
����������
�������

Citation: Ranyal, E.; Sadhu, A.; Jain,

K. Road Condition Monitoring Using

Smart Sensing and Artificial

Intelligence: A Review. Sensors 2022,

22, 3044. https://doi.org/

10.3390/s22083044

Academic Editors: Nicola Giaquinto,

Francesco Adamo and

Maurizio Spadavecchia

Received: 27 March 2022

Accepted: 12 April 2022

Published: 15 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Review

Road Condition Monitoring Using Smart Sensing and Artificial
Intelligence: A Review
Eshta Ranyal 1,2, Ayan Sadhu 1,* and Kamal Jain 2

1 Department of Civil and Environmental Engineering, Western University, London, ON N6A 3K7, Canada;
eranyal@uwo.ca

2 Department of Civil Engineering, IIT Roorkee, Roorkee 247667, India; kjainfce@iitr.ac.in
* Correspondence: asadhu@uwo.ca

Abstract: Road condition monitoring (RCM) has been a demanding strategic research area in main-
taining a large network of transport infrastructures. With advancements in computer vision and
data mining techniques along with high computing resources, several innovative pavement distress
evaluation systems have been developed in recent years. The majority of these technologies employ
next-generation distributed sensors and vision-based artificial intelligence (AI) methodologies to
evaluate, classify and localize pavement distresses using the measured data. This paper presents an
exhaustive and systematic literature review of these technologies in RCM that have been published
from 2017–2022 by utilizing next-generation sensors, including contact and noncontact measurements.
The various methodologies and innovative contributions of the existing literature reviewed in this
paper, together with their limitations, promise a futuristic insight for researchers and transport
infrastructure owners. The decisive role played by smart sensors and data acquisition platforms, such
as smartphones, drones, vehicles integrated with non-intrusive sensors, such as RGB, and thermal
cameras, lasers and GPR sensors in the performance of the system are also highlighted. In addition to
sensing, a discussion on the prevalent challenges in the development of AI technologies as well as
potential areas for further exploration paves the way for an all-inclusive and well-directed futuristic
research on RCM.

Keywords: road condition monitoring; pavement distress evaluation; pavement monitoring; smart
sensors; AI; deep learning; machine learning

1. Introduction

Roadway infrastructure is susceptible to structural degradation on account of material
deterioration primarily caused by heavy traffic, harsh weather conditions, aging, poor
construction quality, and lack of appropriate maintenance. The success of a road transport
system is inherently dependent on the riding quality and comfort level of the commuters,
for which timely detection of faults and ensuing maintenance is of utmost importance. The
lack of rapid and automated road monitoring methods is a major contributing factor to
pavement damages and is a common issue in many countries, necessitating huge efforts in
this direction. Most developed countries witness a significant portion of aged pavements,
while some suffer from deteriorated road networks due to extreme climatic events. On the
other hand, developing countries suffer from pavement distress due to a radical increase
in the number of vehicles and intensive usage. The manual observation and detection
methods, though in practice, are cumbersome and time-consuming, involving high costs.
During recent decades, researchers and engineers have prioritized safety and reduction in
inspection costs in the scope of developing an intelligent and smart roadway infrastructure
system to expedite maintenance and corrective action. Therefore, the significance of cost-
effective road condition monitoring (RCM) systems to warrant long-standing structural
integrity and safety levels has been emphasized globally. Emerging RCM methods have
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the potential to rationalize periodic inspections and minimize the costs associated with
failing pavement structures. This paper aims to provide a systematic and comprehensive
review of the latest advancement in AI-assisted RCM technology.

Pavement failure can be attributed to diverse factors, such as vehicle loading, envi-
ronmental conditions, construction quality and maintenance. Some of the most commonly
occurring pavement distresses are listed in Table 1. Vehicle loading and environmental
conditions majorly contribute to surface disintegration, resulting in potholes, which become
severe as disintegration moves down the layers with time. Cracking, which is another
common form of pavement failure, occurs in different shapes and sizes, which can again
be attributed to vehicle load, causing damage in areas with an inadequate packing of
base layers and/or poor drainage, or poorly constructed paving lane joints or volume
changes in the subgrade. There are other forms of distresses that come under pavement
distortions, such as shoving, rutting, corrugation, depressions, and bumps and sags, which
are observed parallel to the direction of traffic and occur due to a weakened pavement layer,
poor bonding between layers, or excessive moisture in the subgrade. Surface deterioration
is also observed in the form of raveling, weathering and bleeding owing to aging, vehicle
loading, poor mix, poor compaction, dust, and moisture. Often, sealants and patches,
which are preventative maintenance actions, appear as distresses over the course of time.

Table 1. Types of common pavement distress (Miller and Bellinger 2014).

Distress Type Severity Levels Causes

Crack

Alligator
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Table 1. Cont.
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A typical RCM method relies on the data acquisition system that involves 1D time-
series data, 2D visual data or 3D depth data. Low-cost sensors, such as accelerometers,
gyroscopes, magnetometers, and GPS, are often employed to measure motion, rotation,
velocity, orientation, and location, which are one-dimensional in nature. The commonly
used sensors for acquiring digital images are the high-quality, high-resolution RGB sensors,
which facilitate in acquiring multiscale low-level as well as high-level feature extractions.
However, these images are two-dimensional in nature and cannot be used for the character-
istic evaluation of the features. The depth consideration of such images allows multi-fold
parametric attributes facilitating the examination of intrinsic characteristics and can be
acquired by using thermal imaging sensors, LiDAR, laser sensors and GPR, to name a few.
Table 2 provides a comparative evaluation of the next-generation sensors that have evolved
the entire data acquisition process for RCM. The convenient deployment of these sensors
on the ground and aerial platforms (i.e., drones) provides them with an edge in terms
of scalability and employability. Table 3 illustrates the merits and limitations of different
platforms on which sensors are commonly deployed.

Table 2. A comparative evaluation of the smart sensors used in RCM.

Key Variables Camera Laser GPR Thermal Vibration

Technology 2D imaging
3D construction of
image using
reflection

Radio waves to
explore
underground
surface; creates 3D
image of
sub-surface

Based on the
change in
temperature of
surrounding
objects using
infrared waves

Accelerometers,
gyroscope, and
GPS readings

Processing
Complex
image-processing
algorithms

Collection of 3D
point cloud

Collection of depth
images and
simulation data
required

Collection of heat
variation of surface

Readings are
directly used

Real-Time
Application

Processor
dependent Yes Yes Yes Cannot be used in

real-time detection

Sensing Time While approaching
distress

While approaching
distress

While approaching
distress

While approaching
distress

Only after
experiencing
distress

Characterization of
Distress

Based on shape
and size Based on 3D image Based on 3D image Based on heat

maps

Detection only
along wheel path
as 1D parameters

Light Sensitivity

Sensitive to
illuminance levels,
light source
position

Not sensitive to
light effect

Not sensitive to
light effect

Not sensitive to
light effect, but
surface
temperatures

None

Accuracy Algorithm
dependent High High High Highly susceptible

to errors

Resolution Varying low to
high

High-resolution
images

Depends on
frequency

Needs
improvement -

Processing Time

Data collection and
analysis is fast;
response time is
processor
dependent

Data collection is
fast and can be
collected at speeds
as high as 100
km/h

Delayed due to
large data
processing;
however, data
collection is
automated

Data collection and
analysis is fast

Poor as data
processing is
required

Cost Economical High Highly expensive Very expensive Low

Data Type 2D, 3D 3D 3D 2D, 3D 1D
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Table 3. List of sensor platforms available for data acquisition.

