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Abstract: Laser-induced breakdown spectroscopy (LIBS) spectra often include many intensity lines,
and obtaining meaningful information from the input dataset and condensing the dimensions of the
original data has become a significant challenge in LIBS applications. This study was conducted to
classify five different types of aluminum alloys rapidly and noninvasively, utilizing the manifold
dimensionality reduction technique and a support vector machine (SVM) classifier model integrated
with LIBS technology. The augmented partial residual plot was used to determine the nonlinearity
of the LIBS spectra dataset. To circumvent the curse of dimensionality, nonlinear manifold learning
techniques, such as local tangent space alignment (LTSA), local linear embedding (LLE), isometric
mapping (Isomap), and Laplacian eigenmaps (LE) were used. The performance of linear techniques,
such as principal component analysis (PCA) and multidimensional scaling (MDS), was also investi-
gated compared to nonlinear techniques. The reduced dimensions of the dataset were assigned as
input datasets in the SVM classifier. The prediction labels indicated that the Isomap-SVM model had
the best classification performance with the classification accuracy, the number of dimensions and
the number of nearest neighbors being 96.67%, 11, and 18, respectively. These findings demonstrate
that the combination of nonlinear manifold learning and multivariate analysis has the potential to
classify the samples based on LIBS with reasonable accuracy.

Keywords: LIBS; dimensionality reduction; manifold learning; classification; Isomap; Laplacian
eigenmaps; local linear embedding; local tangent space alignment

1. Introduction

Aluminum alloys are one of the most widely utilized nonferrous metal structural
elements in the industry [1]. Thus, regardless of the stage of production and manufacture,
or the process of detection and recycling, it is critical to categorize aluminum alloys quickly
and adequately by employing a reliable analytical method, as this has significant practical
implications and value. Conventional chemical analysis of the elemental composition,
such as X-ray fluorescence (XRF), atomic absorption spectrometry (AAS), and inductively
coupled plasma-atomic emission spectrometry (ICP-AES) [2–4], have been used as methods
for identification of content in soils. However, these detection methods are extremely
time-consuming, expensive, and require rigorous sample preparation, which makes them
incompatible with real-time detection and eco-friendly analysis.

We propose laser-induced breakdown spectroscopy (LIBS) as an analytical method
to classify aluminum alloys because the LIBS enables the quick acquisition of valuable
spectroscopic data from a wide type of materials (e.g., solids, liquids, or gases) without
complex sample preparation, with fast detection, while remaining less disruptive, and
inexpensive [5–7]. An intensive laser beam is utilized in LIBS to create breakdown, i.e.,
a plasma, on the surface of a sample, resulting in simultaneous atomization and excitation.
Plasma light carries information about the elemental composition in the sample. Nowadays,
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LIBS has been implemented in a wide range of applications, such as industrial applica-
tion [8], underwater detection [9], food analysis [10], cultural heritage [11], environmental
monitoring [12], space exploration [13], medical diagnosis [14], and many other fields. The
effectiveness of the classification results is determined not only by the training set data
process but also by the sophistication and competence of the methodologies used to clas-
sify data from unknowns. In recent years, advances in multivariate analysis as classifiers
have aided in interpreting datasets from diverse LIBS applications. For example, when
using a random forest (RF) algorithm as a classifier for iron ore classification, Sheng et al.
obtained an accuracy rate for the training test and the test set and were 98.50% and 96.00%,
respectively [15]. Zhao et al. employed a support vector machine (SVM) to discriminate
the geographical origins of all honey, multi-floral honey, and acacia honey and found that
SVM performed satisfactory results [16]. Lee et al. aimed to classify edible salts from
12 various geographical origins, and they proposed soft independent modeling of class
analogy (SIMCA) as a classifier method. They achieved a 97% classification accuracy in the
test dataset using the SIMCA method [17].

