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Abstract: We propose a cost-effective and simple-to-implement mirror-assisted single-camera panoramic
digital image correlation (DIC) method for panoramic/dual-surface profile and deformation mea-
surement. Specifically, two planar mirrors and a single camera attached with a four-mirror adapter
are used to capture stereo images of the front and rear surfaces of a test object. These stereo im-
ages can be processed by regular stereo-DIC to retrieve shape and kinematics fields of each surface.
Further, with the speckle patterns prefabricated on the mirrors, reflection transformation matrices
are obtained and applied to transform all reconstructed surfaces into a common world coordinate
system. As such, panoramic/dual-surface shape and deformation measurements can be realized.
For validation, a high-resolution smartphone camera and an industrial camera were, respectively,
used to construct mirror-assisted single-camera panoramic DIC systems. Real experiments, including
panoramic shape measurement of an aluminum cylinder, dual-surface shape measurement of an
aluminum plate and uniaxial tensile tests of aluminum sheet specimens, were performed, confirming
the feasibility and accuracy of the method. Since only a single camera and a few auxiliary reflective
mirrors are required, the proposed method provides a cost-effective and convenient way for taking
panoramic/dual-surface shape and deformation measurements of regular-sized cylindrical and
bar samples.

Keywords: digital image correlation; panoramic measurement; experimental mechanics

1. Introduction

Stereo-digital image correlation (stereo-DIC) is a practical and powerful non-contact
optical technique capable of performing full-field profile and deformation measurement [1,2].
However, owing to ambient occlusion and limited field of view (FOV), regular stereo-DIC
systems cannot measure 360-deg panoramic or dual-surface kinematics fields of a test
object. For this reason, regular stereo-DIC cannot be applied for the direct or accurate
determination of through-thickness strain, Lankford coefficient, true stress–strain curves
and Young’s modulus of an eccentric tensioned sample, etc. [2–6], which necessitates the
measurement of displacements and strains on multiple surfaces (panoramic or dual surface)
of test objects.

To measure multiple-surface kinematics fields of a test object, various multi-camera
DIC systems have been developed, as summarized in a recent review paper [7]. Specifically,
in DIC community, multi-camera DIC system was first established by Orteu et al. in 2011 [8],
known as the “Master-camera” configuration. The system comprised four synchronized
cameras, one of which was appointed as the “master camera”, and the other cameras
were, respectively, paired with it, forming three binocular stereo-DIC systems. However,
on account of the requirements for common FOV between the master and subordinative
cameras, the FOV of this multi-camera DIC system is very limited. Later, other multi-
camera DIC systems with different configurations [7], such as “Camera-chain [9,10]”,
“Connected-camera-pairs [11,12]”, “Face-to-face-camera-pairs [13,14]” and “Distributed-
camera-pairs [15,16]”, were established. These multi-camera DIC systems either arrange
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all cameras into a chain and then pair any two contiguous cameras as a regular stereo-
DIC system [9,10] or divide all cameras into a series of separated binocular stereo-DIC
systems [11–16] to cover the full surface to be measured. As the requirements for the
common FOVs are greatly reduced, these systems perform better in panoramic/multi-
surface deformation measurements of objects with large sizes [17]. However, all these
multi-camera stereo-DIC configurations comprise a series of real cameras, thus inherent
shortcomings, such as high cost, complex system, large footprint and difficulty in camera
synchronization, always exist, which hampers their applications in material testing of
regular-sized samples.

Additionally, to achieve panoramic or large-scale measurement with a relatively simple
and compact system, pseudo multi-camera DIC based on single or dual cameras have been
proposed. For example, a binocular stereo-DIC system was moved to 16 positions to
measure full-surface strain distributions of a nine-meter turbine blade [18]. By stitching
two adjacent FOVs with reference points in overlapped fields, a continuous measurement
over the entire surface can be obtained. Genovese et al. [19] proposed to achieve 360-deg
full-surface measurement by rotating a single ordinary camera around the sample and
the cylindrical calibration target. Alternatively, the camera was fixed while the sample
was rotated [20]. In both methods, there is an overlapped FOV between any two adjacent
locations, resulting in a series of regular binocular stereo-DIC measurements. Nevertheless,
these pseudo multi-camera DIC systems necessitate moving either the camera(s) or the
test object to capture the full object surface to be measured, which makes the experimental
process complicated, time consuming and unsuitable for dynamic measurements [7].

