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Abstract: Vigilance level assessment is of prime importance to avoid life-threatening human error.
Critical working environments such as air traffic control, driving, or military surveillance require the
operator to be alert the whole time. The electroencephalogram (EEG) is a very common modality
that can be used in assessing vigilance. Unfortunately, EEG signals are prone to artifacts due to
eye movement, muscle contraction, and electrical noise. Mitigating these artifacts is important for
an accurate vigilance level assessment. Independent Component Analysis (ICA) is an effective
method and has been extensively used in the suppression of EEG artifacts. However, in vigilance
assessment applications, it was found to suffer from leakage of the cerebral activity into artifacts.
In this work, we show that the wavelet ICA (wICA) method provides an alternative for artifact
reduction, leading to improved vigilance level assessment results. We conducted an experiment in
nine human subjects to induce two vigilance states, alert and vigilance decrement, while performing
a Stroop Color–Word Test for approximately 45 min. We then compared the performance of the ICA
and wICA preprocessing methods using five classifiers. Our classification results showed that in
terms of features extraction, the wICA method outperformed the existing ICA method. In the delta,
theta, and alpha bands, we obtained a mean classification accuracy of 84.66% using the ICA method,
whereas the mean accuracy using the wICA methodwas 96.9%. However, no significant improvement
was observed in the beta band. In addition, we compared the topographical map to show the changes
in power spectral density across the brain regions for the two vigilance states. The proposed method
showed that the frontal and central regions were most sensitive to vigilance decrement. However, in
this application, the proposed wICA shows a marginal improvement compared to the Fast-ICA.

Keywords: vigilance assessment; noise; feature extraction; dimensionality reduction; thresholds;
wavelet transform; independent component analysis

1. Introduction

Vigilance level assessment is of paramount importance to prevent human failure in
different work environments [1]. Vigilance assessment in real-time is very important to
maintain high cognitive efficacy and avoid human error [2,3]. In real-life applications,
it was observed that workload, stress, time-on-task, and drowsiness are major factors
that contribute to vigilance decrement [3–5]. Researchers have reported that maintaining
vigilance in a stressful environment requires hard mental work [2]. The performance of
individuals in given tasks significantly decreased with time [6]. According to a recent
survey [7], 74% of European drivers experience fatigue when they are behind the wheel,
which could lead to accidents. The case was similar for drivers in North America (69%),
Africa (64%), and Asia-Oceania (53%).

There are several methods to assess vigilance: subjective, behavioral, and objective
assessment methods [8]. Assessing vigilance using the objective method is better than
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the other two methods as it helps in evaluating the operator’s mental state while per-
forming a task as a function of time. Many studies have proposed and designed new
objective methods for vigilance assessment. This includes methods such as heart rate
variability [9], galvanic skin response [10], pupil diameter, eye blink frequency [8], and
neuroimaging modalities [11]. All these modalities are considered useful in cognitive
workload assessment, yet some limitations may reduce the assessment reliability.

One of the modalities used for vigilance assessment is the electroencephalogram (EEG).
The EEG possesses several advantages as it is non-invasive, less expensive, and safe for
long-term monitoring [12,13]. A study in [14] compared the detection accuracy using
subjective ratings and EEG-based methods. The study examined the workload using EEG
signals at various levels of workload. The entropy, power, and wavelet coefficients were
obtained from the signal. The EEG signal performance outperformed the self-ratings with
an accuracy of 98% for the differentiation between seven load levels, in contrast to 31% for
the self-rating. Another study [15] has utilized the EEG to detect fatigue for high-speed
train safety by tracking the driver’s vigilance level with a wireless EEG. The study achieved
a classification accuracy of 90.70% for driver vigilance detection using a support vector
machine classifier.

