistical [9] and TF signal [9] related features. The list of features along with their re-
spective formula are given in Table 2. The importance of each feature in the process of
classification is found based on the decrease in accuracy when that feature is removed from
the classification. The findings are presented in Section 3.3.

(a)

(b)

(c)

Figure 4. Cont.
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(d)

Figure 4. (a) TF signature of EEG seizure signal composed of summation of spikes and low frequency
component, (b) Extracted TF signature of seizure signal obtained by ρFIL(t, f ). (c) TF signature of
EEG background, (d) TF signature of EEG background obtained by ρFIL(t, f ).

Table 2. List of features along with their respective formula.

S. No Name of Feature Formula

1 Mean [9] TF1 = u =
∫ ∫

ρFIL(t, f )dtd f

2 Standard deviation [9] TF2 = σ2 =
∫ ∫

(ρFIL(t, f )− u)2dtdf

3 Co-efficient of variation [9] TF3 = σ
u

4 Skewness [9] TF4 =
∫ ∫

(ρFIL(t, f )− u)3dtd f

5 Kurtosis [9] TF5 =
∫ ∫

(ρFIL(t, f )− u)4dtd f

6 Flatness [9] TF6 =
(

1
u

)
∏t ∏ f ρFIL(t, f )

7 Energy Concentration [9] TF7 =
∫ ∫
|ρFIL(t, f )|1/2dtdf

8 Flux [9] TF8 =
∫ ∫ ∣∣∣ d

dt
d
df (ρFIL(t, f ))

∣∣∣dtdf

3. Experimental Results
3.1. Database Description

We have used a multi-channel newborn EEG database that is described in [4,29,30] and
was made publicly available along with relevant codes at https://github.com/ElsevierSof
twareX/SOFTX-D-17-00059 (accessed on 1 November 2019). The database was acquired
from 36 newborns using a 10–20 international electrode placement system at sampling
frequency of 256 Hz. The marking of the channels is illustrated in Figure 5, which shows
the possible placements of the electrodes. For each location, the first letter identifies the lobe
whereas the second number or letter identifies the hemisphere location. The letters F, T, C,
P, and O stand for Frontal, Temporal, Central, Parietal, and Occipital. The right hemisphere
is represented by even numbers whereas odd numbers represent the left hemisphere. The z
refers to an electrode placed on the mid-line. The signals were acquired at Royal Women’s
Hospital Brisbane by an expert pediatric neurologist. The database was annotated for
seizure, artifacts, and normal background patterns. Ethical approval was given by Royal
Brisbane and Women’s Hospital (RBWH), Medical Research Ethics Committee (MREC),
Brisbane, Australia [31]. The durations of background, seizures, and artifacts are 6 h, 5.16 h,
and 5.04 h, respectively. EEG signals are segmented into non-overlapping segments of 8 s.
The recorded dataset was divided into non-overlapping segments of duration 8-s. This
database contains a total of 7290 segments including 2332 segments of seizures.

Each segment was labeled as 1 if seizure activity was observed and 0 if no seizure
activity was observed. We analyzed the dataset and observed that approximately 78 percent

https://github.com/ElsevierSoftwareX/SOFTX-D-17-00059
https://github.com/ElsevierSoftwareX/SOFTX-D-17-00059
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seizure activity takes place below 4 Hz, 15 percent in between 4 Hz and 8 Hz, and 5.5 percent
from 8 Hz to 12 Hz. Based on these observations, the signal is downsampled to 32 Hz to
reduce the computational load. A snapshot of multi-channel EEG seizure signals is given
in Figure 6.

Figure 5. The EEG system with 10–20 international electrode placement.

Figure 6. An example of the database showing seizure vs. background signals.

3.2. Results and Discussion

In earlier studies, two alternate approaches of feature extraction from multi-channel
EEG signals were proposed. The first approach converts multi-channel EEG recordings into
the single channel through spatially averaging whereas the second approach converts ex-
tract features from each channel separately and then finally spatially averages the extracted
features. In this study, we adopted the former approach to reduce computational costs.
Illustrations of averaged and downsampled EEG signals just before the start of seizure
signal and just after seizure signal are shown in Figure 7.
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(a)

(b)

Figure 7. (a) Averaged and downsampled EEG signal just before and after the start of seizure activity,
(b) Averaged and downsampled EEG signal just before and after the start of seizure activity.

Let us now apply the proposed methodology to detect seizures in newborns. Cross-
validation is performed using the leave-one-out approach where testing is performed by
using EEG recordings of one patient while the EEG recordings of the remaining patients
are used for training. This process is repeated until all patients are tested. We use equal
examples of seizure and non-seizure segments from the training set. In order to reduce
false positives, we first apply a 5-tap median filter, i.e., a given segment is classified as a
seizure segment if a seizure appears in at least three out of five segments. The application of
this median filter removes seizures appearing at the boundaries, thus reducing the overall
sensitivity of the system. To improve the sensitivity, we extend the boundary by 8 s at each
end. An illustration of the detected vs. original seizure using the balanced dataset is given
in Figure 8.

Figure 8. Original seizure mask (blue) vs. detected seizure (red).