Very recently, a novel mirror-assisted pseudo multi-camera DIC was proposed by Chen
and Pan [7,17], which only requires one fixed conventional stereo-DIC system and two
planar mirrors. With the calibration of reflection transformation, virtual surfaces reflected
by the mirrors can be transformed to their actual positions, permitting 360-deg panoramic
shape and deformation measurement. Compared with existing (pseudo) multi-camera DIC
techniques, this method is simple in system configuration and easy to implement. The
mirror-assisted pseudo multi-camera DIC has been successfully applied to determine many
mechanical parameters, such as through-thickness strain [3], true stress–strain curve [6]
and dynamic skin tension line [21]. Nevertheless, the use of two synchronized cameras
still possesses the problems of relatively high cost in hardware investment and complexity
in rigorous camera synchronization. These problems will be more prominent in the cases
of transient deformation measurement employing dual high-speed cameras. Of course, a
cost-effective and easy-to-implement single-camera panoramic DIC is of great benefit to
research and educational efforts in resource-limited regions and institutes.

To this end, we propose a cost-effective and simple-to-implement mirror-assisted
single-camera panoramic DIC for panoramic/dual-surface profile and deformation mea-
surement. Compared with our recently proposed mirror-assisted pseudo multi-camera
DIC, the main improvement of the proposed method is the replacement of the dual-camera
stereovision system with a four-mirror-adapter-aided single-camera pseudo stereovision
system. The use of single-camera pseudo stereovision system further reduces the cost and
complexity in system construction and experimental implementation. To prove this concept,
an easily available smartphone and an industrial camera, together with the corresponding
auxiliary mirror adapters, were used to construct two different single-camera panoramic
systems. Then, the established single-camera panoramic systems were used to achieve the
360-deg measurement or dual-surface measurement.

In the following sections, the system configuration and implementation procedures
of the proposed single-camera panoramic DIC are first introduced. Then, the principle of
reflection transformation and the validation experiments are detailed. Through panoramic
shape reconstruction experiment of a regular cylinder, dual-surface shape reconstruction
experiment of a plate and two uniaxial tensile tests of aluminum sheet specimens, the
feasibility and accuracy of the proposed systems were verified.
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2. Methods
2.1. System Configuration

As shown in Figure 1a, the proposed mirror-assisted single-camera panoramic DIC
system consists of a digital camera, a four-mirror adapter and two planar mirrors placed
behind the test object. During the measurement, with the help of the planar mirrors M1, M2,
M3 and M4 in the adapter, two different views of the test object surface are, respectively,
imaged onto the left and right halves of the camera sensor via different optical paths; thus,
a binocular stereo vision can be formed with a single camera. The planar mirrors M5 and
M6 are used to form two virtual images, Ov1 and Ov2, of the real object Oreal, reflecting
the part that cannot be observed into the observable area, as is shown in Figure 1b. A
schematic diagram of the image captured by the system is shown in Figure 1c. Based on the
reconstructed 3D shape of the speckles pre-prepared on the mirror surface with stereo-DIC,
the shape and coordinates of the mirror surfaces can be acquired. With the equations of the
planar mirror surfaces, the main reflection transformation parameters (distance to the origin
and unit normal vector) [22,23] are obtained and applied to transform the virtual surfaces
Ov1 and Ov2 to their real positions, achieving panoramic/dual-surface displacement and
deformation measurement of a test object.
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Figure 1. Schematic diagram showing: (a) optical paths of the proposed mirror-assisted single-
camera panoramic DIC system, (b) the front view of the object and planar mirrors behind it, (c) the
captured image.