Although the EEG has a high temporal resolution, it is usually contaminated by un-
desired artifacts [16]. Artifacts are either well-localized in frequency, which impacts the
whole-time signal, or may appear in a narrow temporal segment with an effect on the origi-
nal frequency spectrum [17]. In particular, EEG artifacts may be due to the measurement
devices or to human physiology [18]. The artifacts raised from the measurement devices
are the results of power line interference, faulty electrodes, or high electrode impedances.
These types of artifacts can be avoided by utilizing good practices in circuit design and
experimental procedures. Meanwhile, physiological artifacts such as eye movements, eye
blinks, and cardiac and muscle activity remain a challenge to be removed. The presence of
artifacts makes the analysis of the EEG difficult for clinical evaluation [18]. Hence, extensive
preprocessing is a very important step for mining EEG data [19]. EEG preprocessing mostly
focuses on bad channel/epoch identification and removal. In addition, referencing and
applying high-pass filtering is a key step [20].

Classic filtering of artifacts can enhance the quality of EEG signals, but artifact re-
moval still requires some advanced signal-processing methods. Independent Component
Analysis (ICA) is a very effective method for removing physiological interference. It is
well established and helps in removing artifacts and enhancing the primary brain com-
ponents [21]. A variety of pipeline-type toolboxes that are used for artifact detection and
removal are available, such as the EEGLAB toolbox [22]. For example, ADJUST (automatic
EEG artifact detector based on the joint use of spatial and temporal features) [23], utilizes
ICA to cancel features that are associated with various stereotypical artifacts, such as eye
blinks, eye movements, and discontinuities. On the other hand, the FASTER (fully auto-
mated statistical thresholding for EEG artifact rejection) pipeline [24] employs compound
statistical thresholding and ICA to remove bad channels/epochs. Corrupted channels
are usually associated with eye movements, muscle artifacts, and white noise. A study
in [25] showed that the signal-to-noise ratio could be improved by applying the FASTER
pipeline and ordinary average referencing. The study also introduced a multistage robust
referencing scheme that deals with noisy channel-reference interaction. The preprocessing
pipeline used in [25] showed more uniform statistical behavior for various headsets and
experimental paradigms. Another study in [26] utilized a combination of ICA and discrete
wavelet transform (DWT) for artifacts cancellation on Electromyography (EMG) data to
overcome the limitations of individual methods. The proposed approach for the joint use
of both ICA and DWT showed very good ability in separating the original signal from the
artifacts, especially in the case of corrupted signals. In addition, a study in [27] investigated
the practicality of using a wavelet transform in preprocessing the EEG data. The study
achieved a high classification accuracy of 91.4% in detecting spikes using the Daub-20
wavelet function. Recent vigilance and emotion studies [28,29] used ICA with visual in-
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spection to eliminate noise, eye blinks, and movement artifacts. The studies identified and
removed 2-frontal ICs that were highly associated with artifacts and reconstructed the rest
of the ICs to form the cleaned EEG signals. Another study in [30] developed the Automagic
standardized preprocessing pipeline to assess all currently available preprocessing methods
and examine the effect of applying combinations of preprocessing approaches on EEG data.
The Automagic method showed that using algorithms to detect channels associated with
artifacts in combination with a multiple artifact rejection algorithm, which is ICA-based, is
very effective in artifacts rejection.

This work aims to investigate the accuracy of vigilance level assessment obtained using
different preprocessing methods such as ICA and wICA. The preprocessed EEG signals are
then used to classify the cognitive vigilance levels. The power spectral density was the main
feature extracted from the EEG recording and utilized for the vigilance level assessment by
employing five different classifiers: K-Nearest Neighbors (KNN), Discriminant Analysis
(DA), Naive Bayes (NB), Decision Tree (DT), and Support Vector Machine (SVM). This
paper is structured as follows: Section 2 covers the methodology and Section 3 presents the
features extracted from the EEG signal. Next, the results and the discussion are covered in
Sections 4 and 5, respectively. Finally, the conclusions are added in Section 6.

2. Methodology
2.1. Participants

In this study, nine healthy volunteer students from the American University of Sharjah,
aged 24.5 ± 5.5 years, were enrolled in the experiment. All participants met the predefined
inclusion criteria where they have normal hearing, normal or corrected-to-normal vision,
no history of psychiatric or cognitive disorders, no symptoms of drug addiction or abuse,
and no intake of long-term medications. Participants were informed of the experiment pro-
cedure and nature. Each participant gave their informed written consent. The experiment
was performed between 3:00 p.m. and 7:00 p.m. to reduce the effects of circadian rhythm
on vigilance levels. The experiment protocol was organized based on the declaration of
Helsinki and was accepted by the Institutional Review Board of the American University
of Sharjah (Protocol Code 19-513, date of approval 31 March 2020).

