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Abstract: Aiming at a thorny issue, that conventional small target detection algorithm using local
contrast method is not sensitive for residual background clutter, robustness of algorithms is not
strong. A Gaussian fusion algorithm using multi-scale regional patch structure difference and
Regional Brightness Level Measurement is proposed. Firstly, Regional Energy Cosine (REC) is
constructed to measure the structural discrepancy among a small target with neighboring cells.
At the same time, Regional Brightness Level Measurement (RBLM) is constructed utilizing the
brightness difference characteristics between small target and background areas. Then, a brand
new Gaussian fusion algorithm is proposed for the generated saliency map in multi-scale space
to characterize the overall heterogeneity in original infrared small target and local neighborhood.
Finally, a self-adapting separation algorithm is adopted with the objective to obtain a small target
from background interference. This method is able to utmostly restrain background interference and
enhance the target. Extensive qualitative and quantitative testing results display that the desired
algorithm has remarkable performance in strengthening target region and restraining background
interference compared with current algorithms.

Keywords: patch image; regional patch; structure difference; Regional Energy Cosine; Regional
Brightness Level Measurement; Gaussian fusion algorithm

1. Introduction

Target detection is a prevalent research in the image processing field. It has been
widely used in precision guidance, defense alertness [1] and other fields. Due to long
distance imaging, small target detection is different from other large traditional target
detections [2,3], such as pedestrian detection, face detection, traffic mark detection and
so on. IR small target dataset has fewer instances and the proportion of the labeled
area is small. Shape, texture and structure information [4] of small targets are often
seriously missing. Small targets are usually submerged in a strong jamming background,
which include continuous high-brightness areas, protruding edges and scatter noises
with high brightness (CNHB) [5]. Accordingly, detection technology of an infrared small
target is yet an intractable fully challenging research. Recently, scholars have proposed
numerous effective detection methods, including traditional filtering method, sparse and
low-rank decomposition restoration method and human visual system method. Traditional
filtering algorithms mainly study how to construct spatial filtering operators to estimate
the background image. Small targets are extracted by background difference algorithm.
For example, max-mean/median filter [6], morphological filter [7], top-hat transform [8],
two-dimensional least mean square filtering (TDLMS) [9] and bilateral filter (BF) [10] are all
background predictions or modeling. Yet, these filtering algorithms are poor for complex
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backgrounds in the face of strong clutter interference. Methods based on sparse and low-
rank decomposition restoration [11,12] assume that the raw image consists of sparse target
components and low-rank background subspace. For example, He et al. [13] proposed
a super-complete dictionary sparse representation method. Wei et al. [14] proposed a
parallel sparse representation method and Li et al. [15] constructed a super-complete
dictionary for the target and background, and sparsely represented them respectively.
However, these algorithms usually have significant edge problems and are also time-
consuming. Detection method of human visual system (HVS) is transplanted to small
target detection and the target is enhanced by comparing the local area with the surrounding
cells. In 2014, Chen et al. [16] proposed local contrast measure (LCM), which exploited
nested windows to divide the surrounding region into eight sub-patches and used the
ratio of the maximum brightness of the center to the average value of the surrounding area
as enhancement coefficient to suppress background interference. Then, Han et al. [17,18]
proposed improved local contrast measure (ILCM) and relative local contrast measure
(RLCM) respectively by using the average of the central area, combined operation of
comparison and difference. Wei et al. [19] combined the two corresponding directions into
a whole and proposed a multi-scale patch based on contrast measure (MPCM) to suppress
noise. In 2019, Han et al. [20] proposed the multi-scale tri-layer local contrast measure
(TLLCM) algorithm to enhance the target and suppress highlighting the background edge.
In up-to-date research, scholars are inclined to apply specific weighting functions on the
basic local comparison algorithm in an attempt to obtain optimum results. For example,
average absolute gray difference (AAGD) [21], accelerated multi-scale weighted local
contrast measure (AMWLCM) [22], high-boost-based multi-scale local contrast measure
(HBMLCM) [23], line-based reconstruction and entropy-induced suppression (LR) [24] and
multi-scale local contrast measure using local energy factor (LEF) [25]. These improved
algorithms cannot completely suppress the continuous highlight edge and scattering noise.

