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Abstract: The electroencephalogram (EEG) and functional near-infrared spectroscopy (fNIRS) signals,
highly non-stationary in nature, greatly suffers from motion artifacts while recorded using wearable
sensors. Since successful detection of various neurological and neuromuscular disorders is greatly
dependent upon clean EEG and fNIRS signals, it is a matter of utmost importance to remove/reduce
motion artifacts from EEG and fNIRS signals using reliable and robust methods. In this regard,
this paper proposes two robust methods: (i) Wavelet packet decomposition (WPD) and (ii) WPD
in combination with canonical correlation analysis (WPD-CCA), for motion artifact correction from
single-channel EEG and fNIRS signals. The efficacy of these proposed techniques is tested using
a benchmark dataset and the performance of the proposed methods is measured using two well-
established performance matrices: (i) difference in the signal to noise ratio (∆SNR) and (ii) percentage
reduction in motion artifacts (η). The proposed WPD-based single-stage motion artifacts correction
technique produces the highest average ∆SNR (29.44 dB) when db2 wavelet packet is incorporated
whereas the greatest average η (53.48%) is obtained using db1 wavelet packet for all the available
23 EEG recordings. Our proposed two-stage motion artifacts correction technique, i.e., the WPD-CCA
method utilizing db1 wavelet packet has shown the best denoising performance producing an average
∆SNR and η values of 30.76 dB and 59.51%, respectively, for all the EEG recordings. On the other
hand, for the available 16 fNIRS recordings, the two-stage motion artifacts removal technique, i.e.,
WPD-CCA has produced the best average ∆SNR (16.55 dB, utilizing db1 wavelet packet) and largest
average η (41.40%, using fk8 wavelet packet). The highest average ∆SNR and η using single-stage
artifacts removal techniques (WPD) are found as 16.11 dB and 26.40%, respectively, for all the fNIRS
signals using fk4 wavelet packet. In both EEG and fNIRS modalities, the percentage reduction in
motion artifacts increases by 11.28% and 56.82%, respectively when two-stage WPD-CCA techniques
are employed in comparison with the single-stage WPD method. In addition, the average ∆SNR also
increases when WPD-CCA techniques are used instead of single-stage WPD for both EEG and fNIRS
signals. The increment in both ∆SNR and η values is a clear indication that two-stage WPD-CCA
performs relatively better compared to single-stage WPD. The results reported using the proposed
methods outperform most of the existing state-of-the-art techniques.
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1. Introduction

Due to the paradigm shift of hospital-based treatment in the direction of wearable and
ubiquitous monitoring, nowadays, the acquisition and processing of vital physiological
signals have become prevalent in the ambulatory setting. Since the acquisition of physio-
logical signals is inclined to movement artifacts that happen due to the deliberate and/or
voluntary movement of the patient during signal procurement utilizing wearable devices,
restricting patients totally from physical movements, intentional and/or unintentional,
is exceptionally troublesome. As a result, the physiological signals may get corrupted to
some degree by motion artifacts. In some instances, this defilement may end up so conspic-
uous that the recorded signals may lose their usability unless the movement artifacts are
diminished significantly.

Electroencephalogram (EEG) measures the electrical activity of the human brain quan-
titatively which took place due to the firing of neurons [1] and such brain activity is recorded
utilizing a good number of cathodes which are located at different regions of the scalp [2].
EEG is one of the key diagnostic tests for epileptic seizure detection [3,4]. Other decisive
utilization of EEG includes the estimation of drowsiness levels [5–8], emotion detection [9],
cognitive workload [6,10], and brain-computer interfaces (BCIs) [11–16]. All of which have
potential applications in the personal healthcare domain. Lately, the implementation of
EEG-based biometric systems utilizing the inborn anti-spoofing capability of EEG signals
was studied and appeared to be promising [17].

The functional near-infrared spectroscopy (fNIRS), a non-invasive optical brain imag-
ing technique, measures changes in hemoglobin (Hb) concentrations inside the human
brain [18] by employing light of various wavelengths in the infrared band and estimat-
ing the difference in the optical absorption [19]. Medical applications of fNIRS mainly
focus on the noninvasive measurement of brain functions [20,21], cognitive tasks identifica-
tion [22,23], and BCI [24–26].

Apart from movement artifacts, physiological signals undergo other types of artifacts
as well. Gradient artifacts (GA) and pulse artifacts (PA) are the two most frequent artifacts
observed in EEG during the simultaneous EEG-fMRI tests [27–29]. On the other hand,
event-related fNIRS signals are regularly sullied by heartbeat, breath, Mayer waves, etc., as
well as extra-cortical physiological clamors from the superficial layers [30].

Numerous attempts were made to reduce motion artifacts from EEG previously,
which were summarized in [31,32]. In [33], the performance of motion artifacts correction
techniques utilizing discrete wavelet transform (DWT) [34], empirical mode decomposi-
tion (EMD) [35], ensemble empirical mode decomposition (EEMD) [36], EMD along with
canonical correlation analysis (EMD-CCA), EMD with independent component analysis
(EMD-ICA), EEMD with ICA (EEMD-ICA), and EEMD with CCA (EEMD-CCA) were re-
ported. Maddirala and Shaik [37] used singular spectrum analysis (SSA) [38], whereas DWT
along with the thresholding technique was utilized in [39]. Gajbhiye et al. [40] employed
wavelet-based transform along with the total variation (TV) and weighted TV (WTV) de-
noising techniques, whereas in [41], wavelet domain optimized Savitzky–Golay filter was
proposed for the removal of motion artifacts from EEG. Recently, Hossain et al. [42] utilized
variational mode decomposition (VMD) [43] for the correction of motion artifacts from
EEG signals.

In the last few decades, multiple motion artifacts removal techniques were pro-
posed [44–46] for the removal of motion artifacts from the fNIRS signal. Sweeney et al. [47]
used adaptive filter, Kalman Filter, and EEMD-ICA. Scholkmann et al. [48] utilized the
moving standard deviation and spline interpolation method, whereas in [49], a wavelet-
based method was proposed. The authors of [33] used DWT, EMD, EEMD, EMD-ICA,
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EEMD-ICA, EMD-CCA, and EEMD-CCA. In [50], Barker et al. used an autoregressive
model-based algorithm, while kurtosis-based wavelet transform was proposed in [51], and
Siddiquee et al. [52] utilized nine-degree of freedom inertia measurement unit (IMU) data
to mathematically estimate the movement artifacts in the fNIRS signal using autoregressive
exogenous (ARX) input model. A hybrid algorithm was proposed in [53] to filter out the
movement artifacts from fNIRS signals where both the spline interpolation method and
Savitzky–Golay filtering were employed. Very recently, the two-stage VMD-CCA technique
was employed in [42].

The development of robust algorithms that can successfully reduce motion artifacts sig-
nificantly from EEG and fNIRS data is critical; otherwise, the signals’ interpretation could
be erroneous by medical doctors and/or machine-learning-based applications. As men-
tioned earlier, DWT, EMD, EEMD, VMD, DWT-ICA, EMD-ICA, EEMD-ICA, EMD-CCA,
EEMD-CCA, VMD-CCA, etc. were the most commonly used methods for the correction of
motion artifacts from EEG and fNIRS signals. ICA and CCA cannot be used independently
for single-channel EEG/fNIRS motion artifacts correction as the input of ICA/CCA algo-
rithms require at least two (or more) channels data, whereas DWT, EMD, EEMD, VMD, etc.
algorithms suffer from several limitations which are discussed in the discussion section
of this paper. Additionally, there is still room for improvement for ∆SNR and η values
which can be achieved using other effective novel methods. Therefore, in this paper, two
novel motion artifacts removal techniques have been proposed which can eliminate mo-
tion artifacts from single-channel EEG and fNIRS signals to a great extent. The first is a
single-stage motion artifacts correction technique using the wavelet packet decomposition
(WPD), whereas the other novel method is WPD in combination with CCA (WPD-CCA), a
two-stage motion artifacts removal technique, as the name suggests.

In this extensive study, for the correction of motion artifact from EEG and fNIRS
signals using the WPD method, four different wavelet packet families (Daubechies (dbN),
Symlets (symN), Coiflets (coifN), Fejer-Korovkin (fkN)) have been used with three different
vanishing moments (for each of the wavelet packets) that resulted in a total of 12 different
investigations. The wavelet packets used in the WPD method are db1, db2, db3, sym4,
sym5, sym6, coif1, coif2, coif3, fk4, fk6, and fk8. To the best of our knowledge, the WPD
algorithm has not been used for the removal of motion artifacts from single-channel EEG
and fNIRS signals to date. WPD-CCA method is another novel contribution of this research
work where Daubechies and Fejer-Korovkin wavelet packet families are utilized. In the
WPD-CCA technique, db1, db2, db3, fk4, fk6, and fk8 have been used separately, resulting
in six different investigations to reduce motion artifacts from EEG and fNIRS signals
more efficiently.