Sensor Platform Advantages Limitations
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Advances in next-generation sensors [1] and data-driven technologies [2–4] have
transformed data collection and interpretation, contributing to extensive research on RCM.
Recent years have seen the widespread use of vision-based approaches to provide cost-
effective solutions in identifying and localizing pavement anomalies. Diverse methods
have been presented, ranging from traditional image processing techniques to vision-based
AI approaches. The archetypal vision-based RCM is commonly carried out either by
employing image processing techniques (IPTs), such as thresholding, or by using machine
learning (ML) algorithms for local feature extraction. In the process of implementing
IPTs, encouraged by grayscale and texture-based methods, Ref. [5] performed asphalt
pavement pothole detection and segmentation using a wavelet energy field to highlight the
pothole region. The proposed method exhibited satisfactory performance with an overall
accuracy of nearly 87%, and successfully differentiated the potholes from the cracks, patches,
greasy dirt, shadows, and maintenance hole covers, and precisely segmented the pothole.
However, the overall methodology was time consuming and required tedious processing.

Ref. [6], in his attempt to classify a distressed area, developed a unique two-stage RCM
system. In the first stage, the artificial bee colony (ABC) algorithm was used to obtain a
threshold value to segment the image into distressed and non-distressed sections, followed
by feature extraction. The second stage involved training on a single-layer artificial neural
network (ANN). Although the proposed method successfully classified an area of distress,
there was a redundant and computationally intensive step to segment the images using the
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ABC algorithm, as the neural network alone can be efficiently trained to segment the images
and extract features for classification. Ref. [7] proposed an unsupervised and automated
pavement crack detection based on the analysis of photometric information from two-layer
(intensity, depth) images. The method is based on histograms and Otsu’s thresholding. The
results showed that the proposed method could be used for fast and approximate crack
estimations, especially in cases of a low signal-to-noise ratio. Despite the limitations of
the conventional IPTs in terms of handling the background complexities and illumination
complications, continuous research has been carried out using IPTs to enhance and amplify
the results. Recently, Ref. [8] proposed a three-phased crack detection system based on IPTs.
The approach involved contrast enhancement followed by the application of a discrete
wavelet algorithm for effective detection and, finally, Jerman enhancement to enhance crack
detection. Comparisons with existing methods showed the effectiveness of the proposed
technique to validate the recognition of surface cracks.

To improve the accuracy of existing RCM methods, ML approaches, such as KNN,
SVM, and k-means clustering, were integrated with IPTs. Ref. [9] used ML-based pat-
tern recognition methods with computer vision methods on street view images for the
assessment of pavements. A series of IPTs followed by SVM [10] classification successfully
identified the severity and location of pavement defects in the image. A comparison with
the U-Net DL model on the same dataset suggested inferior performance due to scarce
data. Ref. [11] presented a model based on the library of SVM (LIBSVM) to distinguish
the potholes from the cracks in concrete pavements. The proposed model is effective in
segmenting potholes with a high F1 score of 98.7%. A comparison with the Otsu, edge
detection, k-means, and watershed methods re-establishes the processing efficiency of the
method on cement concrete pavement potholes.

Ref. [12] adopted a k-means clustering algorithm followed by Otsu’s thresholding to
segment cracks in asphalt pavements. The proposed algorithm provided a satisfactory re-
sult in localizing and detecting pavement cracks. Ref. [13] developed a texture-independent,
tile-based image-processing algorithm to detect pavement cracks and classify them into
longitudinal and transverse cracks on 2D and 3D pavement images. The lengths of the
cracks were measured using curve fitting and an orientation axis. The method suggested
promising results when tested on 130 images of Portland cement concrete and asphalt
concrete surfaces, and took less than 20s per image to generate results. Ref. [14] adopted an
integrated approach, establishing IPTs in association with ML algorithms for automated
road crack detection and classification. Heuristic segmentation and denoising algorithms
were applied, followed by image-processing practices for enhancement and feature ex-
traction, and the application of a multi-stage hybrid model based on ensemble learning
for classification. A comparative study with existing ML approaches underscored the
competitive performance of the proposed work.

In the past few years, there have been several review papers published in the field
of RCM. For example, Ref. [15] performed an extensive review on the RCM methods
focusing largely on the types of pavement distresses and the detection equipment used. A
quantitative analysis of the work conducted in the past on individual pavement distresses,
such as cracks, potholes, surface deformations and defects, and the macrostate of the
road, such as road roughness, skid resistance, substructure quality and road surroundings,
were performed. Different equipment, such as a camera, laser, accelerometer, acoustic,
pressure sensor, radar, ultrasonic, deflectometer, friction tester for distress detection and
data collection, are emphasized and compared in the study. The paper presents a detailed
discussion on the various distresses and detection techniques; however, it does not focus
on the algorithms used for RCM. Another substantive review by [16] highlighted the
advancement of deep learning (DL) methodologies in accurate pavement crack detection.
The DL techniques were catalogued under three headings: classification, object detection
and segmentation. The performance metrics employed to evaluate these methods on
benchmark datasets in addition to traditional and DL-based crack-detection methods on 3D
data were also reviewed. In another review paper, Ref. [17] assessed the various computer-
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vision techniques employed in the detection of cracks and potholes in pavements. The
techniques were categorized under DL, non-DL, depth camera and tire pressure/vibration
methods. Varying inputs, such as RGB images, laser and thermal images for vision-based
techniques, were discussed and evaluated. It was deduced that major detection techniques
were oriented around computer vision approaches, though they failed to produce good
results. RGB images owe their limitations to lighting conditions, texture variation and
background complexity; however, laser and thermal imaging overcome these limitations,
but suffer due to environmental and cost factors as well. Limitations in terms of the system
size, computational requirements and real-time applicability were also highlighted in the
study. Unlike DL methods, [18] in their review, summarized the research carried out on
digital images in RCM based on IPTs and acquisition devices. The image acquisition devices,
along with their characteristics, were compared, and various image technologies applied in
pavement detection were expounded. Concurrently, the IPT for specific problems, such
as on-site pavement cracks, pavement texture, rutting and potholes, was elaborated. The
authors concluded that the salient factors in determining the detection equipment should be
based on cost, efficiency, clarity of image details and type of pavement, while ML methods
outperform the traditional IPT in RCM.

Over the last few years, vision-based approaches have augmented RCM solutions
and remarkably advanced the development of pavement monitoring and analysis. It
is imperative to note that there are other existing reviews [15–18] addressing pavement
distress studies, as discussed above. These review articles largely emphasize the types of
pavement distresses, the detection equipment used, the sensor technologies available, and
various computer vision techniques employed in the detection of cracks and potholes in
pavements; however, they do not focus on the data-driven algorithms used for distress
detection. The review on pavement-defect detection methods based on DL by [16] provided
a substantive overview of the subject, but has a restricted scope. The proposed review in this
paper aims to provide an all-inclusive review by focusing on the next-generation sensing
technologies and associated AI-based RCM methods, by elucidating the methodologies and
challenges in current developments, as well as recognizing the prevailing research voids
for further research studies. Therefore, the criteria for consideration of research articles in
this paper are the evaluation of the existing sensor-based and AI approaches deployed on
different platforms, namely UAVs, ground vehicles and smartphones for RCM. AI is a data-
driven amalgamation of various ML and DL algorithms inherently dependent on sensors
and data acquisition to provide solutions to real-world problems. These algorithms are a
subset of the entire AI domain and have been shifted from handcrafted feature extraction-
based ML methods to automated DL methods. To help researchers and engineers better
understand the application of AI methodologies in pavement monitoring and analysis,
the current review summarizes the recent work that has been established from the year
2017 to 2022. The AI approaches are classified under sensor-based methodologies, along
with the application of machine learning and deep learning algorithms for RCM. An
exhaustive review of the DL methodologies is presented that builds on classification,
segmentation and detection, employing next-generation sensors integrated with different
data acquisition platforms.

This paper is organized as follows. Section 2 presents a brief discussion of the reviewed
articles and their limitations as a comprehensive and systematic review. It elaborates
on AI technology in general, categorized under next-generation sensors deployed on
data acquisition systems and compares the related work in terms of the methodology
adopted and results achieved. Section 3 presents the potential future research directions.
Conclusions and challenges in using DL approaches in RCM are finally presented in
Section 4.