Here, we constructed two single-camera panoramic DIC systems with a smartphone
and an industrial camera, respectively. For the smartphone-based stereo-DIC system, as
shown in Figure 2a,b, the four-mirror adapter is attached in front of the smartphone. The
two interior mirrors (M2 and M3, 28 mm × 21 mm × 1 mm) and two exterior mirrors (M1
and M4, 33 mm × 30 mm × 1 mm) are both glued on the 3D-printed structural support.
The angle between M2 and M3 is 90◦, while the angle between the exterior mirror and the
baseline is 50◦. For the industrial-camera-based stereo-DIC system, the four-mirror adapter
is fixed on a tripod in front of the industrial camera. The two interior mirrors (M2 and
M3) are formed by an isosceles right-angle reflective prism (height: 55 mm, hypotenuse:
40 mm), while two exterior mirrors (M1 and M4, 65 mm × 55 mm × 1 mm) are glued on
the outside 3D-printed structural support. The angle between the exterior mirror M1 (M4)
and the baseline of the virtual stereovision system is 53◦, which is shown in Figure 2c,d
(more details about the design of the four-mirror adapter can be seen in Ref. [24]).
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Figure 2. (a) The smartphone attached with a four-mirror adapter used in this work. (b) Cutaway
view of the smartphone-based stereovision system. (c,d) are photographs of the front and top view of
the four-mirror adapter in the industrial-camera-based stereovision system.

Whether using ultra-portable smartphones or high-quality industrial cameras as image
acquisition devices, the proposed method has the following three common advantages:

(1) Simple equipment and low cost. The equipment required in this system is just a
smartphone (or an industrial camera) with a four-mirror adapter and two planar mirrors.
Compared with conventional multi-camera DIC systems, the cost of panoramic/dual-
surface measurement is greatly reduced.

(2) No requirement for the synchronization devices. This newly proposed panoramic
DIC system guarantees the complete synchronization of all images without the need for
synchronization devices, as images captured by two virtual cameras are in one picture for a
single shot.

(3) Fewer experiment steps and easier implementation. As there is little equipment
required, complicated wiring connections and the time-consuming equipment layout
process are greatly reduced, especially when using a smartphone. Applying the proposed
systems for a shape reconstruction experiment can generally be controlled within 20 min,
which is unimaginable for a real multi-camera DIC system.

2.2. Measurement Procedures

As is schematically shown in Figure 3, the implementation procedures of the proposed
single-camera panoramic/dual-surface DIC technique comprise three consecutive steps:
(a) image acquisition, (b) image separation and stereo calibration, and (c) full-surface 3D
shape and deformation measurement. Firstly, stereo images of the test object (with two
planar mirrors behind it) and a regular calibration target are recorded by the single-camera
panoramic DIC system. Then, the captured images are segmented into two parts, one of
which only contains a single view of the virtual binocular system, along the segmentation
line (i.e., the middle line). With the left and right calibration images, both the intrinsic and
extrinsic parameters of the virtual binocular DIC system can be obtained. Through the
stereo match of the image pairs, the disparity data used for the 3D profile reconstruction
can be calculated.
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Figure 3. Implementation procedures of the proposed single-camera panoramic digital image correla-
tion measurement.

The image pairs contain an image pair captured at the initial state and a series of
image pairs recorded at deformed states after loading, which are designated as the reference
images and deformed images, respectively. For each left or right image, five ROIs (regions
of interest) are supposed to be designated (five for a cylinder, four for a plate.). The two
ROIs covering the speckle patterns prefabricated on the M5 and M6 are merely employed
to obtain the reflection transformation matrices, while the others are applied to retrieve the
3D profile, displacement and deformation fields of the test object. With these disparity data
and calibration parameters, 3D coordinates and shapes of the ROIs at the initial state and
deformed states can be retrieved and reconstructed based on the triangulation principle.
Then, the reflection transformation matrices derived from the shape of planar mirrors
are applied to the reconstructed virtual surfaces to obtain the panoramic/dual-surface
profile of the test object at both the initial state and deformed states. Next, the full-surface
displacement field of the object can be acquired by subtracting the 3D coordinates of the
deformed state from those of the initial state. Finally, by differentiating the displacement
field, panoramic/dual-surface deformation fields of the test object can be derived.
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2.3. Estimation of Reflection Transformation of Mirrors

To acquire real coordinates of the virtual object surfaces, which is essential for the
measurement of several important geometric and mechanical parameters, the reconstructed
virtual surfaces are supposed to be transformed to their real positions with the reflection
transformation matrix. As the principles of reflection transformation have been detailed in
our previous work [4,17], here, only the reflection transformation estimation of the virtual
surface reflected in M5 is briefly described.

