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Abstract: Impulse response functions (IRFs) are useful for characterizing systems’ dynamic behavior
and gaining insight into their underlying processes, based on sensor data streams of their inputs and
outputs. However, current IRF estimation methods typically require restrictive assumptions that are
rarely met in practice, including that the underlying system is homogeneous, linear, and stationary,
and that any noise is well behaved. Here, I present data-driven, model-independent, nonparametric
IRF estimation methods that relax these assumptions, and thus expand the applicability of IRFs in
real-world systems. These methods can accurately and efficiently deconvolve IRFs from signals that
are substantially contaminated by autoregressive moving average (ARMA) noise or nonstationary
ARIMA noise. They can also simultaneously deconvolve and demix the impulse responses of
individual components of heterogeneous systems, based on their combined output (without needing
to know the outputs of the individual components). This deconvolution–demixing approach can be
extended to characterize nonstationary coupling between inputs and outputs, even if the system’s
impulse response changes so rapidly that different impulse responses overlap one another. These
techniques can also be extended to estimate IRFs for nonlinear systems in which different input
intensities yield impulse responses with different shapes and amplitudes, which are then overprinted
on one another in the output. I further show how one can efficiently quantify multiscale impulse
responses using piecewise linear IRFs defined at unevenly spaced lags. All of these methods are
implemented in an R script that can efficiently estimate IRFs over hundreds of lags, from noisy time
series of thousands or even millions of time steps.

Keywords: impulse response function; deconvolution; system identification; ARMA noise; nonlinear
deconvolution; robust estimation; time series analysis

1. Introduction

Many scientific challenges require understanding how systems respond to fluctuations
in their inputs, as documented by sensor data streams or other time series data. Three
examples from environmental science, for example, are (a) understanding how stream-
flow time series reflect landscape-scale responses to precipitation inputs, (b) quantifying
source–receiver relationships for airborne or waterborne contaminants and pathogens,
and (c) estimating how ecosystems’ rates of photosynthesis, respiration, and transpiration
fluctuate in response to external forcings, such as solar radiation, precipitation, and nutrient
concentrations. Many other examples can be found in fields ranging from chemistry [1], en-
gineering [2], and economics [3,4] to systems biology [5], neuroscience [6,7], physiology [8]
and epidemiology [9–11].

Questions such as these are both scientifically challenging and practically important.
They can sometimes be investigated using controlled experiments, but it is often infeasible
to conduct such experiments at realistic scale on systems of realistic complexity. Instead,
we must often try to understand these processes by observing how systems respond, over
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time, to natural fluctuations in their external forcing and natural variations in their internal
conditions. These efforts have been aided in recent decades by an ever-expanding range
of observational time series from an increasingly diverse array of sensors and remote
sensing platforms.

The question remains how to most usefully extract information from these signals. One
widely employed approach is to postulate a model based on a set of assumed mechanisms,
calibrate this model to the observational data, and then perform numerical experiments
to explore the behavior of the model, under the assumption that the model is a realistic
analogue to the real-world system. The strength of this approach is that results from
these numerical experiments can be directly interpreted in terms of the postulated model
processes. The corresponding weakness is that everything depends on the assumption
that the postulated processes are the correct ones. Many models are sufficiently complex
that even if they give the right answers (in the sense of matching their calibration data, for
example), it can be difficult to tell whether they are doing so for the right reasons, which is
essential to drawing valid inferences from their results.

An alternative approach is to make minimal assumptions about the processes of
interest and instead to empirically model the input–output behavior of the system directly
from observational data. The obvious drawback of such “black box” approaches is that
any mechanistic inferences derived from them will necessarily be tentative and indirect
(although in ways that will often be obvious to users). The corresponding advantage is that
it is not necessary to assume a mechanistic model whose realism may be difficult to verify.

This model-independent, data-driven approach, commonly termed system identification,
has evolved primarily within the field of industrial process control (e.g., [12–14]). Industrial
process control problems typically enjoy several advantages over analyses of other types of
systems. In such problems, one often has strong a priori information about the structure
of the systems under study (since they are typically engineered), and one can frequently
measure their response to controlled inputs (steps, pulses, sine waves, etc.). In analyses
of many other real-world systems, by contrast, the system’s structure is often unknown
(which is often why it is being studied in the first place), and we must work with whatever
patterns of inputs and outputs nature gives us. Furthermore, the input and output time
series are frequently much noisier than in typical industrial systems.

Here I present new methods for system identification, with a specific focus on impulse
response functions and how they can be adapted to handle several challenges that often
arise in real-world systems. Section 2.1 briefly introduces impulse response functions and
their estimation from time series via least squares methods. Section 2.2 through Section 2.6
show how this approach can be adapted to account for the autoregressive moving average
(ARMA) noise that often arises in real-world data. Sections 2.5 and 2.7 present benchmark
tests demonstrating that this approach accurately estimates impulse response functions
and their uncertainties, even when confronted with time series that are badly contaminated
by nonstationary ARIMA (AutoRegressive Integrated Moving Average) noise.

Many real-world systems exhibit substantial heterogeneity, such that inputs to different
system compartments are processed differently, with the resulting signals being mixed
together in the system output. Section 3 presents a demixing approach to estimating the
impulse response functions of these multiple overlapping (and correlated) inputs. Section 3
also presents benchmark tests that demonstrate the potential of this demixing approach.

Conventional impulse response functions assume that the system’s response is both
linear (that is, proportional to the input) and stationary (that is, independent of time). Real-
world systems, by contrast, are often nonlinear and nonstationary. Therefore, Section 4
shows how the demixing approach of Section 3 can be adapted to characterize systems’
nonstationary behavior, and Section 5 shows how this approach can be further extended to
create piecewise linear maps of systems’ nonlinear dependence on their inputs. Section 6
further shows how IRFs can be approximated by piecewise linear functions that are evalu-
ated at a few unevenly spaced knots, rather than many evenly spaced lags. This permits
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the accurate estimation of multiscale IRFs that combine brief, sharp impulse responses and
more persistent, delayed impulse responses.

The techniques presented here are implemented in an R script, IRFnnhs.R (for “Im-
pulse Response Functions for nonlinear nonstationary and heterogeneous systems in R”),
which is available along with scripts for each of the benchmark tests presented in the
following sections (see data availability statement). The benchmark tests presented here
are intentionally generic, without applications to specific fields. A subsequent paper will
present a proof-of-concept application within my own field of hydrology, but the presen-
tation here is generic to avoid the misconception that these techniques are restricted to
hydrological applications.

2. Estimating Impulse Response Functions from Time Series Contaminated by
Autoregressive and Nonstationary Noise
2.1. Impulse Response Functions

Many systems can be represented (at least approximately) as convolutions, in which
the output y(t) depends on an input x(t− τ) over a (potentially infinite) range of past lag
times τ, weighted by a lag function β(τ) that expresses the relative influence of the input at
each lag:

y(t) =
∫ ∞

0
β(τ) x(t− τ) dτ. (1)

The lag function β(τ) is sometimes called a convolution kernel, transfer function, or
Green’s function; it is also called an impulse response function (IRF) because it shows how the
system output y(t) would respond to an input x(t) consisting of a single Dirac delta function
pulse (i.e., an infinitely high, infinitely narrow pulse that integrates to 1). A system’s impulse
response can be defined more generally as the change in the time evolution of its output y
when a single Dirac pulse δt′ is added to its input x(t) at any given time t′, compared to the
system’s behavior without the Dirac pulse:

βt′(τ) = y
(
t′ + τ

∣∣ x(t) + δt′
)
− y
(
t′ + τ

∣∣ x(t)
)
. (2)

The input x(t) can itself be considered as a continuous series of appropriately scaled
Dirac pulses, so if the impulse response is independent of the impulse time t′ (that is, if the
impulse response is stationary), integrating Equation (2) over all t′ ≤ t will lead directly to
the convolution shown in Equation (1).

In most practical cases, continuous functions such as those in Equation (1) are not
directly observable, and instead are approximated by discrete time series of measurements.
In such cases, Equation (1) is typically approximated by its discrete counterpart,

yj =
m

∑
k=0

βk xj−k, j = 1 . . . n. (3)

The discrete impulse response function in Equation (3) is sometimes termed a finite
impulse response (FIR) model, because it quantifies the finite-duration system response to
a finite-duration input pulse, in contrast to Equation (1), which quantifies the potentially
infinite-duration system response to an infinitesimally short input pulse.

The impulse response function β(τ) or βk is useful in characterizing the system; indeed,
it is a complete description of linear time-invariant systems such as Equations (1) and (3).
A linear system responds proportionally to the input x(t), such that its response to the sum
of two inputs x1(t) and x2(t) equals the sum of its responses to the two inputs individually;
this is known as the principle of linear superposition. A time-invariant (or stationary) system
responds identically to the same inputs occurring at different times (except, of course, that
its response is time-shifted by the same amount as the time difference between the inputs).

In contrast to such an idealized linear time-invariant system, many real-world systems
are nonlinear, nonstationary, or both. In such cases, an impulse response function will not
be a complete description of the system’s response but may still be a useful indicator of its



Sensors 2022, 22, 3291 4 of 44

average behavior. Precisely how the IRF averages such a system’s behavior will depend on
the system characteristics and on how the IRF is estimated; this topic is explored further in
Sections 3.3–3.5 and 4.3 below. Furthermore, as described in Sections 4 and 5 below, the
simple linear time-invariant model in Equation (3) can be generalized to estimate how the
IRF varies for different input intensities (thus quantitatively characterizing the nonlinearity
of the system) and to estimate how the IRF varies for inputs occurring at different times
(thus quantifying the system’s nonstationarity).

Convolutions such as Equations (1) and (3) scramble the input time series x and the
impulse response function β together to generate the output time series y. Deconvolution
methods seek to invert this process, un-scrambling y to yield estimates of x (given β) or
estimates of β (given x). The term deconvolution is often applied specifically to the inversion
of Equation (1) or (3) to solve for the input time series x given the output time series y and
the impulse response function β (a deconvolution of y by β). Solving instead for the impulse
response function β given the input and output time series x and y is also, mathematically
speaking, a deconvolution (in this case, a deconvolution of y by x), but is also often termed
system identification [13], since β characterizes the behavior of the system linking the inputs
and outputs. The classical approach to either type of deconvolution relied on Fourier
transform methods, because convolution and deconvolution become simply multiplication
and division in Fourier space. However, Fourier methods often yield unreliable results
unless the underlying system is linear and time-invariant, and thus conforms closely to
Equation (1) or (3), and unless the two “knowns” (y and x for system identification, or y and
β for deconvolution of the input time series x) are virtually noise-free. These requirements
are often violated by real-world systems. Instead, the system identification problem is
frequently approached by considering Equation (3) as a multiple linear regression equation,

yj =
m

∑
k=0

βk xj,k + α + ε j, (4)

where the kth column of the matrix xj,k = xj−k is xj lagged by k time steps. Equation (4)
can be straightforwardly solved for the IRF coefficients βk using conventional least squares
methods if the residual errors ε j are uncorrelated white noise.

