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Abstract: As LoRaWAN is one of the most popular long-range wireless protocols among low-power
IoT applications, more and more focus is shifting towards security. In particular, physical layer topics
become relevant to improve the security of LoRaWAN nodes, which are often limited in terms of
computational power and communication resources. To this end, e.g., detection methods for wireless
attacks improve the integrity and robustness of LoRaWAN access. Further, wireless physical layer
techniques have potential to enhance key refreshment and device authentication. In this work, we
aim to provide a comprehensive review of various vulnerabilities, countermeasures and security
enhancing features concerning the LoRaWAN physical layer. Afterwards, we discuss the impact of
the reviewed topics on LoRaWAN security and, subsequently, we identify research gaps as well as
promising future research directions.
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1. Introduction
1.1. Motivation

Within the last six years, LoRaWAN has evolved from its first specification (v1.0,
published in 2015) to a strong contender among low-power wide-area network (LPWAN)
technologies. During this time frame, LoRaWAN technology has boosted connectivity for
many applications, e.g., in agriculture, logistics, smart lighting and waste management.
Furthermore, the popularity and the availability of the underlying LoRa modulation
technology has initiated further development in research areas such as battery free back-
scatter communications [1], open-source network components, e.g., the chirpstack [2], and
enhanced medium-access strategies with increased throughput [3]. Recently, satellite-based
LoRaWAN communication links have also been demonstrated [4], which aim to pave
the way for operation without gateways, which is especially well-suited for LoRaWAN
employment in rural areas.

Despite the advances and rapidly gained popularity, the state of security in LoRaWAN
networks is still inherently imbalanced. On the backend side, the servers and their intercon-
nections can be flexibly secured and updated with the latest available software components,
such as public key infrastructure, virtual private network connections, secure protocols,
intrusion detection systems and firewalls [5]. Therefore, the frontend side of the network,
consisting of lightweight embedded nodes, typically implements only a fragment of the
available security features. Although the LoRaWAN specification gives definitions for,
e.g., authenticated network join procedures and session key derivations [6], further secure
development steps are left for the user to implement. Further obstacles might arise due to
dissimilar attack surfaces on the backend and on the frontend. For instance, distributed
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denial-of-service (DoS) and its countermeasures are well understood network security
concepts. However, DoS attacks targeted at LoRaWAN nodes, e.g., via reactive RF jamming,
are much harder to thwart. Finally, large scale employments of LoRaWAN with hundreds
of nodes might pose security management problems on the application layer, given that
a procedure for over-the-air updates for firmware patching is not defined in the current
LoRaWAN specification.

1.2. LoRaWAN Security

One of the major development goals of LoRaWAN is to lift the level of frontend
security to be on-par with the level of its backend security. To this end, several efforts
have been made to expose attack vectors in the protocol and at the LoRaWAN device level.
Shortly after the publication of the LoRaWAN v1.0 specification, security analysts were
able to identify vulnerabilities in the LoRaWAN medium-access protocol. For example, a
bit-flipping attack [7] allows an attacker to issue malicious modifications to an encrypted
payload, which enables tampering with, e.g., sensor values. Further analysis [8] indicated
shortcomings in replay attack protection for the network join procedure and the downlink
acknowledgement messages. These network layer vulnerabilities have been reviewed
earlier, in [9], where a more comprehensive description of the attacks can be found. More
recently, security issues on the physical layer have been reported as well. For instance,
by launching DoS attacks against LoRaWAN nodes, the device’s current consumption
is drastically increased, which leads to battery depletion. This kind of denial-of-sleep
attack [10] hse been reported for LoRaWAN, e.g., in [11]. On the wireless physical layer,
proof of concepts for triggered- and reactive-jamming attacks have been given [12], which
also play a significant role in wormhole attacks [13].

Next to studies involving vulnerabilities in LoRaWAN, research efforts have been devoted
to system hardening and to the development of novel protection mechanisms on the physical
layer, such as device authentication based on LoRa transmitter fingerprinting [14–18] and
wireless secret key agreement [19–21]. The core idea behind protection techniques on the
physical layer is to make use of existing physical components as building blocks to improve
security and trust. For instance, key agreement techniques can be utilized to refresh root
keys to enable secure communication. To this end, LoRaWAN is a well-suited target for
an approach such as the security functions of the protocol, i.e., encryption and message
integrity checks, that rely heavily on symmetric key cryptography. Further protection
topics involve jamming-detection [22,23] and jamming-prevention [24] mechanisms. Since
LoRaWAN is freely accessible and the monitoring of the network operation for security
incidents is left as the responsibility of the user, it is highly relevant to study ways to
improve the resilience of the wireless communication in LoRaWAN networks.

1.3. Related Work

Physical-layer-based security techniques have been widely studied for wireless tech-
nologies, including WiFi, ZigBee, Bluetooth. These techniques can be mainly categorized
into key generation and device authentication [25]. Key generation exploits the unique
and reciprocal characteristics of wireless channels as cryptographic keys. A comprehensive
review has been given in [26] and it has been widely studied for WiFi [27], ZigBee [28]
and Bluetooth [29]. Physical-layer-based device authentication relies on unique and stable
hardware impairments and exploits their features as device identifiers [30]. Any wireless
devices have such impairments, which result from the manufacturing process. Similar to
key generation, there have been many research efforts on leveraging hardware impairments
as fingerprints for WiFi [31] ZigBee [32], and Bluetooth [33].

During the past few years, several review papers have been published on LoRaWAN
security, of which many concentrate on basic security features and attack/defense methods.
For instance, in [9], the authors identify potential threats and countermeasures and deliver
recommendations for system hardening. In a similar vein, ref. [34] focused on applied
LoRaWAN security, where attacks and protection methods were identified from the per-
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spective of a real-world agriculture use case. Further, the authors of [35] compared security
features and issues between the LoRaWAN specifications 1.0 and 1.1, and subsequently
highlighted security needs for specification 1.1. The works aiming at more systematic threat
analysis include, firstly, [36], where an analysis on confidentiality, availability and integrity
along with relevant state-of-the-art works was given. Secondly, ref. [37] presented a com-
prehensive threat catalogue for LoRaWAN specification 1.1, which becomes useful while,
e.g., performing risk analysis of a LoRaWAN use case. Finally, a review of authentication
methods concentrating on light-weight techniques suitable for LoRaWAN devices was
presented in [38].

1.4. Novelty and Structure

As reported in the previous section, the state-of-the-art literature includes
review/survey papers with references to vulnerabilities and countermeasures on different
communication layers. Motivated by the scope of this paper, we reviewed the contents of
the surveys [9,34–38] regarding their presentation of physical layer security topics. As pre-
sented in Table 1, only works [9,34,37] delivered brief reviews on the relevant physical-layer
attacks and mentioned some countermeasures. Nevertheless, none of these works treated
these topics comprehensively and they also lacked discussion on wireless physical-layer
techniques. Therefore, it is of our interest to bridge this gap by presenting a consistent
review of the relevant physical-layer vulnerabilities and protection topics. For this review,
we have included articles from the major publishers (e.g., IEEE/ACM/Elsevier/MDPI),
which fulfill two main criteria: (1) the method/application involves LoRaWAN as a means
of communication, and (2) the security topic of the paper is strictly connected to the physical
layer (including both the device layer and wireless physical layer).

Table 1. Treatment of physical layer security topics in LoRaWAN security review papers.

Reference Year Physical Layer Attacks Physical Layer Countermeasures

[9] 2020 moderate moderate
[34] 2021 moderate moderate
[35] 2020 superficial -
[37] 2019 moderate moderate
[36] 2020 moderate superficial
[38] 2021 - -

This work 2022 comprehensive comprehensive

The rest of the paper is organized as follows. After giving a brief introduction to the
key components of LoRaWAN in Section 2, we move on to present the various physical
layer vulnerabilities in Section 3. Subsequently, the protection topics are given in Section 4,
after which we aim to deliver discussion points on LoRaWAN security and further research
steps in Section 5. Ultimately, we conclude the paper in Section 6.

2. LoRaWAN

This section covers different aspects of LoRaWAN: the physical layer, medium access,
the network structure, the packet structure and security features. The given background be-
comes useful while studying vulnerabilities and protection techniques in the later sections.