As is shown in Figure 4, suppose the coordinates of an actual point P on the ob-
ject are (x RP, yRP, zRP) , the coordinates of the virtual point Pv reflected in the planar
mirror M5 are (x VP, yVP, zVP) , and the unit normal vector of the planar mirror M5 is
→
n = (x M, yM, zM) T. The distance from the origin O of the camera coordinate system to
the planar mirror is d.
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Using stereo-DIC, Pv= (x VP, yVP, zVP)
T and 3D profiles of the planar mirror M5

at both the initial and deformed states can be measured in a common world coordinate
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system. Therefore, with the plane fitting of the reconstructed shape of mirror M5,
→
n =

(x M, yM, zM) T and d in the reflection transformation matrix are all obtained, then the
coordinates of the real point P are easily acquired.

3. Experiments

To examine the feasibility and measurement accuracy of the proposed single-camera
panoramic DIC systems, four real experiments, including the panoramic shape reconstruc-
tion test of a cylinder object, dual-surface shape reconstruction test of a plate and two
uniaxial tensile tests of aluminum sheet specimens were carried out.

3.1. 360-Deg Reconstruction Experiment

An aluminum cylinder (reference diameter: 9.98 mm) was first measured using
the smartphone-based single-camera panoramic DIC system to verify the accuracy in
360-deg shape reconstruction. As shown in Figure 5a, before the experiment, a white
background was first sprayed on the surface of the specimen with white matte paint;
then, a 1 mm marker pen was used to create black speckle patterns on the background.
Black speckles were also fabricated on the planar mirrors (M5, M6) with the same marker
(without white background). The imaging system applied in this test is composed of a
smartphone (Mi8, Android, camera sensor: Sony IMX363, 4032 × 3024 pixels, pixel size:
1.4 µm), a homemade optical attachment (as described in Section 2.1), two planar mirrors
(100 mm × 70 mm × 1 mm) and a small tripod. Apparently, the smartphone accounts
for the majority of the total cost of this portable panoramic DIC system, i.e., about USD
220. During the test, to avoid direct contact between the operator and the smartphone,
a Bluetooth-based trigger was used to telecontrol the built-in capture software (manual
mode). It is worth noting that, although the smartphone possesses two back cameras, only
one (f/2.4) was applied for image capture. As shown in Figure 5c, the smartphone-based
stereovision system was fixed on the tripod. The object distance was measured as about
260 mm. Two planar mirrors were placed behind the object and formed an angle of about
120 degrees.
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Figure 5. (a) Speckle pattern on the aluminum cylinder and two planar mirrors. (b) The image
captured by the smartphone. The numbers indicated in Figure 5b denote five ROIs selected in DIC
calculation. (c) The experiment setup of the 360-deg reconstruction experiment.
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As is shown in Figure 5b, five surface pairs can be recorded by the single-camera
stereovision system in a single shot, and five corresponding ROIs were selected on the
left image. Based on the parameters of the smartphone system obtained by calibration,
the shape of the three areas of the object and the two areas of the mirror are reconstructed
with the subset-based DIC algorithm, which is shown in Figure 6a. The subset size and
grid step for all ROIs in this experiment were designated as 41 × 41 pixels and 7 pixels.
Then, reflection transformation is performed on the coordinates of the two virtual images
of the objects, and the 360-deg panoramic shape of the cylinder shown in Figure 6b can
be obtained. The fitted diameter is 9.81 mm, the relative error of which is less than 1.7%
(reference size: 9.98 mm), proving the accuracy of the proposed single-camera panoramic
DIC system for panoramic profile measurement.
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3.2. Dual-Surface Reconstruction Experiment