2. Smart Sensing of Pavement Distress Data

Smart sensing techniques provide high-resolution information on pavements. Faster
installation and flexibility in deploying noncontact sensors on various mobile data ac-
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quisition platforms facilitate convenient ways to inspect pavements, overcoming space
and environmental constraints. Every platform has its advantages and limitations and
complements each other’s usability. A schematic representation of the sensors and data
acquisition platforms is shown in Figure 1.
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Smart sensors primarily result in 1D (i.e., vibration time series) and 2D/3D (i.e., vision)
RCM data, which were analyzed using various signal processing, machine learning, and
AI techniques in the literature, as presented below.

2.1. Vibration Data-Based RCM

Smartphones are installed with diverse sensors, such as gyroscopes, accelerometers,
and GPS receivers, and thus act as powerful measuring tools. Hence, capitalizing on the
in-built vibration sensors to assist RCM has taken center stage in numerous research works.
Vibration-based methods for detecting road anomalies rely on 1D data acquired from these
sensors and find high applicability in the real-time detection of pavement distress due to
low cost, fewer memory requirements and immunity to light conditions.

Ref. [19] used smartphone accelerometers to measure acceleration data. Basic signal
processing and pattern recognition methods were used to correlate the measured data
with the international roughness index (IRI), validating that variance in acceleration mea-
surements can be used to determine IRI using smartphone sensors. Ref. [20] proposed
an asphalt pavement quality monitoring system using data collected from accelerometer
sensors of smartphones by treating the data as a multi-dimensional time series classifica-
tion problem. The proposed approach attained a good classification accuracy. Ref. [21]
compared a standard inertial profiler with a smartphone-based application, Roadroid, to
establish the usability of smartphone sensors in estimating the ride quality of the concrete
pavement. It was observed that Roadroid significantly underestimated the IRI values,
though a linear correlation existed between the IRI measurements obtained from both
methods. In another attempt, Ref. [22] proposed an AI-assisted smartphone-based data-
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driven technique to detect vibration-induced road anomalies using vibration sensors and
the detection of pavement patch defects using smartphone images. The results showed that
vibration-based methods were quite successful. However, they failed to efficiently cover
the entire roadway and detect non-vibration-induced pavement anomalies, which were
then complemented by a vision-based method.

Ref. [23] presented an AI-based low-cost RCM system by detecting pavement potholes
using smartphone sensors and onboard diagnostic devices. The method is based on the
observed patterns of the vehicle’s interaction with the road surface and confirms the usage
of smartphone sensors in low-cost pothole detection. Ref. [24] provided a cost-effective
pavement evaluation system for low-volume roads using smartphone-based roughness
data. Compared to conventional roughness measurement methods, it was found that a
good correlation existed between the results, when compared to the results from the Class
III-type roughness measurement equipment, justifying sufficient accuracy to determine
the presence of pavement distresses. Ref. [25] developed an RCM technique by using 3D
pavement data to train ML models on low-cost vehicle-mounted smartphone sensor data.
The model provided distress values as outputs, which can be used for estimating IRI. The
applicability of the technique could be justified by a high peak in the correlation between
IRI estimations produced from numerous runs along the same route. In another study,
Ref. [26] proposed a method to determine the IRI of a pavement surface using conventional
vehicles and smartphones by using the grey box model algorithm and the quarter-car
vehicle model. The results indicate that the IRI of the pavement can be determined with
reasonable accuracy using smartphones.

In a novel attempt, Ref. [27] proposed a vibration-based RCM system by considering
factors, such as vehicle suspension and a direct reconstruction of the pavement profile, to
compute IRI rather than using correlation-based procedures. Field testing of the method
proves its potential for RCM with reasonable accuracy and efficiency. Ref. [28] used low-
cost smartphone accelerometer data by developing a prototype smartphone application
to measure the IRI, by incorporating vehicle speed and vehicle type. The results showed
a strong correlation with the measured IRI data collected using profiler vans. Ref. [29]
proposed a low-cost method employing smartphone sensors for pavement roughness
measurement by collecting the vertical vibration values when a vehicle is driven over a
pavement. The smartphone-based acceleration values are converted to the IRI by using
the quarter-car simulation model. The high correlation values promise a model that can
be used in smartphone-based RCM. Ref. [30] proposed a road condition tool (RCT) to
assess road pavement defects based on a telemetric data crowdsourced by smartphone
users by analyzing the vehicle motion dynamics. The results obtained, in comparison with
reference data from highly specialized equipment, confirm the proposed RCT solution [31]
established an algorithm to calculate the IRI from the acceleration values obtained using
smartphone sensors. The algorithm identified the physical parameters of a quarter actual
vehicle model and established a relation between the acceleration, IRI and the profile
elevation. It was observed that a consideration of the dynamic characteristics of vehicles
improved the proposed method’s measurement accuracy.

Thus, vibration-based methods find immense applicability in RCM. They provide
a comparative measure of the degraded pavement condition that is memory friendly
and suitable for the real-time detection of road anomalies, but are vulnerable to errors
due to noise and signal sensitivity from other vehicle sensors. Moreover, the vibration
effects caused by any road obstacle can be perceived as a road anomaly by these sensors.
Additionally, it is important to note that vibration-based sensors only take into account
data along the wheel path.

2.2. Vision Data-Based RCM Using Machine Learning

The exploitation of ML methods allows for the effective identification, classification
and analysis of pavement structure conditions. Generally, ML approaches in pavement
engineering comprise support vector machines (SVMs) and artificial neural networks
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(ANNs). The following section briefly summarizes the conventional ML approaches used
in recent years in RCM using different data acquisition platforms.

2.2.1. UAV-Based Data Acquisition

Multispectral image-based ML algorithms were employed by [32,33] on drone-acquired
images to distinguish undamaged pavement from damaged pavement. SVM, ANN, and
Random Forest (RF) algorithms were evaluated and compared both on RGB and multi-
spectral images. It was deduced that, amongst the three algorithms, RF performs best with
a high accuracy on multispectral images. In addition to the feature set, it was deduced
that the spatial resolution of the pavement imagery is also a conclusive factor in the per-
formance of the classifier. Ref. [34] developed an RCM system based on drone images
using image-based methods to identify three types of cracks in pavements. Decent results
were achieved by the proposed combination method developed by combining Canny edge
detection and Otsu thresholding. Ref. [35] proposed the usage of low-flying UAV acquired
multispectral imagery in combination with CNN extracted spatial features to assess the
aging and damage conditions of pavements with the help of an SVM classifier. A multi-
scale semantic segmentation algorithm was carried out on the UAV pavement imagery
for classification. Three principal components obtained, after dimensionality reduction
in the multispectral imagery, were combined with deep abstract spatial features from the
CNN and fed as inputs to the SVM classifier for pavement surface classification into cracks,
potholes, early aging, middle aging and late aging. However, the dimensionality reduction
in multispectral imagery demands additional processing. Moreover, low-flying UAVs may
not be a practical approach for dense-traffic roadways.

2.2.2. Smartphone-Based Data Acquisition

Ref. [36] carried out an exhaustive review on road surface anomaly detection using
smartphone sensors, while highlighting various issues and challenges in the current ap-
proaches, and identified research gap areas in the domain. The factors affecting anomaly
detection, such as smartphone orientation, mounting location, vehicle suspension and
speed dependency, were also investigated. The existing approaches were compared using
five primary criteria: sensor data collection, pre-processing, processing, post-processing,
and performance evaluations. The major focus of the review was on data collection and pro-
cessing, rather than result-oriented methodologies, to perform anomaly detection. Ref. [37]
performed a smartphone-based pavement analysis to classify the road surface conditions
using an accelerometer, gyroscope and GPS data. Multiclass supervised ML techniques
were applied using features from all three axes of the smartphone sensors. The classification
was focused on three main classes- smooth roads, potholes, and deep transverse cracks.
The results confirmed a higher performance than models using single-axis features.