Small target detection algorithm utilizing local feature representation has become one
of the research hotspots in recent years due to its excellent target enhancement capability
and concise algorithm structure. In addition to the target enhancement ability, another
key factor that determines the quality of local feature representation is its background
suppression ability. The key to improving background restrainer ability is to establish
assumption of difference of pixel gray distribution in the small target area and background
neighborhood, and to construct an effective local feature descriptor. Existing local feature
representations, such as LCM [16], RLCM [18], MPCM [19], TLLCM [20], AAGD [21], etc.,
are all constructed based on the assumption of local brightness difference, without con-
sidering the unique local structural characteristics to small targets. As a result, the strong
clutter signal with local brightness difference characteristics similar to the small target is
incorrectly enhanced, forming the false detection target of the algorithm. In order to resolve
the aforementioned issue, the hypothesis of local features of small targets is established
from two aspects, that is, the hypothesis of Regional Brightness Level Measurement and the
hypothesis of regional structural difference [26], and the corresponding regional descriptors
are designed. Firstly, a Regional Energy Cosine (REC) that can represent local structure
difference measure (LSDM) is constructed to narrate the structural dissimilarity in small
target and its surrounding background region. Secondly, the Regional Brightness Level
Measurement (RBLM) is constructed in term of brightness difference in small target and
background region. For adaptive modification of target scale, the multi-scale theory is
introduced to fuse REF and RBLM to generate the local feature map of Gaussian small
target. Finally, a self-adapting separation algorithm is adopted with the objective to obtain
small target from background interference.

The contributions of this study are as follows: (1) A multi-scale regional feature dif-
ference measure is constructed to enhance the target adaptively; (2) Regional structure
differences measure is proposed, which is able to measure the structural dissimilarity
between the small target and the background region; (3) Regional Brightness Level Mea-
surement (RBLM) is used for difference of the partial large value between target region and
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background region to enhance the robustness of the proposed method; (4) A brand new
Gaussian fusion algorithm is proposed to characterize the overall heterogeneity in original
infrared small target and local neighborhood.

2. Regional Patch Image Structure

Infrared small target has discontinuity or dissimilarity with surrounding background.
The structural discontinuity of small targets is shown as follows: in the area formed by
small targets and surrounding background, small targets occupy most of the energy and be-
come the main light stimulus energy perceived by human eyes. Therefore, by constructing
a measure that can effectively quantify the light stimulus energy perceived by the human
eye, and based on this measure, the REC is constructed to measure the structural dissim-
ilarity between the area patches. A normalized infrared image is defined as I ∈ Rm×n.
The regional mage patch centered on pixel (x, y) on I is defined as G(x, y) ∈ R3s×3s, scale
of mage patch is 3s × 3s. The regional mage sub-patch centered on G(x, y) pixel on (x, y)
is defined as U(x, y) ∈ Rs×s, as shown in Figure 1. G(x, y) is divided into nine sub-patch
images (Ut(x, y), t = 0, . . . , 8) of equal size. In order to determine whether pixel point
belongs to the target pixel, it is necessary to measure the structural non-similarity between
U0(x, y) and other sub-patch image regions.
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Figure 1. Regional patch schematics.

2.1. Regional Structure Differences

First, the sub-patch image Ut(x, y) is vectorized by column to obtain TU and BUi.
which is shown in Figure 1. According to HVS theory, the human visual perception system is
mainly stimulated by the relative energy of the region. Therefore, it is necessary to quantify
Regional Energy Cosine in the central region and surrounding cells. The calculation of
Regional Energy Cosine is as Equation (1):

θ〈TU, BUi〉 = ar cos(
TU·BUi

‖TU‖ × ‖BUi‖
) i = 1, . . . , 8. (1)

where · is the dot product of vector, ‖ ‖ is Hilbert–Schmidt norm, namely:

‖BUi‖ =

√√√√ s2

∑
j=1

∣∣∣u′j ∣∣∣2 (2)

‖TU‖ =

√√√√ s2

∑
l=1
|ul |2 (3)
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Regional Energy Cosine controls the amplitude angle that ranges between 0◦ and 90◦,
and the larger value of Regional Energy Cosine, the more likely it is to be the target Region.

r(x, y) = max(θ(TU, BUi)) (4)

2.2. Regional Brightness Level Measurement (RBLM)

As shown in Figure 2, the gray mean value of eight image sub-patches in the neighbor-
hood of the central image sub-patch U0(x, y) with scale S can be expressed as following:

RBLMU0 = TK −ms(x, y) (5)

ms =
1
8

8

∑
t=1

mean(Ut(x, y)) (6)

TK = MK(U0(x, y)) (7)

TK represents average gray of the K-th largest pixel in the target area. mean(Ut(x, y))
is average of the t-th sub-patch image. ms is an average value of sub-blocks under scale s.
EZ(x, y) is sub-patch of the z-th outer neighborhood cell.

RBLM(x, y) = RBLMU0 −max(RBLMEZ ) (8)

RBLMEZ = EZ
N −mean(Ez(x, y)) (9)

qs(x, y) =


RBLM(x, y) RBLM(x, y) > 0

0 RBLM(x, y) ≤ 0
(10)

RBLMEZ represents the difference of brightness level of RBLM in center specific areas
and the Z-th outer neighborhood cell. EN

Z represents average of the N-th large value in
the Z-th cell. mean(Ez) is the average gray of the Z-th outer neighborhood cell.
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3. Gaussian Fusion

Regional feature difference in small target and neighborhood background region
is reflected in two aspects: one is regional brightness difference, the other is regional
structure difference. The following will focus on constructing the Regional Brightness Level
Measurement (RBLM) of small targets and the Regional Energy Cosine (REC) in multi-scale
space. A brand new Gaussian fusion metric (RBLM-REC) is proposed to gain saliency map
of small targets.
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For any scale s ∈ {1, 3, . . . , max}, saliency map of REC and RBLM can be calculated
according to Equations (4) and (10) which are normalized to the range of [0, 1].The linear
normalization equation is shown in Equations (11) and (12). rs(x, y) and qs(x, y) are
normalized to obtain r̃s(x, y) and q̃s(x, y) in s scale.

norm(ξ) =
ξ − ξmin

ξmax − ξmin
, ξ = r, q (11)

ξ̃(x, y) = norm(ξ) , ξ = r, q (12)

Gaussian kernel function is shown in Equation (14) to construct the local contrast
measure under s scale.

f (x, y) = exp

{
− β(x− 1)2 + (1− β)(y− 1)2

2h2

}
(13)

where β and h are weight parameters and Gaussian standard deviation respectively. Based
on the above theory, the final mapping function: I→ G from the original image I to the
LBDM-REC mapping graph G is defined as:

G(x, y) = ψ(I(x, y)) = max f (r̃s(x, y), q̃s(x, y))|s=1,3,5,smax (14)

It can be seen from Equation (18) that the value range of G is as follows:

G(x, y) = ψ(Ixy) =


1 i f r̃s(x, y) = 1 and q̃s(x, y) = 1

e−1/2h2 ∼ 1 else

e−1/2h2
i f r̃s(x, y) = 0 and q̃s(x, y) = 0

(15)

4. Target Segmentation

For the obtained RBLM-REC map, the target area exhibits greater contrast compared
with other areas. For the sake of extracting small target successfully, an adaptive threshold
T is expressed as:

T = λ·Gmax + (1− λ)mean(G) (16)

Gmax and mean (G) represent max and mean gray of G, respectively. λ is a range of
0–1 adjustable parameter. Experiments show that λ suitably values range from 0.5 to 0.8
for different scenarios in most small target detection. The final G is defined as follows.