The rest of this paper is organized as follows: Section 2 discusses the theoretical
background of the different algorithms (WPD, CCA, WPD-CCA) investigated here, while
Section 3 provides brief information about the EEG and fNIRS benchmark dataset and
experimental methodology. Section 4 provides the results of the artifact removal techniques
proposed in this work and Section 5 covers the discussion. Finally, the paper is concluded
in Section 6.

2. Theoretical Background
2.1. Wavelet Packet Decomposition (WPD)

Using the WPD technique, signals can be decomposed into a wavelet packet basis at
diverse scales [54,55]. For j-level decomposition, a wavelet packet basis is represented by
multiple signals

[(
n− 2jk

)]
k∈Z, where i ∈ Z+, 0 ≤ i ≤ 2j− 1. The wavelet packet bases

ψi
j(n) are produced recursively from the scaling and wavelet functions, ψ0

1(n) = φ(n) and

ψ1
1(n) = ψ(n), respectively, as follows:

ψ2i
j (n) = ∑k h(k)ψi

j−1

(
n− 2j−1k

)
(1)

ψ2i+1
j (n) = ∑k g(k)ψi

j−1

(
n− 2j−1k

)
(2)
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where h(n) represents lowpass filter and g(n) is the highpass filter defined as [54,56]:

h(k) =
〈

ψ2i
j (u), ψi

j−1

(
u− 2j−1k

)〉
(3)

g(k) =
〈

ψ2i+1
j (u), ψi

j−1

(
u− 2j−1k

)〉
(4)

The decomposition of a signal x(n) onto the wavelet basis j(n) at level j can be
expressed as:

x(n) = ∑i,k Xi
jψ

i
j

(
n− 2jk

)
(5)

where Xi
j(k) signifies the kth wavelet coefficient of the packet i, at level j. Here, Xi

j(k)
represents the intensity of the localized wavelet ψi

j
(
n− 2jk

)
, defined by:

Xi
j(k) =

〈
x(n), ψi

j

(
n− 2jk

)〉
(6)

Let x(n) represent a recorded EEG/fNIRS signal which can be expressed as the sum
of a source signal s(n) and a motion artifact signal v(n) as follows:

x(n) = s(n) + v(n) (7)

In general, the source signal s(n) is assumed to be normally distributed having a mean
value equals to zero, s(n) ∼ N(0, σ), where σ2 characterizes the variance of s(n) [57]. On
the other hand, general assumptions regarding the artifact signal v(n) includes temporal
localization, not normally distributed with high local variance.

According to [58], Xi
j(k), can be represented as the sum of Si

j(k) and Vi
j (k), where

Xi
j(k), Si

j(k), and Vi
j (k) are the wavelet coefficients of x(n), s(n), and v(n), respectively:

Xi
j(k) = Si

j(k) + Vi
j (k) (8)

It is noteworthy to mention that the wavelet coefficients Vi
j (k) will be sparse as well

as the non-zero coefficients will have a relatively higher magnitude as the variance of
v(n) is locally high, which would cause an increase in the local variance of the recorded
EEG/fNIRS signal x(n).

2.2. Canonical Correlation Analysis (CCA)

CCA [59] is one of the most popular blind source separation methods which has the
capability of dissociating multiple mixed or noisy signals. Assuming linear mixing, square
mixing, and stationary mixing [60], the CCA technique computes an un-mixing matrix W,

which helps identify the unknown independent components
^
S from a matrix X, which is a

recorded multi-channel signal as follows:
^
S = WX (9)

CCA also estimates the unknown independent components
^
S using Equation (9)

utilizing second-order statistics (SOS). CCA forcefully makes the sources to be auto-
correlated maximally as well as makes the sources mutually uncorrelated [61]. Let us
assume y as a linear combination of neighboring samples for an input signal x (i.e.,
y(t) = x(t− 1) + x(t + 1)) [62]. Consider the linear combinations of the components
in x and y, known as the the canonical variates:

x = wT
x

(
x− ¯

x
)

(10)

y = wT
y

(
y− ¯

y
)

(11)

where wx and wy represents the weight matrices. CCA computes wx and wy in such a way
so that the correlation ρ between x and y will be maximized [62]:
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ρ =
wT

x CxywT
y√

wT
x CxxwxwT

y Cyywy

(12)

where Cxx and Cyy signify the nonsingular within-set covariance matrices and Cxy represent
the between-sets covariance matrix. The maximized ρ is calculated by setting the derivatives
of Equation (12) (with respect to wx and wy) equal to zero:

C−1
xx CxyC−1

yy CT
yx

^
wx = ρ2 ^

wx

C−1
yy CyxC−1

xx CT
xy

^
wy = ρ2 ^

wy

(13)

wx and wy can then be found out as the eigenvectors of the matrices C−1
xx CxyC−1

yy CT
yx

and C−1
yy CyxC−1

xx CT
xy, respectively, and the corresponding eigenvalues ρ2 are the squared

canonical correlations. It is sufficient to solve only one of the eigenvalue equations to obtain
the un-mixing matrix W as the solutions are related. Furthermore, the underlying source

signals
^
S can be estimated.

The components that seem to be artifacts can then be discarded by simply setting the

corresponding columns of the
^
S matrix to zero before the signal reconstruction.

2.3. WPD-CCA

The WPD algorithm can be utilized to decompose a single-channel signal into multi-
channel signal X where each column of matrix X represents the detailed and approximated
sub-band signals. The total number of generated sub-band signals would be equal to 2j,

where j denotes the level, a priori. To estimate the underlying true sources
^
S (Equation (9)),

these generated sub-band signals can then be used as the multi-channel input signals to

the CCA algorithm. After that, the component/s of
^
S which seem to be artifacts can be

discarded by making the corresponding columns of the matrix
^
S equal to zero. Bypassing

this newly obtained source matrix through the inverse of the un-mixing matrix W−1, the

multi-channel signals
^
X can be obtained. Finally, the cleaner signal

^
x can be produced by

simply summing all the columns of the matrix
^
X.

3. Methods

This section describes the benchmark dataset used, pre-processing, study design,
motion component identification, and evaluation metrics.

3.1. Dataset Description

A publicly available PhysioNet dataset [32,33,63] is used in this study that contains
“reference ground truth” and motion corrupted signals for both EEG and fNIRS modalities.
The details of the data recording procedure for EEG and fNIRS modalities were mentioned
in [47]. During the data acquisition, two channels having the same hardware properties
were placed on the test subject’s scalp at very close proximity (20 mm for EEG modality
and 30 mm for fNIRS modality), where the first channel was impacted with motion artifacts
for 10–25 s at regular 2 min interval and the second channel was left untouched and
undisturbed for the entire recording period. From the unimpacted channel (2nd channel),
the EEG/fNIRS signal was extracted, which was free from motion artifacts and referred to
as “reference ground truth” signal, whereas the impacted channel (1st channel) provided
EEG/fNIRS signal corrupted with motion artifacts. It is worthwhile to mention that both
the motion corrupted and “reference ground truth” signals were extracted simultaneously
from channels 1 and 2, respectively, for approximately 9 min for each of the trial/test
subjects. Additionally, the same channels were used to extract EEG/fNIRS data from all of
the test subjects.
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Twenty-three sets of EEG recordings, sampled at 2048 Hz, collected from six patients
in four different sessions, are available in the database. Each recording consists of one
motion corrupted EEG signal and one reference “ground truth” EEG signal. The average
correlation coefficient between the reference “ground truth” and motion corrupted EEG
signals is very high over the epochs where the motion artifacts are absent and the average
correlation coefficient drops significantly during the epochs of motion artifacts [32]. The
superimposed reference “ground truth” and motion corrupted EEG signals are illustrated
in Figure 1a.

Figure 1. Example of motion-corrupted EEG (a) and fNIRS (b) signals. Two signals (blue: ground
truth and red: motion-corrupted) are highly correlated during the motion artifacts free epochs. Boxed
areas show the epochs of motion corrupted signals. A zoomed version is presented underneath
each sub-plot.

fNIRS signals were recorded at two different wavelengths: 690 nm and 830 nm
wavelengths. There were 16 sets of fNIRS recordings (9 recordings at 830 nm wavelength
and 7 recordings at 690 nm wavelength) in total from 10 test subjects at a sampling frequency
of 25 Hz [33,63]. Like EEG recordings, each recording of fNIRS consists of one motion
corrupted fNIRS signal and one “reference ground truth” fNIRS signal. The overlaid
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“reference ground truth” fNIRS signal and motion artifact contaminated fNIRS signal is
depicted in Figure 1b.