A comparative analysis between the vibration-based method using a smartphone
accelerometer and gyroscope and the vision-based method using video processing was
performed by [38]. It was observed that vision-based methods outperform the vibration
method. However, the latter is sufficient for routine monitoring purposes, while the vision-
based method was apt for detailed analysis. Ref. [39] studied and experimented with an
ML-based method for the identification and classification of a bottom-up cracked pavement
based on vibro-acoustic signatures from roadside sensors. Different ML classifiers, such
as MLP, CNN, RFC, and SVM, were used and compared, showing great accuracies for a
specific vibro-acoustic signature on concealed cracked road pavements. Ref. [40] studied
the vibration-based sensors and GPS embedded in smartphones for automated pothole
detection. Data was collected using a customized mobile application installed in dedicated
vehicles. A series of image processing techniques were applied, and the extracted features
were fed to various ML classifiers to identify the best approach. It was observed that the
time and frequency domain features outperformed when identifying potholes, and the RF
classifier exhibited the best performance amongst other classifiers, which was evaluated
against various road types to check its robustness.
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2.2.3. Ground Robot-Based 3D Data Acquisition

In contrast to the traditional 2D and manual methods, Ref. [41] proposed a 3D laser-
based pavement scanning and automatic defect detection approach to identify micro
(cracks) and macro (deformation) defects. A sparse processing algorithm to extract crack
candidate points and deformations support points were designed. The algorithm success-
fully obtained an accurate location and the classification information of defects with a
detection accuracy above 98%. Ref. [42] defined an ML-based system for the acquisition
and intelligent classification of potholes and cracks in pavement surfaces. A Kinect device
was used to obtain 3D point-cloud structures of pavements and retrieve their physical
properties. The system could successfully classify cracks and potholes, along with the
computing of the physical properties of pavement depressions, such as the length, width
and depth. Ref. [43] created a method for detecting road damage by using a laser scanner
mounted on a mobile mapping system to generate 3D pavement images. An attempt was
made to segment the pavement using a series of ML techniques. Ref. [44], in their work,
developed a computationally efficient pothole-detection algorithm based on disparity maps
and disparity transformation algorithms. The detection of potholes was finally achieved by
a comparison between actual and modelled disparity maps. The point clouds of potholes
were extracted thereafter. The authors created three datasets for stereo vision-based pothole
detection, and the algorithm achieved an overall accuracy of 98.7%.

Ref. [45] proposed a fully automated LiDAR-based, two-fold RCM assessment over
highways and airport runways using a mobile mapping system. Firstly, a fully automated
algorithm was proposed to detect and locate pavement distress from the 3D point cloud,
followed by characterization by severity in terms of the depth below the road surface, sur-
face area at different depths and filling volume of the detected potholes. The accuracy of the
point clouds was determined to be ±1–2 cm and elucidates the capability of LiDAR-based
mobile mapping systems to precisely detect locations with pavement distress of varying
severity and different causes. However, the entire setup of the mobile mapping system
turns out to be an expensive affair. Ref. [46] developed a pavement evaluation method us-
ing mobile mapping systems (MMSs) for automatic detection by spatial frequency analysis
of 3D point-cloud data acquired by laser scanners mounted on MMSs. Pavement distresses,
such as rutting, flatness and potholes, were detected, along with the crack percentage.
The choice of platform and sensors is totally dependent on the specification of a task at
hand, taking into consideration the scope, frequency of operation, area in question, extent
of detail, budget and strategic importance. A comparative summary of each platform’s
usability in the field of pavement distress evaluations is listed in Table 4.

Table 4. A comparative summary of the data acquisition platforms used for RCM.

Platforms Advantages Limitations

UAVs

• Well-matched for
aerial reconnaissance.

• Unhindered large field of view.
• Allow for navigation through

difficult terrains.
• Facilitate safe and

quick inspections.

• Unsuitable for RCM in dense
traffic roadways.

• Limited by weather
conditions, such as wind
speed and harsh climate.

Smartphones

• Lightweight sensors.
• Ease of employability due to

their size.
• Stand-alone (hand-held device)

data acquisition method and can
be easily installed on vehicles.

• Limited by image resolution.
• Suffer noisy data due to

external factors.
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Table 4. Cont.

Platforms Advantages Limitations

Ground robots

• Extensive usability in dense
traffic areas.

• Scalable platforms for
multi-array sensors.

• Find widespread serviceability
in RCM.

• Limited by a small field
of view.

• Poor cost-effectiveness in
terms of long hours of
operation and resources.

2.3. Vision Data-Based RCM Using Deep Learning

DL methods have become the most extensively used computational approach in the
field of civil engineering and intelligent transportation systems [47,48], attaining outstand-
ing results in RCM. One of the benefits of DL is its ability to learn large quantities of
data. With the rapid development of DL techniques, deep convolutional neural networks
(DCNNs) have gained paramount significance in carrying out vision-based tasks. In com-
parison to the conventional handcrafted feature-based techniques, the DL-based techniques
learn multi-level image features in detail, which are more descriptive than the handcrafted
features. A typical CNN architecture is created using several layers, such as the input layer,
hidden layers comprising convolution, pooling and activation functions resulting in feature
maps, and the output layer. A deep CNN is characterized by an architecture composed of
many layers. Auxiliary layers, such as dropout and batch normalization, are also incorpo-
rated within the aforesaid layers as per the necessity of purpose. A schematic representation
of a CNN is shown in Figure 2. The first layer of a CNN is the input layer, which is a 2D
representation of the input image. The convolution layer performs an element-by-element
dot product between a subarray of an input array and a receptive field, followed by a
summation of the multiplied values to which the bias is added. This layer is responsible
for the reduction in the input data size and subsequent reduction in the computational cost.
Batch normalization is performed to re-center and rescale the inputs by normalizing the
data distribution. It plays a significant role in smoothening the loss function by optimizing
the model. The activation function imparts nonlinearity to the model for semblance to
complex real-world problems. The pooling layer is another significant aspect of the CNN
responsible for down-sampling as it reduces the spatial size of an input array. A dropout
layer can be added to the CNN as an optimization layer to handle complex models that
might be prone to overfitting. All these layers, excluding the input layer, comprise the
hidden layers of the CNN whose output is fed to fully connected layers resulting in the
classification and detection post-application of a suitable activation function.
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In general, vision-based DL methods undertake three major pattern recognition tasks:
classification, object detection and image segmentation. Classification determines the
presence of objects in an image or video. It refers to training DL models to find the classes
(pavement distress types) that are present. Classification is useful at the binary level of
decision making, whether an image contains the desired object/anomaly or not. A distinct
task from the classification is localization, which determines the position of the classified
object. Object detection combines classification and localization to determine the objects
that are present and specify where they are in the image. It applies classification to distinct
objects and uses bounding boxes to show the detection and location of an object. Image
segmentation divides an image into regions, extracting potentially meaningful areas for
further processing, dependent on its shape and border, such as classification and object
detection. The goal of image segmentation is to highlight foreground elements and make it
easier to evaluate them. Image segmentation provides pixel-by-pixel details of an object,
making it different from classification and object detection. Thus, object classification
identifies the category of objects in the image, object detection identifies the category
and location of objects with rectangular bounding boxes, and segmentation predicts the
categories of each pixel and distinguishes the object instances.

In this paper, the literature review in the following section is catalogued under DL
as classification, segmentation and distress detection, and further sub-categorized under
data acquisition platforms. It is important to emphasize here that DL-based classification
and segmentation methodologies in recent years were restricted to data acquired using
ground-based sensors, while UAV and smartphone-based data acquisition platforms find
major applicability in areas related to distress detection in RCM, rather than classification
and segmentation.