2.2. Estimating Impulse Response Functions in the Presence of ARMA Noise

Direct application of simple approaches such as Equation (4) to many real-world
systems will be complicated by the fact that the residuals ε j often violate the white noise
assumptions underlying conventional linear regression. Instead, the residuals are often
serially correlated, sometimes quite strongly, over a range of time scales, leading to biased
estimates of the βk coefficients and their uncertainties. The serial correlation in ε j can arise
from many sources. Measurements of the output variable yj may be subject to serially
correlated, or even nonstationary, errors. The input variable xj may also be subject to error
(the so-called “error in variables” problem). Even if those input errors are not themselves
serially correlated, they will nonetheless be reflected in serially correlated residuals ε j
because any excess or missing xj will appear to be smoothed and lagged by the same
convolution process that smooths and lags the (unknown) true inputs. Equation (4) may
also be a stationary approximation to a nonstationary real-world system, or may have
other structural problems, such as missing variables or incorrect functional relationships,
that would be reflected in serially correlated variations in the residuals ε j. Efficiently
handling these serially correlated errors requires novel statistical methods. Although
several approaches have been widely used to perform regression in the presence of serially
correlated errors (e.g., [15–17]; see also Section 9.5 of [12]), deconvolution in the presence of
such errors is potentially a more complex problem, because the output will contain serially
correlated signals from both the errors and the real-world convolution process, which must
somehow be distinguished from one another.
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Whatever the origin of the serial correlation in the residuals, it can be simply and
flexibly represented as an Autoregressive Moving Average (ARMA) process,

ε j = φ1 ε j−1 + φ2 ε j−2 + . . . + ξ j + ϑ1 ξ j−1 + ϑ2 ξ j−2 + . . . , (5)

where the autoregressive coefficients φ express how the residual ε j depends on its own
previous values, and the moving average coefficients ϑ express how the residual ε j depends
on the previous values of a white noise process ξ j. In many real-world cases, serially
correlated errors can be summarized using just a few autoregressive coefficients φ and
moving average coefficients ϑ. Moving-average processes that are invertible (as all real-
world moving average processes should be) can be equivalently expressed as autoregressive
processes (the duality principle: see Section 3.3.5 of [12]), meaning that any real-world
ARMA process can be re-expressed as a purely autoregressive (AR) process of higher order,

ε j = φ1 ε j−1 + φ2 ε j−2 + . . . + φh ε j−h + ξ j . (6)

In theory, the autoregressive order h corresponding to a moving average process can
be infinite, but in practice Equation (6) will often entail only a few more AR coefficients φ
than the corresponding ARMA process in Equation (5), with the higher-order terms dying
away to practically zero.

A conventional approach to solving regression problems such as Equation (4) with
autoregressive errors such as those in Equation (6) proceeds as follows. Equation (6) is first
rearranged to express the uncorrelated white noise error ξ j in terms of the AR coefficients
φ and the lagged values of the correlated errors ε j:

ξ j = φ0 ε j − φ1 ε j−1 − φ2 ε j−2 − . . .− φh ε j−h, (7)

where φ0, which has a value of 1, has been included in the first term on the right-hand
side to make the following equations more systematic. Writing lagged copies of the
original regression equation (Equation (4)) for lags 0 through h and multiplying by the
corresponding AR coefficients φ yields the following stack of equations:

φ0yj = φ0
m
∑

k=0
βkxj−k + φ0α + φ0ε j

−φ1yj−1 = −φ1
m
∑

k=0
βkxj−k−1 − φ1α− φ1ε j−1

−φ2yj−2 = −φ2
m
∑

k=0
βkxj−k−2 − φ2α− φ2ε j−2

...

−φhyj−h = −φh
m
∑

k=0
βkxj−k−h − φhα− φhε j−h

(8)

Readers will note that the error terms in each line of Equation (8) sum up to the
right-hand side of Equation (7), so if all of these lines are added together, the combined
error terms will equal the uncorrelated error ξ j:

φ0yj − φ1yj−1 − φ2yj−2 − · · · − φhyj−h

= φ0
m
∑

k=0
βkxj−k − φ1

m
∑

k=0
βkxj−k−1 − φ2

m
∑

k=0
βkxj−k−2 − · · · − φh

m
∑

k=0
βkxj−k−h

+(φ0,−, φ1,−, φ2,−, · · · ,−, φh)α

+
(

φ0, ε j,−, φ1, ε j−1,−, φ2, ε j−2,−, · · · ,−, φh, ε j−h

) (9)
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where the last line equals the uncorrelated error ξ j. This conventional approach then
rewrites Equation (9) by transforming each of the variables to subtract the values that they
inherit from previous time steps,

y∗j = φ0yj − φ1yj−1 − φ2ε j−2 − · · · − φhyj−h

x∗j = φ0xj − φ1xj−1 − φ2xj−2 − · · · − φhxj−h

α∗ = (φ0,−, φ1,−, φ2,−, · · · ,−, φh)α
ξ j = ε0xj − ε1xj−1 − ε2xj−2 − · · · − εhxj−h

(10)

yielding

y∗j =
m

∑
k=0

βk x∗j−k + α∗ + ξ j. (11)

Equation (11) is in the form of a linear regression equation like Equation (4), but in
place of the autocorrelated error term ε j it instead has the white-noise error term ξ j, and
thus conforms to the assumptions underlying regression analysis. As written, however,
Equation (11) is nonlinear in its parameters and thus cannot be solved by linear regression
(because the AR coefficients φ1 . . . φh hidden within the x∗j−k are multiplied by the regression
coefficients βk, as shown in the second line of Equation (9)). Historically, problems of this
type were solved using the Cochrane–Orcutt procedure [15], which alternately estimates
the AR coefficients φ and the regression coefficients β, iterating these two steps until
convergence, or the Hildreth-Lu procedure [16], which solves jointly for the AR coefficients
φ and the regression coefficients β using nonlinear search techniques [17]. More recent
approaches iteratively estimate the β’s using Generalized Least Squares and the φ’s using
maximum likelihood or Restricted Maximum Likelihood (REML) methods (see Section 9.5
of [12]). Pre-programmed routines are also available, such as the R language’s arima
function, which estimates the β’s and φ’s using nonlinear optimization methods. However,
these approaches can become slow and memory-intensive for large problems, such as
those that arise when long time series are used to estimate convolution kernels over many
lags. The order of difficulty of the matrix operations required to solve Equation (4) or (11)
scales as roughly n (1 + m)2 or (1 + m)3 depending on the relative sizes of n and m; this
is further magnified when these operations are repeatedly iterated to search for optimal
values of the autoregressive coefficients φ1 . . . φh. In addition to this computational issue,
the differencing procedure in Equation (10) may amplify any errors in the input variables
relative to the true input values (particularly if the true inputs are less time-varying than
their errors, and thus are attenuated more by Equation (10) than their errors are), thereby
magnifying the “errors in variables” problem [18,19].

A further potentially serious concern is that the regression coefficients βk estimated
from Equations (9)–(11) or from R’s arima function will artifactually converge toward 0 at
lags approaching the largest modeled lag m, even if the real-world process linking y and
x extends to lags well beyond m. Even worse, the uncertainty estimates for these βk will
also be artifactually driven toward 0 at lags approaching m, potentially misleading users
into placing exaggerated confidence in these misleading results. The benchmark tests in
Figure 1 show that these artifacts can occur even when the correct AR coefficients φ are
known exactly (which of course will not be true in real-world cases).



Sensors 2022, 22, 3291 7 of 44
Sensors 2022, 22, x FOR PEER REVIEW  7  of  44 
 

 

 

Figure 1. Impulse response functions estimated by the Cochrane–Orcutt procedure (Equations (9)–

(11),  light blue  squares), R’s  𝑎𝑟𝑖𝑚𝑎  function  (open diamonds),  and  the  𝐼𝑅𝐹   function presented 
here  (Equations  (12)–(26),  dark  blue  circles).  Gray  lines  show  benchmark  convolution  kernels 

(gamma distributions with shape factor  𝛼  = 2 and means  𝜏  of 30, 20, and 10 lag units in panels (a), 
(b), and (c), respectively), which were convolved with a Gaussian white noise time series of length 

𝑛  = 2000 to simulate the system output. First‐order autoregressive noise with  𝜌  = 0.9 was added to 

the system output at a signal‐to‐noise ratio of 4. The autoregressive coefficient of  𝜌  = 0.9 was sup‐

plied as a known parameter to the Cochrane–Orcutt procedure and R’s  𝑎𝑟𝑖𝑚𝑎  function. Impulse 

response  functions  estimated by  the Cochrane–Orcutt procedure  and R’s  𝑎𝑟𝑖𝑚𝑎  function  (light 
blue squares and open diamonds, respectively) converge to nearly zero within the range of analyzed 

lags, even if the true convolution kernel does not (panels (a) and (b)). If the true convolution kernel 

converges to nearly zero within the range of analyzed lags (which will not be known in practice), 

all three methods yield nearly identical results (panel (c)). 