2.1. Network Topology

A LoRaWAN network consists of the following fundamental elements, as illustrated
in Figure 1: nodes, gateways, a network server, a join server and an application server.
The structure of a LoRaWAN network follows the star-of-stars topology, where nodes
are connected towards a central network server and an application server via multiple
gateways. Such settings can improve data throughput, as variable RF channel conditions
might temporarily become degraded on a single gateway.
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Figure 1. Overview of the LoRaWAN network architecture.

A LoRaWAN node initiates the network join procedure as well as taking care of
secure data transfer towards the servers. In between the server infrastructure and the
nodes, several gateways forward LoRaWAN data packets and MAC layer commands.
During LoRaWAN packet reception, a gateway decides between forwarding and packet
drop by inspecting the integrity of the received packet. Next to the LoRaWAN payload,
additional information such as a time stamp or metadata, such as a received signal strength
indicator (RSSI) value or a signal to noise ratio (SNR) value, are added to the forwarded
message. The link between a gateway and the servers can be implemented by any available
communication infrastructure (WLAN, 4G/5G, Ethernet). The network server (NS) handles
all the essential features on the network level, such as the frame authentication, responding
to MAC layer requests, the gateway selection for downlink messages and the data rate
adaptation for the nodes. The gateway selection is based on the ranking of the recorded
RSSI/SNR. Additionally, as a single LoRaWAN payload might arrive multiple times from
many gateways, the NS performs deduplication of the messages. The join server takes
care of the over-the-air activation procedure, during which a node is authenticated and
the sessions keys are derived. Finally, the application server is utilized to decrypt the
LoRaWAN messages and to store the payload data (and the metadata).

2.2. Medium Access

The LoRaWAN specification defines three modes of MAC layer operation, namely,
Classes A, B, and C. Depending on the needs of a LoRaWAN application, the mode for a
low-power operation (Class-A), for a lower latency (Class-B) or for a high data availability
(Class-C) can be selected.

In the Class-A operating mode, LoRaWAN nodes utilize the simple pure ALOHA
medium access method. Hence, the nodes transmit their payloads, in a scheduled or in an
event-based manner, towards a gateway without channel-activity sensing. The gateway can,
in turn, communicate towards the nodes via downlink connection. The downlink packets
include mostly the acknowledgement packets utilized for confirmed messaging and the
MAC commands. For the downlink data, as illustrated in Figure 2, two reception time slots
on the node, often referred to as RX1 and RX2, are activated in Class-A mode. The reception
times are scheduled 1 s or 2 s after the transmission of an uplink LoRaWAN payload has
been finished. This way, LoRaWAN nodes can spare energ,y as the microcontroller and
the LoRa modem of a node can enter sleep mode between uplink packets and between the
transmission and the reception windows.

The LoRaWAN Class-B operation mode is devoted to higher data availability. As
an extension to Class-A, Class-B introduces periodical reception time windows, which
can be helpful to implement long-range applications, where a continuous bidirectional
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data transfer is required. Nodes synchronize themselves to the broadcast synchronization
beacon message.

Uplink Packet (TX) RX1 RX2

RX1 Delay

RX2 Delay

Figure 2. LoRaWAN reception windows in Class-A operation mode.

Class-C extends data availability beyond the options given by Class-A and Class-
B. With an unlimited reception time window, nodes can immediately receive downlink
packets, which is beneficial in terms of low-latency applications. As nodes are required
to be activated periodically for receptions in Class-B/C modes, the energy consumption
is higher as activation of sleep modes become more sparse. Thus, these modes are better
suited for mains-powered, always-on applications, such as smart meters.

Next to data packets, the LoRaWAN specification defines several MAC command
packets that are delivered bidirectionally between a node and a gateway. These commands
can be utilized to, e.g., set the maximum aggregated transmit duty cycle of the node, inquire
the status of the node and request to change downlink reception frequency. The complete
list of MAC commands can be found in [6].

2.3. LoRa Physical Layer

Physical-layer signaling, which is used to carry LoRaWAN payloads, is defined by
the proprietary LoRa chirp-spread-spectrum (CSS) modulation, whose frequency increases
linearly. The I branch of the LoRa preamble and its spectrogram are given in Figure 3.

As the LoRa modulation format is designed with robustness against noise and in-
terference in mind, LoRa packets can be correctly received even for signal-to-noise ratios
(SNR) well below zero. Hence, a wide communication range both indoors and outdoors
can be achieved with LoRaWAN. During LoRa modulation, the MAC-layer payload bits
are converted into several chirp signals, where the different bit strings of a payload are
conveyed to the physical-RF signal by phase modulation. The capacity of a chirp in LoRa is
defined by the so called spreading factor (SF), which can take discrete values from 7 to 12.
Hence, a single chirp can hold, at most, SF bits. Since, in LoRa, the signal bandwidth and
the phase resolution are fixed, a change in SF directly affects the duration of the modulated
RF waveform as given by T = 2SF/BW, where BW denotes the bandwidth of a LoRa signal.
For instance, LoRaWAN packets of a 16 bytes payload and BW = 125 kHz with SF = 7 or
SF = 12 translate into LoRa signals with periods of 66 ms and 1646 ms, respectively. Hence,
the LoRaWAN data rates and the LoRaWAN device air times are often quite restricted. Nev-
ertheless, LoRa modulation allows for the modulation and demodulation of RF waveforms
with moderate complexity, which is favourable from an IoT-application point of view.

Apart from signaling, other physical layer parameters such as center frequency, duty
cycling or transmission power are often regionally defined. Since LoRaWAN operation
is intended to be free of charge, the typical bands include the licence-free ISM channels,
i.e., EU433, EU863-870, AU915-928/AS923-1, US902-928 and IN865-867. Next to channel
regulations, regional restrictions to the LoRaWAN packet air time apply. For instance, in
the EU, according to the ETSI EN300.220 standard, the devices must comply with duty
cycles between 0.1% and 10% depending on the used sub-band.
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Figure 3. (a) I−branch of the LoRa signal. (b) Spectrogram of the LoRa signal.

RF transceivers with built-in support for LoRa include those from Semtech. On
LoRaWAN devices, the popular SX1276-79 modules are favoured, which offer a wide
tuning range from 137 MHz up to 1020 MHz, a maximum RF transmission power of
20 dBm and a maximum link budget of 168 dBm. Next to LoRa waveform modulation
and demodulation, a transceiver integrates a direct conversion transmitter and a direct
conversion receiver in a single chip package. From an application point of view, e.g., a
low-power microcontroller-based wireless sensor, a LoRa transceiver offers useful features
such as so called wake-up interrupts, which notify the host after a successful detection
of a preamble, detection of a sync address or decoding of a payload. As it turns out,
such features are also useful for implementing reactive jamming on a LoRa hardware. On
the LoRaWAN gateway side, Semtechs SX130x digital baseband chips are utilized. They
include a demodulation path, which is able to demodulate signals on multiple neighboring
subchannels and consequently decode several LoRa packets in parallel. Typically, the
baseband modems are accompanied by the SX125x analog frontends, which take care of RF
signal up/down conversions as well as digital-to-analog and analog-to-digital conversions.

For more detailed descriptions of the LoRa modulation and the related RF components,
we refer an interested reader to, e.g., [39].

2.4. LoRaWAN Packet Structure

Figure 4 delivers an overview of the messages involved in LoRaWAN [6]. Each
LoRaWAN payload is contained in a physical-layer LoRa packet, which includes a preamble,
a physical-layer header and a CRC code. These fields are necessary for LoRa-receiver
synchronization, LoRa-receiver demodulation parameters (e.g., coding rate setting) and
CRC-error correction. The LoRaWAN payload itself (PHY payload) conveys the MAC
message, which, in turn, holds the MAC-payload, join-request, rejoin-request or join-accept
parts. The MAC payload contains the frame header, frame port and the frame payload. The
first two fields are utilized to, firstly, communicate the MAC commands and, secondly, to
carry further important information including the device address and the frame parameters.
For the latter, the frame control field specifies, e.g., whether or not the adaptive data rate
and/or packet acknowledgement shall be enabled. Further, the frame-counter field contains
a counter value, which is utilized to keep track of the number of packets exchanged between
an end device and a gateway. The frame-options field is an optional data field carrying the
MAC commands. Finally, the frame-payload field carries LoRaWAN application data.
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Figure 4. Overview of the LoRaWAN packet structure.