2.3.1. Classifications in RCM Using DL

In contrast to Image Processing Techniques (IPTs), Ref. [49] implemented a vision-
based sliding window approach, using deep neural convolutional networks to detect
cracks in concrete structures. The high-resolution images were sliced into 40 K images of
a 256 × 256 pixel resolution. The method successfully identified the presence of a crack
on high-resolution images of the concrete surface and performed well when compared to
other IPT algorithms, such as Canny and Sobel edge detection. However, the proposed
approach deems to be a computationally expensive approach as it involves redundant
scanning through the entire image. A domain adaptation approach by [50] to detect cracks
in pavement images provided a simplified vision-based pavement crack detection system.
The overall methodology used a truncated VGG-16 DCNN as a deep feature generator,
pre-trained on the ImageNet database, to vectorize the labeled pavement images. The cross-
domain image classification, a deep transfer learning approach, was an exclusive attempt at
automated detection on surfaced pavement images owing to varied surface characteristics.
A comparison with existing ML models elucidated the high performance of neural networks
in RCM. Ref. [51] presented the German Asphalt Pavement distress dataset for training and
evaluation of existing DL models. The authors went a step further by evaluating an image
processing toolbox for road pavement surface-crack distresses with shallow and deep
neural networks. The authors summarized the results by confirming satisfying detection
results by DL approaches, in comparison to conventional computer-vision approaches.
Furthermore, the effectiveness of traditional regularization techniques, including dropout,
batch normalization, max-norm regularization and weight decay, were assessed.

An autonomous real-time road crack and pothole detection algorithm was proposed
by [52], deployable on a GPU-based conventional processing board with an associated
camera. The approach was based on a deep neural network architecture integrated with a
pre-processing method to ensure real-time performance. The authors assured that the pro-
posed system could be installed as a plug-and-play module in various autonomous robots
and self-driving cars. Ref. [53] proposed the application of CNN on Ground Penetrating
Radar images for automatically classifying pavement subgrade defects. Two CNNs called
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multi-stage CNN and cascade CNN were established to accomplish the tasks that achieved
high accuracies. A comparison with ML algorithms further confirmed the CNNs’ robust
performance. However, despite the 3D images, the physical characteristics associated with
the defects were not calculated. To maximize the evaluation accuracy, an automated pave-
ment evaluation system was proposed by [54]. Two-channel images obtained by overlaying
gray-scale (2D) and range (depth) images were fed to a CNN network for image classifica-
tion. Though the accuracy metrics were not specified, the authors claimed the superiority
of the method over conventional ML techniques. Ref. [55] presented an enlarged dataset
GAPs v2 as an extension of the GAPs dataset by adding 500 images and providing more
refined annotations. Additionally, a CIFAR-like subset of 50 k images was also created for
easy comparison and evaluation. Extensive experiments on the extended GAPs dataset
were performed using existing DL architectures to understand the role of context in distress
detection. Ref. [56] proposed an image-based system for the classification of a speed bump
and pothole using a five-layer simple convolutional neural network. The proposed network
achieved a classification accuracy of 97.7%.

Ref. [57] proposed the application of CNNs for pothole detection. A pre-pooling CNN
was designed, which added a pre-pooling layer before the first convolution layer to improve
the precision of pothole detection. The results demonstrated that the optimized pre-pooling
CNN had 98.95% recognition precision on testing data. The stability and comparative
study revealed the robustness of the CNN model in real-world situations, such as varying
light conditions and pavement materials. Ref. [58] suggested an edge AI-based framework
named the vehicular ad hoc network (VANET) for road anomaly detection, such as a
pothole, bump, and cracks. Pre-trained DL models, VGG-11 and ResNet-18, were used
parallelly for the automated classification and detection of anomalies. The dataset employed
was collected from various online sources, which was augmented for better results, and it
was suggested that the model’s performance superseded the other techniques used for the
detection and classification of road anomalies. Ref. [59] proposed a method for automatic
pavement evaluation by the identification, classification and quantification of multiple
urban flexible pavement distresses through the application of CNNs. The process involved
the concatenation of two CNNs, one that performs identifications with reasonable precision,
recall, and F1 score, followed by the quantification of the severity of the predicted distress.
Ref. [60] applied a three-layer DCNN to implement crack detection in asphalt pavements by
resizing images and classifying them as crack and non-crack. The DCNN was evaluated on
two benchmarked datasets and a self-collected dataset, with high accuracy on all datasets.

Ref. [61] proposed a fusion-based pavement damage-detection CNN model for the
classification of damages into nine pavement categories using EfficientNet-B4. The fusion
was conducted through multi-source sensor information, resulting in a thermal–RGB fused
image. It was observed that the model performed better on fused images, in comparison to
RGB and thermal images independently. However, in comparison, the prediction perfor-
mance was found to be better on RGB images for road marking, shadow, and manholes.
Ref. [62] proposed an automatic crack classification system by implementing transfer learn-
ing on pre-trained networks. ResNet101, GoogleNet and AlexNet were used for crack
classification. It was observed that GoogleNet was the fastest to reach maximum accuracy,
followed by ResNet101. Ref. [63] proposed a pothole classification system using a fusion
of image processing and DL methodology. The process involved the detection of objects
other than potholes in pavement images, which were then discarded and the remaining
image used for edge detection. Finally, the image post-edge detection was classified using
a YOLO classifier to confirm the presence of a pothole.

2.3.2. Segmentation in RCM Using DL

Ref. [64] presented a Feature Pyramid and Hierarchical Boosting Network for pave-
ment crack segmentation and a novel crack measurement technique. The crack detection
was formulated as a pixel-wise binary classification task. The method, along with other
ML and DL algorithms, was compared and evaluated in relation to five datasets to demon-
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strate the superiority and generalizability of the method. The authors also presented a
pixel-annotated crack dataset of asphalt pavements named Crack500. Ref. [65] presented a
road crack segmentation method based on generative adversarial networks (GANs) based
on U-Net [66]. The GAN [67] is a special type of neural network architecture used to
discriminate between real and fake images, until it is unable to distinguish the real from
the fake. The evaluation of the model was performed on three datasets, of which two were
public, and one was customized. The model performed moderately on the public dataset
with a maximum F1 score of 77.3% and did not obtain good segmentation on a custom
dataset. Ref. [68] implemented two DL networks, an improved CNN with structured
prediction and an FCN, to detect cracks on pavements with different severity levels. The
classification of the cracks was based on crack severity, with an F1 score of less than 70% for
both methods. Moreover, the Laser Crack Measurement System software was used, which
employed laser intensity to compute the depth of the cracks. The depth factor played a role
in determining the severity level during the annotation process.

Ref. [69] proposed a conditional Wasserstein Generative Adaptive Network (cW-
GAN) [70] based method, ConnCrack, to the inspect cracks on road surfaces using a
cost-effective commercial grade sports camera. This method performed pixel-level crack
detection and provided a novel algorithm based on a depth-first search to determine the
optimal crack connectivity map. A pixel-level annotated dataset, EdmCrack600, with
600 images was created for public use by the authors. However, in this study, the pixel-
level masks were not transformed to the physical properties, such as the width or length of
the cracks. Additionally, the proposed method was a data-starving model with training
on three datasets (ImageNet, Crack Forest Dataset, and EdmCrack600). Ref. [71] proposed
CrackU-net, a crack extraction method from pavement images, regardless of noise levels,
background conditions and image quality. The method was based on deep neural networks
for pixel-wise crack detection. CrackU-net was trained on images collected by high-speed
vehicle-mounted cameras and smartphones and exhibited a high accuracy of 99%.

Ref. [48] proposed a segmentation RCNN model based on Faster RCNN [72] and
FCN for RCM. While Faster RCNN performed the feature extraction, classification and
localization of distresses, FCN performed a pixel-wise semantic segmentation to provide
morphological information on each distress. The result provided a real-time pavement
inspection technique, with an average computation time of 34 ms/frame and overall pre-
cision and recall of 91.5% and 90.5%, respectively. Ref. [73] proposed a deep generative
adversarial network, named CrackGAN, for pavement crack detection. The network pro-
motes crack-patch-only supervised generative adversarial learning for end-to-end training
and solves the “All Black” issue existing in FCN-based pixel-level crack detection. The
model was trained on small image patches, but can handle all-size images by feeding a
bigger-size crack image into an asymmetric U-shape generator. The proposed approach was
validated using four crack datasets and achieved good performance in terms of efficiency
and accuracy.