3.2. Signal Preprocessing

Downsampling: As EEG signals can be partitioned into a few sub-bands, specifically
delta (1–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), beta (13–30 Hz), and gamma (30–80 Hz) [64],
we downsampled all the 23 sets of EEG recordings from 2048 Hz to 256 Hz, which guar-
antees data reliability without losing any vital signal information and morphology. The
fNIRS signals were not upsampled/downsampled as the original sampling rate was 25 Hz
during acquisition.

Power line noise removal: To remove power line noise, a third-order Butterworth notch
filter with a center frequency of 50 Hz was utilized to remove 50 Hz and its subsequent
harmonics as a pre-processing technique for all the EEG and fNIRS signals.

Baseline Drift Correction: Both the EEG and fNIRS signals were found to have signifi-
cant baseline drift, which is defined as undesired amplitude shifts in the signal that would
result in inaccurate results if not corrected. To remove baseline drift from EEG and fNIRS
recordings, a polynomial curve fitting method was used to estimate the baseline, which
was then subtracted from the recorded raw signal.

3.3. Study Design

The simulations of this work were carried out in a PC with Intel(R) Core(TM) i5-8250U
CPU at 1.80 GHz which was equipped with 8 GB RAM. In-house-built MATLAB code
was written to pre-process the EEG and fNIRS data. The single-stage WPD and two
stages WPD-CCA methods were deployed in “MATLAB R2020a, The MathWorks, Inc.,
Natick, Massachusetts, USA”. Figure 2 depicts the motion artifacts elimination framework
presented in this study. An automated way for identifying motion corrupted components
of the preprocessed signal is also discussed.

Figure 2. Methodological framework for the motion artifact correction.

In this study, the whole 9 min of EEG/fNIRS data of each trial were analyzed at one
time using WPD and WPD-CCA methods. As mentioned earlier, WPD generates 2j num-
bers of sub-band signals where the level, j, is user-defined. Choosing j = 3 would produce
eight sub-band components, where the probability of getting mixed of motion-corrupted
components and artifacts-free signal components would be very high. Additionally, j = 5
would produce 32 sub-band signals, which would increase the computational complexity
of the algorithm. Hence, in this research work, we have chosen j equal to 4 for both EEG
and fNIRS recordings that produced 16 sub-band signals/components in total for each of
the EEG/fNIRS signals and ensured optimum performance. Again, 12 different wavelet
packets (db1, db2, db3, sym4, sym5, sym6, coif1, coif2, coif3, fk4, fk6, and fk8) were used in
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the single-stage motion artifact correction technique, i.e., WPD. Among these 12 wavelet
packets, 6 wavelet packets (db1, db2, db3, fk4, fk6, and fk8) were used in the WPD-CCA
method due to the relatively better performance shown by Daubechies and Fejer-Korovkin
wavelet packet families incorporated in the WPD technique. As several wavelet packets
were used in this study, in the rest of the manuscript, a subscript is added with WPD to
denote the corresponding wavelet packet used. As an example, WPD(db1) would refer to
that the db1 wavelet packet is used.

With the availability of sub-band signals decomposed using the WPD technique, the
artifact components can then be selected and removed. All the remaining sub-band signals
can then either be added up to reconstruct a cleaner signal or all the sub-band signals can
be fed as inputs to the CCA algorithm to determine the motion corrupted components to
enhance the signal quality further.

CCA technique needs the number of input channels to be at least two or greater. In
this work, single-channel EEG and fNIRS signals have been evaluated for the correction of
motion artifacts. Hence, it is required to generate several sub-band signals which would
be used as the inputs for the CCA algorithm. Six different WPD-CCA-based (WPD(db1)-
CCA, WPD(db2)-CCA, WPD(db3)-CCA, WPD(fk4)-CCA, WPD(fk6)-CCA, and WPD(fk8)-CCA)
two-stage artifacts removal technique has been realized for both single-channel EEG and
fNIRS signals.

3.4. Removal of Motion Artifact Components Using “Reference Ground Truth” Method

A common challenge in eliminating motion artifacts utilizing the aforementioned
artifact removal approaches is consistently identifying and removing the motion corrupted
components from the signal of interest and reconstructing a cleaner signal. The available
reference “ground truth” signal of EEG and fNIRS modalities were used to identify the
motion corrupted components as well as test the efficacy of the proposed algorithms. If a
component of the decomposed signal is removed and the signal is rebuilt using the other
components, the correlation coefficient between the newly reconstructed signal and the
ground truth signal will only rise if the removed component has motion artifacts. Using
this basic yet efficient notion, motion artifact-affected components of the decomposed
signal were discovered and discarded to reconstruct a cleaner signal, ensuring the best
performance of each suggested technique during evaluation.

Figure 3a shows an example motion corrupted EEG signal and below Figure 3b
represents the corresponding 16 sub-band components generated from that corresponding
EEG signal using WPD(sym4) algorithm. Figure 4a depicts an example motion corrupted
EEG signal and Figure 4b represents the resultant 16 CCA components where the input
of the CCA method was 16 sub-band signals generated from the motion corrupted EEG
signal using WPD(coif1).

Similarly, Figures 5a and 6a show two different motion corrupted fNIRS signals,
whereas Figures 5b and 6b represent the sub-band signals generated from WPD(db1), and
16 output CCA components where the input of the CCA algorithm consisted of 16 sub-band
signals generated from the motion corrupted EEG signal using WPD(fk8), respectively.

From visual inspection of the components generated from the single-stage (WPD) and
two-stage (WPD-CCA) motion artifacts removal techniques, it can be stated that in most
of the cases, motion artifacts components are usually found in one or two approximation
sub-band/CCA components. Although this was the case for most of the EEG and fNIRS
recordings, rather than blindly discarding these one or two sub-band/CCA components as
motion artifact components, only those components were discarded that, when removed,
improved the correlation coefficient of the reconstructed signal in comparison with the
available reference “ground truth” signal.



Sensors 2022, 22, 3169 9 of 24

Figure 3. An example motion-corrupted single-channel EEG signal (a) and the corresponding
16 sub-band components generated using WPD(sym4) algorithm (b). S15 denotes the Approxima-
tion sub-band signal having the lowest center frequency compared to the other sub-band signals,
i.e., D1–D15.
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Figure 4. An example motion-corrupted single-channel EEG signal (a) and the corresponding 16 CCA
components generated from the CCA algorithm (b).
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Figure 5. An example motion-corrupted single-channel fNIRS signal (a) and the corresponding
16 sub-band components generated using WPD(db1) algorithm (b). S15 denotes the Approxima-
tion sub-band signal having the lowest center frequency compared to the other sub-band signals,
i.e., D1–D15.
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3.5. Performance Metrics

The efficacy and performance of each proposed artifact removal approach can be
computed using the provided reference “ground truth” signal for each modality, as detailed
before. Since the objective of each proposed technique is to reduce artifacts from the motion-
artifact contaminated signal, calculating ∆SNR and percentage reduction in motion artifacts
can assess the efficacy of that corresponding technique’s capacity to remove artifacts. Hence,
the difference in SNR before and after artifact removal (∆SNR), and the improvement in
correlation between motion corrupted and reference “ground truth” signals, expressed by
the percentage reduction in motion artifact η [33], are utilized as performance metrics.

For the calculation of ∆SNR, the following formula is used which was given in [33]:

∆SNR = 10 log10

(
σ2

x
σ2

ea f ter

)
− 10 log10

(
σ2

x
σ2

ebe f ore

)
(14)

where σ2
x , σ2

ebe f ore
, and σ2

ea f ter
represent the variance of the reference “ground truth”, motion

corrupted signal, and cleaned signal, respectively.
To calculate the percentage reduction in motion artifact η, the following formula is

used [33]:
η = 100

(
1−

ρclean − ρa f ter

ρclean − ρbe f ore

)
(15)

where ρbe f ore is the correlation coefficient between the reference “ground truth” and motion-
corrupted signals. The correlation coefficient between the reference “ground truth” and
the cleaned signals is denoted by ρa f ter, whereas ρclean is the correlation between the
reference “ground truth” and motion corrupted signals over the epochs where motion
artifact is absent.

In this study, we considered ρclean = 1, as in an ideal situation, the “reference ground
truth” and the motion corrupted signal over the artifacts-free epochs would always be
completely correlated. Hence, the following equation was used to estimate η:

η = 100

(
1−

1− ρa f ter

1− ρbe f ore

)
(16)

4. Results

The results obtained in this work, using the various novel artifact removal techniques
are mentioned below where the performance metrics were calculated using Equations (14)
and (16).

4.1. Motion Artifact Correction from EEG Data

All the algorithms (18 in total) were applied on all the 23 recordings of EEG. Figure 7a–d
depicts four different examples of EEG recordings after the correction of the motion arti-
fact using WPD(db2), WPD(db3), WPD(fk6), and WPD(fk8) methods, respectively, whereas
Figure 8a,b illustrates example EEG signals after the motion artifact correction using
WPD(db1)-CCA and WPD(fk4)-CCA techniques, respectively.