2.2. Vigilance Task

The nine subjects performed a 45 min computerized Stroop Color–Word Task (SCWT).
The SCWT was set to display six basic colors: blue, green, red, magenta, cyan, and yellow.
A word with a specific color was displayed each time and the answers that match the
color of the word were displayed in a random sequence. The displayed color word does
not represent its true meaning, in such a way that the correct answer is the color of the
word but not its meaning. For example, if blue is written in green, then green is the correct
answer [31]. The results were acquired from the participants by clicking the left mouse
button on one of the six color options that appeared on the screen. The experimental
difficulty was increased using random colors for the background of the answering options.
During the training stage, the reaction was recorded to determine the maximum time for
each trial. The participants received a feedback message of “correct “or “incorrect” for every
trial in addition to the recorded reaction time. Participants also received a feedback message
of “Time is up” when they consumed the time given for the trial without a response.

The EEG data recording followed several steps. First, the participants were asked
to fill out a Brunel Mood Scale questionnaire before starting the recording [32]. Second,
participants were asked to perform the task for three minutes to familiarize themselves with
the nature of the SCWT. Third, participants wore the EEG cap and performed the SCWT for
30 min. In addition, subjects were asked to reduce their head movements in order to obtain
good-quality EEG data. Finally, all participants performed the same questionnaires again.
Figure 1 shows the experimental protocol of the SCWT with a time window of 45 min [31].
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Figure 1. Experimental protocol (a) Stroop Color–Word Task (SCWT) presentation interface, and (b)
timing window. In the timing window, the plus sign on the black background is for the pre- and
post-baseline.

2.3. Experimental Setup and Data Acquisition

The experiment was performed in the Biomedical Engineering Laboratory at the
American University of Sharjah. The lab is a quiet place, where light and temperature
can be controlled. The EEG data were obtained using 64-Ag/AgCl scalp EEG electrodes
(ANT Neuro EEG system), at a sampling rate of 500 Hz. The impedance of each electrode
was reduced and maintained below 10 KΩ by applying an amount of conductive gel layer
between the electrode and the scalp. The AFz electrode was set as the system ground, and
the mastoid electrodes M1 and M2 were used to reference the rest of the electrodes, as
shown in Figure 2.
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2.4. EEG Data Preprocessing

Wavelet Analysis is a frequency representation that provides better temporal resolution
for the components with a high frequency, and better frequency resolution for the lower-
frequency components [33]. The Discrete Wavelet Transform (DWT) is very important
in providing the input matrix for the ICA approach. DWT works by decomposing the
signal into two phases known as the detail phase and approximation phase [34]. Applying
ICA directly would provide spectral improvement because of suppressing the typical
artifacts, but this suppression may lead to corrupting the spectrum of the underlying neural
activity. The proposed method, combining WT and ICA which we call wICA, allows us to
perform artifact removal when the recordings are non-redundant. In addition, it allows
us to perform artifact removal on a wider range of corrupted recordings. The Daubechies
DWT algorithm was applied to each channel of the multichannel recordings separately.
This algorithm has the ability to distinguish the finer details in the frequency domain
signal [35], in addition to achieving high classification accuracy in many applications [36].
Prior to wICA, the EEG signal was notch-filtered at 50 Hz to remove the power line
interference [29,37,38], and bandpass-filtered between 0.1 and 40 Hz [39,40]. The wICA
method includes the following steps:

1. In standard ICA analysis [26,31], the recorded EEG signal matrix, X(t), is modeled by
the source components sT = [s1, s2, . . . , sn], where n is the source number, which are
assumed to be statistically independent, mixed using the mixing matrix M to produce
the EEG signals:

X(t) = Ms(t) (1)

After identifying the artifact components, they can be set to equal zero. Artifact
removal will be followed by ICA signal reconstruction. The reconstructed EEG is:

X̂(t) = Mŝ(t) (2)

2. In wICA, the artifact components are identified and subtracted from the signal to keep
the neural components, unlike the conventional ICA artifact removal which sets all
artifact components to zero. Let us assume an independent component s1(t) which is
a combination of a high amplitude artifact f (t) and a low amplitude neural signal l(t)
such that:

s1(t) = f (t) + l(t) (3)

3. The features of the signals f (t) and l(t) can be estimated. The artifact f (t) has high
power that is localized in both time and frequency domains, whereas l(t) has low
power. Then, by estimating f (t), we can subtract it to reconstruct clean data as follows:

x̂j(t) = aj1(l(t)) (4)

where aj1 is the corresponding weight from the mixing matrix M, and the artifact-free
signal x̂j(t) is the ICA-corrected EEG signal.

4. To separate the artifact from the neural information in s1, we apply wavelet transfor-
mation on the independent components to obtain the wavelet coefficients {W(j, k)}si

,
where j and k are integers that play a role in the decomposition level and the temporal
localization. The wavelet coefficients are then thresholded by setting the coefficients
more than a certain threshold to zero. This way, the coefficients representing the
artifact are removed. Thresholding was optimized following the techniques found
in [39]. The threshold value, T is defined by T =

√
2 log Nσ, where N is the length of

the data segment to be processed, and σ2 is the estimator of the variance of the neural
wideband signal part.

5. The remaining wavelet coefficients are then used to reconstruct the independent
components s1, which are predominantly neural signals. Steps 3 to 6 are repeated for
all independent components.
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6. We then construct the wICA-cleaned EEG using the demixing matrix and the inde-
pendent components:

X̂(t) = M[l1, l2, . . . , ln](t) (5)

3. Feature Extraction

Vigilance level reflects the interaction between brain regions that helps us in under-
stating the cognitive process in the brain. First, we defined two vigilance states for the
subjects within the 30 min EEG recordings: the alert state, including the first 5 min of EEG
signals, and the vigilance decrement state, which refers to the last 5 min of EEG signals
within the SCWT. The criteria for this decision were based on behavioral data analysis as
reported in our previous study [28]. Second, the clean EEG signals were analyzed using the
fast Fourier transform method to extract the Power Spectral Density (PSD). We extracted
the PSD across different EEG frequency bands, namely the delta (0.1–4 Hz), theta (4–8 Hz),
alpha (8–13 Hz), and beta (13–30 Hz) [40] bands. In this context, the PSD was calculated
using a moving window of two seconds within each of the five-minute windows. The total
PSD features extracted from the two vigilance states per subject correspond to 62 electrodes
with 300 data points each. These features were then used as input to the classifiers.

Various classification methods are used in machine learning, including Naive Bayes
(NB), Random Forest, K-Nearest Neighbors (KNN), and Decision Tree (DT). Support vector
machine (SVM) classifiers are also considered effective in binary classification. We have
employed five classifiers, namely KNN, Discriminant Analysis, Naive Bayes, Decision
Tree, and SVM to distinguish between the two vigilance levels. The selected classifiers are
widely recognized in the field of brain–computer interfaces for being fast and reliable [28].
KNN is known for training in a fast manner, SVM provides high accuracy, and Naive
Bayes is fast and can be used to make real-time predictions [41]. We are employing five
different classifiers to compare their performance to classify vigilance levels. Our proposed
approach can also help researchers in selecting classifiers when dealing with EEG data for
vigilance assessment.