2.5. Adaptive Data Rate

With the adaptive-data-rate (ADR) mechanism, a LoRaWAN network is able to opti-
mize the transmission power, air time and data rates of the devices. This optimization step
directly translates into a longer device battery lifetime, higher data throughput and also,
potentially, into lower latency.

The ADR is based on three main components: a collection of RF-link statistics, MAC
commands and an ADR algorithm.

• Collection of RF-link statistics: The algorithm receives the RF link information in SNR
values. After a sufficient number of SNR values is collected, a margin to the minimum
SNR thresholds of the different spreading-factor settings is calculated. Depending on
the margin, the network server can request that a device switch the spreading factor
and the transmission power settings accordingly.

• MAC Commands: LoRaWAN defines a few MAC command packets that control
the ADR. With the 1-bit ADR uplink packet, a device can request that the network
server control its data rate. The 1-bit ADRAckReq uplink packet is periodically sent
by devices to request that the network server validate the received uplink messages.
Depending on the network servers response to this packet, the end device can optimize
its spreading factor and transmission power to find the optimal communication
parameters.

• ADR Algorithm: The 4 bytes long LinkADRReq downlink packet contains the pa-
rameters determined by the ADR algorithm, which are communicated to the device
from the network server. A more comprehensive overview of the algorithm can be
found, e.g., from [40].

Typically, ADR is recommended for devices with fixed locations, so that RF-link-
quality information can be collected reliably. For mobile devices, additional location
sensing (e.g., via GPS localization) is recommended to determine time frames during which
the device remains in a fixed location.

2.6. Device Activation

The LoRaWAN standards v1.0 and v1.1 define various measures to ensure, e.g., device
authentication, message integrity and confidentiality. These fundamental security features
are initialized during the so called device activation phase, as the LoRaWAN device joins
(or rejoins) the network. In the following, the two ways of device activation, i.e., the over-
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the-air activation (OTAA) and the activation-by-personalization (ABP), for the LoRaWAN
standards v1.0 and v1.1, are reviewed in a compact form.

2.6.1. LoRaWAN v1.0

Prior to the OTAA procedure in LoRaWAN v1.0, the application identifier AppEUI,
the device identifier DevEUI as well as the secret key AppKey are stored in an end device
and also provisioned to the network in which the device is joining. As the first step, the
device composes a join request message with AppEUI, DevEUI, a nonce value (DevNonce)
and a message integrity code (MIC), which is calculated with the join-request-message
fields and AppKey. Once the join request arrives at the network server and the request is
permitted, the network server replies with the join-accept message. This message contains
a random nonce (AppNonce), a network ID (NetID), a device address (DevAddr), and
parameters for physical-layer signaling, followed by a MIC. The join-accept message is
encrypted using AppKey. Once the join-accept message arrives at the end device, the
application session key (AppSKey) and the network session key (NwkSKey) are derived
using AppNonce and Appkey. Finally, to establish end-to-end encryption, the network
server delivers AppSKey to the application server.

In contrast to OTAA, in ABP activation, DevAddr, AppSKey and NwkSKey are a
priori programmed on the end device, the network server and the application server.

2.6.2. LoRaWAN v1.1

The LoRaWAN standard v1.1 improves communication security by introducing an
additional join-server and further session keys. Similar to the above, the first step in
OTAA requires storage of the join identifier (JoinEUI), DevEUI, AppKey and an additional
secret key, NwkKey, to an end device. The latter three are also stored in the join server.
As an end device proceeds to start OTAA activation, it creates the join-request packet,
including DevEUI, JoinEUI and DevNonce. The integrity of the join-request packet is
protected by the MIC, which is calculated using NwkKey. Once the network server
approves the join request, it locates the join server defined by JoinEUI identifier. Next,
a JoinReq message is sent to the join server, which contains the original join request
message and the device-relevant parameters. Subsequently, on the join server, network-
session keys (SNwkSIntKey, FNwkSIntKey, NwkSEncKey) and an application session
key (AppSKey) are generated, which are later utilized to verify the integrity and the
confidentiality of the MAC commands and payload data. The session keys and the join-
accept message are encrypted with NwkKey and incorporated into a JoinAns message,
which is delivered back to the network server. Given that JoinAns is successfully verified
by the network server, the join-accept message is forwarded to the end device, which
derives the above session keys out of the message. After the session-key exchange, the
application server receives the AppSKey from the network server upon the first device
uplink message and thus, the end-to-end security for an LoRaWAN v1.1 application is
established. The ABP activation in version v1.1 follows the lines of version v1.0 and, so, the
session keys and the DevAddr are preconfigured on end devices as well as on application
and network servers.

2.7. LoRaWAN Keys

The security features as defined in LoRaWAN standards rely heavily on the above-
described secret keys. Firstly, the preprogrammed AppKey (and NwkKey, as in LoRaWAN
v1.1) takes care of the secure authentication of LoRaWAN devices during the join procedure.
Secondly, the derived session keys enable end-to-end encryption between an LoRaWAN
device and the application server. For the encryption algorithm, the well-known AES-128 is
defined. A further feature, which protects the integrity of the LoRaWAN application data,
is the frame counter. By synchronizing to the up-link counter values, the network server
can detect potential spoofing attempts. Thirdly, the integrity of the LoRaWAN messages is
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guaranteed with the MIC, which, effectively, is a cryptographic signature calculated with
the AES-CMAC algorithm.

3. Vulnerabilities

In this section we review relevant vulnerabilities, which involve wireless physical-layer
attacks such as sniffing, jamming and wormhole attacks as listed in Table 2. Furthermore,
key-extraction attacks as well as energy attacks are reported.

Table 2. Overview of reviewed physical-layer vulnerabilities.

Reference Attack Category Affects * Technology Experimental Results

[41] Sniffers C LoRaWAN 1.0x yes
[42] Sniffers C LoRaWAN 1.0x no
[43] Sniffers C LoRaWAN 1.0x yes
[44] Sniffers C LoRaWAN 1.0x yes
[45] Covert Channels C,I LoRaWAN 1.0x yes
[46] Jamming A LoRaWAN 1.0x yes
[47] Jamming A LoRaWAN 1.0x no
[12] Jamming A LoRaWAN 1.0x yes

[13] Jamming A LoRaWAN
1.1/1.0x yes

[48] Jamming A LoRaWAN 1.0x no
[49] Jamming A LoRaWAN 1.0x yes
[50] Key Extraction C,I LoRaWAN 1.0x yes
[51] Key Extraction C,I LoRaWAN 1.03 yes
[37] Key Extraction C,I LoRaWAN 1.0x no
[12] Worm-Hole A LoRaWAN 1.0x yes

[13] Worm-Hole A LoRaWAN
1.1/1.0x yes

[11] Energy attack A LoRaWAN
1.1/1.0x yes

* (C—confidentiality, I—integrity, A—availability).

3.1. Sniffers

The eavesdropping of wireless communication is one of the most trivial and well-
known attacks aiming at wireless protocols including LoRaWAN. The major difference in
eavesdropping long-range protocols versus short- to mid-range protocols, is the smaller
number of receivers required to acquire communication from a certain area. As indicated
by [52], LoRa signaling is robust against fading and interference, which gives an advantage
to eavesdropping attempts as well. While the sniffing of LoRa and LoRaWAN payloads is,
in its simplest form, possible with a single low-cost LoRa modem, physical-layer sniffers
give an attacker a further advantage, as more fine-grained information on communication
parameters, e.g., center frequency, becomes available. Below, we feature some of the
available tools for signal capture, analysis and decoding that can be applied to LoRaWAN
eavesdropping.

The state-of-the-art methods to perform physical-layer eavesdropping are mostly
based on software defined radio (SDR) hardware and software. As indicated, e.g., by [42],
due to narrowband signal characteristics in LoRaWAN, an SDR hardware with moderately
low sampling rates, e.g., 1 MSPS, can be utilized for signal capturing. For the subsequent
LoRa signal demodulation and decoding stages, a few implementations on the GNU-Radio-
SDR-development environment have been presented [53]. In Figure 5, a multichannel
LoRaWAN receiver is depicted, which utilizes multiple software-frequency-shifting opera-
tions connected to LoRa-receiver blocks in parallel, to extract LoRaWAN payloads. Such a
setting allows payload reception on up to 21 channels. As the GNU-Radio-based receivers
are open-source, fine-grained information on LoRa waveforms such as carrier frequency
offsets, symbol clock periods or received signal strength (RSSI) can be flexibly collected
with such receivers.
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Figure 5. A software-defined multichannel LoRaWAN receiver in GNU Radio.