On the other hand, Xu et al. [18], Weng et al. [19], and Boucher et al. [20] highlighted
that using multivariate analysis directly in the high-dimensional dataset would not be
practical and reliable for analysis. In fact, because of the complexity of aluminum’s ele-
mental composition and the advancement of the spectrometer, the acquired LIBS spectra
often comprise numerous emission lines of varying intensity. Consequently, retrieving
trustworthy information from raw spectra data and lowering the original data dimensions
have been immensely demanding in LIBS applications [21–23]. Dimensionality reduction
is a challenging process and yet a fundamental task in many pattern recognition problems
and machine learning applications. Numerous advanced techniques in dimensionality
reduction exist, and each is based on a different set of assumptions and conditions. These
techniques can be generically classified as linear or nonlinear. The most frequently linear
techniques that have been employed in LIBS analysis are linear discriminant analysis (LDA)
and principal component analysis (PCA) [24–26]. Migenda et al. and Kemfert et al. empha-
sized that when the input dataset is completely linearly connected, linear approaches can
adequately learn a linear structure. However, when data is highly nonlinear in structure,
the conventional linear technique can fail to present and demonstrate the true structure of
the dataset [27,28].

To address the issue, we propose nonlinear manifold learning as dimensionality re-
duction techniques, such as Laplacian eigenmaps (LE), local tangent space alignment
(LTSA), local linear embedding (LLE), and isometric mapping (Isomap) [29]. Isomap is a
global method for generating a low-dimensional embedding while retaining the pairwise
distances between data points. LLE is a technique that generates low-dimensional em-
beddings of high-dimensional data while keeping their locality. It makes use of the linear
reconstruction’s local symmetries to uncover nonlinear structures in high-dimensional data.
Compared to LLE, LTSA constructs the embedding by utilizing the tangent space of each
data point and aligning those local tangent spaces. LE is a manifold learning algorithm
that utilizes the manifold’s local attributes to generate a low-dimensional dataset [30,31].
With the uniqueness and benefit of the nonlinear manifold learning algorithm, this study
investigates and compares the performance of nonlinear and linear manifold dimensional
reduction techniques for reducing the dimension in high-dimensional spectral data for im-
proving aluminum alloy classification accuracy. Furthermore, there has been no exploration
of the implementation of nonlinear manifold learning in LIBS applications.

2. Materials and Methods
2.1. Experimental Work

The schematic of the LIBS experimental device is illustrated in Figure 1. The setup
consisted of a laser source, optical system, fiber spectrometer, digital pulse delay generator,
and data acquisition computer. The working wavelength of the Q-switched Nd: YAG laser
(Vlite-200, Beamtech, China) was 1064 nm, the pulse width was 10 ns, the pulse energy was
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30 mJ, and the laser working frequency was set to 1 Hz. In the experiment, the focused laser
spot on the target surface was measured to be 450 µm in diameter, resulting in a laser fluence
of 18.9 J/cm2 and an irradiance of 1.89 GW/cm2 delivered to the sample. The laser beam
was reflected through the mirrors and then focused using the convex lens with a focal length
of 70 mm on the sample surface to generate laser plasma. Moreover, a cylindrical cavity
with a height of 1 mm and 3 mm diameter was placed on the target surface to optimize
the signal-to-noise ratio and emission intensity. The experimental sample was placed on
a two-dimensional movable platform. The digital pulse delay generator (DG535, Standford
Research System, USA) was used to control the time delay between the laser pulse and
the external trigger of the spectrometer. The collimating lens was placed 2 mm away at
a 30◦ angle from the laser beam to capture the plasma emission, and then a bundle of
optical fiber with a diameter of 200 µm delivered the collected light to a multi-channel fiber
optic spectrometer (AvaSpec-ULS2048-USB2, Avantes, The Netherlands). The spectrometer
had an average resolution of 0.08 nm and was equipped with a linear charge-coupled
device (CCD) detector with 2048 pixels. The detector can be externally triggered to initiate
spectroscopy recording with a delay time of 1 µs, gate width was fixed at 2 ms, and the
measurement range was 190 nm to 510 nm.
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Figure 1. The LIBS experimental setup.