Figure 3 illustrates the framework of data processing from the data collection, prepro-
cessing, feature extraction, and vigilance level assessment using the five different classifiers,
showing the steps of the preprocessing applied separately to two data sets. One dataset
was ICA-cleaned, and the other one was wICA-cleaned.
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4. Results
4.1. Artifact Removal and PSD

The EEG was recorded during the experiment for 30 min; two windows of the record-
ing were extracted, with a length of 5 min each. The first five minutes of the recording
represent the alertness state, and the last five minutes represent the vigilance decrement
state. The data preprocessing was applied only on the windows of interest. To illustrate
the preprocessing of the EEG data using wICA, we have plotted the raw EEG data, the
ICA-cleaned EEG data (using the Fast-ICA algorithm [39]), and the wICA-cleaned EEG data
for two different time segments, in Figure 4. The first and second time segments are for 4 s
and 1 s recordings, respectively. FastICA leads to underestimated neural activity, whereas
the wICA technique preserves the power and the characteristics after artifact suppression.
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4.2. PSD

A comparison of the Power Spectral Density (PSD) using a topographical map was
made for the subjects under the two mental states, alert and vigilance decrement, for
each of the four frequency bands. Figure 5 shows the topographical map created using
the ICA-cleaned EEG data, and Figure 6 shows the topographical map created using the
wICA-cleaned EEG data.

The SWCT requires high attention in recognizing colors in addition to a strong memory
for faster responses due to less reaction time. Figures 5 and 6 highlight the change in the
PSD across the areas of the brain between the alertness states and vigilance decrement,
for both the ICA- and wICA-cleaned EEG. The occipital and central brain regions were
most sensitive to vigilance decrement. Note that the occipital brain region is linked to the
processing of visual activity, memory formation, distance, and depth perception, in addition
to being responsible for color determination [42]. The central brain region is responsible
for information processing [42]. By comparing Figures 5 and 6, we can see that the wICA-
cleaned EEG showed higher sensitivity to the task. We can also see that with increasing
time spent on the task, more regions appeared to be sensitive to vigilance decrement.
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4.3. Classification

Data from both 4 and 1 s windows were extracted from the ICA- and wICA-cleaned
EEG for alertness and vigilance decrement. The EEG data were classified in a subject-
dependent fashion, where a randomized 10-fold cross-validation approach was performed
using features extracted both from the wICA-cleaned and Fast-ICA-cleaned EEG data. In
the 10-fold cross-validation, each of the EEG feature sets was divided into ten subsets. Nine
of these subsets were used for classifier training, whereas the last subset was used for the
estimation of classification accuracy, sensitivity, and specificity. This process was performed
ten times such that all subsets had an opportunity to be used as testing data. We tested
five different classifiers (KNN, Discriminant Analysis, Naive Bayes, Decision Trees, and
SVM). Tables 1 and 2 compare the classification accuracy, specificity, and sensitivity of the
Fast-ICA- and wICA-cleaned EEG for the two cognitive states. Table 1 shows the results
for the Fast-ICA-cleaned EEG data. Here, all bands showed similar classification accuracy
for the vigilance assessment when the Discriminant Analysis classifier was utilized. When
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other classifiers are used, the Beta band outperforms all other EEG frequency bands. Table 2
shows the results for the wICA-cleaned EEG data. It shows higher classification accuracy
across all bands when compared with Table 1. Similar to Table 1, Table 2 also reports
the classifier performance with respect to the frequency bands. It is worth noting that
Discriminant Analysis outperformed the other classifiers for both the ICA-cleaned EEG and
the wICA-cleaned EEG vigilance level classification. Discriminant Analysis also showed a
slightly better classification accuracy in Table 1 compared to Table 2.

Table 1. The accuracy of subject-independent Fast-ICA-cleaned EEG-based vigilance classification.

Classifier
Band

Delta Theta Alpha Beta

Accuracy

SVM 95.4 ± 1.8 96.4 ± 1.7 96.0 ± 2.5 97.5 ± 1.8
KNN 91.6 ± 3.4 91.7 ± 3.4 89.3 ± 5.3 92 ± 5.6
DT 84.0 ± 5.7 85.5 ± 5.5 84.8 ± 4.6 88.7 ± 6.6
DA 99.3 ± 0.2 99.5 ± 0.4 99.5 ± 0.4 99.4 ± 0.3
NB 80.0 ± 5.7 82.3 ± 6.6 82.6 ± 7.6 87.3 ± 7.3