One of the earliest applications of SDR-based sniffers involved the reverse engineering
of LoRa demodulation and decoding, which are proprietary and, thus, not completely
available to the public. As discussed in [41], the custom-built LoRa receiver in a GNU radio
enabled the reverse engineering of some critical functions of a real-world LoRa decoder,
such as data whitening and interleaving, which did not comply with the original LoRa
patent. Thus, one can argue that such obfuscation steps, in hopes to, e.g., protect intellectual
property, might be circumvented by SDR hardware and the related signal-analysis software.
In further works concerning LoRaWAN security, SDR sniffers play a significant role as
a basis technology to implement more advanced attacks. For instance, a man-in-the-
middle attack test bench with SDR-based sniffers was presented in [43]. Additionally, an
SDR LoRaWAN receiver can be applied as a listening unit within a reactive LoRaWAN
jammer [24]. Finally, as indicated recently by [44], the flexibility of an SDR is useful to
create a versatile security test bed, to assess multiple vulnerabilities, i.e., sniffing, a replay
attack, a man-in-the-middle attack and jamming using a single SDR transceiver.

3.2. Covert Channels

Covert channels, as an attacker tool, represent a way to transmit sensitive informa-
tion such as secret keys with a transmission medium, which is often not intended for
communication purposes [54]. A classical example includes an optical covert channel,
where the intensity of, e.g., an led light is modulated to transmit data. Typical victim
devices of covert channels are primarily air-gapped systems and secure-server infras-
tructure but today, proof-of-concept covert channels with smartphones and IoT gadgets
have been presented as well [55]. In the case of LoRaWAN, the authors of [45] presented
a hidden communication channel built on top of LoRa signaling. The key component
of the method involved embedding-amplitude modulation to a physical LoRa payload.
Since LoRa receivers are effectively utilizing frequency demodulation to extract the chirp
symbols, an additional amplitude component remains hidden from legitimate users. The
authors demonstrated the functionality of the channel with two experimental setups. Firstly,
amplitude-modulated LoRa payloads were generated fully in software with gr-lora [53]
and transmitted by SDR transmitter. Secondly, amplitude modulation could be achieved
with commodity LoRa transceivers by changing the impedance of the transmission line
between the LoRa modem and the antenna. The hidden amplitude information can be
extracted with an envelope detector and a symbol-recovery mechanism. According to the
authors, a covert-communication range of up to 250 m, with approximately 38 bits per a
typical LoRa packet, can be achieved by such a signaling technique. Thus, a leakage of
AppKey (or AppSKey) can be devised with only five LoRaWAN packets.
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3.3. Jamming Attacks

Intentional interference on a wireless physical layer, i.e., jamming, is a well-known
DoS attack that has its roots in military communications. Various kinds of jamming attacks
have been explored for many wireless protocols [56]. The classical jamming attack involves
continuous jamming, where an adversary blocks a wireless channel with a powerful RF
signal, which masks legitimate signaling. Recently, more advanced attacks have also been
introduced, such as reactive jamming (also known as selective jamming) [56], where an
additional listener node is introduced to inform the jammer node on incoming RF payloads.
Thus, jamming can be performed against selected devices or signals.

As LoRaWAN networks operate on unlicensed bands, e.g., the EU868 band in Europe,
other wireless devices sharing the wireless channel might cause unintentional interference.
However, the LoRa chirp signaling is designed to be robust against noise and interference.
However, an intentional jamming might bring the SNR at the LoRa receiver below a level
under which a packet decoding becomes impossible. Hence, studies have been conducted
to reveal the impact of (1) packet collisions [57], (2) unintentional RF interference [58,59],
and (3) intentional jamming, with studies considering the impact of jamming on LoRaWAN
communication [24,46,47] as well as works devoted to proof-of-concept reactive jammer
implementations [12,13,60].

In [24], the authors considered the effect of reactive jamming with Gaussian noise to
LoRa-packet reception. According to the empirical study, signal-to-interference-and-noise
(SINR) levels close to and above zero did not have a significant adversarial effect on the
reception, which confirms the robustness of the CSS modulation. When the jammer noise
power is increased to well above the original signal power, e.g., SINR < −6 dB, packet
reception rate decreases to near zero. Alternatively, utilizing LoRa chirp signals as jamming
waveforms increases jamming success, since, firstly, the LoRa packet reception can be locked
to the jamming waveform and, secondly, the interference effect during chirp demodulation
is potentially higher. To this end, as noted in [24], the frequency and time alignment of
the jamming chirp signals is important. For instance, the effect of nonsynchronized LoRa
waveform jamming is comparable to the jamming with Gaussian-noise waveforms. On the
other hand, if an attacker synchronizes the jammer transmitter to the victim transmitter,
the jamming success improves. According to the experimental results, a transmit power
of 15 dBm and upwards is adequate for synchronized waveforms to notably degrade
packet-reception rate.

Next to directly jamming LoRaWAN packets, the authors of [48,49] have studied a
physical layer vulnerability connected to the join procedure and, particularly, to random-
ness generation on the SX1276 LoRa modem. As it turns out, the entropy for DevNonce
generation is collected based on the continuous RSSI sampling feature of the LoRa receiver.
By injecting a suitable jamming waveform to the receiver, the output of the randomness
generator can be forced into a constant value. If the procedure is continuously repeated, the
network server will drop incoming join requests as nonce reuse is not allowed. According
to the authors, jamming can be achieved by a high power jamming signal driving the
receiver into saturation or, alternatively, by a fixed-power jamming signal, which holds the
RSSI at a constant value. Thus, DevNonce-randomness-manipulation attempts lead to a
serious DoS attack, which prevents devices from accessing a LoRaWAN network.

In terms of the jammer hardware utilized to collect experimental results in LoRaWAN
jamming, various configurations have been presented. A common option is to adopt a
full-duplex SDR transceiver that, due to full reconfigurability, can be flexibly tuned for
many kinds of jamming attacks. One such setup , including GNU Radio software, was
utilized in [24] to perform synchronized reactive jamming. In order to achieve consistent
jammer performance, the authors noted that the inherent latency in the setup should be
stabilized by properly configuring the GNU-Radio scheduler. Alternatively, off-the-shelf
LoRa transceivers can be also configured to jam selected LoRaWAN packets. In [12], the
popular SX1276 transceiver was reconfigured to perform byte-by-byte LoRaWAN packet
sniffing and, subsequently, to transmit the LoRa-jamming waveforms. Since SX1276 allows
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for direct inspection of reception FIFO-buffer contents, the jammer can be triggered once a
desired stream of bytes is detected. Hence, the latency between detection of, e.g., victim
device address and the transmission of a jamming packet, can also be minimized. In the
same vein, the channel activity-detection of LoRa modems can be employed to perform
triggered jamming, where jamming waveforms are sent as soon as an arbitrary LoRaWAN
communication is detected.

3.4. Key Extraction Attacks

The confidentiality of secret information is an essential feature of the cryptographic
algorithms involved in LoRaWAN. For instance, the AppKey should be stored in a secure
manner in order to avoid any key-extraction attempts. However, in the reference imple-
mentations of LoRaWAN data transmission with the LoRaMAC libraries [61], the AppKey
is directly defined in the program code. Hence, via physical access, an attacker might
be able to extract AppKey with a firmware dump or via a microcontroller debug inter-
face [37]. While secure key storage can be implemented with off-the-shelf microcontrollers,
information leakage via side channels might be more difficult to avoid, as discussed below.

In side-channel attacks, an attacker aims to indirectly extract sensitive information
from a target device by measuring a physical quantity, which is affected by computation
of, e.g., an encryption algorithm. A popular side-channel-measurement method involves
the capturing of current-consumption waveforms out of which the information, e.g., secret
keys, are extracted. A typical victim device, to this end, is a light-weight microcontroller
with a relatively low clock rate (of a few MHz). Hence, as most of the LoRaWAN end
devices embed such CPUs, side-channel attacks pose a realistic threat to confidentiality.