For the same EEG recording, Figure 9 illustrates the plot of extracted features.
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(a)

(b)

(c)

(d)

Figure 9. Illustration of feature variation during seizure activity: (a) Frequency marginal related
feature, i.e., F1, (b) Time-marginal related feature, i.e., T1, (c) Mean of ρFIL(t, f ) (TF1), (d) standard
deviation of ρFIL(t, f ) (TF2).

3.3. Discussion

Let us compare the performance of the proposed ADTFD-based TF features with the
large set of TF features that include TF signal related features, TF image related features,
TF Harlic features, and time-scale features proposed in [4]. This large set of features is
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extracted using Compact Kernel TFD (CKD), Spectrogram (SPEC), and Extended modified
B distribution (EMBD). We have used F1-measure, sensitivity, total accuracy, specificity,
and precision as criteria for performance comparison. The experimental results given in
Table 3 indicate that the F1-score obtained by the proposed method is 70.93%, which is 5%
greater than the results obtained by the next best method.

Table 3. Performance comparison using balanced dataset (i.e., equal examples of seizures and
non-seizures).

Method Sensitivity Specificity Accuracy Precision F1-Score

ADTFD 78.98% 84.07% 82.71% 64.36% 70.93%

CKD 76.01% 78.02% 77.48% 55.75% 64.32%

EMBD 75.24% 78.49% 77.62% 56.03% 64.23%

SPEC 76.01% 78.84% 78.08% 56.68% 64.94%

The importance of each feature in the random forest classifier is given in Figure 10.
The importance of each feature is computed based on the decrease in accuracy when that
feature is removed from the classification.

Figure 10. Importance of each feature. Note that F1,F2,F3,F4, and F5 are modified frequency marginal
features described in Table 1. T1, T2, T3, and T4 are modified time-marginal features described in
Equation 2. TF1, TF2, . . . TF8 are TF features defined in Table 2.

Experimental results indicate that the proposed approach of exploiting direction of
ridges for extracting features from modified time-marginal, modified frequency-marginal,
and filtered TF representation has significantly improved the classification accuracy and
F1-score, e.g., the proposed method achieves the F1 score of 70.9%, which is 5% greater
than the F1-score achieved by the next best method. These improved results are important
as timely detection of seizures in newborns through an automated classification system
can help save lives. The proposed approach is based on the observation that seizures
either appear as a train of impulses or as a summation of harmonically related frequency
modulated chirps, whereas in the case of background, ridges can follow any random
directions. Based on these observations, a novel TF pre-processing method is developed
where only those ridges that are either parallel to the time axis or parallel to the frequency
axis are retained to extract TF signatures of seizures. The extracted TF signature is used to
define novel features that lead to better accuracy than existing TF features. The proposed
approach for the detection of seizure activity by extracting a signal of interest in the TF
domain is not limited to the detection of seizures but can be adapted for the detection of
abnormalities in a wide range of physiological signals, such as electrocardiogram signals.

The limitations of this study are as follows:

• High computational cost: The proposed approach is computationally expensive as
it requires the computation of ADTFD with complexity of O(N2 log(N) + RM2N2),
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where M is the size of the smoothing filter, N is the number of samples in a given
segment, and R is the number of quantization levels. Note that the complexity of
quadratic TFDs used in the earlier study was O(N2 log(N)).

• For detection of seizures in multi-channel recordings, the better classification results
are obtained by first extracting features from each channel separately and then re-
ducing the dimension of features through dimensionality reduction approaches as
compared to first combining all channels through averaging followed by feature
extraction. Due to the high computational cost of the proposed method, we first
combined all channels through averaging and then extracted features from the single
combined channel. In the future, we will further improve the performance of our
method through feature averaging.

• In this study, we used the EEG segment of 8-s duration sampled at 32 Hz for the
detection of seizure activity. However, the results can be improved by using longer
segments of EEG segments.

• Artifact detection and removal: Sometimes the machine learning algorithm wrongly
detects artifacts as EEG seizures; this causes false positives. A number of artifact
detection and removal systems have been developed. We can improve the performance
of the proposed method by integrating artifact detection and removal system as a
preprocessing step.

4. Conclusions

A novel set of TF features are defined for the classification of EEG signals. The
proposed set of features is obtained by defining a TFD that extracts the TF signatures of
seizures based on the direction of ridges; e.g., ρFIL(t, f ), ρt(t, f ), and ρf(t, f ). Modified
time-marginal features are extracted by projecting the TF signature of seizures with spike
characteristics to the time axis and modified frequency-marginal features are extracted
by projecting the TF signature of seizures composed of frequency-modulated chirps to
the frequency axis. Features from both modified time-marginal and modified frequency-
marginals are extracted in addition to TF statistical features, energy concentration measure,
TF flux, and TF flatness, which are extracted from filtered TF representation obtained by
preserving ridges aligned to the time axis or frequency axis, i.e., ρFIL(t, f ). Experimental
results indicate that the proposed set of TF features leads to better performance by achieving
an F1-score of 70.93%, which is 5% greater than the existing EEG seizure detection algorithm
based on TF feature extraction. In this study, we used segments of 8-second duration for
feature extraction and classification. As part of the feature study, we will explore larger
segments of seizures to improve the classification accuracy. In addition, an automated
integrating artifact detection and removal system will be integrated as a pre-processing
step to minimize false positives.
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