An attempt to automate pavement distress classification based on pixel-level seg-
mentation was performed by [74] using U-Net and Resnet architecture. A dataset was
prepared from over a 350 km stretch of asphalt pavements in China along with data aug-
mentation, resulting in over 10,000 images of six types of distresses. Binary classification
(distress or non-distress) was performed, resulting in a high accuracy of 97%, while the
multi-classification accuracy was fairly low. Ref. [75] proposed the Mask RCNN [76] ap-
proach for the pixel-wise segmentation of the Region of Interest in pavements for pothole
detection and area calculations. The database was manually collected and annotated with
an overall accuracy of 90% for a computed area of a pothole. Ref. [77] proposed a novel DL
segmentation approach based on synthetic training data generation for the segmentation
of cracks in road pavement images. The synthetic data repository was created using three
publicly available datasets: KITTI and Cityscapes for the images of road scenes, and Crack
Forest Dataset, as a source of pixel-level labeled cracks. Segmentation was implemented
using Mask R-CNN and U-Net, showing good results.



Sensors 2022, 22, 3044 16 of 27

A grid-based crack detection model was proposed by [78] using a segmentation CNN
approach. Each image was divided into three grids of different sizes, namely 10 × 10,
20 × 20 and 30 × 30, as inputs to the segmentation model to classify crack or no crack.
Grids with cracks were segmented into binary images using the entropy thresholds, which
were then used to calculate the crack widths. Recently, Ref. [79] performed an extensive
study by incorporating stereo vision and DL to efficiently perform crack and pothole
segmentation using an automated pixel-level detection framework for RCM. The multi-
view stereo imaging system was used to establish the datasets containing color images,
depth images and color-depth overlapped images. A modified U-Net was implemented
and tested on asphalt roads with millimeter-level accuracy. The 3D crack segmentation
model outperformed the other models in terms of the inference speed and segmentation
accuracy. Additionally, a highly accurate automated pothole volume measurement method
based on a segmentation map was proposed to evaluate pothole severity.

2.3.3. Damage Detection in RCM Using DL

Ref. [80] proposed the use of the Faster R-CNN algorithm on a customized dataset for
damaged pavement detection, which was divided into six distinct categories: lateral crack,
longitudinal crack, pothole and separation, alligator crack, well cover without damage and
damage around the well cover. The proposed CNN architecture showed high accuracy and
stability in locating and identifying the cracks in the dataset. Banking on the advantages of
automatic feature extraction by CNNs, Ref. [81] presented a framework based on DL to
automate the roadway condition assessment. A CNN was designed to classify four types
of pavement cracks, namely, longitudinal, transverse, alligator and potholes, and the crack
detection dataset was created from images taken from search engines. The overall accuracy
of the proposed CNN was 76%, which was justified as reasonable when compared to the
methodologies limited to binary classifications.

Ref. [82] analyzed the feasibility and accuracy of thermal imaging in the field of pot-
hole detection. The work involved the acquisition of thermal and visual images of potholes
under various conditions and the application of augmentation techniques, followed by
the implementation of convolutional neural networks on the images. A comparison be-
tween the customized and pre-trained models revealed the best accuracy of 97.08% with
ResNet101. Ref. [83] implemented a novel method for pothole detection by integrating
images with mobile mapping point-cloud data. This method first detected the location
and 2D edge of a candidate pothole in the image. The point clouds were then used to
differentiate between potholes and patches by calculating the mean depth of the candidate
pothole. The geometric accuracy of the pothole extraction was evaluated using a simulation
experiment, showing that the mean size accuracy was ~1.5–2.7 cm.

Ref. [84] utilized existing DL methods to carry out a hotspot analysis on urban road
networks, highlighting pavement distress types and associated severities in terms of reme-
dial actions that were either necessary or not. Efforts were also made to outline approaches
to using the analysis for the continuous monitoring of pavement health. Damage detection
models were accurately able to highlight the location and assess distress severity. However,
the severity analysis was limited by human bias carried out during data annotation, rather
than post-detection employing mathematical calculations. To assess the workability of DL
models on Google Street View images, Ref. [85] implemented two classical DL frameworks
for pavement condition assessment on a customized labeled dataset. The images were man-
ually annotated, and the distresses were classified into nine categories, namely, reflective,
transverse, block, longitudinal, alligator, sealed transverse, sealed longitudinal, and lane
longitudinal cracking, along with potholes.

Ref. [86] developed stereo-vision techniques for the automatic identification of pot-
holes. Transfer learning-based DL methods for segmentation (Mask R-CNN) and localiza-
tion (YOLOv2) were also used for pothole detection, suggesting good precision results and
real-time applicability, respectively. Ref. [87] proposed a 2D vision-based pothole detection
method using two-stage CNNs that focused on the discriminative regions in the road
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instead of the global context. The approach was based on using two CNN subnetworks, a
localization network to find the regions likely to contain potholes based on heat maps and
a second CNN for classification, which feeds on the candidate regions from the localiza-
tion network. The experiments on the pothole dataset showed that the proposed method
achieved high precision and recall, and outperformed most existing methods. However,
this approach turned out to be expensive as the localization network added prior to the
classification increased the computational time.

To classify the road surface characteristics and destabilizations produced by pavement
distresses, and man-made obstructions, Ref. [88] proposed a DL approach to identify the
kinds of road surfaces and distinguish the stability events produced by potholes from
the stability events produced by other man-made structures or driver actions. A mobile
application was used to record the vibration and GPS information. DL models, such as
CNN, Long Short-Term Memory (LSTM), and Reservoir Computing were trained to identify
the types of road surfaces and different stability events. The models performed well with the
best accuracy of 85% for road surface classification and 93% for stability event classification
by the CNN. Ref. [89] extensively evaluated the performance of eight DL models on the
RDD2020 dataset [90], and presented a modified dataset based on the same. The study
recognized the single-shot detector (SSD-Inception V2), and faster R-CNN-Inception V2, as
the best road-damage-detection approach in terms of accuracy and image processing time.

Ref. [91] proposed a solution to detect dry and wet potholes using smartphone sensors
and camera images. Twelve different sensor values were collected and manually annotated
to perform pothole detection using ML algorithms. The captured images were examined
for potholes by applying Mask R-CNN and U-Net segmentation algorithms. Both sensor
and camera-based methodologies provided promising results. Ref. [92] proposed a RCM
system that can be integrated with road-damage acquisition systems and presented an
asphalt pavement dataset with over 45,000 instances of various distress types. RetinaNet
architecture with VGG16 as the backbone was used, promising a better performance than
other object detection models. The light memory footprint allows the model to have an
easy integration into mobile systems.

Ref. [93] presented an RCM method based on Faster R-CNN to recognize and locate
cracks, potholes, oil bleeding and dot surface autonomously. A total of 20 Faster R-CNNs
were trained and tested on 6498 pavement images, with the performance of the optimal one
having accuracy rates, recall rates and location errors of 90.4%, 89.1% and 6.521 pixels. In
comparison to the CNN and K-value method, the optimal Faster R-CNN located pavement
distresses with more precision [94] proposed a methodology for automatic pavement
image distress detection and classification using CNN models and a low-cost vehicle-
mounted high-definition camera. The pavement distress types were categorized as linear or
longitudinal crack, network crack, fatigue crack or pothole, patch, and pavement marking.
The detection rate and classification accuracy of the proposed approach with the trained
CNN model reached 83.8% over the test set. A sensitivity analysis was also carried out for
evaluating the different regularization techniques and data generation strategies.