G(x, y) =
{

1 i f G(x, y) > T
0 else

(17)

To demonstrate our method, a flowchart of RBLM-REC is given in Figure 3.
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5. Experimental Results

In this chapter, we will analyze some used parameters in detail for the proposed
algorithm. Then, three effective evaluation indexes of background suppression factor (BSF),
signal-to-clutter ratio gain (SCRG) and receiver operating characteristic (ROC) curves for
all algorithms are applied to prove effectiveness and robustness of the proposed algorithm.
Each frame of the four original infrared sequences all contain a small target and the data sets
are from the public data sets [27] published recently and a personal database. The detailed
information of background and small targets is shown in Table 1. All simulation exper-
iments are conducted on using MATLAB R2016b with dual-core i5-4460 CPU, NVIDIA
GeForce GTX1050Ti.

Table 1. Detailed description of test sequences.

Frames Size Target Size Background Type

Seq. 1 298 256 × 256 3 × 5 Background of sea

Seq. 2 200 256 × 256 7 × 9 Background of sea-sky border

Seq. 3 499 256 × 256 4 × 4 Complex ground background with trees

Seq. 4 598 256 × 256 2 × 3 Complex background with
highlighted interference

5.1. Setting of Experimental Parameters

IR sequence image with 100 frames is tested in sequence 2 to examine the influence
of different parameters for probability of detection. Five parameters involved in our
method need to be discussed, including Gaussian standard deviation h, the weight factor β,
maximal scale smax and the first K large pixels for the target cell. The N-th large pixels are
in the background area. The smoothness of the Gaussian fusion is characterized by the
parameter h. The larger h is, the wider the frequency band of the Gaussian filter is, and the
better the smoothness is. Therefore, h should not be too large. As can be seen from Figure 4,
the general trend is that probability of detection increases significantly with the decrease
of h in the same small false alarm rate. When h exceeds 0.5, the detection rate decreases
significantly. Of course, probability of detection is also closely related to smax. Just treating
the parameter h in isolation, it is not comprehensive and objective. It requires a combination
of the two. The experiment verifies that interval with h belonging to [0.2, 0.5] is a better
choice. The weight parameter β is employed to control the influence degree of LBDM-REC
in Equation (13). In experiments, β is tested repeatedly from 0 to 1, and output results of
Gaussian fusion are relatively stable. Taking β as 0.4 to 0.8 can achieve the ideal detection
results. We set β to 0.5 so that RBLM and REC are more balanced and equally important.
A reasonable size s is crucial for the balance of the detection precision, computational
complexity and sensitivity in model. Society of Photo-Optical Instrumentation Engineers
(SPIE) defines the infrared small target with a total area of less than 80 pixels (9 × 9) in the
total spatial range of 256 × 256 pixels. The scale of small targets is 1 × 1 to 9 × 9. It can
be seen from Figure 4 that when s is larger, probability of detection is relatively higher,
as shown by the red line, green line and brown line with the shape of a left triangle in
Figure 4. Of course, the final detection rate also depends on the balance between s and h.
Experiments show that the two options (smax= 9, h = 0.3) or (smax = 5, h = 0.5) can better
meet the requirements of detection and improvement, and are the optimal solutions. We set
smax as to 9 to also meet the restriction of SPIE for small target size. Finally, we set smax
as to 9 and h as to 0.3. The first five maximum gray values represent the brightest level
of the target; experiments show that there is basically no difference between a setting K
from 3 to 5. When k is small, probability of detection is high. When k is greater than
or equal to 5, probability of detection reduced severely and the final detection rate will
also be affected by N. Experiments show that setting N belonging to [5,7] is reasonable,
which represents the brightest level of the background. Experiments proved that there are
two options as reference, namely, the red line (K = 3, N = 6) or the pink line (K = 4, N = 7).
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The red line is superior, detection probability is higher under the same conditions and the
time consumption can be reduced. Undoubtedly (K = 3, N = 6) is the best choice. To reduce
processing time, K and N are set 3 and 6 separately in this experiment.
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5.2. Qualitative Evaluation