The state-of-the-art literature reports a few cases of successful key extraction from
a LoRaWAN device. The authors in [50] targeted the AES-CTR algorithm of the origi-
nal Semtech template LoRaWAN-software implementation [61], to reveal AppSKey and
NwkSKey out of recordings of electromagnetic emanations. The assumption here is that
the plaintext payload is available to the attacker, e.g., a digitized sensor value. By applying
the correlation power analysis technique, as given in [62], the authors could fully recover
AppSKey and, partly, also NwkSKey. Additionally, the application of digital filtering for
noise removal reduced the number of necessary trace captures to ca. 26%. In order to
further reduce the number of necessary side-channel-trace captures, the authors of [51]
proposed a deep-learning-based classifier to extract the secret keys. According to the
experimental results, with a pretrained convolutional neural network model, a full recovery
of AppSKey in ABP-activation mode becomes feasible with under 100 captured traces.

3.5. Wormhole Attacks

The malicious rerouting of wireless packets, i.e., a wormhole attack, is a well-studied
topic with its roots in wireless ad hoc networks [63]. In its original form, once a mali-
cious out-of-band route between nodes in a mesh network is established, an attacker can
manipulate the routing information and, hence, convince wireless nodes to route traffic
towards the malicious link. Wormhole attacks have also been introduced in LoRaWAN
networks [12,13], whereby the attack methods and the goal of the attack differ from those
presented for mesh networks. With properly timed jamming and the replaying of Lo-
RaWAN packets, an attacker can manipulate the metadata of LoRa frames (e.g., RSSI, SNR
and timing) and, thus, affect the stability of a LoRaWAN network.

To the best knowledge of authors, the first practical LoRaWAN wormhole attack was
introduced in [12]. Since LoRaWAN does apply direct device-to-gateway links instead
of multihop communication, a LoRaWAN wormhole necessitates, firstly, a way to block
legitimate packets. To this end, a reactive jammer is placed in the network, preferably close
to a gateway. The hardware needed to implement the jammer is the same as reported in
Section 3.3. A sniffer node is required to trigger the jammer node and to capture LoRaWAN
packets to be replayed later on. This node is essentially a LoRa modem configured for
continuous reception on a single frequency. As indicated in [12], the sniffer and the jammer
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nodes should not be located close to each other, so that the sniffer node is able to receive
the desired packets. Such settings can, e.g., emulate certain packet losses, as payloads can
be selectively jammed and/or replayed. Thus, with even low-cost equipment, an attacker
is able to manipulate the quality of service of LoRaWAN networks.

The wormhole concept was extended in [13], where the authors introduced novel
attack concepts based on the methods presented in [12]. One of the architectural differences
from the prior work concerned the utilization of an independent reactive-jammer node
placed near a gateway. As such, payloads with even the lowest spreading factor can be
blocked and replayed later on. With the improved wormhole communication setup, the au-
thors proceeded to discuss the possibility of downlink wormholes. Although applications
utilizing LoRaWAN-downlink communication are rare due to channel access restrictions,
the uplink wormholes could be detected by missing downlink messages. Thus, by creating
a downlink wormhole, as is well-illustrated in Figure 6, an attacker can also target appli-
cations where higher data availability is needed. However, as noted by the authors, due
to LoRaWAN-reception-window-timing constraints, downlink wormholes can be imple-
mented only for higher data rates and medium-sized payloads within a single payload
uplink–downlink transaction. This constraint can be mitigated, given that the downlink
message is replayed in a further transaction, which complies with the frame-counter num-
ber. Since LoRaWAN wormhole attacks enable manipulation of the metadata (e.g., RSSI or
SNR), this feature can be further applied to create DoS and battery-drainage attacks. As
an example, given in [13], the ADR mechanism can be manipulated by metadata spoofing.
As it turns out, an end device can be forced into spreading-factor and transmission-power
settings that cannot be decoded by legitimate packet forwarders.

Figure 6. Bidirectional wormhole attack in LoRaWAN.

3.6. Energy Attacks

Another class of DoS attacks against battery-powered LoRaWAN devices involves
those aiming at maximizing energy consumption [11]. As explained in Section 2.3, for
Class-A signaling, the highest energy consumption takes place during packet transmission,
during which the RF transmitter and the RF receiver are activated. In order to spare energy,
the downlink reception windows are limited in duration and, given that no packets are
received during these time windows, the modem is set back to sleep mode. However,
if an attacker is able to synchronize to the LoRaWAN-device communication, the LoRa
modem can be forced into downlink packet reception mode, which increases the energy
consumption significantly. More precisely, an attacker might target the second reception
window, for which the reception parameters are typically unchanged from transmission
to transmission. Experimental validation of such an attack revealed an increase in energy
consumption from 36% to 576%, which, in other words, would reduce a battery-driven
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device lifetime by several years. As noted in [11], such attacks are more difficult to detect
in comparison to, e.g., another kind of energy attack, by forcing a LoRaWAN device to
re-transmit packets by direct jamming. Nevertheless, worm-hole attacks in a LoRaWAN
network’s supporting-adaptive rate might cause even worse energy consumption, as the
attacker is able to force a higher SF setting by manipulating LoRaWAN metadata via replays
and packet drops.

4. Protection Techniques

In the following, we look at countermeasures, such as detection methods, against
replay and jamming attacks. Moreover, radio frequency fingerprinting and wireless key
generation methods, beneficial for authentication and key refreshment purposes, are re-
viewed. A summary of these countermeasures is given in Table 3.

Table 3. Overview of physical layer countermeasures.

Ref. Technique Enhances * Advantages Disadvantages

[64] Replay detection C Comprehensive experimental validation -
[65] Secret key agreement C,I Experimental validation No experiments with LoRaWAN
[19] Secret key agreement C,I Quantization for high key randomness No experiments with LoRaWAN

[21] Secret key agreement C,I Effective over long communication
distances Requires reconfigurable antennas

[66] Secret key agreement C,I Suitable for mobile and stationary nodes -
[67] Secret key agreement C,I Low algorithmic complexity Bit disagreement rate
[68] Secret key agreement C,I High secret key entropy Increased algorithmic complexity

[22] Jamming detection A Versatile modeling tools for performance
evaluation No large scale validation

[23] Jamming detection A High detection accuracy Only small scale validation
[69] Jamming resilience A - No experimental validation
[70] Jamming resilience A - No experimental validation
[24] Jamming resilience A Effective against synchronized jammers -

[71] Jamming resilience A High performance improvement with
low overhead

Acknowledged transmissions not
supported

[72] Jamming resilience A High performance improvement -
[16] Wireless fingerprinting U Investigation on various neural networks Channel effect is not considered

[73] Wireless fingerprinting U Algorithm for manual extraction of RF
fingerprints

Experiments on channel
robustness are missing

[74] Wireless fingerprinting U Both indoor and outdoor experiments.
Receiver and channel effects are studied.

Solutions to channel and receiver
effects are not provided

[75] Wireless fingerprinting U Experiments at various distances are
conducted

Solutions to channel effects are not
provided

[14] Wireless fingerprinting U Consideration on openset/zero-shot
classification

Solutions to channel effects are not
provided

[18] Wireless fingerprinting U Large-scale dataset of 100 LoRa devices.
Both outdoor and indoor environments -

[17] Wireless fingerprinting U Design of channel independent
spectrogram to mitigate channel effects.

Low SNR outdoor experiments are
missing

* (C—Confidentiality, I—Integrity, A—Availability, U—Authentication).