Ref. [95] developed a DL model, RoadID, to detect multiple pavement distresses. The
distress dataset contained over 44 k images, 14 k damages, and 8 distress types—crack,
net, pothole, patch crack, patch net, patch pothole, hinged joint, and manhole. The model
successfully located and identified the pavement damages with a mAP of 85.94%. Ref. [96]
proposed a pothole detection method using a modified VGG16 (MVGG16) network as a
backbone for the Faster R-CNN. The key feature of the MVGG16 network was its ability to
capture more contextual information by increasing the dilation rate of the convolution. A
comparison of the performance of YOLOv5 and Faster R-CNN with different backbones
proved that the MVGG16 network as the backbone of the Faster R-CNN provides a better
mean precision and shorter inference time than using other backbones. Ref. [97] performed
a classification of the pavement cracks into longitudinal, transverse, alligator cracks and
potholes using the DL model YOLO v3 for the localization and detection of cracks with a
precision of 0.7 and an average IoU of 50.39%.
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In view of inadequate large-scale data in civil engineering projects, Ref. [90] presented
RDD2020 by extending the existing RDD2018 dataset using GAN-based data augmentation.
PG-GAN and Poisson blending were used to generate realistic road damage images, which
fared well in the visual Turing test. The pothole dataset was increased to 2000 images,
and DL methodologies performed reasonably well on the augmented dataset. Ref. [98]
proposed a DL methodology to automatically localize diseased areas in pavements using
a novel approach named the Iteratively Optimized Patch Label Inference Network. The
method involved training image patches obtained by slicing high-resolution images and
inferring the patch labels using an algorithm based on the label of the high-resolution
image. The authors also released a novel, large-scale RCM dataset, CQU-BPDD, involving
various pavement diseases.

Ref. [99] implemented a highly accurate pavement defect and cleanness inspection sys-
tem using a DL-based framework in the pavement-sweeping robot Panthera. A lightweight
DCNN model was developed and trained on 6000 pavement defect and garbage images,
which took approximately 132.2 milliseconds for detecting both pavement defects and
garbage. Moreover, the geotagging of the pavement defects helped in mapping the defects.
In their work, Ref. [100] suggested that pothole detection categorized on specific road
types produced better results. The proposed model first classified the road surface as
asphalt, unpaved and paved using a CNN algorithm, followed by three YOLO v3 models,
respectively, for different road surfaces to detect potholes. Public datasets were used for
training, and augmentation was performed to improve the model accuracy. The authors
went a step further by geotagging the images during detection and updating a database to
mark the potholes on maps’ pothole tracking. The geotagged images were used to identify
the street and keep an account of distress conditions in that area.

Ref. [101] presented a CNN-based pothole detection method on a small dataset and
evaluated the performance of Faster RCNN with YOLOv3. As per the results, Faster
RCNN performed better than its counterpart. The accuracy of Faster RCNN was further
improved by integrating it with feature extraction using VGG16. The dataset was also
increased using augmentation techniques to achieve a better performance. Ref. [102]
compared and evaluated various DL object-detection techniques for damaged pavements
to detect potholes. The Kaggle and RDD2020 datasets were used for comparison, and it
was concluded that YOLOv4 performed the best with a mAP of 0.535. Ref. [103] proposed
a CNN-based approach for the automated detection of pavement distresses using images
collected from smartphones. The distresses were classified into six categories [90]. The
system demonstrated a practical efficiency and detection rate with more than 80% accuracy.
Ref. [104] implemented the YOLOv3 DL algorithm for pothole detection with a mAP of
65.65% on 416 × 416 pixel images. The detected potholes were logged, and their locations
translated for visualization on Google Maps using Google API.

Ref. [105] studied three YOLO object-detection frameworks to evaluate the best per-
formance for real-time pothole detection. The experiment was conducted on a dataset
of 665 images of 720 × 720 resolution using YOLOv4, YOLOv4-tiny, and YOLv5. It was
confirmed that YOLOv4-tiny was the best fit for pothole detection with a mAP of 78.7%.
Ref. [106] implemented a single-stage object detector called RetinaNet to detect and classify
fatigue, longitudinal, and transverse cracks having different severity levels using an auto-
mated road-scanning vehicle with two cameras. The authors declared that the accuracy of
detection and classification was highly dependent on the amount and quality of training
images, and the detection error exponentially decreased with an increase in the number of
training images. The trained network model achieved a detection accuracy of 84.9% on
images annotated with a crack type and severity level, while achieving an accuracy of 89.1%
when only considering the crack type. Ref. [107] proposed a novel Faster R-CNN approach
to localize and classify the cracks and damages in pavements. The Faster R-CNN approach
used pre-trained models, such as VGG16 and ResNet152. A dataset of 3533 images was
manually collected and categorized into alligator crack, linear crack, nonlinear crack, dam-
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age and non-crack image. The overall accuracy of the model with VGG16 was observed to
be 87%, while with ResNet152 was 90%.

UAV-Based Data Acquisition

Ref. [108] designed a distributed platform for pavement damage detection using
drones and a multi-agent architecture PANGEA (Platform for Automatic coNstruction of
orGanizations of intElligent Agents). The YOLOv4 classifier was customized to achieve
promising results with an accuracy of 95%. The images acquired by drones used in the
dataset have been published for use by the scientific community. Ref. [109] implemented a
real-time drone-based DL model to detect the cracks and potholes in pavement images. The
method involved identifying the yellow lane of the road for drone-flight autonomous navi-
gation, while concurrently performing real-time road crack and pothole detection using the
robot operating system within the UAV. The CNN achieved an F1 score of 85.78 and 94.04
for cracks and potholes, respectively. Ref. [110] studied drone-flight settings for optimal
pavement image quality and provided an open dataset unmanned aerial pavement dataset
(UAPD) for distress analysis with six distress types. Three object-detection algorithms were
used to train and test the UAPD. The prediction performances of the three algorithms were
compared to YOLOv3 as the best, having a mAP of 56.62% and the ability to recognize
cracks in different environments, including shadows, trees, and pavement markings.

Smartphone-Based Data Acquisition

Ref. [111] prepared a large-scale road damage dataset with eight damage categories
using a smartphone installed on a car. The training and evaluation of a lightweight
CNN-based damage detection model on the proposed data set were undertaken, with an
assessment of accuracy and runtime speed on a GPU server as well as a smartphone. Finally,
the road damages were classified into eight types by applying the proposed object detection
method. The road damage dataset is a breakthrough dataset that standardizes and provides
a platform to researchers for the comparison and evaluation of state-of-the-art DL models.
However, the model used for road damage detection does not provide a high accuracy
for different classes of road damage. Ref. [112] proposed an IoT-based end-to-end system
named PotSpot for monitoring and mapping potholes. An Android application was built
to perform CNN-based pothole detection integrated with Google Maps API for a real-time
pothole-marked map. The performance of the model was evaluated on a real-world road
image dataset with an accuracy of 97.5%. Ref. [113] implemented a self-driving car model
that can avoid potholes using a vision-based CNN approach. The end-to-end approach
does not detect potholes as bounding boxes, but rather avoids potholes by predicting the
vehicle parameters for driving decisions and the automatic control of the car. The game
simulator was used to collect driving data and perform training and testing.

Thus, vision-based classification, segmentation and detection have largely contributed
to RCM, allowing distress detection, monitoring and analysis. Each of these DL methodolo-
gies has its own strengths and limitations, as summarized in Table 5. It is important to note
that data is an important consideration in determining the performance of DL models; thus,
various data augmentation techniques have been implemented to address class imbalance
issues and increase the dataset size for better training and evaluation. To facilitate the
research community in future endeavors, a list of openly available data sources has been
compiled, as illustrated in Table 6.
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Table 5. The advantages and limitations of DL methodologies in RCM.

DL Methodologies Advantages Limitations Accuracy

Classification

• Better than conventional ML
approaches in terms of
performance.

• Demands training on large
volumes of data.

• Very high-resolution images
subjected to stitched patches
with distresses. Thus, the
results are discontinuous
and have ambiguous
structural semantics.

• Ranges from 90–97%

Segmentation

• Performs pixel-level
classifications.

• Pixel-wise class assignment
allows an in-depth analysis
of an image.

• Helps in determining the
morphology of the distress.

• Demands training on large
volumes of data.

• Requires post-processing
algorithms to extract exact
and smooth shapes from
pixelated outlines.

• Results are prone to noises.
• Most of the studies seldom

focus on studying the
physical characteristics
associated with the defects,
such as width and length.

• Ranges from 70–99%.
• Higher accuracies

observed in single-class
segmentation problems.

Detection

• High accuracies in pavement
distress detection.

• Provide classification as well
as localization of defects.

• Allow the mapping
of defects.

• With technologies, such as
depth measurement systems
using LiDAR, and laser, and
point clouds, the
measurement of physical
characteristics of pavement
distress is possible.