Here I present a somewhat different approach that can efficiently handle large sys‐

tem identification problems in the presence of ARMA noise, and that is not vulnerable to 

the artifactual behavior shown in Figure 1. This approach is based on the observation that 

because Equation (9) is a convolution, it can be transformed into a conventional multiple 

linear regression problem that can be solved for coefficients that combine both the  𝛽’s and 
the 𝜙’s, and these coefficients can then be back‐transformed to extract the desired  𝛽  val‐
ues. The key is to recognize that the terms in the second line of Equation (9) can be aligned 

as follows (showing the first three rows as an example): 

𝜙𝛽𝑥  𝜙𝛽ଵ𝑥ିଵ  𝜙𝛽ଶ𝑥ିଶ  𝜙𝛽ଷ𝑥ିଷ  ⋯  𝜙𝛽𝑥ି              
        െ 𝜙ଵ𝛽𝑥ିଵ െ 𝜙ଵ𝛽ଵ𝑥ିଶ െ 𝜙ଵ𝛽ଶ𝑥ିଷ െ ⋯ െ 𝜙ଵ𝛽ିଵ𝑥ି െ 𝜙ଵ𝛽𝑥ିିଵ 

                                 െ 𝜙ଶ𝛽𝑥ିଶ െ 𝜙ଶ𝛽ଵ𝑥ିଷ െ ⋯ െ 𝜙ଶ𝛽ିଶ𝑥ି െ 𝜙ଶ𝛽ିଵ𝑥ିିଵ െ 𝜙ଶ𝛽𝑥ିିଶ,
  (12)

Figure 1. Impulse response functions estimated by the Cochrane–Orcutt procedure
(Equations (9)–(11), light blue squares), R’s arima function (open diamonds), and the IRF func-
tion presented here (Equations (12)–(26), dark blue circles). Gray lines show benchmark convolution
kernels (gamma distributions with shape factor α = 2 and means τ of 30, 20, and 10 lag units in panels
(a), (b), and (c), respectively), which were convolved with a Gaussian white noise time series of length
n = 2000 to simulate the system output. First-order autoregressive noise with ρ = 0.9 was added to
the system output at a signal-to-noise ratio of 4. The autoregressive coefficient of ρ = 0.9 was supplied
as a known parameter to the Cochrane–Orcutt procedure and R’s arima function. Impulse response
functions estimated by the Cochrane–Orcutt procedure and R’s arima function (light blue squares
and open diamonds, respectively) converge to nearly zero within the range of analyzed lags, even if
the true convolution kernel does not (panels (a,b)). If the true convolution kernel converges to nearly
zero within the range of analyzed lags (which will not be known in practice), all three methods yield
nearly identical results (panel (c)).

Here I present a somewhat different approach that can efficiently handle large system
identification problems in the presence of ARMA noise, and that is not vulnerable to the
artifactual behavior shown in Figure 1. This approach is based on the observation that
because Equation (9) is a convolution, it can be transformed into a conventional multiple
linear regression problem that can be solved for coefficients that combine both the β’s and
the φ’s, and these coefficients can then be back-transformed to extract the desired β values.
The key is to recognize that the terms in the second line of Equation (9) can be aligned as
follows (showing the first three rows as an example):
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φ0β0xj + φ0β1xj−1 + φ0β2xj−2 + φ0β3xj−3 + · · ·+ φ0βmxj−m
−φ1β0xj−1 − φ1β1xj−2 − φ1β2xj−3 − · · · − φ1βm−1xj−m − φ1βmxj−m−1

−φ2β0xj−2 − φ2β1xj−3 − · · · − φ2βm−2xj−m − φ2βm−1xj−m−1 − φ2βmxj−m−2

(12)

where, readers will recall, φ0 = 1 and thus can be included or excluded without loss of
generality. The vertically aligned columns in Equation (12) show that collecting terms with
the same lag in x will convert Equation (9) to

φ0 yj − φ1 yj−1 − φ2 yj−2 − . . .− φh yj−h =
m+h

∑
k=0

bk xj−k + a + ξ j, . (13)

which can be rearranged to create a conventional linear regression equation,

yj =
m+h

∑
k=0

bk xj−k + φ1 yj−1 + φ2 yj−2 + . . . + φh yj−h + a + ξ j, . (14)

where the error term ξ j is white noise, and the coefficients b0 . . . bm+h and φ1 . . . φh. can be
jointly estimated by least-squares regression, with the matrix form (here using m = 5 and
h = 2 as a simple example):

y8
y9
y10
y11
y12
y13
y14
y15
y16

...


=



x8 x7 · · · x2 x1 y7 y6 1
x9 x8 · · · x3 x2 y8 y7 1
x10 x9 · · · x4 x3 y9 y8 1
x11 x10 · · · x5 x4 y10 y9 1
x12 x11 · · · x6 x5 y11 y10 1
x13 x12 · · · x7 x6 y12 y11 1
x14 x13 · · · x8 x7 y13 y12 1
x15 x14 · · · x9 x8 y14 y13 1
x16 x15 · · · x10 x9 y15 y14 1

...
...

...
...

...
...

...
...


·



b0
b1
b2
b3
b4
b5
b6
b7
φ1
φ2
α



(15)

or equivalently
y = X · θ , (16)

where the matrix X includes 1 + m + h columns with lagged values of x and a further h
columns with lagged values of y, and the parameter vector θ includes both the b and φ
coefficients. (In practice the first m + h rows of the X matrix must be omitted because they
have missing values, along with the corresponding rows of y; any other rows with missing
values in either X or y are similarly omitted.) The least-squares estimate of the parameter
vector θ can be computed via the conventional matrix form of the “Normal Equation” of
linear regression,

θ =
(

XTX
)−1
· XTy, (17)

where the superscript T indicates the matrix transpose. If individual rows of Equation (15)
are given different weights (for example, to exclude or down-weight uncertain or irrelevant
observations), Equation (17) becomes

θ =
(

XTWX
)−1
· XTWy, (18)

where W is a diagonal matrix containing the weights. The effective sample size, accounting
for the uneven weights wii, can be calculated straightforwardly as neff = (∑ wii)

2/ ∑
(
w2

ii
)
;

this converges to n when all rows have the same weight. The IRF function in IRFnnhs.R
computes θ using R’s solve function, which in turn calls LAPACK solver routines based on
LU decomposition. This is more efficient than inverting the cross-product matrix XTX or
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XTWX followed by matrix multiplication with XTWy. For most problems where n is much
larger than, the IRF function’s runtime is approximately linear in and m, because the most
time-consuming step is the construction of the X matrix. For larger m, runtime becomes
linear in n and quadratic in m, because the most time-consuming step is the computation
of the cross-product XTX. For very large m, the order of difficulty may approach m3 if
the most time-consuming step becomes solving the linear system. Solution times on a
2019-vintage 1.8 GHz Intel i7-8550 CPU with four cores and 16 GB of RAM are roughly
50 ms for an X matrix with 10,000 rows and 100 columns, roughly 5 s for an X matrix with
100,000 rows and 1000 columns, and roughly 27 min for an X matrix with 1,000,000 rows
and 10,000 columns. For comparison, R’s built-in arima function takes roughly 2000 times
longer to solve the smallest of these problems, and for larger problems the discrepancy is
even greater.

Because the bk coefficients estimated as part of θ in Equation (17) or (18) could be noisy
if the underlying time series are short or particularly noisy, the IRF function provides an
option for Tikhonov–Phillips regularization, as described in Equations (46), (49) and (50)
of [20]. This regularization routine minimizes the mean square of the second derivatives of
the bk, thus penalizing bk values that deviate greatly from a line connecting their adjacent
neighbors. This smoothness criterion has the advantage that it does not create a downward
bias in the bk values, as conventional Tikhonov “ridge regression” would (see Section 4.3
of [20] for details). The degree of regularization is controlled by a dimensionless parameter
ν that ranges between 0 and 1 and expresses the fractional weight given to the regularization
criterion, relative to the least-squares criterion, in determining the best-fit values of θ. The
default value of ν = 0 (no regularization) is used for all of the analyses presented here.

As with any least-squares multiple regression problem, Equations (17) and (18) are
potentially vulnerable to outliers in the underlying input and output time series. Therefore,
the IRFnnhs.R script includes the option for robust solution of Equations (17) and (18) via
Iteratively Reweighted Least Squares (IRLS). This robust estimation method can be invoked
by calling the IRF function with the robust option set to TRUE. Because it is an iterative
algorithm, IRLS will increase the solution time, but usually only by small multiples. A
potentially greater concern is that, as with any robust estimation method, there is always a
risk of excluding valid data that just happen to have unusually large influence. Therefore,
it is worthwhile to investigate further, whenever robust and non-robust methods yield
substantially different results. In the analyses presented here, the robust option is kept at
its default value of FALSE, because the synthetic benchmark data sets contain no outliers
(although they do contain significant noise).

The form of Equation (14) is similar to a conventional SISO (Single Input, Single
Output) ARX (Autoregressive with eXogenous variables) model (e.g., [13,14]), but there are
three essential differences. The first difference is that in ARX models, the focus is usually
on the autoregressive part, and the objective is usually to be able to make one-step-ahead
forecasts of the next value of yj, based mostly on y’s relationship to its own prior values.
By contrast, in the analysis presented here, the focus is on the exogenous variable x and its
lags, and on estimating their structural relationship to y.

The second difference is that in ARX models, the autoregressive terms φ1 yj−1, φ2 yj−2,
etc., describe autoregressive behavior in the system itself (an “equation error model”),
rather than correcting for autoregressive noise in the error term (an “output error model”).
(Although these two model types can be combined in so-called CARARMA models, for
which iterative and hierarchical estimation algorithms have been proposed e.g., [21], such
complex models need not concern us here because in the present analysis only the noise is
assumed to be autoregressive.) Because it attributes autoregressive behavior to yj rather
than to ε j, an ARX model evaluates the b coefficients only for lags from 0 to m rather than
from 0 to m+ h as shown in Equation (14). This distinction is important because without the
extra coefficients bm+1 . . . bh, Equation (14) would not be the same as Equation (9) and thus
a solution for Equation (14) would not be a solution for the original problem as specified by
Equation (4) combined with Equation (6).



Sensors 2022, 22, 3291 10 of 44

The third crucial difference is that in an ARX model, the b coefficients would directly
measure the effects of the (lagged) external forcing xj−k. Here, by contrast, these effects
are measured by the β coefficients, which must be deconvolved from the b coefficients as
described in the next section.