WPD: Among all the 12 different approaches (WPD(db1),WPD(db2), WPD(db3), WPD(sym4),
WPD(sym5), WPD(sym6), WPD(coif1),WPD(coif2), WPD(coif3), WPD(fk6), WPD(fk6), and WPD(fk8)),
the highest average ∆SNR of 29.44 dB with a standard deviation of 9.93 was found when
WPD(db2) algorithm was employed over all (23) EEG recordings. The best average per-
centage reduction in artifact was provided by WPD(db1) algorithm (53.48%) among these
12 single-channel motion artifact correction techniques.

WPD-CCA: Six different approaches namely WPD(db1)-CCA, WPD(db2)-CCA, WPD(db3)-
CCA, WPD(fk4)-CCA, WPD(fk6)-CCA, and WPD(fk8)-CCA were investigated, all of which
are two-stage motion artifacts correction techniques. The best average ∆SNR was found
to be 30.76 dB when WPD(db1)-CCA technique was applied over all the EEG records. The
highest average percentage reduction in artifact was also provided by the same algorithm,
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which is 59.51% among these six single-channel motion artifact correction techniques for
EEG modality.

Figure 7. Motion artifact correction from different example EEG signals using WPD(db2) (a),
WPD(db3) (b), WPD(fk6) (c), and WPD(fk8) (d) techniques.
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Figure 8. Motion artifact from example EEG signals using WPD(db1)-CCA (a) and WPD(fk4)-CCA (b)
techniques.

4.2. Motion Artifact Correction from fNIRS Data

All the algorithms (18 in total) were applied on all the 16 recordings of the fNIRS
modality. Figure 9a–d depicts four different example fNIRS signals after the correction
of the motion artifact using WPD(sym5), WPD(sym6), WPD(coif2), and WPD(coif1) techniques,
respectively, whereas Figure 10a,b illustrate example fNIRS signals after the motion artifact
correction using WPD(db1)-CCA and WPD(fk4)-CCA techniques, respectively.

WPD: Among all the 12 different approaches (WPD(db1),WPD(db2), WPD(db3), WPD(sym4),
WPD(sym5), WPD(sym6), WPD(coif1),WPD(coif2), WPD(coif3), WPD(fk6), WPD(fk6), and WPD(fk8)),
the highest average ∆SNR of 16.03 dB with a standard deviation of 4.31 was found when
WPD(db1) algorithm was employed over all (16) fNIRS recordings. The best average percent-
age reduction in artifact was provided by WPD(fk4) algorithm among these 12 single-channel
motion artifact correction techniques.

WPD-CCA: Finally, the six different approaches namely WPD(db1)-CCA, WPD(db2)-
CCA, WPD(db3)-CCA, WPD(fk4)-CCA, WPD(fk6)-CCA, and WPD(fk8)-CCA, all of which are
two-stage motion artifacts correction techniques, were investigated for fNIRS modality. The
best average ∆SNR was found to be 16.55 dB when WPD(db1)-CCA technique was applied
over all the 16 fNIRS records. The highest average percentage reduction in artifact (41.40%)
was provided by WPD(fk8)-CCA technique among these six single-channel motion artifact
correction techniques for fNIRS modality.

Table 1 summarizes the results obtained (average ∆SNR and average percentage reduc-
tion in motion artifacts η) using the artifact removal techniques proposed in this paper, i.e.,
WPD(db1),WPD(db2), WPD(db3), WPD(sym4), WPD(sym5), WPD(sym6), WPD(coif1), WPD(coif2),
WPD(coif3), WPD(fk6), WPD(fk6), WPD(fk8), WPD(db1)-CCA, WPD(db2)-CCA, WPD(db3)-CCA,
WPD(fk4)-CCA, WPD(fk6)-CCA, and WPD(fk8)-CCA for all the EEG (23) and fNIRS (16)
recordings. The values inside first brackets in Table 1 denote the corresponding stan-
dard deviations.
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Figure 9. Motion artifact correction from example fNIRS signals using WPD(sym5) (a), WPD(sym6) (b),
WPD(coif2) (c), and WPD(coif1) (d) techniques.
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Figure 10. Motion artifact correction from example fNIRS signals using WPD(db1)-CCA (a) and
WPD(fk4)-CCA (b) techniques.

It is evident from the results of Table 1 that the cleaner EEG signals reconstructed using
the WPD(db1) technique provided the highest average η value (53.48%, with corresponding
∆SNR value of 29.26 dB) compared to the other 11 types of single-stage motion artifact
correction approaches, whereas the greatest average ∆SNR value (29.44 dB) was provided
by WPD(db2) with corresponding average η value of 51.40%. Among these 12 different
single-stage artifact removal approaches, the lowest average η (50.00%) and smallest ∆SNR
(29.08 dB) was produced by the WPD(coif3) method. When two-stage motion artifacts
removal techniques were employed (WPD-CCA) using six different wavelet packets sepa-
rately, the best average correlation improvement (59.51%) and best average ∆SNR value
(30.76 dB) was produced by the WPD(db1)-CCA approach, whereas the lowest performance
was recorded utilizing the WPD(fk8)-CCA technique (average ∆SNR and η values of 28.86 dB
and 55.88%, respectively). Overall, an increase of 11.28% in the average percentage reduc-
tion in motion artifacts was found, while the best-performing two-stage WPD(db1)-CCA
was incorporated compared to the best-performing single-stage motion artifact correction
technique, namely WPD(db1). Additionally, the average ∆SNR value improved by 4.48%
(from 29.44 dB to 30.76 dB), while the best performing two-stage WPD(db1)-CCA technique
was utilized instead of the best-performing single-stage WPD(db2) method for the correction
of motion artifacts from single-channel EEG recordings.
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Table 1. Average ∆SNR and average percentage reduction in artifacts (η) for all the EEG and fNIRS
recordings. Corresponding standard deviations are shown inside the bracket. (*) represents the
best-performing metrics.

Type Technique
EEG (23 Records) fNIRS (16 Records)

Average ∆SNR
(in dB)

Average η
(in %)

Average ∆SNR
(in dB)

Average η
(in %)

Single-stage
motion artifact

correction
techniques

WPD(db1) 29.26 (10.29) 53.48 (33.35) * 16.03 (4.31) 26.21 (26.38)

WPD(db2) 29.44 (9.93) * 51.40 (33.59) 15.99 (4.49) 25.92 (28.86)

WPD(db3) 29.37 (10.01) 50.74 (33.55) 15.71 (4.52) 26.05 (29.11)

WPD(sym4) 29.27 (10.05) 50.40 (33.50) 15.54 (4.55) 26.14 (29.18)

WPD(sym5) 29.19 (10.09) 50.20 (33.47) 15.43 (4.57) 26.17 (29.22)

WPD(sym6) 29.11 (10.12) 50.05 (33.43) 15.35 (4.59) 26.16 (29.24)

WPD(coif1) 29.43 (9.94) 51.34 (33.59) 15.97 (4.49) 25.94 (28.88)

WPD(coif2) 29.25 (10.06) 50.35 (33.49) 15.51 (4.56) 26.15 (29.19)

WPD(coif3) 29.08 (10.13) 50.00 (33.42) 15.33 (4.60) 26.15 (29.25)

WPD(fk4) 29.21 (9.87) 52.58 (33.48) 16.11 (4.42) * 26.40 (27.53) *

WPD(fk6) 29.32 (10.03) 50.55 (33.51) 15.59 (4.54) 26.20 (29.08)

WPD(fk8) 29.15 (10.10) 50.15 (33.45) 15.38 (4.58) 26.25 (29.18)

Two-stage
motion artifact

correction
techniques

WPD(db1)-CCA 30.76 (12.29) * 59.51(25.99) * 16.55 (6.29) * 36.58 (11.22)

WPD(db2)-CCA 30.35 (12.50) 57.57 (25.89) 14.50 (5.85) 39.62 (10.59)

WPD(db3)-CCA 29.42 (12.57) 56.52 (25.71) 13.72 (5.82) 40.39 (10.60)

WPD(fk4)-CCA 30.36 (12.65) 58.83 (25.93) 14.97 (6.25) 38.32 (10.90)

WPD(fk6)-CCA 29.12 (13.00) 56.81 (25.16) 13.81 (5.70) 40.48 (10.43)

WPD(fk8)-CCA 28.86 (12.77) 55.88 (25.10) 12.41 (5.51) 41.40 (10.08) *

From Table 1, the cleaner fNIRS signals reconstructed using WPD(fk4) technique pro-
vided the highest average η value (26.40%) compared to the other 11 types of single-stage
motion artifact correction approaches. The greatest average ∆SNR value (16.11 dB) was also
provided by the same approach. Among these 12 different single-stage artifact removal
approaches, the lowest average η (25.92%) was produced by WPD(db2), whereas the small-
est ∆SNR value (15.33 dB) was produced by WPD(coif3). When two-stage motion artifacts
removal techniques were employed (WPD-CCA) using six different wavelet packets for
all the fNIRS signals, the best average correlation improvement (41.40%) was produced
by the WPD(fk8)-CCA technique and the lowest average percentage reduction in artifacts
(36.58%) was generated from WPD(db1)-CCA. On the other hand, the best average ∆SNR
value (16.55 dB) was obtained from the WPD(db1)-CCA technique, and the WPD(fk8)-CCA
technique produced the lowest ∆SNR value of 12.41 dB. Overall, an increase of 56.82% in
percentage reduction in motion artifacts was found while the best performing two-stage
motion artifacts technique, i.e., WPD(fk8)-CCA was incorporated compared to the best per-
forming single-stage motion artifact correction technique namely WPD(fk4). Additionally,
an increase of 2.73% in ∆SNR value was found when best performing two-stage WPD(db1)-
CCA was employed instead of the best-performing single-stage WPD(fk4) technique.