• Demands training on large
volumes of data.

• Physical characteristics of
pavement distresses remain
a gap, when limited to 2D
data evaluation.

• Ranges from 70–97%.
• Higher accuracies

observed in single-class
object detection, when
compared to
multi-classification and
detection.

Table 6. List of the open-source databases on pavement images.

Reference Name of Database Type Number and Type of Images

[51] GAPs Asphalt 1968 grayscale

[90] RDD2019 Asphalt 26,336 RGB

[41] Crack500 Asphalt 500 RGB

[41] GAPs384 Asphalt 384 grayscale

[114] CrackTree200 Asphalt 200 grayscale

[115] Crack Forest Dataset Asphalt 118 grayscale

[116] AEL Asphalt 58 grayscale

[117] Deep Crack Concrete, asphalt 537 RGB

[55] GAPs v2 Asphalt 2468 grayscale

[116] AigleRN Asphalt 38 grayscale

[85] Pavement Image Dataset - 7237 RGB
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Table 6. Cont.

Reference Name of Database Type Number and Type of Images

[108] - Asphalt 1362 RGB

[44] - Asphalt 630 RGB

[95] RoadID Asphalt 44,532 RGB

[110] UAPD Asphalt 3151 RGB

[98] CQU-BPDD Asphalt 60,059 RGB

[69] EdmCrack600 - 600 RGB

[92] Road Surface Damage Asphalt 18,345 RGB

3. Future Research Directions

Endeavors have been made to bridge the gaps and successfully implement DL algo-
rithms in RCM using data acquired from sensors. In addition to the breakthrough results
attained by researchers in this field, there exist several challenges that are listed below:

• Quality and quantity are often considered as the keys to a balanced dataset and
contribute to high performance in DL models. However, in spite of data augmentation
techniques resulting in large pavement datasets [91], the performance of different
DL models is not satisfactory. Thus arises a need to quantify the size of multi-class
samples in a dataset and identify appropriate augmentation algorithms and methods
to ensure a balanced, all-encompassing dataset.

• Standardization of distress types provides a comprehensive evaluation platform to
identify the best approach. However, it is observed that there exists no standard
nomenclature for pavement distress annotations in the publicly available datasets,
resulting in an ineffectual pavement distress analogy.

• DL models demand large storage space. The size of high-performing models and their
computational requirements pose a challenge to their usability in real-time scenarios.

To streamline the process above and beyond the existing challenges, the following
directive actions need to be brought into effect.

(i) Real-time processing: on-board processing on UAVs and other platforms demand a
lightweight though efficient detection model for the real-time assessment of pavements.
There is a need to develop computationally reasonable and cost-effective models that can
be deployed on sensor platforms to provide prompt results and avoid processing delays.

(ii) Data standardization: with large amounts of work being conducted in the de-
velopment of a pavement management system, there is a need to standardize the data
requirements to benefit cumulatively from the contributions made by the research com-
munity in the field. Data regulations can ensure a global collaboration towards a common
goal, resulting in a robust solution to the problem.

(iii) Characterization of distresses: the autonomous detection of distresses has paved
the way beyond the limitations faced by conventional systems. However, a step further
in this direction that quantifies the extent of damage can help agencies to prioritize the
regions demanding immediate attention. Thus, the physical characterization of distresses
can streamline the evaluation system by working towards a cohesive solution.

(iv) Crowdsourcing platform: with data no longer being a limitation and ease of access
to technology, a crowdsourcing platform can be developed for reporting distresses. This
will add to the collective database and a robust system that can recognize and report the
different distress types.

(v) Multidisciplinary research: civil engineers, computer scientists and data analysts
can come together by contributing their expert domain knowledge to build an exhaustive
distress evaluation system. A proper understanding of the pavement structures and
their distresses can contribute to high-quality data resources and help in designing high-
performance DL models.
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(vi) High computing resources: DL models are data hungry and need high-performance
computing resources. Cloud Computing and Edge Computing resources, including
Internet-of-Things sensors, 5G and 6G, can be instantly provisioned with the ability to scale
up and down. This will also allow systematic computing on a long-term basis devoid of
memory and compute resource limitations.

(vii) Integrated system: innovation in system integration is another area on which
research needs to be focused. The end-users are mostly government agencies and can
benefit more from a package that delivers an end-to-end solution.

4. Conclusions

In this paper, the existing research work in RCM using next-generation sensors and
AI methodologies was extensively reviewed and compared. The existing approaches are
evaluated based on the data acquisition platforms under various AI approaches, especially
DL for classification, segmentation and object detection. Data acquisition systems, which
are a combination of non-intrusive sensors and their platforms, are at the center of the
RCM system and involve the collection of 1D data, 2D visual data or 3D depth data. Every
platform has its own advantages and limitations and complements each other’s usability.
For the tasks involving a simple classification of distresses, RGB sensors are a good option,
while for a detailed study involving the various characteristics of distresses, LiDAR, laser,
thermal or GPR sensors can be used. It is also necessary to appreciate the value and
importance of data, along with the need to understand with clarity the definition of data.
Whether the problem deals with classification, detection, or localization in RCM, at the
core of every DL vision algorithm is a large collection of labeled images. Thus, another
important step is the data annotation of collected data as ground truths, a crucial step in
determining the accuracy of any DL model.

Developing DL models that accurately identify and characterize pavement distress
is a challenging task. Overall, the CNN-based DL classification models show very high
accuracy in detecting the presence or absence of multiple pavement distresses, and are
better than conventional computer vision approaches in terms of performance; however,
they fail to specify the location of distresses and thus lose their applicability in real-time
scenarios. Over the course of time, CNN algorithms involving intelligent techniques to
extract pavement distress features, such as transfer learning, pre-pooling layers, parallel
CNNs, multi-stage CNNs, multi-source sensors, and IPTs integrated with CNNs, have been
adopted to improve the existing performance of the DL classifiers.

Segmentation, which performs pixel-level classification employing CNNs, is another
approach used in pavement distress analysis and can be used to extract the morphological
characteristics of the distresses. However, not much work has been conducted in retrieving
the physical characteristics of pavement damages, attributed to noisy post segmentation.
Different approaches, such as connectivity maps and GANs, are being used to enhance
segmentation outputs. Extensive work is being conducted in this area to precisely measure
distress dimensions in terms of pixels; however, measurement accuracy, a decisive factor in
determining the distress severity, is a contentious issue faced by many researchers.

Distress detection that involves classification and localization shows good results with
2D data and promises detailed analysis with 3D data, but not much work related to the
measurements of distresses has been undertaken in this area. The detection of pavement
damages helps in localizing the defects and has led many researchers to overlay this infor-
mation on maps for navigation purposes. Innovative methods, such as thermal imaging,
point cloud data, stereo-vision analysis, location-aware CNNs, mobile applications and
UAV-based models for real-time assessment, to name a few, have been applied by many
researchers to enhance the performance of existing CNN models. It has also been observed
that CNN models have achieved a high performance in localizing distresses as a single
class, when compared to localizing distresses under various classes. The performance of
DL algorithms with advanced contributions from the scientific world and standardizations
will continue to validate the use of DL approaches in the field of RCM. CNNs are currently
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the most reliable method to monitor the pavements for distresses, and the further integra-
tion with innovative technologies, affordable sensors and platforms shall encompass the
futuristic, fully automated RCM systems.
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Abbreviations

AI Artificial Intelligence
DCNN Deep Convolutional Neural Network
DL Deep Learning
FCN Fully Convolutional Network
FOV Field of View
GAN Generative Adversarial Network
GPR Ground Penetrating Radar
GPS Global Positioning System
IoU Intersection over Union
IPT Image Processing Technique
IRI International Roughness Index
LiDAR Light Detection and Ranging
mAP Mean Average Precision
ML Machine Learning
RCM Road Condition Monitoring
RDD Road Damage Dataset
R-CNN Region Convolutional Neural Network
RF Random Forest
SVM Support Vector Machine
UAV Unmanned Aerial vehicle
YOLO You Only Look Once
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