4.1. Replay Attack Detection

The state-of-the-art literature considers mostly replay-attack prevention methods
pointing to a vulnerability connected to the OTAA procedure, which takes place on a MAC
layer. In terms of physical-layer-replay-attacks-protection mechanisms, the authors of [64]
introduced a detection technique to an attack vector against gateway-side timestamping,
where the delayed forwarding of LoRa waveforms plays the key role. The so called frame-
delay attack mechanism closely follows the popular RollJam attack [76], which targets
rolling-code-based replay attack prevention in keyless-entry systems. In the LoRaWAN
settings, a frame-delay attack necessitates, firstly, an eavesdropper node, which listens for a
victim device. Secondly, a collider/replay node takes care of the blocking of the legitimate
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LoRa frames and replaying of the eavesdropped frames. Hence, arbitrary delays can be
introduced to the gateway-side timestamps and, thus, e.g., sensor data arriving late to an
application server cannot be distinguished from actual nondelayed data by the commodity
LoRaWAN hardware. The authors proposed a physical-layer detection mechanism by
extracting frequency bias from LoRa waveforms with an RTL-SDR receiver connected to a
LoRaWAN gateway. By comparing known frequency-bias values to collected bias values,
replay attempts could be detected even for a signal with an SNR as low as −18 dB.

4.2. Wireless Key Generation

The lack of a root-key (i.e., AppKey and NwkKey) update in LoRaWAN has motivated
research towards novel key-generation techniques. As LoRaWAN devices are often based
on microcontrollers, it is crucial that added security features do not contribute to a large
increase in computational and communication overhead. A potential candidate, which
allows for light-weight implementations, is the so called wireless secret-key-generation
technique depicted in Figure 7. With its roots in information theory [77], many experimental
works on the subject have indicated successful key-agreement results for several wireless
protocols [26,78].

Figure 7. Secret-key-generation in a LoRaWAN network.

One of the basic variants of key generation, illustrated in Figure 8, involves, firstly,
a channel-probing phase, i.e., the collection of RSSI values for two wireless devices commu-
nicating with each other in a bidirectional manner. Since a wireless channel is reciprocal
over a finite time frame, the RSSI readings on both devices are close to each other. Further-
more, due to the randomness and the temporal variations in the channel characteristics,
an eavesdropper is unable to arrive at measurements with a similar degree of correlation
as the legitimate users. During the second step, a random secret key is extracted out of
the RSSI values, e.g., with a simple 1-bit quantization operation. Due to noise and analog
component imperfections, the extracted key sequences contain a few bit errors. Those errors
can be compensated by so called reconciliation protocols, which allow for error correction
without exposing the secret-key material. Finally, privacy amplification techniques should
be utilized to minimize key-bit leakage during the error correction phase.
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Figure 8. Block diagram of secret-key-generation for LoRaWAN, including necessary communication
between a node and a gateway.

As LoRa communication can be established bidirectionally in LoRaWAN with down-
link messages (or, alternatively, in a point-to-point fashion with LoRa packets), RSSI-based
key generation becomes an option for LoRa-based key generation. One of the first works to
demonstrate experimental results for point-to-point LoRa link was [65], which considered
several communication scenarios. It is revealed that a larger SF leads to increased bit errors
in extracted keys, which most likely stems from an increased channel measurement delay.
Thus, it is challenging to implement LoRa-based key generation, e.g., in mobile scenar-
ios with rapidly changing channel fading conditions. Another work [19] on LoRa-based
key generation indicated the importance of differential quantization in channel measure-
ments, with dynamics stemming from path loss and fading. With a suitable key extraction
algorithm, the correlation between eavesdropper and the legitimate user(s) can be reduced.

Typically wireless key generation necessitates a fast bidirectional message exchange
to avoid imbalance in channel-state estimation. While pure LoRa communication with
a low SF can achieve this, the delays in LoRaWAN downlink windows cause latency in
channel probing, which potentially gives rise to key bit errors. Furthermore, static channel
conditions might result in keys with low entropy, which increases the risk of key-guessing
attacks. A potential solution involves randomness injection via a reconfigurable antenna in
combination with a novel RSSI preselection algorithm, as presented in [21], which achieves
key generation for LoRaWAN communication up to 7 km distance. With such a setting,
AppKey can be refreshed approximately once per month despite the EU868 channel duty
cycle limitations, challenging RF channel conditions (SNR < 0) and the assumed strong
eavesdropped attacker model. Additionally, with the RSSI preselection algorithm, the key
disagreement rate can be suppressed from 29% down to 18%.

In further works, the challenges connected to LoRaWAN-key generation have been
tackled with an optimized key-generation algorithm, as reported in [66–68]. For in-
stance [66] presents a multi-bit key-agreement scheme for LoRaWAN, which is optimized
for low correlation channel conditions and is thus suitable for mobile and static scenarios.
According to extensive experimental results evaluated for static and mobile wireless scenar-
ios, even for correlation coefficient values between 20–60% tolerable KDR values between
10–20% can be achieved. Further, in [67], the authors investigate simple tolerance- and
difference-based quantization algorithms and their impact on LoRaWAN key generation.
The main result indicated that key refreshment is realizable for LoRaWAN communication
in 30 min, given the error-correction capacity of the reconciliation step. Finally, in [68], the
authors proposed RSSI precorrection schemes based, firstly, on a discrete cosine transform
and, secondly, on principal component analysis. With a blockwise preprocessing, the
authors were able to suppress KDR down to a few percent, which indicates the efficiency
of such methods in LoRaWAN scenarios where RSSI sets contain noise or nonreciprocity.

4.3. Resilience against Jamming

One of the key features of LoRaWAN is the robustness against noise and interference,
which allows for higher data availability in difficult signal propagation conditions. How-
ever, this condition holds only given that the nature of the interference is unintentional,



Sensors 2022, 22, 3127 17 of 26

e.g., another (non-LoRaWAN) device signaling on the same RF channel. Conversely, an
intentional RF jamming, as discussed in Section 3.3, might cause a serious DoS attack
condition as, potentially, access from hundreds of LoRaWAN devices is blocked. More-
over, since LoRaWAN operates on unlicensed bands such the physical layer, DoS attempts
might be more difficult to detect in comparison to conventional DoS attacks in IP networks.
Hence, research efforts have been devoted to at least three fronts to measure and to improve
resilience of LoRaWAN under jamming attacks.

• Performance evaluations have been conducted to reveal the network system perfor-
mance under jamming attacks;

• Detection techniques have been developed to distinguish jamming attacks from e.g.,
faulty gateway/device operation;

• Improved signaling strategies have been presented, which can improve data through-
put in the presence of intentional jamming.

In terms of performance evaluations, works studying the impact of jamming have
been presented on the physical layer. Firstly, in [69], analytical results were derived for
LoRa modulation by considering reactive-band jamming, i.e., noise signals overlapping
with a selected part of the LoRaWAN channel bandwidth, and reactive-tone jamming, i.e.,
jamming with single-/multitone signals. According to the authors, the effect of band jam-
ming was nearly constant, while comparing symbol-error-rate performance for a full-band
jammer and for a partial-band jammer. Further, a negligible performance difference was
reported between single-tone and multi-tone jammers. As a conclusion, the authors verified
the robustness of LoRa signaling against classical noise- and tone-jamming waveforms.
Another work [46] studied the effects of jamming with LoRa waveforms with an experi-
mental setup. With a triggered jammer based on a channel-activity-detection algorithm,
the authors reported degraded packet delivery ratios (the ratio between the number of
correctly received packets and the number of transmitted packets), given that the jamming-
waveform power exceeded the legitimate waveform by 6 dB. Another interesting finding
concerned a difference in packet-delivery-ratio behaviour while applying constant and
triggered jamming. As indicated by the authors, a triggered jamming leads to a worse
packet-delivery ratio with less energy overhead. Next to physical layer studies, jamming
resilience has also been explored on medium access level. The authors of [70] considered
channel-oblivious-jamming attacks and their impact on LoRaWAN-system performance.
Given that downlink acknowledgement messages, including payload re-transmissions, are
enabled, a network of up to 500 nodes can achieve a reasonably good message-success
probability of ca 80% while being attacked on several uplink channels.

Despite the built-in robustness against jamming in limited attack scenarios, as dis-
cussed above, carefully executed DoS with the potential for multiple jammers could reduce
LoRaWAN payload delivery significantly. Hence, efforts have also devoted to various
jammer-detection methods. For instance, [22] presented a detection mechanism based
on recurrent neural networks, where RSSI and inter-arrival time values were utilized as
model inputs. The model training and validation data sets in the study included data from
a LoRaWAN simulator and from a real world test bed. A comparison between several
activation functions revealed a detection accuracy, measured using F1 score, of between
0.9 and 0.98. Moreover, according to the author, the inter-arrival time contributed the
most to the detection accuracy. Another jammer detector was introduced in [23], which
is intended to reveal nonce-manipulation attempts via jamming. As the network server
drops join attempts with an already used nonce value, such a procedure is an efficient way
to craft DoS attacks in LoRaWAN. With a statistical method employing Kullback–Leibler
divergence to compare a legitimate set of nonces and attacked nonces, the authors were
able to achieve up to 98% detection accuracy.