Specificity

SVM 94.5 ± 2.4 95.5 ± 2.0 96.6 ± 2.4 97.0 ± 2.5
KNN 91.8 ± 4.1 93 ± 3.2 91.5 ± 5.6 92.1 ± 7.2
DT 85.0 ± 5.6 85.4 ± 4.7 83.6 ± 4.9 88.7 ± 6.4
DA 99.3 ± 0.5 99.4 ± 0.7 99.5 ± 0.5 99.5 ± 0.3
NB 79.3 ± 4.1 83.7 ± 5.1 80.3 ± 11 87.9 ± 5.7

Sensitivity

SVM 96.3 ± 2.5 97.3 ± 2.1 95.5 ± 3.9 98.1 ± 1.4
KNN 91.4 ± 5.1 90.5 ± 5.6 87.2 ± 7.4 92.2 ± 7.5
DT 83.0 ± 5.6 85.5 ± 4.7 85.9 ± 4.8 88.7 ± 6.4
DA 99.3 ± 0.3 99.6 ± 0.4 99.6 ± 0.4 99.4 ± 0.9
NB 80.7 ± 9.5 81.8 ± 9.6 84.8 ± 7.7 86.7 ± 9.5

Table 2. The accuracy of subject-independent wICA-cleaned EEG-based vigilance classification.

Classifier
Band

Delta Theta Alpha Beta

Accuracy

SVM 96.1 ± 2.6 97.6 ± 0.8 97.0 ± 1.3 98.3 ± 0.8
KNN 92.2 ± 4.8 92.1 ± 4.5 90.5 ± 3.8 95.4 ± 4.0
DT 85.1 ± 7.4 86.4 ± 5.3 82.5 ± 6.2 89.2 ± 5.4
DA 99.3 ± 0.2 99.4 ± 0.1 99.4 ± 0.2 99.3 ± 0.5
NB 82 ± 6.8 85 ± 6.8 82.9 ± 8.5 89.3 ± 6.0

Specificity

SVM 95.8 ± 3 97 ± 1.7 97.2 ± 1.5 98.2 ± 0.8
KNN 93.7 ± 5.5 93.9 ± 4.8 92.6 ± 4.2 96.2 ± 4.5
DT 85.4 ± 7.1 87.2 ± 6.1 82.4 ± 6.5 89.3 ± 4.9
DA 99.3 ± 0.2 99.5 ± 0.3 99.5 ± 0.3 99.6 ± 0.3
NB 82.6 ± 8.6 85.3 ± 8.0 82.6 ± 12.5 91.6 ± 4.6

Sensitivity

SVM 96.4 ± 2.6 98.3 ± 0.6 96.9 ± 2.2 98.4 ± 1.4
KNN 90.7 ± 5.7 90.4 ± 5.7 88.4 ± 5.1 94.5 ± 5.5
DT 84.7 ± 8.1 85.7 ± 4.7 82.6 ± 6.6 89 ± 6.1
DA 99.2 ± 0.4 99.3 ± 0.2 99.3 ± 0.2 99 ± 1.0
NB 81.3 ± 8.1 84.7 ± 6.8 83.2 ± 9.6 87 ± 8.4
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Table 3 compares the vigilance assessment accuracy based on the power spectral den-
sity between our study and [28]. The comparison is between the three EEG preprocessing
approaches used for the vigilance assessment: wICA and Fast-ICA were adopted in this
study, and traditional ICA was used in [28]. The accuracies below are the results of the
SVM classification between alertness and vigilance decrement.

Table 3. The SVM classification accuracy for each EEG frequency band.

EEG Frequency Band Delta Theta Alpha Beta

wICA -SVM classification accuracy 96.1 ± 2.6 97.6 ± 0.8 97 ± 1.3 98.3 ± 0.8

Fast ICA-SVM classification accuracy 95.4 ± 1.8 96.4 ± 1.7 96.0 ± 2.5 97.5 ± 1.8

ICA-SVM classification accuracy [43] 87.9 ± 9.5 82.8 ± 12.8 83.3 ± 13.4 96.9 ± 2.2