From Table 1, it is clear that two-stage artifacts correction techniques performed
relatively better compared to the single-stage artifacts correction approaches for both EEG
and fNIRS modalities.

The authors of [37] found that no brain activity was registered in trials 12 and 15.
Moreover, they found a poor correlation coefficient over the clean epochs of the recordings
of 12 and 15, and hence, they carried out their investigation on the remaining 21 recordings
of EEG. We have also observed a similar situation in this work. Trials 12 and 15 consistently
produced very bad performance metrics (∆SNR and η values), while both single-stage and
two-stage artifact reduction techniques were applied proposed in this paper.



Sensors 2022, 22, 3169 19 of 24

Table 2 illustrates the average ∆SNR and average percent reduction in motion artifacts
using WPD(db1), WPD(sym4), WPD(coif1), and WPD(fk4). This time, the faulty trials (trials 12
and 15) were excluded and the experiments were conducted on the remaining 21 sets of EEG
recordings. The motion corrupted signal was decomposed into 16 sub-band components
using WPD and then the cleaner signals were generated by simply discarding the lowest-
frequency approximation sub-band component (for example, Figure 3, S15 component) and
adding the remaining 15 sub-band components (D1 to D15) directly. During this process,
the reference ground truth signal was only used to compute the performance metrics.

Table 2. Average ∆SNR and average percentage reduction in artifacts (η) for 21 recordings of EEG
modality. Corresponding standard deviations are shown inside the first bracket. (*) denotes the
best-performing metrics.

Type Method
EEG (21 Records)

Average ∆SNR (in dB) Average η (in %)

Single-stage motion
artifact correction

techniques

WPD(db1) 26.20 (6.35) 60.22 (21.79) *

WPD(sym4) 26.46 (6.56) 57.23 (22.11)

WPD(coif1) 26.70 (6.54) * 58.19 (22.04)

WPD(fk4) 26.36 (6.36) 59.37 (21.90)

From Table 2, it is clear that the cleaner EEG signals reconstructed using the WPD(db1)
technique provided the highest average η value (60.22%, corresponding ∆SNR value of
26.20 dB) compared to the other three types of single-stage motion artifact correction ap-
proaches, whereas the greatest average ∆SNR value (26.70 dB) was produced by WPD(coif1)
with an average η value of 58.19%. The values obtained following this process is a clear
indication that without the availability of “reference ground truth signal”, correction of
motion artifacts from EEG signal is still possible. The similar approach can also be used for
motion artifacts correction from fNIRS signals, but will be considered in a future work.

5. Discussion

In this paper, we have proposed two novel methods (WPD and WPD-CCA) using
four different wavelet packet families with three different vanishing moments, resulting in
18 different techniques (WPD(db1),WPD(db2), WPD(db3), WPD(sym4), WPD(sym5), WPD(sym6),
WPD(coif1),WPD(coif2), WPD(coif3), WPD(fk6), WPD(fk6), WPD(fk8), WPD(db1)-CCA, WPD(db2)-
CCA, WPD(db3)-CCA, WPD(fk4)-CCA, WPD(fk6)-CCA, and WPD(fk8)-CCA) for the correc-
tion of motion artifacts from single-channel EEG and fNIRS recordings. The performance
metrics (∆SNR and η) calculated and reported in the “Results” section utilizing these
18 approaches are a clear indication of the efficacy of our proposed techniques. Both
the Daubechies and Fejer-Korovkin wavelet packet families relatively performed better
compared to the Symlet and Coiflet wavelet packet families in removing motion artifacts
from EEG and fNIRS recordings. For this reason, while implementing the two-stage arti-
facts correction technique, we have used only the Daubechies and Fejer-Korovkin wavelet
packet families.

As previously stated, DWT, EMD, EEMD, VMD, EMD-ICA, EMD-CCA, EEMD-ICA,
EEMD-CCA, VMD-CCA, SSA, and DWT, along with approximation sub-band filtering,
adaptive filtering (ARX model with exogenous input), etc., were commonly employed for
the correction of movement artifacts from motion corrupted EEG and fNIRS signals. Each
of these methods suffers from some limitations.

Using DWT-based approaches, to improve signal quality from motion-corrupted phys-
iological data, selecting the suitable wavelet is critical and rather complex. To date, there is
no hard and fast rule for selecting the appropriate wavelet for the specific physiological
signal of interest; instead, wavelets are often selected depending on the morphology of the
signal. As a result, improper wavelet selection would result in inefficient denoising.
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The EMD-based motion artifact reduction approach suffers heavily from the “mode
mixing” issue [33], which may result in an incorrect outcome. To fix this problem, the
EEMD approaches are employed [33,36]. Although EEMD is not affected by the mode
mixing problem, it still requires a prior declaration of the number of ensembles to be
employed, which is determined through trial and error basis [33].

To make use of the SSA algorithm, for the correction of movement artifacts from
physiological signals, a prior declaration of the window length and the required number of
reconstruction components is necessary, which makes SSA inefficient as well [37].

The authors of [40] employed DWT along with approximation sub-band filtering using
total variation (TV) and weighted TV. While reconstructing the cleaner signal, the first three
high-frequency detailed sub-band signals were rejected, since they included no important
information from the EEG signal. However, detecting non-useful sub-band signals when
utilizing DWT-based algorithms is very challenging for removing motion artifacts from
EEG and fNIRS signals. Furthermore, the value of the regularization factor used to address
the optimization problem of TV and MTV approaches was picked without explanation.

Siddiquee et al. [52] studied the autoregressive exogenous input model (adaptive
technique) to model motion corrupted segments as output and IMU data as exogenous
input. Only four test participants’ fNIRS data were used by the authors to demonstrate the
efficacy of their prescribed approach. One of the most important aspects of adopting this
technique is the precise synchronization of fNIRS and IMU data. Furthermore, if the epoch
duration of the motion artifacts is sufficiently long (specifically, the sample size), modeling
the artifacts mathematically using the least square method would necessitate higher-order
models, which would eventually cause instability. Hence, incorporating this method to
remove motion artifacts would be extremely difficult in a real-world scenario.

ICA and CCA algorithms are multi-channel signal processing algorithms, meaning
there must be two (or more) channel data values as input. Therefore, ICA and CCA
algorithms cannot be incorporated independently for the processing of single-channel data.
Additionally, since ICA uses higher-order statistics (HOS) and CCA uses second-order
statistics (SOS) [33], the CCA algorithm is computationally efficient in comparison with
ICA. That is why previous studies as well as this study used the CCA algorithm as a
second-stage signal processing method.

WPD is the more generalized version of DWT, but the former provides better signal
decomposition which enhances the signal quality for further processing. Additionally, WPD
is better in denoising in the sense that there is no necessity of identifying and discarding
any sub-band signals other than the motion corrupted sub-band component. Additionally,
the results obtained in this work utilizing the WPD method for 12 different wavelet packets,
show a little variation while computing ∆SNR and η. This is a clear indication that
applying WPD compared to the DWT is much more robust and efficient in terms of
performance metrics improvement.

Although the two-stage motion artifacts removal approaches (WPD-CCA) proposed
in this paper performed better compared to the single-stage artifacts correction techniques
using WPD, the WPD-CCA technique will not be able to identify the motion corrupted
CCA components in the absence of a ground truth signal, which is a limitation of two-stage
artifacts removal technique. Hassan et al. provided an alternate technique in [65], in
which the authors employed the autocorrelation function to detect the motion corrupted
components. The automated artifact component selection approach introduced in [65]
employing the autocorrelation function has not been experimented within this study and
will be considered in a future study.