The sample tested in the experiment was the BYG2163 6063 standard aluminum
alloy set, which was purchased from the National Institute of Metrology, China. This set
consisted of five cylinder blocks of aluminum alloy with a diameter of 50 mm and thickness
of 30 mm for each block, and their chemical contents are presented in Table 1. For each
experiment, 500 spectra were obtained throughout the spectra acquisition process. Ten
spectra were averaged and utilized as one replication analysis spectrum, resulting in fifty
independent replicate spectra for each experiment. The acquired spectra were stored in the
computer for further analysis.

Table 1. The chemical contents in the five standard aluminum alloy samples and their concentrations.

Sample Label Sample Code Number
Element Concentration (%)

Si Fe Cu Mg Mn Zn Ti Cr

#1 GSB04-1991-2006 0.102 0.045 0.188 1.010 0.010 0.010 0.153 0.150
#2 GSB04-1992-2006 0.273 0.150 0.149 0.817 0.051 0.047 0.112 0.101
#3 GSB04-1993-2006 0.441 0.258 0.103 0.606 0.099 0.090 0.050 0.050
#4 GSB04-1994-2006 0.569 0.352 0.053 0.390 0.151 0.144 0.0098 0.010
#5 GSB04-1995-2006 0.751 0.459 0.016 0.219 0.207 0.201 0.0042 0.0047
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2.2. Nonlinearity Test and Nonlinear Manifold Learning Algorithms

Before performing nonlinear manifold learning on the dataset, we confirmed the
existence of nonlinearity conditions in the dataset by employing the augmented partial
residual plot [32,33]. In this study, we explored and implemented the plot by correlating
the first n principal components (PCs) of the predictor X and the square of the first PC with
the response Y:

yi = b0 + b1·PC1 + . . . + bn·PCn + bmm·PC2
m + eaugpres (1)

where m = 1, 2, . . . , n, the coefficient of respective of PC is symbolized as b, and eaugpres
defines the fitting residual. The detection of the nonlinearity figure was achieved by plotting
the sum ei = eaugpres + bm·PCm + bmm·PC2

m against the PCm.
The local tangent space alignment (LTSA) is a nonlinear manifold dimensionality

reduction technique that seeks to discover a system of global coordinates inside the low-
dimensional space that adequately represents the high-dimensional dataset [29]. LTSA
calculates the k nearest neighbors from each data point xi, i ∈ M, and constructs a central-
ized matrix of neighbors Mi which also includes xi. Following that, it closely resembles the
d-dimensional tangent space Θi of every neighborhood by determining the first d right sin-
gular vectors of Mi according to the respective d biggest singular values. The effectiveness
of LTSA is heavily dependent on the accuracy of the estimation of the local tangent spaces,
which implies that if the datasets are not precisely located on d-dimensional coordinates,
this estimate will be quite severe. Thus, prior to applying the LSTA technique to obtain the
intrinsic spectral variables, the original spectrum dataset is pretreated to remove noise and
improve the approximate smoothing manifold surface construction [34,35].

To maintain the local geometry of the input information in low-dimensional space,
locally linear embedding (LLE) seeks to reconstruct the global topology of nonlinear mani-
folds using locally linear approximations. LLE depicts each point xi as a linear mixture of
its neighbors once the graph of the neighborhood is formed using the Euclidean distance.

xi = ∑
j∈Ki

wijxj, i ∈ M (2)

where Ki defines the collection of parameters of the k nearest neighbors of xi, and the
generic weight wij emphasizes the involvement of neighbor j for reconstructing point i. By
optimizing the function, the weight coefficients for input datasets can be calculated as:

∑
i∈M
‖xi − ∑

j∈Ki

wijxj ‖2 (3)

which is constrained by the conditions ∑
j∈Ki

wij= 1, i ∈ M, implying that the weights are

insensitive to rotations, rescales, and translations of associated neighbors and particular points.
Isomap is a nonlinear manifold-based modification of the multidimensional scaling