To verify the effectiveness of the RBLM-REC, we adopted four real infrared image
sequences, denoted as Seq. 1–4, respectively. Figure 5 shows examples of the sequence.
To validate the effectiveness of our proposed method, another eight state-of-the-art methods
are selected and compared in the qualitative evaluation including LCM, RLCM, MPCM,
HBMLCM, AMWLCM, TLLCM, LR, LEC and AAGD.
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The detection results of the experimental exemplar infrared images tested are given
in four different scene types as shown in Figure 5. We compared proposed detection
methods with similar algorithms such as LCM, RLCM, MPCM, HBMLCM, AMWLCM,
LR, TLLCM, LEF and AAGD algorithms to verify the advantages of the proposed method.
The LCM algorithm’s performance on all four sequences is relatively inferior. It can also
enhance the target, but the inhibition ability to the background is weak, especially in
complex background (Seq. 3 and Seq. 4). Furthermore, it caused a spread of the target
areas. The detection effect of RLCM is also relatively weak. It also has more strong residual
clutter in Seq. 3 and Seq. 4. MPCM and HBMLCM methods perform well in Seq. 1
and Seq. 2. However, in Seq. 3, they missed target and have a large residual clutter in
Seq. 4. In the AMWLCM method, small targets are enhanced on all four backgrounds,
but each background has a large amount of highlighted clutter at the pixel level. TLLCM
and LR can detect well and correctly in Seq. 1 and Seq. 2, but there are scattered pixels
left in Seq. 4 and clutter is clumpy in Seq. 3, which cannot be identified as a small target.
AAGD performs well in Seq. 1, Seq. 2 and Seq. 4. but the real target still may be missed
or cannot be segmented in Seq. 3. LEF performs better in Seq. 1 and Seq. 2, and the
target is extraordinarily prominent, but the speckle clutter is obvious in Seq. 3. Many
false targets are indelible. There are brighter noise points in Seq. 4, which is due to the
interference of brighter background in the figure. Compared with the above eight methods,
our method achieved better results in Seq. 1–4. Although there is a very small amount of
clutter in Seq. 3, threshold segmentation will further filter out the clutter, so it is possible to
extract dim and small targets. RBLM-REF performs better overall. Therefore, it can work
well for detecting the targets correctly in different scenes. As the backgrounds become
more complex (in Seq. 3), the effects of the former nine methods are significantly reduced.
RBLM-REC also can effectively enhance dark and dim targets and suppress protruding
edges (in Seq. 4). As a result, in different scenarios, our method has stronger robustness
and higher anti-interference ability.

5.3. Quantitative Evaluation

To evaluate the performance of different infrared small target detection methods,
we use three widely-used evaluation metrics, including BSF, SCRG and ROC. BSF is the
background suppression factor, which represents inhibitory ability to the background.
The stronger the suppression ability is, the larger the value is. SCRG is utilized to measure
the validity of target enhancement and higher value of SCRG denotes better performance.

SCR =
µt − µb

σb
(18)

BSF =
σin

σout
(19)

SCRG =
SCRout

SCRin
(20)

where µt represents the average gray in target areas, µb and σb represent gray average and
standard deviation in background areas, respectively. σin and σout are standard deviation
of input image and enhanced map, respectively. SCRin and SCRout represent the signal to
clutter ratio (SCR) values of input image and enhanced map, respectively. BSF and SCRG
values of different algorithms are shown in Table 2.

Our method almost achieves the maximum value on all sequences. Facing the complex
background of Seq. 3, BSF and SCRG of AAGD has also reversely achieved good results.
However, it deserves to be mentioned that AAGD algorithm may even lose small targets
in various complex contexts. BSF and SCRG of LEF have almost no obvious advantage
at all. Compared with our algorithm, its value is relatively small and its performance of
background clutter suppression and target enhancement is not outstanding, LCM, RLCM,
MPCM, HBMLCM and AMWLCM perform poor inhibition ability for background clutter;
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TLLCM and LR is unstable in diverse scenes, robustness is not high. In Seq. 3, BSF and
SCRG values of the proposed algorithm are still higher than other algorithms although
SCRG are slightly lower than AAGD algorithm. The RBLM-REC algorithm proposed has a
more valid and steady effect for different-scale small targets in background suppression
and target enhancement.