To further demonstrate the practicability of the proposed single-camera panoramic
DIC system in panoramic/dual-surface profile reconstructions, we used the smartphone-
based system to measure the dual-surface shape of an aluminum plate, the thickness of
which was measured to be 4.10 mm using a Vernier caliper. Figure 7a shows the plate
placed in front of the planar mirrors. The angle formed by the planar mirrors is about 105◦.
The image captured by the smartphone in the dual-surface construction experiment was
shown in Figure 7b.
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Figure 7. (a) Speckle pattern on the aluminum plate and two planar mirrors. (b) The image captured
by the smartphone. The numbers indicated in (b) denote four ROIs selected in DIC calculation.

As described in Section 2.2, the images captured were segmented into left and right
parts along the middle line. Four ROIs were selected on the left reference image. Then, the
subset size and grid step for the ROIs on both the test objects and mirrors were designated
as 41 × 41 pixels and 7 pixels, respectively. With the calibration parameters of the imaging
system and correlation results, 3D shapes of the test object (rear and front virtual surfaces
reflected by mirrors) and two speckle regions on mirror surfaces were retrieved, which
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is shown in Figure 8a. After that, the reflection transformation matrices were estimated
in accordance with the equations of the reconstructed mirror surfaces, and the real dual-
surface shapes of the plate were finally retrieved. The results were shown in Figure 8b.
The average thickness between the two surfaces was measured to be 4.12 ± 0.07 mm, and
the error ratio was 0.487%, further proving the accuracy of the proposed single-camera
panoramic digital image correlation system.
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3.3. Uniaxial Tensile Experiment

To verify the feasibility and accuracy of the established single-camera panoramic DIC
systems in real deformation measurement, two uniaxial tensile tests of aluminum sheet
specimens (width: 10.0 mm, thickness: 1.6 mm, gauge length: 50 mm, reference elastic
modulus: 68.2 GPa) were performed with a UTM.

In the first experiment, to prove the dual-surface strain measurement accuracy of the
smartphone-based single-camera panoramic DIC system, the smartphone system (the same
as the one in the shape reconstruction experiment) was used to capture the deformation
images, as is shown in Figure 9a. To eliminate the thermal-induced virtual strains caused
by camera self-heating [25], the smartphone was preheated for 50 min by recording images
continuously. Similarly, in the second experiment, to demonstrate the measurement accu-
racy of dual-surface strain of the industrial-camera-based single-camera panoramic DIC
system, a high-resolution industrial camera (GS3-U3-91S6M-C, FLIR, 3376 × 2704 pixels;
lens: Kowa, 25mm F1.4) and a four-mirror adapter (as is shown in Figure 2) fixed in front
of the camera were used to capture the deformation images, as is shown in Figure 9b. The
mirror-assisted system in both experiments is the same and fixed on a steel platform.

During the experiment, an image of the dual surface of the sheet specimen was first
captured as the reference image. With a regular calibration target, the single-camera pseudo
stereovision systems were carefully calibrated. In both experiments, the aluminum sheet
specimen was loaded in increments of 100 N with the loading speed of 0.05 mm/min. A
total of 23 images, including a reference image and 22 deformed images, were recorded and
used for full-field displacement and strain calculation of the dual surface. It is noted that
the maximum load applied was 2200 N and did not reach the elastic limit of the specimen.
All the images were processed using the approach mentioned above.
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Figure 9. Experiment setup of the uniaxial tensile of aluminum sheet specimens using: (a) the
smartphone-based system and (b) the industrial-camera-based system.