However, even in the absence of the “reference ground truth” signal, our proposed
single-stage motion artifact reduction approach (WPD) would produce optimal results.
While decomposing the signal of interest (EEG/fNIRS) using WPD, it was visually seen
that the approximation sub-band component (having the lowest frequency band compared
to the rest of the sub-band components) included the highest percentage of motion artifacts.
Hence, discarding this noisy sub-band component and reconstruction of the signal using
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the remaining sub-band signals would reduce the motion artifacts to a great extent. The
validation of this statement is supported by Table 2, where the performance metrics (∆SNR
and η) were reported and produced reasonable noise reduction.

Throughout this work, while estimating the percentage reduction in motion artifacts η,
we have considered Equation (16), instead of Equation (15), where we have assumed that
ρclean = 1 as in an ideal situation, the “reference ground truth” and the motion corrupted
signal over the artifacts-free epochs would always be completely correlated. However,
in practice, the value of ρclean would always be less than 1, because it is impossible to
extract a “reference ground truth” signal which would completely be similar compared
with a motion-corrupted signal during the artifacts-free epochs. It is counter-intuitive that a
lower value of ρclean would produce a lower value of η; it is just the opposite. For example,
let ρbe f ore = 0.6; ρa f ter = 0.8; ρclean = 0.95, from Equation (15), we would get η equals
57.14% and Equation (16) would give 50%. That is why choosing ρclean = 1 would give a
worst-case scenario result. Additionally, this same formula is used in [40–42] assuming the
ideal “reference ground truth signal”.

6. Conclusions

In this extensive study, two novel motion artifact removal techniques have been
proposed, namely wavelet packet decomposition (WPD), and WPD in combination with
canonical correlation analysis (WPD-CCA) for EEG and fNIRS modalities. Furthermore,
the proposed algorithms were investigated by 18 different approaches where four dif-
ferent wavelet packet families namely Daubechies, Symlet, Coiflet, and Fejer-Korovkin
wavelet packet families were utilized. WPD-CCA techniques can be used on single-channel
recordings as the WPD algorithm can decompose a single-channel signal into a predefined
number of sub-band components which can be fed as the input channels for the CCA
algorithm. The performance parameters obtained from all these approaches are a clear
indication of the efficacy of these algorithms. The novel WPD(db1)-CCA and WPD(fk8)-CCA
technique provided the best performance in terms of the percentage reduction in motion
artifacts (59.51% and 41.40%) when analyzing the EEG and fNIRS data, respectively. On the
other hand, the WPD(db1)-CCA technique generated the highest average ∆SNR (30.76 dB
and 16.55 dB) for both EEG and fNIRS signals. An alternative approach for removing
motion artifacts from EEG signals using the WPD method has also been proposed where
the lowest-frequency approximation sub-band component was discarded and a clean EEG
signal was reconstructed by adding up the remaining sub-band components. By computing
the performance metrics, it has been shown that this single-stage motion artifacts correction
technique is also capable of removing motion artifacts to a great extent. In the future, deep
learning-based models will be investigated for the automated detection and removal of
artifacts in physiological signals (EEG, ECG, EMG, PPG, fNIRS, etc.). New methods based
on the use of different multivariate signal processing approaches will be developed for
the elimination of other artifacts from the EEG and fNIRS signals that are recorded using
multiple electrodes.

Author Contributions: Conceptualization, M.S.H., M.E.H.C., M.B.I.R., S.H.M.A., A.A.A.B., S.K.,
A.K., M.A., R.H. and M.M.H.; data curation, M.S.H. and M.B.I.R.; formal analysis, M.S.H.; funding
acquisition, M.E.H.C. and M.B.I.R.; methodology, M.S.H., M.E.H.C., M.B.I.R., S.H.M.A., A.K. and R.H.;
project administration, M.E.H.C. and M.B.I.R.; resources, M.E.H.C.; software, M.E.H.C.; supervision,
M.E.H.C. and M.B.I.R.; validation, M.S.H.; visualization, M.S.H.; writing—original draft, M.S.H.,
M.E.H.C., M.B.I.R., S.H.M.A., A.A.A.B., S.K., A.K., M.A., R.H. and M.M.H.; writing—review and
editing, M.S.H., M.E.H.C., M.B.I.R. and M.M.H. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was made possible by the Qatar National Research Fund (QNRF) NPRP12S-
0227-190164 and an International Research Collaboration Co-Fund (IRCC) grant: IRCC-2021-001, as
well as Universiti Kebangsaan Malaysia (UKM) under Grant GUP-2021-019, and Grant DIP-2020-004.
The statements made herein are solely the responsibility of the authors.



Sensors 2022, 22, 3169 22 of 24

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The dataset used in this study is publicly available in the PhysioNet
database and the authors of this study did not collect the dataset. Sweeney et al. [32,33,63] collected
this dataset with ethical approval.

Acknowledgments: The dataset used in this experiment is kindly shared in the PhysioNet database
by Sweeney et al. [32,33,63].

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Henry, J.C. Electroencephalography: Basic principles, clinical applications, and related fields. Neurology 2006, 67, 2092–2092-a.

[CrossRef]
2. Nuwer, M. Assessment of digital EEG, quantitative EEG, and EEG brain mapping: Report of the American Academy of Neurology

and the American Clinical Neurophysiology Society. Neurology 1997, 49, 277–292. [CrossRef] [PubMed]
3. Shoeb, A.; Guttag, J.; Schachter, S.; Schomer, D.; Bourgeois, B.; Treves, S.T. Detecting seizure onset in the ambulatory setting:

Demonstrating feasibility. In Proceedings of the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference,
Shanghai, China, 17–18 January 2006; pp. 3546–3550.

4. Sharma, R.R.; Varshney, P.; Pachori, R.B.; Vishvakarma, S.K. Automated system for epileptic EEG detection using iterative filtering.
IEEE Sens. Lett. 2018, 2, 1–4. [CrossRef]

5. Berka, C.; Levendowski, D.J.; Westbrook, P.; Davis, G.; Lumicao, M.N.; Olmstead, R.E.; Popovic, M.; Zivkovic, V.T.; Ramsey, C.K.
EEG quantification of alertness: Methods for early identification of individuals most susceptible to sleep deprivation. In
Proceedings of the Biomonitoring for Physiological and Cognitive Performance during Military Operations, Orlando, FL, USA,
23 May 2005; pp. 78–89.

6. Berka, C.; Levendowski, D.J.; Cvetinovic, M.M.; Petrovic, M.M.; Davis, G.; Lumicao, M.N.; Zivkovic, V.T.; Popovic, M.V.;
Olmstead, R. Real-time analysis of EEG indexes of alertness, cognition, and memory acquired with a wireless EEG headset. Int. J.
Hum. Comput. Interact. 2004, 17, 151–170. [CrossRef]

7. Papadelis, C.; Kourtidou-Papadeli, C.; Bamidis, P.D.; Chouvarda, I.; Koufogiannis, D.; Bekiaris, E.; Maglaveras, N. Indicators of
sleepiness in an ambulatory EEG study of night driving. In Proceedings of the 2006 the International Conference of the IEEE
Engineering in Medicine and Biology Society, New York, NY, USA, 30 August–3 September 2006; pp. 6201–6204.

8. Tripathy, R.; Acharya, U.R. Use of features from RR-time series and EEG signals for automated classification of sleep stages in
deep neural network framework. Biocybern. Biomed. Eng. 2018, 38, 890–902. [CrossRef]

9. Gupta, V.; Chopda, M.D.; Pachori, R.B. Cross-subject emotion recognition using flexible analytic wavelet transform from EEG
signals. IEEE Sens. J. 2018, 19, 2266–2274. [CrossRef]

10. Stevens, R.; Galloway, T.; Berka, C. Integrating EEG models of cognitive load with machine learning models of scientific problem
solving. Augment. Cogn. Past Present Future 2006, 2, 55–65.

11. Bell, C.J.; Shenoy, P.; Chalodhorn, R.; Rao, R.P. Control of a humanoid robot by a noninvasive brain–computer interface in humans.
J. Neural Eng. 2008, 5, 214. [CrossRef]

12. Lee, J.C.; Tan, D.S. Using a low-cost electroencephalograph for task classification in HCI research. In Proceedings of the 19th
Annual ACM Symposium on User Interface Software and Technology, Montreux, Switzerland, 15–18 October 2006; pp. 81–90.

13. Sullivan, T.J.; Deiss, S.R.; Jung, T.-P.; Cauwenberghs, G. A brain-machine interface using dry-contact, low-noise EEG sensors. In
Proceedings of the 2008 IEEE International Symposium on Circuits and Systems, Seattle, WA, USA, 18–21 May 2008; pp. 1986–1989.