(MDS) technique. In contrast to standard MDS, which seeks to maintain the Euclidean
distance between data points, Isomap seeks an embedding in which the geodesic distance
between two points in the input space is as near to the Euclidean distance between respec-
tive representations in the targeted space as possible [36,37]. Let DG indicate the matrix
containing the distances of geodesic between the neighbors’ points. The embedding into
the d-dimensional space is determined by optimizing the following operation:

‖τ(DG)− τ(DZ)‖F (4)

where the τ operator transforms the distances to the inner products, the matrix of pair-
wise Euclidean distances dij = ‖Z i − Zj‖ of the data projections in <d is symbolized as
DZ =

[
dij
]
, and ‖•‖F represents the Frobenius norm of a matrix. The global minimum of
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Equation (4) obtained by determining the d eigenvectors correspond with the d biggest
eigenvalues of the geodesic distances matrix τ(DG).

To generate low-dimensional projections, LE uses the concept of the Laplacian of the
neighborhood graph. The edge of the neighborhood graph, which linking point xi to one
of the respective nearest neighbors xj is weighted by applying two different criteria: the
projection Zi, i ∈ M and the weight wij, i ∈ M, j ∈ Ki in the LE technique. The weight
wij values are determined using the Gaussian kernel function [38,39]:

wij = exp

(
−
‖xi − xj‖2

t

)
, t ∈ < (5)

where t is the heat kernel parameter. Equation (5) assigns an increasing weight as the points xi
and xj become closer together. The straightforward technique substitutes wij, i ∈ M, j ∈ Ki.
In both situations, wij= 0 for j /∈ Ki. Then, by mitigating the function, the projections
Zi, i ∈ M of the data points in the lower dimensional space are calculated:

∑
i∈M, j∈Ki

‖zi − zj‖
2wij (6)

It imposes a severe penalty on neighboring points that are mapped at a considerable
distance apart. The optimization of Equation (6) is reduced to the following minimization
problem by incorporating the Laplacian matrix L = D −W of the neighborhood network,
where D is a diagonal matrix with components Dii, ∑

j ∈ M
Wij, i ∈ M.

min trace
(
Z′LZ

)
(7)

The simple form solution of Equation (7) is achieved by finding the d eigenvectors
corresponding to the d lowest nonzero eigenvalues of the generalized eigenvalue problem
Lv = λDv and setting the projections Z = V.

2.3. Multivariate Classifier and Evaluation Parameter

In this study, we randomly divided the LIBS data into 75% for the training set and
25% for the test set. Support vector machines (SVM) with a radial basis function (RBF)
kernel were used as a multivariate analysis for samples classification in the comparison.
SVM is a cutting-edge supervised learning algorithm that has been extremely successful
in data classification and employed in the LIBS field to solve qualitative and quantitative
analyses. There are two significant hyperparameters in the SVM model, namely the penalty
parameter of the error term (C), and the gamma (γ) parameter that decides how much
curvature we want in a decision boundary [16,37]. The grid search with ten-fold cross-
validation was used to tune the hyperparameters and obtained the optimal values, for C
was 10 and for γ was 0.1.

We demonstrated the efficiency result of the method in this study using a confounding
matrix to evaluate the accuracy of the classifier. It is a widely used and accepted approach
and standard to evaluate classifier performance using this performance measure. The
proportion of correctly assessed results in the total observed values in the classification
model is used to determine the model’s overall discriminant classification ability. The
following equation is used in the calculation [40]:

Accuracy =
TP + TN

TP + TN + FP + FN
(8)

The output of a classification analysis has only two possible values: positive (P) or
negative (N). Variable P, for example, related to aluminum alloy sample #1 in our case,
while N correlated with other samples. For the binary classifier, there are four potential
outcomes. If the forecasted output is sample #1 and the actual input is sample S#1 or other
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samples, a true positive (TP) or a false positive (FP) is detected. In contrast, if the forecasted
output is other samples and the actual input is other samples or sample #1, respectively,
a true negative (TN) or a false negative (FN) is observed.