5. Discussion

In this paper, we have investigated vigilance level assessment using two differently
preprocessed EEG data, where the preprocessing approach combines both the independent
component analysis and the wavelet transform. Our study used both the ICA and the wICA
techniques and investigated the performance of five different classifiers for classifying
vigilance levels. Our study has demonstrated that the wICA-cleaned EEG showed higher
accuracy for vigilance assessment compared with the ICA, as seen in Tables 1 and 2. The
accuracy was higher across all classifiers except the Discriminant Analysis, which showed
slightly higher accuracy, as seen in Table 1. The reason may be that the algorithm we have
utilized works by subtracting the artifacts instead of performing ICA artifact suppression.
Discriminant Analysis provided the highest accuracy among all classifiers, followed by
the SVM classifier. It is worth mentioning that [28] has also compared different classifiers
for vigilance assessment based on power spectral density, and SVM surpassed the other
classifiers for a subject-dependent classification. Many studies have utilized EEG for
vigilance assessment. Refs. [44–46] showed that performance decrement was associated
with a decrease in the level of vigilance. These studies have reported an increase in theta-
and alpha-band activity and a decrease in beta-band activity for the EEG power spectral
density. On the other hand, Refs. [47–49] discussed the brain regions that are more sensitive
to the transition period from wake to sleep; these studies have reported that major changes
were detected in the posterior regions of the brain (cortical, parietal, and occipital scalp
localization). Studies [50–52] reported that the alpha band plays a significant role during
vigilance decrement, which was mostly observed in the occipital cortex. Our results using
wICA demonstrated that the occipital and central brain regions were most sensitive to
vigilance decrement, which complies with what has been reported in previous studies.

Different preprocessing techniques have been utilized for cognitive workload assess-
ment using EEG data. A study in [15] has used a wavelet de-noising method for the
EEG data preprocessing with the target of vigilance assessment based on the power scalp
topographies classified using the SVM classifier, and reported a classification accuracy of
90.70% for fatigue detection. The authors of [53] employed a conservative Hampel outlier
filter to reduce the occasional impulse-like artifact in the EEG signal. This study presented
a user-state detection system in an active virtual reality environment based on a fourfold
classification. The EEG spectral amplitudes for the alpha and beta frequency bands showed
classification accuracy reached 81.1% for different task levels. In [54], the authors adopted
the Principal Component Analysis (PCA) algorithm for artifact removal and reduced the
signal dimensionality for the purpose of vigilance assessment. The assessment of vigilance
was based on the power spectral density and was classified by an SVM classifier. The
PCA appeared to help in achieving higher accuracy in the alpha and beta bands, but only
a few of the nine subjects showed a significantly high classification accuracy. Study [28]
targeted vigilance assessment based on the power spectral density and classified by the
SVM classifier. The authors used traditional ICA for cleaning the EEG data, whereas we
have employed both Fast-ICA and wICA cleaning. Using an SVM classifier, we were able
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to outperform this study, showing higher classification accuracy for all frequency bands,
as presented in Table 3. Even though the accuracy did not increase significantly between
the ICA and wICA techniques, the wICA algorithm is a fully automatic wavelet-based
component correction method, in addition to being an important step towards the develop-
ment of accurate, reliable, and automatic EEG artifact-removal methods. Utilizing wICA in
different cognitive workload assessments could help in enhancing classification accuracy.

For various applications, it is necessary to detect and mitigate EEG artifacts. These
artifacts, if not removed, could cause a significant discrepancy in the results, e.g., in brain
source localization [55]. Developing an algorithm to mitigate these artifacts properly is
very important. Therefore, preprocessing algorithms that eliminate the artifacts without
removing any activity of interest are considered effective preprocessing approaches. Many
efforts in EEG preprocessing have been made by employing the ICA signal decomposition.
Despite the fact that ICA is considered an important preprocessing approach, its results can
be enhanced [56]. It is worth noting that ICA-cleaned EEG may indeed reduce the spectral
presence of typical artifacts [57], but they may also cause the distortion of cerebral activities
in EEG recording [58]. wICA enhances ICA preprocessing by improving the quality of
artifact suppression and enhancing the performance of ICA.