Uniaxial Tensile Experiment Results

Figure 10a shows the measured longitudinal displacements (v) and strains (εy) on the
front and rear surfaces with the loading force being 1800 N. In both experiments, the strain
on the right surface is larger than the strain on the left because of the unavoidable eccentric
loading in real tensile tests [4]. The measured dual-surface stress–strain curves of the
specimen were plotted in Figure 11a,c based on the longitudinal strain and corresponding
stresses at each state. Simultaneously, as suggested in Refs. [4,26], for homogeneous
materials, by averaging the longitudinal strain (εy) on dual surfaces of the specimen, elastic
modulus can be determined with higher accuracy. As such, the averaged tensile stress–
strain curves are plotted in Figure 11a,c as well.

The differences between the measured and fitted strains were calculated and plotted
in Figure 11b,d. For the smartphone-based system, the standard deviations were estimated
as 72 µε, 62 µε and 49 µε for the strain differences on the left, right and average. (µε
denotes micro-strain, i.e., ε × 10−6). The deviation values are slightly larger than those of a
professional stereo-DIC system. This is because the pseudo stereovision system constructed
by the smartphone with a four-mirror adapter is more susceptible to the matching uncer-
tainties and ambient interference than a professional system. Relatively shorter baseline
distance and other differences in camera parameters may be the primary cause of this
difference [25]. For comparison, the standard deviations of the strain differences measured
by the high-resolution camera-based system were calculated as 20 µε, 11 µε and 14 µε
for the surfaces on the left, right and average, verifying the robustness of the established
single-camera system for dual-surface strain measurement.
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Figure 10. The longitudinal displacement (v) fields captured by: (a) the smartphone-based and (b) the
high-resolution camera-based single-camera panoramic DIC system. (c) The longitudinal strain (εy)
fields captured by (c) the smartphone-based and (d) the high-resolution camera-based single-camera
panoramic DIC system.

The slopes of the three fitting lines were taken as the elastic moduli of the specimen
(reference value: 68.2 GPa). For the smartphone experiment, the elastic moduli were
estimated as 73.3 GPa and 64.8 GPa for the strain on the left and right surfaces. It is seen
that a distinct deviation exists between the elastic moduli estimated from the strain of the
two surfaces, while the one calculated from averaged stress–strain curve was 68.6 GPa and
offers higher accuracy with a relative error of about 0.59%. For the high-resolution camera
experiment, the obtained elastic moduli for the left, right surface and average strain are
71.9 GPa, 65.2 GPa and 68.3 GPa, respectively. The deviation between these two surfaces is
also considerable, and the relative error of the elastic modulus calculated from the averaged
stress–strain curve is only 0.15%. In both experiments, the elastic moduli obtained from the
average of the dual-surface strains measured by the single-camera systems provided higher
accuracy. These experimentally measured elastic moduli amply validated the ability of the
proposed single-camera panoramic DIC system in dual-surface deformation measurement.
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Figure 11. Tensile tests performed with the smartphone-based single-camera panoramic DIC system:
(a) experimentally measured stress–strain curves and corresponding linear fitting (b) deviations
between the measured and fitted strains. Tensile tests performed with the industrial-camera-based
single-camera panoramic DIC system: (c) experimentally measured stress–strain curves and corre-
sponding linear fitting (d) deviations between the measured and fitted strains. The R squared (R2) is
the coefficient of determination, which provides a measure of how well the observed outcomes are
replicated by the model.

4. Conclusions

We propose a mirror-assisted single-camera panoramic DIC method for panoramic/dual-
surface profile and deformation measurement of regular-sized test objects. Compared with
the conventional panoramic DIC using two or more synchronized cameras, the proposed
method offers distinct advantages of low cost, no need for synchronization, simple experi-
mental steps and easy implementation. We established two single-camera panoramic DIC
systems, applying a smartphone and an industrial camera as image acquisition devices,
respectively. The feasibility and measurement accuracy of these two systems were verified
by real experiments.

Finally, it should be noted that although the four-mirror adapter-assisted pseudo
stereo-DIC is employed for stereo image capture in this work, other types of single-camera
pseudo stereo-DIC systems [27], e.g., the X-cube prism-based full-frame single-camera
stereo-DIC [28], can also be used. The proposed concept and established systems are
expected to facilitate the application of panoramic DIC measurement in resource-limited
laboratories and institutions.
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