2.3. Deconvolving the Impulse Response from the Fitted Coefficients

The impulse response coefficients β are not estimated by the b coefficients themselves,
but rather by functions that combine the b coefficients and the AR coefficients. One can
translate between the regression coefficients b and the impulse response coefficients β by
recognizing from inspection of Equation (12) that the b coefficients are linear combinations
of the impulse response coefficients β, weighted by the AR coefficients φ,

b0 = φ0β0
b1 = φ0β1 − φ1β0
b2 = φ0β2 − φ1β1 − φ2β0
· · ·
bm = φ0βm − φ1βm−1 − φ2βm−1 − · · · − φhβm−h
bm+1 = −φ1βm − φ2βm−1 − · · · − φhβm−h+1
· · ·
bm+h−2 = −φh−2βm−2 − φh−1βm−1 − φhβm
bm+h−1 = −φh−1βm−1 − φhβm
bm+h = −φhβm

(19)

These relationships can be represented in matrix form as (again using m = 5 and h = 2
as a simple example)

b0
b1
b2
b3
b4
b5
b6
b7


=



1 0 0 0 0 0 0 0
−φ1 1 0 0 0 0 0 0
−φ2 −φ1 1 0 0 0 0 0

0 −φ2 −φ1 1 0 0 0 0
0 0 −φ2 −φ1 1 0 0 0
0 0 0 −φ2 −φ1 1 0 0
0 0 0 0 −φ2 −φ1 1 0
0 0 0 0 0 −φ2 −φ1 1


·



β0
β1
β2
β3
β4
β5
0
0


(20)

or more compactly as
b = Φ · β. (21)

where Φ is a unit lower triangular Toeplitz matrix whose off-diagonals are the negatives of
φ1 . . . φh. This mapping of b to β is invertible, so the impulse response coefficients β0 . . . βm
can be retrieved from regression estimates of b0 . . . bm+h and φ1 . . . φh by inverting the
system of linear equations in Equation (19). This inversion can be written as a series of
simple recurrence relationships (remembering that the main diagonal of the Φ matrix is 1):

β0 = b0
β1 = b1 + φ1β0
β2 = b2 + φ1β1 + φ2β0
· · ·
βm = bm + φ1βm−1 + φ2βm−2 + . . . + φhβm−h

βi = bi +
min(i,h)

∑
j=1

βi−j φj

. (22)
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In matrix notation, this inversion can be expressed as (here again using m = 5 as
an example) 

β0
β1
β2
β3
β4
βm

 =



1 0 0 0 0 0
ψ1 1 0 0 0 0
ψ2 ψ1 1 0 0 0
ψ3 ψ2 ψ1 1 0 0
ψ4 ψ3 ψ2 ψ1 1 0
ψ5 ψ4 ψ3 ψ3 ψ1 1

·


b0
b1
b2
b3
b4
bm

 (23)

or more compactly as
β = Ψ · b, (24)

where Ψ is the inverse of the matrix Φ, and both Ψ and b are truncated at lag m. Readers
may recognize Equation (20) as a convolution, and Equation (23) as the corresponding
deconvolution. The Ψ matrix, like the Φ matrix, is a lower unit triangular Toeplitz matrix,
and the individual ψ values can be calculated by recurrence relationships analogous to
those in Equation (22) above (noting that the terms of Φ are −φj, not φj, and that Φ and Ψ

both have 1s along the main diagonal):

ψ0 = 1
ψ1 = φ1
ψ2 = ψ1 φ1 + φ2
ψ3 = ψ2 φ1 + ψ1 φ2 + φ3
· · ·

ψi =
i−1
∑

j=0
ψj φj−i

. (25)

The last h elements of b have no effect on the calculated βk values (each of which
depends only on values of bj≤k—see Equation (22)), but they nonetheless must be present
when Equation (14) is fitted by least squares, because otherwise the estimates of b0 through
bm can be distorted by correlations that should be absorbed by the terms bm+1 through
bm+h. Putting the same point differently, if Equation (14) is missing the last h elements of
b, it will not be equivalent to Equation (9), leading to biased estimates of the resulting βk
(unless, of course, the last h elements of b are all zero).

The Ψ matrix is also the Jacobian of the system of equations that translates b into β
(Equation (22)), and thus it can also be used to convert the covariance matrix Kbb of b to
the covariance matrix Kββ of the impulse response vector β, using the matrix form of the
conventional first-order, second-moment error propagation equation,

Kββ = Ψ · Kbb · ΨT. (26)

The square root of the diagonal of the covariance matrix Kββ will then yield the
standard errors of the impulse response coefficients βk. These uncertainty estimates will be
somewhat inflated if Equation (26) is applied directly to the covariance matrix Kbb obtained
from Equation (14), due to interactions between the b and φ coefficients. Statistically
speaking, the φ coefficients are “nuisance parameters” in the sense that the goal is to
determine the values of the β’s, but as part of this process the φ’s must also be estimated
in order to account for serial correlation in the residuals. Benchmark tests show that the
standard errors of the β’s can be more accurately estimated if the φ’s are treated as being
fixed at their estimated values, rather than as uncertain parameters. This can be efficiently
accomplished by removing the rows and columns that correspond to the lagged values
of y (and thus correspond to the φ coefficients) from the cross-product matrix XTX after it
has been used to solve Equation (14). This modified cross-product matrix is then used to

calculate the covariances Kbb of the bk via the standard formula Kbb = σ2
ξ

(
XTX

)−1
, where
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σ2
ξ is the variance of the residuals of Equation (14). The bk and their covariances Kbb are then

translated into estimates of the βk and their covariances Kββ using Equations (24) and (26).

2.4. Choosing the Number of Autoregressive Correction Terms

A practical question will inevitably arise: how should users choose the correct order
h for the AR correction terms φ1 yj−1 . . . φh yj−h? As noted in Section 2.2 above, these
terms should be numerous enough to capture the effects of both autoregressive and moving
average noise in the measured yj. One approach is to manually select the order of AR
correction by trial and error, by setting the parameter h and inspecting how different
values of h affect the estimates of βk and the correlations in the residuals. Benchmark tests
suggest that as long as h is much smaller than m, making h too big will only slightly alter
the estimates of βk or their uncertainties, since the extra φ coefficients will typically be
very small and thus will barely affect the solution of Equation (14). (It should be clear
that Equations (5) and (6) are models of the noise ε j, not AR or ARMA models of the
underlying processes generating the system output. Thus, any additional uncertainty in
the φ coefficients due to overfitting is unproblematic, because the goal is to estimate the
impulse response coefficients βk, not the φ coefficients describing the noise.)

The order of autoregressive correction h can also be determined automatically. One
might assume that the Akaike Information Criterion (AIC) or Bayesian Information Cri-
terion (BIC) could be used to determine an optimal value of h, but AIC and BIC can only
compare models that predict the same set of points yj, and changing h alters the number of
rows of Equation (15) with missing values of xj−m−h or yj−h (and therefore the number of
yj values that must be excluded). A more fundamental problem is that even if AIC and BIC
could be used, they would select a value of h that makes Equation (14) a good predictor of
yj rather than a good estimator of bk and thus of βk, which is the objective of this analysis.
One should remember that in this analysis, the coefficients φ1 . . . φh are not themselves of
interest, but are necessary to whiten the residuals, that is, to convert the serially correlated
residuals ε j to nearly uncorrelated residuals ξ j. With that objective in mind, by default
the IRF algorithm will automatically find the smallest value of h that sufficiently whitens
the residuals, using both a practical significance test and a statistical significance test. The
practical significance test examines whether the absolute values of the autocorrelation and
partial autocorrelation function (ACF and PACF) coefficients of the residuals ξ j, for lags
from 1 to log10(n), are less than a user-specified threshold ARlim. The default value of
ARlim is 0.2, which corresponds to a maximum contribution of 0.22 = 4% to the variance of
the residuals ξ j due to serial correlations at any individual lag. The statistical significance
test examines whether the absolute values of the ACF and PACF coefficients exceed a
significance threshold of 1.96/

√
neff (corresponding to a two-tailed significance level of

p < 0.05) more often than would be expected by chance according to binomial statistics,
where the threshold for “by chance” is a user-specified probability ARprob (default value
0.05). The IRF algorithm will automatically find the smallest value of h that passes either of
these tests. The practical significance test is needed because in large samples, even trivially
small ACF and PACF coefficients may still be statistically significant, triggering a pointless
effort to make them smaller than they need to be. Conversely, the statistical significance test
is needed because in small samples, even true white-noise processes may yield ACF and
PACF coefficients that do not meet the practical significance threshold (if ARlim is less than
1.96/

√
neff), triggering a pointless effort to further whiten residuals that are already white.

A further technical detail is that if (but only if) the true impulse response function
converges to 0 well before the maximum lag m, one can obtain more accurate estimates of
βk at lags approaching m, with correspondingly smaller uncertainties, by solving Equations
(10) and (11) using the φ coefficients obtained from Equation (14) rather than using the βk
and uncertainty estimates derived from Equation (14) itself. Users can choose between
these two alternatives with the complete option in the IRF function. If complete=TRUE,
then the βk and their uncertainties are re-calculated via Equations (10) and (11) using
the φ coefficients obtained from Equation (14). This is functionally equivalent to the
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Cochrane–Orcutt procedure, but is much faster because it does not require iteratively
solving Equations (10) and (11) to determine the φ coefficients. Users should keep in mind,
however, that if the true impulse response function does not converge to zero well before
the maximum lag m, setting complete to TRUE can lead to artifacts similar to those shown
in Figure 1; thus, complete is set to FALSE by default.

2.5. Benchmark Tests

A simple benchmark test of the approach outlined above can be performed by gener-
ating a synthetic random input time series xj, j = 1 . . . n, and convolving it with a known
convolution kernel to yield the hypothetical system’s true output ytrue, j. A random ARMA
error time series yerr, j, generated with R’s arima.sim function, is then added to ytrue, j to
yield the hypothetical system’s measured output yj. This measured output and the input se-
ries xj are then supplied to the IRF function, which estimates the impulse response function
coefficients βk and their standard errors. One can then calculate the estimation error as the
difference between βk and the known convolution kernel, and take the root-mean-square
average of these estimation errors at each lag (RMSE) from many random iterations of the
benchmark test. If this RMSE approximately equals the pooled (root mean square) average
of the estimated standard errors over many random iterations, then the standard errors are
reasonable estimates of the uncertainties in the βk. One can similarly calculate the mean
estimation bias as the arithmetic average of the estimation errors at each lag. If this average
estimation error scales roughly as the pooled standard error divided by the square root of
the number of random iterations of the benchmark test, then this demonstrates that the βk
estimates are unbiased (that is, no more biased than one would expect by chance) and the
standard error estimates are realistic.

This simple rubric for benchmark testing encompasses many different possibilities,
depending on the chosen shape of the “true” convolution kernel, the time series length n,
the maximum lag m, the distribution and correlation structure of the input signal xj, and
the amplitude and ARMA parameters of the error time series yerr, j. Figure 2 shows only a
few illustrative examples. In all of these cases, n is 10,000, m is 60, xj is synthetic Gaussian
noise with a lag 1 serial correlation of 0.5, and the error time series yerr, j is ARMA(1,2) noise
with an AR coefficient of 0.95 and MA coefficients of −0.2 and +0.2. The error time series is
rescaled so that its variance equals the variance of ytrue, j; thus, the signal-to-noise ratio is 1,
implying a much larger level of noise than is commonly used in such benchmark tests.