Table 2. BSF and SCRG of different algorithms.

Seq. LCM RLCM MPCM HBMLCM AMWLCM TLLCM LR AAGD LEF Proposed

BSF

1 1.2754 8.2031 9.3265 20.1428 9.5728 17.2316 16.2321 23.4514 36.7521 57.2546

2 1.5561 7.3312 7.2554 18.2545 10.5241 16.2572 5.4853 20.1445 35.2014 34.1032

3 1.3408 4.5604 7.5224 17.3216 2.0158 3.5471 1.4255 14.3114 10.2436 12.2158

4 1.2327 2.3116 3.6252 3.4056 1.3143 4.5683 2.4138 12.0127 15.3501 54.0274

SCRG

1 0.5328 4.2563 14.5621 25.1456 10.2574 31.2542 30.1456 45.2354 50.6548 94.8230

2 1.3317 3.9625 5.6245 21.1065 13.5284 25.1587 12.3245 50.124 42.3852 86.32425

3 0.4274 2.6547 6.0321 27.1563 5.2142 5.1254 3.1287 29.145 11.3206 32.5410

4 0.5211 1.3625 1.0234 6.8542 4.1206 7.3254 2.8452 14.125 12.0458 101.2431

Finally, after the saliency map is gained, the corresponding data between probability
of detection (Pd) and false alarm rate (Fa) is obtained by setting a different threshold. Sets
of four roc curves are plotted under the corresponding scene sequences in Figure 5. The PD
and FA can be defined as:

Pd =
number o f detected real targets

total number o f real targets
× 100% (21)

Fa =
number o f detected f alse targets

total number o f pixels in tested f rames
× 100% (22)

Under the same false alarm probability, the higher the detection rate, the better the
algorithm performance. The larger the area enclosed by curve and horizontal coordinate,
the higher the detection performance.

The ROC curves for ten sets of infrared image sequences are shown in Figure 6.
As can be seen from Figure 6, the detection rate of the proposed algorithm is more promi-
nent; it is higher than detection probability of other algorithms in Seq. 1, Seq. 2 and
Seq. 4, even though in the more complex background of Seq. 4, where the target is darker,
the RBLM-REC algorithm achieves the lowest false alarm rate with a guaranteed detection
rate. In Seq. 3 with a lower SCR, probability of detection of the proposed algorithm is also
approximately equivalent to TLLCM, the false alarm rate is more higher for several other
methods because the highlight background has many speckled pixels similar to the target.
AAGD also performed well, but the detection rate declined sharply in Seq. 3. The detection
performance of LEF on Seq. 2 and Seq. 4 was good, but the detection performance in Seq. 1
and Seq. 3 was mediocre. The method proposed can effectively deal with different scenes
and show the best detection capabilities.
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6. Conclusions

In this paper, a brand new detection method using RBLM-REC is proposed. This method
used REC to measure the structural discrepancy among a small target with neighboring
cells which can measure a small target from the Regional Energy Cosine contribution.
To enhance the saliency of the target region, RBLM is constructed in outer neighbor cells
and target central cells. We employ the k-th maximum average of the target area to
model the real target and the average value of the N-th maximum in the background
area is employed to attribute the background region. This restrains the sprawl of the
highlight clutter to some extent. Multi-scale is applied to adapt to the change of small target
scale; the new Gaussian fusion algorithm engraves the heterogeneity of small targets and
background region. Proposed algorithm attained a better performance compared with state-
of-the-art methods. It makes full use of the regional features of target and backgrounds,
and effectively copes with the detection and segmentation of dim and small targets in
complex and irregular backgrounds. Extensive qualitative and quantitative experimental
results have demonstrated that the proposed model is more efficient, robust and reaches
competitive accuracy.
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