14. Wolpaw, J.R.; McFarland, D.J. Control of a two-dimensional movement signal by a noninvasive brain-computer interface in
humans. Proc. Natl. Acad. Sci. USA 2004, 101, 17849–17854. [CrossRef]

15. Gaur, P.; Pachori, R.B.; Wang, H.; Prasad, G. A multi-class EEG-based BCI classification using multivariate empirical mode
decomposition based filtering and Riemannian geometry. Expert Syst. Appl. 2018, 95, 201–211. [CrossRef]

16. Gaur, P.; Pachori, R.B.; Wang, H.; Prasad, G. An automatic subject specific intrinsic mode function selection for enhancing
two-class EEG-based motor imagery-brain computer interface. IEEE Sens. J. 2019, 19, 6938–6947. [CrossRef]

17. Rahman, A.; Chowdhury, M.E.; Khandakar, A.; Kiranyaz, S.; Zaman, K.S.; Reaz, M.B.I.; Islam, M.T.; Ezeddin, M.; Kadir, M.A.
Multimodal EEG and Keystroke Dynamics Based Biometric System Using Machine Learning Algorithms. IEEE Access 2021, 9,
94625–94643. [CrossRef]

18. Sangani, S.; Lamontagne, A.; Fung, J. Cortical mechanisms underlying sensorimotor enhancement promoted by walking with
haptic inputs in a virtual environment. Prog. Brain Res. 2015, 218, 313–330. [PubMed]

19. Bunce, S.C.; Izzetoglu, M.; Izzetoglu, K.; Onaral, B.; Pourrezaei, K. Functional near-infrared spectroscopy. IEEE Eng. Med. Biol.
Mag. 2006, 25, 54–62. [CrossRef]

20. Huppert, T.J.; Diamond, S.G.; Franceschini, M.A.; Boas, D.A. HomER: A review of time-series analysis methods for near-infrared
spectroscopy of the brain. Appl. Opt. 2009, 48, D280–D298. [CrossRef]

http://doi.org/10.1212/01.wnl.0000243257.85592.9a
http://doi.org/10.1212/WNL.49.1.277
http://www.ncbi.nlm.nih.gov/pubmed/9222209
http://doi.org/10.1109/LSENS.2018.2882622
http://doi.org/10.1207/s15327590ijhc1702_3
http://doi.org/10.1016/j.bbe.2018.05.005
http://doi.org/10.1109/JSEN.2018.2883497
http://doi.org/10.1088/1741-2560/5/2/012
http://doi.org/10.1073/pnas.0403504101
http://doi.org/10.1016/j.eswa.2017.11.007
http://doi.org/10.1109/JSEN.2019.2912790
http://doi.org/10.1109/ACCESS.2021.3092840
http://www.ncbi.nlm.nih.gov/pubmed/25890144
http://doi.org/10.1109/MEMB.2006.1657788
http://doi.org/10.1364/AO.48.00D280


Sensors 2022, 22, 3169 23 of 24

21. Holper, L.; Muehlemann, T.; Scholkmann, F.; Eng, K.; Kiper, D.; Wolf, M. Testing the potential of a virtual reality neurorehabilitation
system during performance of observation, imagery and imitation of motor actions recorded by wireless functional near-infrared
spectroscopy (fNIRS). J. Neuroeng. Rehabil. 2010, 7, 57. [CrossRef]

22. Izzetoglu, K.; Bunce, S.; Onaral, B.; Pourrezaei, K.; Chance, B. Functional optical brain imaging using near-infrared during
cognitive tasks. Int. J. Hum. Comput. Interact. 2004, 17, 211–227. [CrossRef]

23. Cui, X.; Bray, S.; Bryant, D.M.; Glover, G.H.; Reiss, A.L. A quantitative comparison of NIRS and fMRI across multiple cognitive
tasks. Neuroimage 2011, 54, 2808–2821. [CrossRef]

24. Matthews, F.; Pearlmutter, B.A.; Wards, T.E.; Soraghan, C.; Markham, C. Hemodynamics for brain-computer interfaces. IEEE
Signal Process. Mag. 2007, 25, 87–94. [CrossRef]

25. Khan, M.J.; Hong, K.-S. Passive BCI based on drowsiness detection: An fNIRS study. Biomed. Opt. Express 2015, 6, 4063–4078.
[CrossRef]

26. Hong, K.-S.; Naseer, N.; Kim, Y.-H. Classification of prefrontal and motor cortex signals for three-class fNIRS–BCI. Neurosci. Lett.
2015, 587, 87–92. [CrossRef] [PubMed]

27. Chowdhury, M.E.; Khandakar, A.; Hossain, B.; Alzoubi, K. Effects of the phantom shape on the gradient artefact of electroen-
cephalography (EEG) data in simultaneous EEG–fMRI. Appl. Sci. 2018, 8, 1969. [CrossRef]

28. Chowdhury, M.E.; Khandakar, A.; Mullinger, K.; Hossain, B.; Al-Emadi, N.; Antunes, A.; Bowtell, R. Reference layer artefact
subtraction (RLAS): Electromagnetic simulations. IEEE Access 2019, 7, 17882–17895. [CrossRef]

29. Chowdhury, M.E.; Khandakar, A.; Mullinger, K.J.; Al-Emadi, N.; Bowtell, R. Simultaneous EEG-fMRI: Evaluating the effect of the
EEG cap-cabling configuration on the gradient artifact. Front. Neurosci. 2019, 13, 690. [CrossRef]

30. Nguyen, H.-D.; Yoo, S.-H.; Bhutta, M.R.; Hong, K.-S. Adaptive filtering of physiological noises in fNIRS data. Biomed. Eng. Online
2018, 17, 1–23. [CrossRef] [PubMed]

31. Islam, M.K.; Rastegarnia, A.; Yang, Z. Methods for artifact detection and removal from scalp EEG: A review. Neurophysiol. Clin.
Clin. Neurophysiol. 2016, 46, 287–305. [CrossRef] [PubMed]

32. Sweeney, K.T.; Ward, T.E.; McLoone, S.F. Artifact removal in physiological signals—Practices and possibilities. IEEE Trans. Inf.
Technol. Biomed. 2012, 16, 488–500. [CrossRef] [PubMed]

33. Sweeney, K.T.; McLoone, S.F.; Ward, T.E. The use of ensemble empirical mode decomposition with canonical correlation analysis
as a novel artifact removal technique. IEEE Trans. Biomed. Eng. 2012, 60, 97–105. [CrossRef]

34. Akansu, A.N.; Haddad, R.A.; Haddad, P.A.; Haddad, P.R. Multiresolution Signal Decomposition: Transforms, Subbands, and Wavelets;
Academic Press: Cambridge, MA, USA, 2001.

35. Huang, N.E.; Shen, Z.; Long, S.R.; Wu, M.C.; Shih, H.H.; Zheng, Q.; Yen, N.-C.; Tung, C.C.; Liu, H.H. The empirical mode
decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Lond. Ser. A Math.
Phys. Eng. Sci. 1998, 454, 903–995. [CrossRef]

36. Wu, Z.; Huang, N.E. Ensemble empirical mode decomposition: A noise-assisted data analysis method. Adv. Adapt. Data Anal.
2009, 1, 1–41. [CrossRef]

37. Maddirala, A.K.; Shaik, R.A. Motion artifact removal from single channel electroencephalogram signals using singular spectrum
analysis. Biomed. Signal Process. Control 2016, 30, 79–85. [CrossRef]

38. Vautard, R.; Yiou, P.; Ghil, M. Singular-spectrum analysis: A toolkit for short, noisy chaotic signals. Phys. D Nonlinear Phenom.
1992, 58, 95–126. [CrossRef]

39. Kumar, P.S.; Arumuganathan, R.; Sivakumar, K.; Vimal, C. Removal of ocular artifacts in the EEG through wavelet transform
without using an EOG reference channel. Int. J. Open Probl. Compt. Math 2008, 1, 188–200.