The three columns of Figure 2 show benchmark test results for gamma-distributed
convolution kernels with shape factors of 1, 2, and 4. The top row of panels shows that
IRFs estimated from time series corrupted with ARMA noise (dark blue points) correspond
closely to the benchmarks (gray lines). The second row of panels shows that the RMS
average deviations from the benchmarks in 100 random realizations of each benchmark test
(dark blue points) agree with the expected error (as quantified by the pooled standard error,
shown by the light blue lines). The third row of panels shows that the IRFs are unbiased;
the average deviations from the benchmarks in 100 random realizations of each benchmark
test (dark blue points) lie within their 95% confidence intervals, indicating that they are
no larger than would be expected by chance in unbiased IRFs. The bottom row of panels
shows 5% of each convolved time series yj, with and without noise (light and dark blue
lines, respectively), to give a visual impression of how much the added noise distorts the
source data of the IRF calculations.
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2.6. Estimating Impulse Response Functions in the Presence of Nonstationary ARIMA Noise

The error ε j in Equation (4) may not only be serially correlated; it may also be nonsta-
tionary, such that its true mean changes over time. Such a random error is known as ARIMA
(Autoregressive Integrated Moving Average) noise instead of ARMA noise. The standard
approach to handling such cases is differencing: one subtracts the prior values from each
element of the time series xj and yj, yielding the “first differences” y′j = yj − yj−1 and
x′j = xj− xj−1. Then Equation (4) is conventionally re-cast in terms of these first differences:

y′j = yj − yj−1 =
m
∑

k=0
βk xj−k + α + ε j −

m
∑

k=0
βk xj−k−1 + α + ε j−1

=
m
∑

k=0
βk x′j−k + α′ + ε

′
j

, (27)
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where the intercept α′ is conventionally assumed to be zero, although this will often not
be strictly the case, precisely because ε j is nonstationary so the mean of ε j may not equal
the mean of ε j−1 over a finite sample from j = 1 . . . n. The conventional approach of
Equation (27) leads to βk estimates that artifactually converge toward zero as k approaches
m, similar to the artifact that is generated by Equation (11), as shown in Figure 1 above.
The approach of Equation (27) would also greatly complicate the analysis presented in
Sections 3–5 below. Therefore, a different approach will be followed here, in which first
differencing is only applied to the left-hand side of Equation (4) and, similar to Equation (12)
above, terms with the same lags of xj−k are combined. This has the effect of transforming
the coefficients βk rather than the input time series x, yielding

y′j = yj − yj−1 =
m+1
∑

k=0
β
′
k xj−k + α′ + ε

′
j , (28)

where β
′
k = βk − βk−1, except when k = 0 (whereupon β

′
0 = β0) and when k = m + 1

(whereupon β
′
m+1 = −βm). These transformations can be expressed in matrix form as

β′0
β′1
β′2
β′3
β′4
β′m

β′m+1


=



1 0 0 0 0 0 0
−1 1 0 0 0 0 0
0 −1 1 0 0 0 0
0 0 −1 1 0 0 0
0 0 0 −1 1 0 0
0 0 0 0 −1 1 0
0 0 0 0 0 −1 1


·



β0
β1
β2
β3
β4
βm
0


(29)

One advantage of this approach is that it can use the analysis already outlined in
Equations (14)–(26), with the only modifications being the use of y′j in place of yj and m + 1
in place of m. The results of that analysis will be in terms of β

′
0 . . . β

′
m+1, which can be

transformed back to β0 . . . βm by inverting Equation (29), yielding

β0
β1
β2
β3
β4
βm

 =



1 0 0 0 0 0
1 1 0 0 0 0
1 1 1 0 0 0
1 1 1 1 0 0
1 1 1 1 1 0
1 1 1 1 1 1

 ·


β
′
0

β
′
1

β
′
2

β
′
3

β
′
4

β
′
m

. (30)

One can straightforwardly combine Equations (14)–(30) to eliminate the need to use
β
′
k as an interim step between bk and βk. The resulting procedure can be summarized as

follows: first, solve Equation (14), using y′j in place of yj and m + 1 in place of m, to obtain
the regression coefficients b and their covariance matrix Kbb. Next, transform these to the
IRF coefficients β and their covariance matrix Kββ using

β = ΨFD · Ψ · b (31)

and
Kββ = ΨFD·Ψ·Kbb·ΨT·ΨT

FD = ΨFD·Ψ ·Kbb·(ΨFD·Ψ)T , (32)

where ΨFD is the matrix in Equation (30), which is the inverse of the first difference matrix
in Equation (29). In principle, this procedure can also be straightforwardly adapted to
differencing of any order κ, by differencing yj accordingly, using m + κ in place of m, and
raising ΨFD to the power κ. In practice, however, differencing beyond first order is likely
to be counterproductive, because even first-differencing will magnify the high-frequency
noise in the yj time series, and higher-order differencing will amplify this noise further.
In the IRF routine, setting the parameter FD (default=FALSE) to TRUE will invoke the
differencing procedure outlined in Equations (28)–(32) above.
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2.7. Benchmark Tests with Nonstationary ARIMA Noise

The IRF estimation approach for handling nonstationary ARIMA noise, outlined in
Section 2.6 above, can be tested using benchmark tests similar to those that were used
in Section 2.5 to test IRF estimates with stationary ARMA noise. As before, a synthetic
random input time series xj is convolved with a known convolution kernel to yield the
hypothetical system’s true output ytrue, j. This is then corrupted by a random ARIMA
noise series yerr, j generated with R’s arima.sim function (with the order parameters set
for first-order integration), which is added to ytrue, j to yield the hypothetical system’s
measured output yj. This measured output and the input series xj are then supplied to the
IRF routine.

In the illustrative examples shown in Figure 3, n is 10,000, m is 60, xj is synthetic
Gaussian noise with a lag 1 serial correlation of 0.5, and the error time series yerr, j is
ARIMA (1,1,2) noise with an AR coefficient of 0.7 and MA coefficients of −0.2 and +0.2.
The error time series is rescaled so that its standard deviation equals 10 times the standard
deviation of ytrue, j. Thus, the signal-to-noise ratio is 0.01, implying that noise dominates
the measured signal. The three columns of Figure 3, similarly to Figure 2, show benchmark
test results for gamma-distributed convolution kernels with shape factors of 1, 2, and
4, and the four rows of panels are interpreted similarly. The top row of panels shows
that IRFs estimated from time series that are corrupted with ARIMA noise (dark blue
points) correspond closely to the benchmarks (gray lines). The second row shows that the
calculated standard error accurately estimates the deviations from the benchmark, the third
row shows that the IRFs are unbiased, and the bottom row presents excerpts from the time
series to show how much the added noise distorts the source data of the IRF calculations.
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convolution kernels (gray lines) used as benchmarks; error bars indicate one standard error. Bench-
marks are gamma distributions with shape factors of 1, 2, and 4 in the left, center, and right columns,
respectively. Second row (d–f): test of standard error estimates, obtained by repeating the analysis
in the top row for 100 different randomizations. The estimates of expected deviations from the
benchmark (the pooled standard errors at each lag, shown by light blue lines) roughly agree with the
actual deviations from the benchmark (root mean square average of deviations from the benchmark at
each lag, shown by dark blue symbols). Third row (g–i): dark blue points show the average deviation
from the benchmark in 100 different randomizations of the analysis in the top row, and the light blue
lines show the 95% confidence interval of average deviations from the benchmark. The dark points
generally lie between the blue lines, indicating that the IRFs are unbiased. Bottom row (j–l): true
convolution output yj (dark blue lines) compared to the ARIMA noise-corrupted yj used as input
to IRF calculations (light blue lines). Five hundred time steps, equaling five percent of each time
series, are shown. Because the noise is nonstationary, the noise-corrupted time series (light blue lines)
eventually wander far away from the true yj (dark blue lines). The bottom panels show time intervals
where they nearly overlap, so that they can be visualized together.

3. Using Demixing Techniques to Quantify System Response to Heterogeneous Inputs
3.1. Demixing Multiple Impulse Response Functions

The methods outlined in Section 2 can be used to estimate impulse response functions
connecting single inputs to single outputs. However, many real-world systems combine
signals from multiple sources, which may themselves be correlated, and which may have
overlapping effects on the output. For example, precipitation falling in different parts
of a drainage basin may result in different streamflow responses (due to differences in
catchment geometry or subsurface hydrological properties), which may then be lagged and
dispersed differently through the channel network. As another example, one may want to
infer source/receptor relationships for air pollution sources located at different distances
and directions from a given receiver. In situations such as these, estimating the system’s
impulse response to each individual input is both a deconvolution problem and a demixing
problem; one needs to not only un-scramble each input’s temporally overlapping effects,
but also to un-mix the different inputs’ effects from one another.

The methods outlined in Section 1 can be straightforwardly extended to perform this
combination of deconvolution and demixing. Consider the simple case of a system that
combines two inputs x1 and x2 (which may be correlated with each other, as well as serially
correlated with themselves). These two inputs are applied to corresponding fractions of
the system f1 and f2, and are translated into the system output y over a range of lag times
k = 0 . . . m by the corresponding impulse response functions β1,k and β2,k:

yj = f1

m

∑
k=0

β1,k x1,j−k + f2

m

∑
k=0

β2,k x2,j−k + α + ε j, (33)

where the constant term α and the error term ε j represent any bias or error in the measured
system output yj. This simple two-input case can be straightforwardly extended to include
more inputs.