The wICA approach helps in improving the common ICA artifact suppression method.
It has been demonstrated in many studies using independent component analysis that ICA
is time-consuming as it may be dependent on manually choosing the ICs that are related to
artifacts with a visual inspection. The ICA approach may also suffer from being subjected to
human bias and it may not be considered effective for real-time applications [59]. Whether
the ICs rejection occurs manually or automatically, ICA does not guarantee that no cerebral
activity is leaked into the rejected ICs. If any cerebral activity is leaked into the rejected
ICs, this approach will lead to the loss of some desired information [59]. A study [60]
showed that ICA could be successfully employed in artifact removal only if the signals
have a small degree of non-Gaussianity. The study has also demonstrated that when
using ICA, if the number of recordings is less than the total number of signal sources
(including artifact sources), ICA will only be able to separate the components with relatively
high magnitude. ICA also has some unavoidable issues, for example, the order of the
independent components will change with every estimation and cannot be determined
beforehand [60]. The authors of [61] also discussed the variability associated with ICA
uncertainty and how it influences the results of the clean EEG. The ICA approach is also
dependent on reducing higher-order statistical dependencies. It was shown in [62] that,
given the same data, ICA decompositions alter with each trial and return different solutions.

The joint use of a discrete wavelet transform besides ICA enhances the artifact sup-
pression in the EEG signal. This approach uses the wavelet thresholding to conserve the
time-frequency structure of the artifacts by denoising the demixed ICs. The results allow us
to recover any cerebral activity that may have been leaked into the ICs related to artifacts.
In [39], the authors compared EEG preprocessing using both ICA and wICA techniques.
The study showed an increment in the power density amplitude for the wICA method
compared with ICA alone. The same study showed that both ICA and wICA preprocessing
techniques would suppress the ocular and heart artifacts, but the wICA method is superior
in preserving the EEG cerebral parts compared with the ICA method. In [63], an improved
Fast-ICA algorithm was enlisted. The improvement included adopting the wavelet packet
energy spectrum for extracting the feature information in the separated samples. The
results showed that the improved Fast-ICA and wavelet packet energy method outper-
formed the classic Fast-ICA in convergence speed and separation effect, in addition to being
very effective in feature extraction. Studies [64,65] worked on extracting and classifying
motor unit action potentials for electromyography signal decomposition. The approach
utilized in the study included combining independent component analysis and a wavelet
filtering method for removing the power interference component from EMG recordings.
This technique appeared to be fast, robust, and took less time for the motor unit action
potential extraction than the traditional method.



Sensors 2022, 22, 3051 14 of 17

In line with this, our results demonstrate that the wICA method has outperformed the
ICA method. In the delta, theta, and alpha bands, the mean accuracy in wICA was 96.9%
whereas it was 84.66% using ICA. However, no significant improvement was observed
in the beta band. In addition, we compared the topographical maps to show the changes
in power spectral density across the brain regions for the two vigilance states. The wICA
method showed that the frontal and central regions were most sensitive to vigilance
decrement. However, in this application the proposed wICA has marginal improvement
compared to the Fast-ICA, which could be due to shift sensitivity, poor directionality, and
lack of phase information of the wavelet transform.

6. Conclusions

In this paper, we have shown that wavelet ICA can lead to improved classification
accuracy when applied to vigilance level assessment. The methods we have presented in
the paper are divided into two sections: first, applying an independent component analysis,
and second, applying a discrete wavelet transform. The joint use, termed wICA, provided a
better preprocessing output for the EEG signal. The wICA approach reduced the distortion
in the signal and, in addition, recovered a substantial neural signal that was lost within the
artifacts as shown in Figure 4. The wICA-cleaned EEG was used to assess vigilance based
on the mean power spectral density of the four extracted bands. The delta, theta, and alpha
bands showed high classification accuracy between the two mental states, alertness and
vigilance decrement. The classification was carried out using five different classifiers, where
Discriminant Analysis and SVM showed the highest classification accuracy. Topographical
maps were created using the PSD for both the ICA-cleaned and the wICA-cleaned EEG.
The maps showed that the frontal and central brain regions were most sensitive to vigilance
decrement. In addition, from Figures 5 and 6 we can see the color change in the cortical
map, which indicates that wICA removed the unwanted noise.
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