Lastly, one of the most effective ways to improve data availability under jamming
attacks is to introduce novel decoding and signaling strategies as countermeasures. Tech-
niques regarding the former category were discussed in [24]. Interestingly, as noted by the
authors, the collision recovery algorithms for decoding colliding LoRa packets [3,79] are
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less well suited to separating legitimate payloads from jamming waveforms, given that the
jammer is able to synchronize in both the time and frequency domains. Subsequently, by
assuming such an advanced attacker model, the authors presented a LoRa decoder that is
able to overcome synchronized jamming attempts. The essential idea to enable recovery is
to monitor the signal amplitude components during the FFT-based demodulation phase
of LoRa payloads. Since a successful jammer needs to adjust signal power such that the
jammer waveform power exceeds the legitimate signal power by at least 6 dB, selection
of the correct chirp signal components becomes feasible. It should be noted that such a
method works well given that the RSSI of the device does not fluctuate heavily, e.g., due to
movement or fading. Alternatively, improved medium-access techniques for LoRaWAN
have been given [71,72], which employ cryptographic frequency hopping to improve data
availability and scalability simultaneously. As noted in [71], cryptographic-frequency hop-
ping can prevent selective jamming attacks to some extent, as the jammer is not able to
predict randomly selected channel center frequencies. In order to avoid more powerful
jammers listening to several channels in parallel, the authors proposed a continuous center
frequency selection over, e.g., the EU868 ISM band, instead of the regular discrete-channel
utilization.

4.4. Device Fingerprinting
4.4.1. Overview

Radio frequency fingerprint identification (RFFI) is an authentication technique that
identifies a device by analyzing characteristics of a received signal, much like authen-
ticating a person with biometrics. The analog frontend of LoRa end nodes is made of
low-cost components. These hardware components are subject to manufacturing variations
and usually deviate from the nominal values. The deviations are unique to devices and,
therefore, can serve as an identifier. In practice, the RFFI system is equipped at the LoRa
gateway, and predicts the LoRa transmitter from which the packet is sent by analyzing the
received waveform.

Recently, deep-learning techniques are widely employed in RFFI thanks to their
excellent performance in recognition/classification tasks, and LoRa-RFFI systems are
mostly deep-learning driven [14–18,73–75]. Figure 9 shows the overview of a deep-learning-
based RFFI system. A deep-learning-based RFFI system usually has two steps, i.e., training
and inference. In the training stage, all the legitimate devices are required to send a number
of correctly labelled packets to the RFFI system. The received packets are preprocessed
and stored in a training data set. Then, a neural network is trained to learn the mapping
function from the received packet to the device label. After sufficient training, the neural
network can act as a classifier whose input is the preprocessed LoRa waveform and output
is the predicted device label, which is known as the inference stage.

The deep-learning-based LoRa-RFFI works can be categorized into those studying the
deep-learning engines, signal representations and channel mitigation. Regarding the deep
learning architectures used in LoRa RFFI, a long-short-term memory (LSTM) network [16,18,75],
a convolutional-neural network (CNN) [14–18,73,74], multilayer perceptron (MLP) [14,73] and
a transformer [80] have been employed. In terms of signal representation, there are studies
converting the collected IQ samples into other forms as inputs to the neural network, such as
FFT results [14], spectrogram [16,18] and differential constellation trace figure [73]. Finally, the
latest research shows that the change in wireless channel degrades the performance of LoRa-
RFFI systems [17,18,74]. The authors in [17] designed a channel-independent spectrogram to
mitigate channel effects. Moreover, data augmentation is also shown to be helpful [17,18].
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Figure 9. Overview of an RFFI system.

4.4.2. Case Study

Twenty commercial off-the-shelf LoPy4 devices and a USRP N210 software-defined
radio (SDR) platform are used to experimentally demonstrate how a LoRa-RFFI system
works. The carrier frequency of LoPy4 transmitters is set to 868.1 MHz. The transmission is
configured with a spreading factor of seven and a bandwidth of 125 kHz. The sampling rate
of the USRP N210 receiver is set to 1 MHz. In the experiments, 400 packets are collected in
turn from each LoPy4 device and stored in the training dataset, i.e., the dataset contains a to-
tal of 8000 packets. The packets are then preprocessed for RFFI, including carrier frequency
offset (CFO) compensation, preamble extraction and conversion to channel-independent
spectrograms. The CFO compensation is to ensure system stability [15,16], preamble ex-
traction is to prevent learning protocol-specific information and a channel-independent
spectrogram is to mitigate the impact of wireless channel [17]. The preprocessed training
dataset is then used to train a CNN whose architecture can be found in [17]. After the CNN
training stops, we can use it to predict the newly received LoRa packets.

After sufficient training, another 100 packets are collected in turn from each LoPy4
device and preprocessed for evaluation/inference. The confusion matrix and overall
accuracy are common evaluation metrics for a classification task, which are both presented
in Figure 10. As shown in the confusion matrix, most of the predicted labels match the true
labels since the predictions distributed along the diagonal, and the overall classification
accuracy can reach 97.75%. The result shows that the RFFI system can classify 20 LoPy4
devices with high accuracy, even if they are from the same manufacturer.
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Figure 10. Classification result on LoRaWAN Radio frequency fingerprint identification with the
overall accuracy of 97.75%.
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5. Discussion

In the above sections, we have reviewed several physical-layer attack and protection
techniques that are particularly aimed at LoRaWAN networks. Subsequently, in this section,
we look forward, to, firstly, analyse the impact on availability, confidentiality and integrity.
Secondly, we identify the gaps in the physical-layer security research and, finally, deliver
steps for future work.

5.1. Lessons Learned—Impact on LoRaWAN Security
5.1.1. Availability

As clearly visible from Table 2 and from Table 3, DoS attacks, in the form of various
flavors of jamming and wormhole attacks, have drawn considerable attention. Due to
LoRa-chirp-spectrum modulation, a typical LoRaWAN packet airtime spans between
milliseconds and seconds. As it turns out, the resulting relatively slow data rate allows for
implementations of reactive LoRaWAN jammers with commodity low-cost hardware such
as microcontrollers equipped with standard LoRa modems [12]. Consequently, this might
enable further threat scenarios for LoRaWAN networks supporting over-the-air updates,
as a malicious firmware update could turn a legitimate LoRaWAN device into a jammer.
Secondly, the availability of the components to assemble and setup such a jammer does
not necessarily require expert level knowledge, which widens the feasibility of LoRaWAN
jamming.

In terms of analysing the risk of jamming-based DoS attacks, reactive jamming might
result in a higher impact for certain applications. For instance, reactive jamming might
pose a serious issue towards applications relying on event-based communication such
as flood or gas-leak sensors, since the oblivious jammer can only be first detected after
the collision between a jamming frame and a legitimate packet. Hence, such applications
would benefit from a so called “heart beat” messages to improve detectability of jamming.
Furthermore, as pointed out by [11,13], the blocking of the wireless access is not the only
form of DoS in LoRaWAN. Firstly, a LoRaWAN modem can be forced into reception, which
increases the current consumption and thus, reduces the device lifetime. Secondly due to
the vulnerabilities connected to the adaptive data rate algorithm, the wormhole attacks
can force the LoRaWAN device to higher DR parameters, which ultimately causes a large
impact on the device battery life.

Parallel to the studies on the attacks themselves, robustness evaluations, as well
as novel detection and mitigation strategies, have been demonstrated. For LoRaWAN
applications where a packet loss due to a certain degree can be tolerated, the LoRa physical
layer is able to support good message throughput even in the presence of a jammer [70]. In
such use cases, an additional jamming-detection listener node could be integrated as a part
of the intrusion detection system, which delivers information on intentional interference.
Lastly, for security-critical applications, the cryptographic frequency hopping medium
access techniques offer a viable solution to improve message throughput in the presence of
multiple jammers.