ARMA noise in the error term ε j can be handled analogously to Equations (5), (6) and
(12)–(26) for the single-input case. Subtracting lagged copies of Equation (33), analogously
to Equations (12)–(14), yields

yj =
m+h

∑
k=0

b1,k x1,j−k +
m+h

∑
k=0

b2,k x2,j−k + φ1 yj−1 + φ2 yj−2 + . . . + φh yj−h + a + ξ j, (34)

where the coefficients b1,k and b2,k estimate f1 β1,k and f2 β2,k, combining the individual
impulse response functions β`,k and the fractions f` of the system that they represent (which
in principle cannot be individually determined without additional assumptions). As in
Equation (14), the autoregressive coefficients φ also subsume the effects of moving-average
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noise. Equation (34) can be expressed in matrix form as (here showing the simple case of
two sources, with m = 5, and h = 2):



y8
y9
y10
y11
y12
y13
y14
y15
y16
· · ·


=



x1,8 · · · x1,1 x2,8 · · · x2,1 y7 y6 1
x1,9 · · · x1,2 x2,9 · · · x2,2 y8 y7 1
x1,10 · · · x1,3 x2,10 · · · x2,3 y9 y8 1
x1,11 · · · x1,4 x2,11 · · · x2,4 y10 y9 1
x1,12 · · · x1,5 x2,12 · · · x2,5 y11 y10 1
x1,13 · · · x1,6 x2,13 · · · x2,6 y12 y11 1
x1,14 · · · x1,7 x2,14 · · · x2,7 y13 y12 1
x1,15 · · · x1,8 x2,15 · · · x2,8 y14 y13 1
x1,16 · · · x1,9 x2,16 · · · x2,9 y15 y14 1

...
...

...
...

...
...

...
...

...


·



b0,1
b1,1

...
b1,7
b2,0
b2,1

...
b2,7
φ1
φ2
α



(35)

which can be solved by the methods outlined in Equations (17)—(26). This approach can be
straightforwardly extended to any number of sources x1, x2, x3, etc., although the design
matrix X in Equation (35) may become rather large, with n−m rows and nx·(m + 1) + h+ 1
columns, where n is the number of time steps, nx is the number of input time series, m
is the maximum lag, and h is the order of AR correction. However, the IRF routine is
designed to handle large problems efficiently (see Section 2.2); it can also conserve memory
by creating large design matrices sequentially in chunks rather than all at once, so that the
largest matrix that must be stored is only nx·n in size.

3.2. Benchmark Test

To test the approach outlined in Section 3.1 above, I generated three Gaussian random
time series and convolved them with three different gamma-distributed convolution ker-
nels, then combined the convolved signals to yield the hypothetical system’s true output
ytrue, j. This true output was then corrupted by a random ARMA noise yerr, j, and the
error-corrupted system output yj = ytrue, j + yerr, j was then supplied to the IRF routine,
along with the three input time series.

Two illustrative examples are shown in Figure 4: the left column was generated
with three convolution kernels having roughly similar dispersion, but different lag times,
whereas the right column was generated with kernels having different degrees of dispersion.
In both columns, n = 10,000, m = 40, the three input signals x1,j, x2,j, and x3,j are Gaussian
random noises (synthesized with a correlation of 0.8 between each pair of time series),
and the error time series yerr, j is ARMA(1,2) noise, with an AR coefficient of 0.9 and MA
coefficients of −0.2 and +0.2. The error time series is rescaled so that its standard deviation
equals half the standard deviation of ytrue, j; thus, the signal-to-noise ratio is 4.

The top row of panels shows that IRFs estimated from the error-corrupted time series
(colored symbols) correspond closely to the benchmarks (colored lines), and that the IRFs
for the three different inputs can be clearly distinguished from one another. This demixing
exercise succeeds despite the clear correlations between the output signals generated from
the three inputs (middle panels) and despite the distortion of the system output by ARMA
noise (bottom panels).
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that are mixed together in a system output that is corrupted by ARMA noise. The left column (a,c,e)
shows three sources convolved with kernels exhibiting roughly similar dispersion, but different lag
times, and the right column (b,d,f) shows three sources convolved with kernels exhibiting different
degrees of dispersion. The top panels (a,b) show the three sources’ benchmark convolution kernels
(lines) and their impulse response functions calculated from the individual inputs and their combined
output (points). Error bars indicate 1 standard error. The middle panels (c,d) show each of the three
convolved sources’ contributions to the system output, with colors matching the corresponding
convolution kernels and IRFs in the top panel, and with each line shifted vertically for clearer
visualization. The bottom panels (e,f) compare the combined system output (the sum of the three
curves shown in the middle panels, shown in dark green), compared to the ARMA noise-corrupted yj

used as input to the IRF calculations (shown in light green). Values of α and τ in (a,b) are parameters
of the gamma distributions used for the benchmark impulse responses. The middle and bottom
panels show 500 time steps, equaling five percent of each time series.

3.3. Whole-System Impulse Response Inferred from Average of Heterogeneous Inputs

The benchmark test in Figure 4 immediately raises two questions. First, in heteroge-
neous systems such as those shown in Figure 4, what is the whole-system impulse response
(the average of the individual IRFs) to the whole-system input (the average of the individ-
ual inputs)? Second, can we correctly infer this whole-system impulse response using the
methods developed in Sections 2.1–2.6, if we only know the whole-system input and not
the individual inputs to the different compartments of the system, with their individual
impulse responses?

From Equation (33) above, one can see that if the same instantaneous impulse were
applied to the inputs x1 and x2 simultaneously, the expected impulse response of the
system would be f1β1,k+ f2β2,k. To some extent, this whole-system impulse response is
inherently hypothetical, since it assumes that the inputs x1 and x2 are perfectly correlated,
whereas estimating β1,k and β2,k in the first place requires that x1 and x2 are not perfectly
correlated. Nonetheless, in many real-world cases, the individual inputs (x1, x2, etc.) may
be sufficiently uncorrelated that their individual impulse responses (β1,k, β2,k etc.) can
be accurately estimated, but also sufficiently correlated that f1β1,k+ f2β2,k will reasonably



Sensors 2022, 22, 3291 20 of 44

approximate how the whole system would respond, if an impulse were applied to both of
the inputs simultaneously.

In many real-world cases, however, we may not know the inputs to individual compo-
nents of the system, but only their average or their sum. In such cases, the true situation
might be described by expressions such as Equation (33), with several inputs (x1, x2, etc.),
but we would interpret them as if they were described by expressions such as Equation (4),
with a single input x, instead. This naturally leads to the question of how the impulse re-
sponse function βk that we would estimate from Equation (4) will depend on the individual
IRFs and their weighting factors ( f1β1,k, f2β2,k, etc.), if a system is governed by Equation
(33) but is interpreted as if it is governed by Equation (4) instead. The answer can be found
by applying the standard rules for first-order, second-moment propagation of covariances
to the terms of the “Normal Equation” (Equation 17). Making the simplifying assumption
that, although the inputs may be correlated with one another, they are not correlated with
their own lags or each other’s lags, this approach yields the approximation,

βk =
cov(y, , , x)

var(x)
≈

∑g,l
y
xg

x
xl

cov
(
xg, , , xl

)
∑g,l

x
xg

x
xl

cov
(
xg, , , xl

) =
∑g,l βg,k fg flρxg ,xl σxg σxl

∑g,l fg flρxg ,xl σxg σxl

(36)

where xg and x` denote different inputs to the system, with standard deviations σxg and
σx` and correlation ρxg ,x` , and the summations are taken over all possible pairs of g and `.
From Equation (36), one can see that in the simple case where all of the inputs are perfectly
correlated (ρxg ,x` = 1 for all pairs) and have the same variance (meaning that all of the
inputs are identical), the impulse response function βk inferred from Equation (4) will be
the average of the individual response functions βg,k weighted by the fractions fg, and thus
will equal the theoretically expected impulse response of the system derived in the previous
paragraph. The inferred impulse response function βk will also be close to this theoretically
expected value if the inputs are only partially correlated (0 < ρxg ,x` < 1) or even uncorrelated
with one another (ρxg ,x` = 0), as long as they all have the same variance. Equation (36)
shows that if the inputs have different variances, the inferred impulse response function βk
will be approximately the average of the individual response functions βg,k, weighted by
fgσxg if the inputs are perfectly correlated, or weighted by f 2

g σ2
xg if the inputs are completely

uncorrelated. If the inputs are partially correlated, the inferred impulse response function
will fall between these two limiting cases.

3.4. Whole-System Impulse Response Inferred from Individual Inputs

The analysis in the preceding section leads naturally to the question of whether (and
under what conditions) we can correctly infer the average response of a heterogeneous
system if we have only measured one of the heterogeneous inputs, but treat this time series
as if it is the average input to the entire system. If we again assume that the inputs may
be correlated with one another, but not with their own lags or each other’s lags (i.e., if we
assume that the inputs are white noises), propagation of covariances leads to the following
approximation for the whole-system impulse response that we would infer from a single
input time series xg:

βk ≈
cov
(
y, xg

)
var
(
xg
) ≈

∑`
∂y
∂x`

cov
(
xg, x`

)
σ2

xg

=
∑` β`,k f` ρxg ,x` σx`

σxg

. (37)

where the summation is taken over all `, including ` = g. In the trivial case that all of
the inputs are perfectly correlated and have the same variance (i.e., they are all the same),
Equation (37) predicts, unsurprisingly, that each of them will yield unbiased estimates of
the whole system′s average βk. If the individual inputs have the same variance but are
not perfectly correlated, they will underestimate the system′s average βk, with greater
underestimation bias for inputs that account for small fractions of the total (small f`=g) and
that are weakly correlated with the other inputs (small ρxg ,x` ). If the individual inputs have
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different variances and are substantially (but imperfectly) correlated, they can either under-
or over-estimate the system′s average βk, depending on how their standard deviations σxg ,
impulse responses βg,k and input fractions fg compare with those of the other inputs.

3.5. Benchmark Test

To test the inferences derived in Sections 3.3 and 3.4, I repeated the benchmark test
shown in Figure 4, and then used the IRF routine to calculate the impulse response func-
tions from the error-corrupted system output yj and the average of the three heterogeneous
inputs (top panels in Figure 5), as well as each of the three inputs individually (bottom
panels in Figure 5). Thus, the benchmark test in Figure 5 illustrates the IRFs that would be
inferred from this heterogeneous system if only the average input were known (top panels),
or if only one of the three inputs were known (bottom panels). In all cases, the inferred
IRFs correspond closely to the average impulse responses of the whole system (thick green
lines in Figure 5). These results indicate that if the IRF routine is applied to systems that
are heterogeneous but are not recognized as such (or not treated as such), it will yield
good approximations of their average impulse responses, as long as it is supplied with the
average input to the system, or with an input that is strongly correlated with that average.
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4. Quantifying Nonstationary Impulse Response

Many real-world systems are nonstationary, in the sense that identical inputs to the
system will yield different responses at different times, due to differences in the internal
state of the system or changes in external forcings. To give just a few examples from
environmental science: (1) the same precipitation falling on a given landscape will typically
generate a sharper runoff peak if that landscape is wet than if it is dry. (2) The runoff
yield from a given volume of precipitation may also shift over much longer timescales
if the landscape’s vegetation cover changes, thus altering rates of rainfall interception
and evapotranspiration and thereby also altering soil moisture. (3) The coupling between
atmospheric pollution sources and receptors will depend on atmospheric stability, and
thus on the time of day and the prevailing weather patterns. (4) Ecosystem responses
to short-term perturbations may change over time, as ambient conditions shift due to
climate change.