3. Results and Discussion

The average acquired emission spectra of five aluminum alloy samples ranging from
190 nm to 510 nm are illustrated in Figure 2. We could identify the eight major elements
in the samples and their associated spectral emission lines using the National Institute of
Standard and Technology (NIST) atomic spectroscopy database [41], namely Al (237.31 nm,
256.80 nm, 257.54 nm, 265.35 nm, 281.62 nm, 308.22 nm, 309.27 nm, 394.40 nm, 396.15 nm),
Si (198.63 nm, 263.12 nm), Fe (295.47 nm, 358.12 nm), Cu (324.75 nm), Mg (279.55 nm,
280.27 nm, 285.21 nm, 383.23 nm), Mn (257.09), Zn (328.23 nm), Ti (334.94 nm), and Cr
(425.43 nm). It is clearly seen from Figure 2 that the spectra intensity of those alloys are so
similar, and direct classification and identification are challenging to implement. Moreover,
the raw LIBS dataset contains more than 4000 wavelengths in spectra and a number of
intensities points for each sample; assigning all would have greatly increased the inaccuracy
of predictive performance.
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The classification accuracy using standard SVM on full spectra was 68.33%, and this result
was not satisfactory. Therefore, we needed to implement dimensionality reduction methods.

The preliminary exploration was conducted by combining SVM with linear manifold
learning techniques, namely PCA and MDS, on LIBS data, and five-fold cross-validation
was employed to determine the optimum number of dimensions (ndimensions). It can be seen
from Figure 3 that only 1 data in sample #1 was misclassified as sample #4, both in PCA
and MDS. Moreover, compared to that using PCA-SVM, the misclassified data in samples
#2, #3, and #4 were decreased, and only 1 data in sample #5 was misclassified as sample
#4 after implementing MDS-SVM. The highest classification accuracy of PCA-SVM was
70.00% with ndimensions = 23 and MDS-SVM was 78.33% with optimum ndimensions = 18, and
these results need further improvement.
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The augmented partial residual plot method was employed to investigate whether
there was nonlinearity in the LIBS data. The result of the polynomial fitting, shown in
Figure 4, illustrated that there was a significant nonlinearity condition in the dataset.
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Four nonlinear manifold learning, i.e., LTSA, LLE, Isomap, and LE, were performed to
address the nonlinear dimensionality reduction. The confusion matrix of the test set was
presented to show the capability of the techniques. Each column in the confusion matrix
represented occurrences belonging to a predicted label, whereas each row represented
instances belonging to a true label. We first implemented LTSA-SVM in the test set, and
the confusion matrix of LTSA-SVM is shown in Figure 5a. The LTSA-SVM successfully
classified samples #1, #4, and #5, and only 2 data were misclassified in samples #2 and #3.
Even though there is still inappropriate data classification, LTSA-SVM demonstrates better
performance than PCA-SVM and PCA-MDS. The confusion matrix of the combination SVM
and LLE is depicted in Figure 5b, and it was illustrated that all data in samples #1 and #5 were
correctly classified with others, while 3 data of sample #2 remained misclassified as sample #3.
When implementing LLE-SVM in samples #3 and #4, there were 3 and 1 data misclassified,
respectively, and this result showed a reduction in performance of LLE-SVM compared to
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LTSA-SVM. Figure 5d exhibits the confusion matrix of the LE-SVM method, and this result
showed that the LE-SVM could make the perfect distinction between samples #1 and #5 with
other types. On the other hand, the LE-SVM method could not well separate samples #3 and #4
from sample #2, and some of the data in samples #2 and #4 were also misclassified as sample #3.
As illustrated in Figure 5c, only sample #2 was misclassified as samples #3 and #5, and other
samples were perfectly distinguished. The Isomap-SVM outperforms the data classification
result compared to the other three nonlinear manifold learning.
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Figure 5. Confusion matrices of SVM prediction outcomes using various manifold dimensionality
reduction techniques of (a) LTSA, (b) LLE, (c) Isomap, and (d) LE.