5.1.2. Confidentiality and Integrity

The secure connection between a LoRaWAN device and backend servers is heavily
dependent on the secure storage and handling of the AppKey (and NwkKey in LoRaWAN
1.1). In many cases, however, the standard LoRaWAN installations offer only a few mea-
sures against physical attacks, which increases the probability of key extraction attacks
by means of, e.g., firmware dumps or side-channel attacks. While the former can be
thwarted, e.g., using secure elements [81], the latter call for stronger mitigation methods,
e.g., tampering-detection mechanisms. A leaked AppKey is critical for many reasons.
Firstly, it allows for the decryption of the eavesdropped LoRaWAN frames, which de-
creases communication confidentiality. Secondly, it allows an attacker to mount a rogue
end device, which might, e.g., transmit crafted sensor data. Thirdly, a worm-hole attack
could be extended towards a more advanced man-in-the-middle attack, where the attacker
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is able to manipulate both the contents and the metadata of a LoRaWAN packet. These
attack vectors pose a serious risk for several LoRaWAN use cases as, via data falsification,
the attacker can indirectly affect, e.g., data analysis, visualization or even automation based
on LoRaWAN sensing.

As a response to key extraction attacks, wireless-physical-layer techniques have been
presented, which can be applied to improve confidentiality and integrity. Wireless secret
key agreement techniques provide a low-power alternative to refresh the entire secret key
material periodically. Additionally, due to the theoretical information secrecy, wireless key
generation is not prone to massive brute-force attacks. This, in turn, is beneficial for the
long-term secure storage of LoRaWAN application data. Next, RF fingerprinting methods
are a versatile tool for intrusion detection. For instance, with a unique (and unclonable)
fingerprint, a legitimate LoRaWAN packet can be distinguished from the one produced by
a rogue device, man-in-the-middle attacker or worm-hole attacker.

5.2. Research Potential

While several LoRaWAN physical-layer security topics have been comprehensively
covered regarding theoretical and experimental research, there is still room for further steps
to be taken in order to increase the technical readiness of the existing methods. Furthermore,
research potential also lies in, e.g., wireless-physical-layer security topics that have been
previously applied to other protocols, but not yet evaluated for LoRaWAN. Hence, in the
following , we look forward to reveal potential research directions by proposing relevant
follow up research activities.

5.2.1. Resources

As discussed in Section 2.3, LoRaWAN communication is mostly based on a limited
selection of transceiver IC designs from Semtech, namely, the SX127x and the SX130x
families. Although this is beneficial in terms of, e.g., compatibility, many details of the
Semtech chips remain undisclosed, which is unfavorable when it comes to the realization
of wireless-physical-layer security techniques. For instance, the implementations of digital
base-band algorithms and, in particular, the parts of it necessary to calculate metadata, e.g.,
RSSI/SNR, are only partly expressed in the data sheets [82].

A more friendly alternative, to this end, would include a free and open-source hard-
ware implementation of LoRa digital baseband on, e.g., an FPGA. Such a concept already
exists for 802.11 based wireless research [83,84], which has alsoexpedited many contribu-
tions to physical-layer security. The possibility to define customized signal-processing
functions directly on the LoRa transceiver should facilitate, e.g., deployments of more
advanced RF-signal sensing and interference cancellation. Furthermore, the user-definable
algorithms to perform, e.g., RSSI/SNR estimation, should be useful to enhance the quality
as well as the technical readiness of radio-frequency fingerprinting, secret-key agreement
and jamming-detection schemes. On the other hand, more advanced reactive jammer-
attacker models could be defined with flexible DSP routines. As opposed to the jammer
hardware presented with commodity LoRa modems capable of single channel operation
only, the advanced reconfigurable hardware supporting wide-band reception will enable
preamble detection and reactive jamming on several parallel channels.

Further research focus beneficial for experimental-validation purposes concerns large
collections of metadata, i.e., RSSI values or center frequency offsets, from large-scale Lo-
RaWAN networks over longer periods of time. From a resilience point of view, such
datasets, including reactive- and triggered-jamming attacks against event-based communi-
cation, shall become helpful to determine the accuracy of the presented jamming detectors
in real-world conditions. Furthermore, datasets containing metadata from multigateway
bidirectional communication with packet collisions are crucial to evaluate the robustness
of secret key generation and radio-frequency fingerprinting algorithms. Finally, datasets
collected from LoRaWAN use cases, in which attacks on physical layer would cause dis-
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asters, e.g., flood/landslide sensors, should accelerate applied research activities around
wireless-physical-layer security.

5.2.2. Experimental Research

Many of the works describing vulnerabilities and protection topics mentioned in
this paper contain experimental results collected from a small (single node and single
gateway) to a middle-scale (5–10 nodes and a single gateway) LoRaWAN network. While
such setups deliver acceptable data for proof-of-concept validation, they fail to assess
the performance in real operating conditions, i.e., in LoRaWAN networks with hundreds
of nodes and several gateways. To this end, further efforts can be made, for instance,
towards evaluations for jamming resilience. In particular, a study including several reactive
jammers targeting a multi-gateway network will reveal the true effects of physical-layer
DoS attacks. Such large scale experiments might also be helpful to study the difference
between packet collisions and jamming. In a similar vein, the effectiveness of, e.g., radio-
frequency fingerprinting and secret-key agreement techniques should be verified in large
scale networks with commodity LoRaWAN equipment. Here, akin to the jamming attack
evaluations, a potential focus point might include robustness evaluations against packet
collisions during continuous operation.

5.2.3. Further Physical Layer Security Concepts

Wireless-physical-layer security as a research field encompasses several interesting
topics, which, to the authors best knowledge, have not been covered before but might be of
interest for LoRaWAN security. A good example towards increased resilience and security
includes multiple-input-multiple-output (MIMO) antenna techniques, which have already
been successfully applied for range extension and angle-of-arrival localization with LoRa
waveforms [85]. By using multiple synchronized receivers, as in a MIMO setup, even strong
jamming signals can be suppressed without knowledge of the channel characteristics, as
demonstrated in [86]. To this end, further development is necessary to apply such methods
to LoRaWAN, as most of the state-of-the-art jamming-suppression techniques are based
on OFDM signaling instead of the CSS signaling used in LoRa modulation. An additional
advantage connected to MIMO techniques concerns randomness generation in wireless
secret-key-agreement methods. In particular, opportunistic beamforming, as suggested
in [87], can improve key-agreement rate in static wireless-channel conditions. Finally, the
MIMO and the beamforming antenna concepts might become helpful to reduce packet
collisions in dense LoRaWAN networks.

6. Conclusions

In this paper, we reviewed several vulnerabilities and protection methods on the
LoRaWAN physical layer. Out of the many published physical-layer topics, the DoS attacks
and the related countermeasures, i.e., different flavors of jamming and worm-hole attacks,
have received considerable attention. Since the technical feasibility of such vulnerabilities
have been demonstrated experimentally with off-the-shelf LoRaWAN hardware, their
role in, e.g., the threat assessment of LoRaWAN applications should be carefully taken
into account. Jamming detection and prevention techniques have also been presented, to
improve the resilience of LoRaWAN communication.

Further important contributions have been carried out to enhance privacy and device
authentication. Firstly, several wireless secret-key-agreement methods have been success-
fully verified in a LoRa/LoRaWAN setting, which have the potential to improve secret-key
management in LoRaWAN networks. Secondly, radio-frequency fingerprinting techniques
shall become useful tool to verify authenticity of LoRaWAN transmitters. Next, we also
analyzed the impact of the physical-layer security topics on LoRaWAN security. Firstly,
it became clear that many physical layer attacks, e.g., reactive-jamming or energy attacks,
are difficult to thwart/detect with off-the-shelf LoRaWAN equipment alone. Nevertheless,
many promising wireless-physical-layer security concepts such, as novel jamming detectors
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or RF-fingerprinting techniques, are well suited as ingredients for an advanced intrusion
detection system aiming at versatile physical layer attack detection. Finally, we recognized
the research potential in both applied research and basic research directions. For the former,
we identified a need to verify the impact of the vulnerabilities and countermeasures in a
large-scale setting. For the latter, we proposed further research towards advanced antenna
and/or receiver techniques, which might prove fruitful in terms of privacy and resilience.
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