Systems that are stationary (in the sense that their internal processes are time-invariant)
can also generate nonstationary outputs if they are subjected to nonstationary forcing, or
if their outputs are contaminated by nonstationary noise. The impulse response of such
systems (i.e., the coupling between their inputs and outputs) nonetheless remains stationary,
and can be estimated using the methods described in Sections 2 and 3 above. This section,
by contrast, focuses on systems in which the coupling between inputs and outputs is itself
nonstationary. The central question is: can the time-varying coupling between inputs and
outputs in a nonstationary system be quantified from the input and output time series
themselves, without direct knowledge of the system’s internal workings?

Here, it is essential to distinguish two different cases. In the first case, the system’s
impulse response changes gradually, on time scales much longer than the impulse re-
sponse itself. For example, shifts in the stand density of a forest over decades or centuries
may alter how the landscape responds, over timescales of hours to months, to inputs of
precipitation or nutrients. Such long-term shifts in a system’s impulse response can be
quantified by breaking the input and output time series into separate time intervals (in
this example, perhaps separate decades) and analyzing them separately. In the methods
developed in Sections 2 and 3, this is equivalent to breaking the y vector and the X matrix
in Equations (15) and (16) into horizontal blocks. This approach requires that each block is
much longer than the impulse response timescale, thus minimizing the overlapping effects
of inputs at the end of one block on outputs at the beginning of the next block. As long
as this condition is met, this approach can be straightforwardly applied, and will not be
analyzed further here.

In the second (and decidedly less trivial) case, the system’s impulse response changes
on time scales that are similar to, or shorter than, the impulse response itself. For example, a
landscape’s response to precipitation will depend on its antecedent wetness, and thus on its
previous precipitation inputs; in some climates, it may also depend on short-term variations
in temperature and thus in the fractions of precipitation that fall as rain versus snow. In
such cases, the different impulse responses of the system (to wet vs. dry conditions, for
example, or snow vs. rain) are overprinted on one another. Estimating these impulse
responses thus requires both deconvolution, to un-scramble the lagged effects of each input
over time, and demixing, to separate the effects of the different inputs (e.g., snow vs. rain)
or the effects of different system states (e.g., wet vs. dry).
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4.1. Deconvolving and Demixing Nonstationary Impulse Responses

Consider the simplest case, in which there are only two types of inputs (e.g., snow
vs. rain) or two states of the system (e.g., wet vs. dry) that govern the system’s impulse
response. This simple case can be represented in matrix form as

y6
y7
y8
y9
y10
y11
y12
y13
y14

...


=



x6 x5 x4 x3 x2 x1 y5 y4 1
x7 x6 x5 x4 x3 x2 y6 y5 1
x8 x7 x6 x5 x4 x3 y7 y6 1
x9 x8 x7 x6 x5 x4 y8 y7 1
x10 x19 x8 x7 x6 x5 y9 y8 1
x11 x10 x9 x8 x7 x6 y10 y9 1
x12 x11 x10 x9 x8 x7 y11 y10 1
x13 x12 x11 x10 x9 x8 y12 y11 1
x14 x13 x12 x11 x10 x9 y13 y12 1

...
...

...
...

...
...

...
...

...


·



b0
b1
b2
b3
b4
b5
φ1
φ2
α


(38)

where one type of inputs (or one set of system states) corresponding to input times 3, 4, 6, 7,
8, and 11 is shown in bold, and the other type is shown in gray. In this simple example, the
maximum lag m is 3 and the AR correction order h is 2, but the principles that it illustrates
are applicable to systems of any degree of complexity. The core of the problem is this: how
can the impulse response functions of the black and the gray inputs be separated from one
another, given that both black and gray inputs can be found in any row of Equation (38)?

The solution to this problem is to define two different input time series, one containing
the input values corresponding to the “black” time steps (and zero otherwise), and the other
containing the input values corresponding to the “gray” time steps (and zero otherwise).
Because one or the other of these time series is zero for every time step, their sum will
exactly equal the original input time series. However, because the overlapping gray and
black time series are now separated into two different variables, one can solve for their
IRFs using the methods developed in Section 3 for heterogeneous systems. The resulting
matrix form of the problem is



y6
y7
y8
y9
y10
y11
y12
y13
y14

...


=



x6 0 x4 x3 0 0 0 x5 0 0 x2 x1 y5 y4 1
x7 x6 0 x4 x3 0 0 0 x5 0 0 x2 y6 y5 1
x8 x7 x6 0 x4 x3 0 0 0 x5 0 0 y7 y6 1
0 x8 x7 x6 0 x4 x9 0 0 0 x5 0 y8 y7 1
0 0 x8 x7 x6 0 x10 x9 0 0 0 x5 y9 y8 1

x11 0 0 x8 x7 x6 0 x10 x9 0 0 0 y10 y9 1
0 x11 0 0 x8 x7 x12 0 x10 x9 0 0 y11 y10 1
0 0 x11 0 0 x8 x13 x12 0 x10 x9 0 y12 y11 1
0 0 0 x11 0 0 x14 x13 x12 0 x10 x9 y13 y12 1
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...


·



b1,0
b1,1
b1,2
b1,3
b1,4
b1,5
b2,0
b2,1
b2,2
b2,3
b2,4
b2,5
φ1
φ2
α



(39)

which one can see is analogous to the matrix form of the heterogeneity problem shown in
Equation (35), but now there is only one input time series, split between the “black” and
“gray” categories, each with its own set of lag columns. Like Equation (35), Equation (39)
can be solved by the methods outlined in Equations (17)–(26), and can be straightforwardly
extended to any number of different types of inputs or system states, although at the
potential cost of making the design matrix X rather large, depending on the number of lags
m and the number of time steps n.
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4.2. Benchmark Tests

I conducted two benchmark tests to examine how well the deconvolution and demix-
ing approach outlined in Section 4.1 can infer the time-varying impulse response functions
of hypothetical nonstationary systems. In the first benchmark system, a random Poisson
process irregularly switches among three markedly distinct impulse responses (Figure 6a),
remaining with each for a random interval that averages five time steps. These impulse
responses, when driven by the correspondingly colored random input time series shown
in Figure 6c, generate the three components of the system output shown in Figure 6d
(which would not be individually observable in real-world cases). These three components
overprint one another to yield the combined system output shown by the dark green line
in Figure 6e. This, in turn, when combined with ARMA noise at a signal-to-noise ratio of 1,
yields the observable system output shown by the light green line in Figure 6e. The IRF
routine, when presented with this ARMA-noise-corrupted system output and the input
time series (Figure 6c), yields the estimated IRFs shown by the solid dots in Figure 6a,
which generally conform to the original benchmark impulse response functions.
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Figure 6. Benchmark test with a nonstationary system that randomly shifts between three different
impulse response functions. The three impulse responses are shown by the light, medium, and dark
blue curves in (a,b), and are triggered by the correspondingly colored inputs in (c), yielding the
output components in (d). These output components are not individually identifiable, but instead
combine to form the system output in (e), shown with (light green) and without (dark green) added
ARMA noise. The true system output (dark green) in (e) and its individual components in (d) are
unobservable in practice. The estimated impulse response functions shown by the solid circles in (a)
are inferred from the input in (c) and the ARMA-noise-corrupted output signal (light green) in (e)
using the IRF routine. If one treats the system as if it is stationary (by ignoring the differences among
the colored input times in (c), the IRF routine yields the solid circles shown in (b), which correspond
closely to the ensemble average (light green curve) of the three impulse responses (dashed curves).
Values of α and τ in (a,b) are parameters of the gamma distributions used for the benchmark impulse
responses. Noise in (e) is ARMA(1,2), with an AR coefficient of 0.9 and MA coefficients of −0.2 and
+0.2, added to the true system output at a signal-to-noise ratio of 1. Error bars in (a,b) indicate 1
standard error, and lines in (d) are shifted vertically for clearer visualization. Panels (c–e) show 500
time steps, equaling five percent of each time series.
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The IRF routine is not provided with any information about the individual IRFs or
their resulting time series shown in Figure 6d; it also has no information about the noiseless
dark green curve shown in Figure 6e, or about the nature of the added noise. Thus, this can
be considered a stringent benchmark test. One could nonetheless question whether it is too
simple, because it employs three benchmark IRFs that are themselves time-invariant. In
the real world, nonstationary systems are likely to exhibit continuously varying impulse
responses, under the influence of continuously varying drivers (e.g., temperature, solar
flux, nutrient levels, etc.).

To approximate such a case, I constructed a benchmark test in which the parameters
of the benchmark impulse response vary cyclically with the hour of the day (Figure 7).
Readers will notice that the system output (Figure 7g) shows a strong daily cycle. This cycle
does not arise from a cycle in the input (which is purely random), but instead arises because
the impulse response of the benchmark system has a stronger peak during night-time. The
night-time impulse response is not larger overall—the area under each impulse response
curve is the same—but it is more focused, such that more of the output comes out promptly,
and less is distributed across all hours of the day.
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periods, as shown by the colored lines in (a–d), with the average impulse responses for each six-hour
period shown by the thicker and slightly darker colored lines. The inputs to the benchmark system
are random (f), but lead to an irregular daily cycle in the output (g), owing to the sharper impulse
response during night-time (a). Using only the input shown in (f) and the ARMA-noise-corrupted
output shown in light green in (g), the IRF routine yields the solid circles shown in (a–d), which
exhibit broadly similar patterns to the average impulse responses for the corresponding times of
day (thicker colored lines). Alternatively, if one treats the system as if it is stationary (by ignoring
the differences among the colored input times in (f), the IRF routine yields the solid circles shown
in (e), which correspond closely to the ensemble average (thick red curve) of the hourly impulse
responses (thin lines). Error bars in (a–e) indicate 1 standard error. Noise in (g) is ARMA(1,2), with
an AR coefficient of 0.9 and MA coefficients of −0.2 and +0.2, added to the true system output at a
signal-to-noise ratio of 1. Panels (f,g) show 500 time steps, equaling five percent of each time series.