The four nonlinear manifold learning algorithms achieved a greater than 83% classifi-
cation accuracy, which was validated by five-fold cross-validation and the tuned number
of nearest neighbor (kneighbors) parameter, as depicted in Figure 6. LTSA-SVM reached a
classification accuracy of 93.33% with ndimensions = 8 and kneighbors = 24, LLE-SVM needed
ndimensions = 6 and kneighbors = 38 to obtain optimum classification accuracy of 88.33%, LE-SVM
employed ndimensions = 7 and kneighbors = 31 to achieve a classification accuracy of 83.33%. Ad-
ditionally, the Isomap-SVM technique achieved the maximum classification accuracy result
of 96.67% by adjusting ndimensions = 11 and kneighbors = 18, indicating significant performance
improvement. Compared to the linear techniques, all the classification accuracy results are
improved using the nonlinear manifold techniques. Due to the fact that the PCA technique
uses only linear combinations of the original independent variables to compensate for the
maximum amount of variation, only a limited amount of clustering performance can be
achieved. The MDS technique is effective when the dataset is highly sparse or nonmetric,
but if the original high-dimensional dataset has nonlinear relationships, as confirmed by the
augmented partial residual plot, it will not be suitable [27]. Lin et al. [42] and Tsai [43] also
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reported that local techniques for nonlinear dimensionality reduction, such as LTSA, LLE,
or LE, have two significant benefits over global approaches, such as Isomap: they accept
some curvature and naturally result in a sparse eigenvalue problem. Nevertheless, neither
computational sparsity nor curvature tolerance is deliberately included in the design of the
local techniques.
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These characteristics appear as a result of the goal of preserving just the local geomet-
rical configuration of the dataset. Due to the fact that they are not explicit aims but rather
convenient byproducts, they are not trustworthy characteristics of the local technique.
LTSA, LLE, or LE has conformal invariance that can perform unsatisfactory performance in
unexpected directions, and the computational sparsity is not modifiable independently of
the manifold’s topological sparsity. This study establishes Isomap as specifically designed
to eliminate a well-defined form of curvature and to take advantage of the computational
sparsity inherent in low-dimensional manifolds [44,45]. Both expansions are susceptible to
algorithmic assessment and have been satisfactorily and successfully tested on the LIBS
dataset. Overall, the obtained results demonstrate that, when nonlinear manifold learning
techniques are paired with the SVM classifier model, they outperform linear manifold
learning techniques.

4. Conclusions

This study proposed the manifold dimensionality reduction techniques and multi-
variate classifier model of SVM coupled with LIBS technology for classifying five kinds of
aluminum alloy. The high-dimensional data and nonlinearity of the raw spectral data were
confirmed by the augmented partial residual, which was represented by the polynomial
fitting. The nonlinear manifold learning methods of LTSA, LLE, Isomap, and LE, and
linear manifold methods of MDS and PCA were implemented as dimensionality reduction
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techniques and employed to retrieve distinctive variables in order to reduce the dimensions
of the input dataset. The acquired significant variables were assigned as the input of the
SVM classifier model for the purpose of predicting the labels of unknown aluminum alloy
samples. The performance of prediction models was assessed by confusion matrix and
prediction accuracy. In linear manifold learning, MDS-SVM demonstrates better results
than PCA-SVM, while the Isomap-SVM shows robust satisfactory results compared to the
other nonlinear manifold learning. Isomap-SVM outperforms the linear and other three
nonlinear manifold learning results with a prediction accuracy of 96.67% and only 2 data
were misclassified. Thereby, the investigation conducted in this study can be a superior
alternative method to rapidly and accurately classify the particular sample based on LIBS
and even can be used for quantitative analysis of elemental concentration.
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