40. Gajbhiye, P.; Tripathy, R.K.; Bhattacharyya, A.; Pachori, R.B. Novel approaches for the removal of motion artifact from EEG
recordings. IEEE Sens. J. 2019, 19, 10600–10608. [CrossRef]

41. Gajbhiye, P.; Mingchinda, N.; Chen, W.; Mukhopadhyay, S.C.; Wilaiprasitporn, T.; Tripathy, R.K. Wavelet Domain Optimized
Savitzky–Golay Filter for the Removal of Motion Artifacts From EEG Recordings. IEEE Trans. Instrum. Meas. 2020, 70, 1–11.
[CrossRef]

42. Hossain, M.S.; Reaz, M.B.; Chowdhury, M.E.; Ali, S.H.; Bakar, A.A.A.; Kiranyaz, S.; Khandakar, A.; Alhatou, M.; Habib, R. Motion
Artifacts Correction from EEG and fNIRS Signals using Novel Multiresolution Analysis. IEEE Access 2022, 10, 29760–29777.
[CrossRef]

43. Dragomiretskiy, K.; Zosso, D. Variational mode decomposition. IEEE Trans. Signal Process. 2013, 62, 531–544. [CrossRef]
44. Robertson, F.C.; Douglas, T.S.; Meintjes, E.M. Motion artifact removal for functional near infrared spectroscopy: A comparison of

methods. IEEE Trans. Biomed. Eng. 2010, 57, 1377–1387. [CrossRef]
45. Cooper, R.; Selb, J.; Gagnon, L.; Phillip, D.; Schytz, H.W.; Iversen, H.K.; Ashina, M.; Boas, D.A. A systematic comparison of motion

artifact correction techniques for functional near-infrared spectroscopy. Front. Neurosci. 2012, 6, 147. [CrossRef]
46. Brigadoi, S.; Ceccherini, L.; Cutini, S.; Scarpa, F.; Scatturin, P.; Selb, J.; Gagnon, L.; Boas, D.A.; Cooper, R.J. Motion artifacts in

functional near-infrared spectroscopy: A comparison of motion correction techniques applied to real cognitive data. Neuroimage
2014, 85, 181–191. [CrossRef]

47. Sweeney, K.T.; Ayaz, H.; Ward, T.E.; Izzetoglu, M.; McLoone, S.F.; Onaral, B. A methodology for validating artifact removal
techniques for physiological signals. IEEE Trans. Inf. Technol. Biomed. 2012, 16, 918–926. [CrossRef]

http://doi.org/10.1186/1743-0003-7-57
http://doi.org/10.1207/s15327590ijhc1702_6
http://doi.org/10.1016/j.neuroimage.2010.10.069
http://doi.org/10.1109/MSP.2008.4408445
http://doi.org/10.1364/BOE.6.004063
http://doi.org/10.1016/j.neulet.2014.12.029
http://www.ncbi.nlm.nih.gov/pubmed/25529197
http://doi.org/10.3390/app8101969
http://doi.org/10.1109/ACCESS.2019.2892766
http://doi.org/10.3389/fnins.2019.00690
http://doi.org/10.1186/s12938-018-0613-2
http://www.ncbi.nlm.nih.gov/pubmed/30514303
http://doi.org/10.1016/j.neucli.2016.07.002
http://www.ncbi.nlm.nih.gov/pubmed/27751622
http://doi.org/10.1109/TITB.2012.2188536
http://www.ncbi.nlm.nih.gov/pubmed/22361665
http://doi.org/10.1109/TBME.2012.2225427
http://doi.org/10.1098/rspa.1998.0193
http://doi.org/10.1142/S1793536909000047
http://doi.org/10.1016/j.bspc.2016.06.017
http://doi.org/10.1016/0167-2789(92)90103-T
http://doi.org/10.1109/JSEN.2019.2931727
http://doi.org/10.1109/TIM.2020.3041099
http://doi.org/10.1109/ACCESS.2022.3159155
http://doi.org/10.1109/TSP.2013.2288675
http://doi.org/10.1109/TBME.2009.2038667
http://doi.org/10.3389/fnins.2012.00147
http://doi.org/10.1016/j.neuroimage.2013.04.082
http://doi.org/10.1109/TITB.2012.2207400


Sensors 2022, 22, 3169 24 of 24

48. Scholkmann, F.; Spichtig, S.; Muehlemann, T.; Wolf, M. How to detect and reduce movement artifacts in near-infrared imaging
using moving standard deviation and spline interpolation. Physiol. Meas. 2010, 31, 649. [CrossRef] [PubMed]

49. Molavi, B.; Dumont, G.A. Wavelet-based motion artifact removal for functional near-infrared spectroscopy. Physiol. Meas. 2012,
33, 259. [CrossRef] [PubMed]

50. Barker, J.W.; Aarabi, A.; Huppert, T.J. Autoregressive model based algorithm for correcting motion and serially correlated errors
in fNIRS. Biomed. Opt. Express 2013, 4, 1366–1379. [CrossRef] [PubMed]

51. Chiarelli, A.M.; Maclin, E.L.; Fabiani, M.; Gratton, G. A kurtosis-based wavelet algorithm for motion artifact correction of fNIRS
data. NeuroImage 2015, 112, 128–137. [CrossRef]

52. Siddiquee, M.R.; Marquez, J.S.; Atri, R.; Ramon, R.; Perry Mayrand, R.; Bai, O. Movement artefact removal from NIRS signal
using multi-channel IMU data. Biomed. Eng. Online 2018, 17, 120. [CrossRef]

53. Jahani, S.; Setarehdan, S.K.; Boas, D.A.; Yücel, M.A. Motion artifact detection and correction in functional near-infrared spec-
troscopy: A new hybrid method based on spline interpolation method and Savitzky–Golay filtering. Neurophotonics 2018, 5,
015003. [CrossRef]

54. Mallat, S. A Wavelet Tour of Signal Processing; Mallat, S., Ed.; Academic Press: Cambridge, MA, USA, 2009.
55. Jaffard, S.; Meyer, Y.; Ryan, R.D. Wavelets: Tools for Science and Technology; Society For Industrial & Applied (SIAM): Philadelphia,

PA, USA, 2001.
56. Farooq, O.; Datta, S. Mel filter-like admissible wavelet packet structure for speech recognition. IEEE Signal Process. Lett. 2001, 8,

196–198. [CrossRef]
57. Sanei, S.; Chambers, J.A. EEG Signal Processing; John Wiley & Sons: Hoboken, NJ, USA, 2013.
58. Gwin, J.T.; Gramann, K.; Makeig, S.; Ferris, D.P. Removal of movement artifact from high-density EEG recorded during walking

and running. J. Neurophysiol. 2010, 103, 3526–3534. [CrossRef]
59. Hotelling, H. Relations between two sets of variates. In Breakthroughs in Statistics; Springer: Berlin/Heidelberg, Germany, 1992;

pp. 162–190.
60. James, C.J.; Hesse, C.W. Independent component analysis for biomedical signals. Physiol. Meas. 2004, 26, R15. [CrossRef]
61. De Clercq, W.; Vergult, A.; Vanrumste, B.; Van Paesschen, W.; Van Huffel, S. Canonical correlation analysis applied to remove

muscle artifacts from the electroencephalogram. IEEE Trans. Biomed. Eng. 2006, 53, 2583–2587. [CrossRef] [PubMed]
62. Borga, M.; Knutsson, H. A canonical correlation approach to blind source separation. In Report LiU-IMT-EX-0062; Department of

Biomedical Engineering, Linkoping University: Linköping, Sweden, 2001.
63. Goldberger, A.L.; Amaral, L.A.; Glass, L.; Hausdorff, J.M.; Ivanov, P.C.; Mark, R.G.; Mietus, J.E.; Moody, G.B.; Peng, C.-K.;

Stanley, H.E. PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals.
Circulation 2000, 101, e215–e220. [CrossRef] [PubMed]

64. Tsipouras, M.G. Spectral information of EEG signals with respect to epilepsy classification. EURASIP J. Adv. Signal Process. 2019,
2019, 10. [CrossRef]

65. Hassan, M.; Boudaoud, S.; Terrien, J.; Karlsson, B.; Marque, C. Combination of canonical correlation analysis and empirical mode
decomposition applied to denoising the labor electrohysterogram. IEEE Trans. Biomed. Eng. 2011, 58, 2441–2447. [CrossRef]
[PubMed]

http://doi.org/10.1088/0967-3334/31/5/004
http://www.ncbi.nlm.nih.gov/pubmed/20308772
http://doi.org/10.1088/0967-3334/33/2/259
http://www.ncbi.nlm.nih.gov/pubmed/22273765
http://doi.org/10.1364/BOE.4.001366
http://www.ncbi.nlm.nih.gov/pubmed/24009999
http://doi.org/10.1016/j.neuroimage.2015.02.057
http://doi.org/10.1186/s12938-018-0554-9
http://doi.org/10.1117/1.NPh.5.1.015003
http://doi.org/10.1109/97.928676
http://doi.org/10.1152/jn.00105.2010
http://doi.org/10.1088/0967-3334/26/1/R02
http://doi.org/10.1109/TBME.2006.879459
http://www.ncbi.nlm.nih.gov/pubmed/17153216
http://doi.org/10.1161/01.CIR.101.23.e215
http://www.ncbi.nlm.nih.gov/pubmed/10851218
http://doi.org/10.1186/s13634-019-0606-8
http://doi.org/10.1109/TBME.2011.2151861
http://www.ncbi.nlm.nih.gov/pubmed/21558055

	Introduction 
	Theoretical Background 
	Wavelet Packet Decomposition (WPD) 
	Canonical Correlation Analysis (CCA) 
	WPD-CCA 

	Methods 
	Dataset Description 
	Signal Preprocessing 
	Study Design 
	Removal of Motion Artifact Components Using “Reference Ground Truth” Method 
	Performance Metrics 

	Results 
	Motion Artifact Correction from EEG Data 
	Motion Artifact Correction from fNIRS Data 

	Discussion 
	Conclusions 
	References