Figure 7a–d shows the hourly impulse responses, grouped into four six-hour periods
each day. The individual hourly impulse response functions, and their six-hour averages
shown by the wide colored lines in Figure 7a–d, would be unobservable in real-world
cases: the only observables would be the input time series shown in Figure 7f and the
noise-contaminated output time series shown by the light green line in Figure 7g. For
the benchmark test shown in Figure 7, I divided each day of the input time series into
four six-hourly periods corresponding to the colors in Figure 7f (and the corresponding
panels in Figure 7a–d), and solved for their impulse response functions using the methods
of Section 4.1. The resulting estimates of the individual impulse response functions, as
shown by the solid dots in Figure 7, are generally consistent with the benchmarks (the wide
colored lines in Figure 7a–d). The deviations from the benchmark are somewhat larger in
the morning hours (Figure 7b), because the impulse response is more damped and lagged,
and thus the signal is relatively weaker, than for the other hours of the day.

4.3. Average Impulse Response of Nonstationary Systems

Many nonstationary systems may not be recognized as such, and may be analyzed as
if they were stationary instead. It is worthwhile to ask what the outcomes of such analyses
are likely to be. What will be the apparent stationary IRF of the system? Additionally, will
this resemble, or differ from, the average of the system’s nonstationary IRFs?

The two nonstationary benchmark tests shown in Figures 6 and 7 provide an oppor-
tunity to explore these questions. The solid dots in Figures 6b and 7e show the ensemble
IRFs that are obtained if the benchmark systems are analyzed as if they were stationary,
ignoring the nonstationarity that is known to be present. In other words, the solid dots are
obtained by supplying the IRF routine with a single composite input time series, rather
than one that has been split into multiple inputs for the individual nonstationary categories
represented by the different colors in Figures 6c and 7f. Figures 6b and 7e show that the
resulting IRFs, shown by the solid dots, closely approximate the time-averaged benchmark
impulse responses shown by the solid lines.

Two further points are worth mentioning here. First, even if the average impulse
response can be reliably quantified, it will typically be a poor predictor of the system’s time-
series behavior, except on time scales that are long enough that the system’s nonstationary
fluctuations average out. For example, the average IRF in Figure 7e cannot capture the daily
cycles shown in Figure 7g (because they originate from the differences between the daytime
and nightime IRFs), but can capture most of the variation in the daily average output. The
second point worth mentioning is that, as Figure 7e shows, the time-averaged impulse
response function can have a different shape from any of the individual impulse responses
that make up that average. Thus, any inferred “characteristic” impulse response functions,
and any inferences about their possible underlying mechanisms, should be treated with
caution in systems that may exhibit nonstationarity. However, the methods outlined in this
section allow such nonstationarity to be detected and quantified, even where it is obscured
by overprinting of the individual impulse responses.
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5. Nonlinear Deconvolution

Real-world systems often exhibit nonlinearities and thresholds, in which successive ad-
ditions to the input generate more-than-proportional (or, sometimes, less-than-proportional)
increases in the output. In most hydrologic systems, for example, high-intensity storms
generate disproportionately more runoff than low-intensity storms do. Rates of evapo-
transpiration, by contrast, increase roughly linearly with rates of moisture supply when
moisture is limiting, but reach an upper bound when energy becomes limiting instead. Sim-
ilarly, in nutrient-limited ecosystems, nutrient uptake typically increases roughly linearly
with nutrient loading, but then reaches an upper limit as the ecosystem reaches nutrient
saturation. This then results in nutrient exports in streams and groundwaters exhibiting
threshold behavior, as nutrient loading crosses the saturation threshold.

Here it is important to distinguish two different cases. In the first case, the system’s
behavior can be approximated by a succession of steady states, because the inputs vary
more slowly than the impulse response of the system itself. Nonlinearities in such systems
can be quantified straightforwardly by plotting their outputs as functions of their inputs.
Such systems will not be considered further here.

Here, instead, I focus on the substantially less straightforward case of systems whose
inputs vary on timescales shorter than their impulse responses. In such systems, non-
linear responses to input fluctuations are overprinted on one another, and thus must be
deconvolved. The methods outlined in Sections 2–4 above are based on linear regression,
which would seem to be an awkward tool for deconvolving input–output relationships in
nonlinear systems. Nonetheless, in Section 5.1 below, I show how linear regressions can be
extended to deconvolve systems’ nonlinear input–output relationships using piecewise
linear approximations (as shown in Figure 8). This approach is nonparametric, in the
sense that neither the shape of the impulse response function nor the form of its nonlinear
dependence on the input must be specified in advance. Instead, both the impulse response
function and its nonlinear dependence on the input are estimated from the input and
output time series alone, even though the output combines the overlapping effects of
different system responses to different magnitudes of inputs, all of which are overprinted
on one another because they are convolved forward through time. Section 5.2 evaluates
this approach using benchmark tests, and Section 5.3 shows that ignoring the nonlinearity
in input–output relationships can lead to substantial biases in estimates of the average
behavior of nonlinear systems.

Sensors 2022, 22, x FOR PEER REVIEW  28  of  44 
 

 

 

Figure 8. Broken‐stick approximation to nonlinear impulse response. Schematic of the (unknown) 

nonlinear dependence of output  𝑦  on input  𝑥  at some lag  𝑘, and its approximation by a piecewise 

linear function defined by knots  𝜅ℓ  and the associated slopes  𝛽ℓ,
ᇱ   of each segment between suc‐

cessive knots. The increments 𝑥ℓ
ᇱ   of  𝑥 within each segment, as illustrated below the  𝑥  axis, facili‐

tate the estimation of the impulse response coefficient  𝛽  via broken‐stick regression, as described 

in Equations (41)–(46). For any given value of  𝑥, such as the value indicated by the dashed gray line, 
the system response is approximated by the corresponding point on the piecewise linear curve (the 

solid blue circle). This response equals the product of the vector of increments  𝑥ℓ
ᇱ   and the vector of 

the associated slopes  𝛽ℓ,
ᇱ . The  impulse response coefficient  𝛽  is this  integral divided by  𝑥  (i.e., 

the slope of the dashed blue line). The knots  𝑥 ൌ 𝜅ℓ  are specified by the user. The corresponding 

segment slopes  𝛽ℓ,
ᇱ , determined by fitting Equation (44) to time series of  𝑥  and  𝑦, can be used to 

infer the associated values of  𝑦ሺ𝑥 ൌ 𝜅ℓሻ  and thus to estimate the nonlinear dependence of  𝑦  on  𝑥 
at each lag  𝑘. 

The knots divide  the range of  𝑥  into  𝑛  discrete  intervals. They  thus permit each 

value of  𝑥  to be expressed in terms of a corresponding vector  𝑥ℓ
ᇱ   of the increments of  𝑥 

that lie within each interval. The  𝑛  elements of  𝑥ℓ
ᇱ   express how much of each interval 

between knots lies at or below any given value of  𝑥: 

𝑥 ൌ   𝑥ℓ
ᇱ

ഉ

ℓୀଵ

,
𝑥ℓ

ᇱ ൌ ൝
0 if 𝑥 ൏ 𝜅ℓିଵ

𝑥 െ 𝜅ℓିଵ if 𝜅ℓିଵ  𝑥 ൏ 𝜅ℓ
𝜅ℓ െ 𝜅ℓିଵ if 𝑥  𝜅ℓ

ൌ max ൫0, minሺ𝑥 െ 𝜅ℓିଵ,  𝜅ℓ െ 𝜅ℓିଵሻ൯

.  (42)

(Note that the notation for the knots  𝜅  in Equation (43) should not be confused with 

the covariance matrices 𝐊  in Sections 2.2 and 2.6 or  the subscripts  𝑘  used  throughout 
this paper.) Equation (42) can be illustrated with a simple example. Consider a scale of  𝑥 
that ranges from 0 to 50 and is divided into five intervals by knots at 0, 5, 10, 20, 30, and 

50. For a value of  𝑥 = 27,  the associated  𝑥ᇱ  vector would be  (5, 5, 10, 7, 0), because  the 

entire intervals of 0–5 (5 units), 5–10 (5 units), and 10–20 (10 units) lie below  𝑥  = 27, as do 
7 units of the interval 20–30, but none of the interval 30–50.   

It may seem inefficient to re‐express the scalar  𝑥  as a vector of its increments  𝑥ℓ
ᇱ , but 

doing so  facilitates  the straightforward estimation of nonlinear  impulse response  func‐

tions using linear regression methods. As Figure 8 shows, the average impulse response 

coefficient  𝛽ሺ𝑥ሻ   for  any  value  of  𝑥   and  lag  𝑘  will  be  closely  approximated  by  the 

weighted average of  the  impulse  response coefficients  𝛽ℓ,
ᇱ   associated with each  incre‐

ment  𝑥ℓ
ᇱ   of  𝑥:   

𝛽ሺ𝑥ሻ ൎ  𝛽ℓ,
ᇱ  𝑥ℓ

ᇱ

ഉ

ℓୀଵ

 𝑥ℓ
ᇱ

ഉ

ℓୀଵ

൙ ൌ   𝛽ℓ,
ᇱ  𝑥ℓ

ᇱ

ഉ

ℓୀଵ

𝑥൘ .  (43)

Figure 8. Broken-stick approximation to nonlinear impulse response. Schematic of the (unknown)
nonlinear dependence of output y on input x at some lag k, and its approximation by a piecewise linear
function defined by knots κ` and the associated slopes β′`,k of each segment between successive knots.
The increments x′` of x within each segment, as illustrated below the x axis, facilitate the estimation of
the impulse response coefficient βk via broken-stick regression, as described in Equations (41)–(46).
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For any given value of x, such as the value indicated by the dashed gray line, the system response is
approximated by the corresponding point on the piecewise linear curve (the solid blue circle). This
response equals the product of the vector of increments x′` and the vector of the associated slopes β′`,k.
The impulse response coefficient βk is this integral divided by x (i.e., the slope of the dashed blue line).
The knots x = κ` are specified by the user. The corresponding segment slopes β′`,k, determined by
fitting Equation (44 ) to time series of x and y, can be used to infer the associated values of yk(x = κ`)

and thus to estimate the nonlinear dependence of y on x at each lag k.

5.1. Deconvolving Systems’ Nonlinear Responses to Variations in Input Intensity

In principle, linear convolution relationships such as Equation (1) can be generalized
by making the impulse response β dependent on not only the lag time τ, but also the lagged
input intensity x(t− τ) as well:

y(t) =
∫ ∞

0
β(τ, x(t− τ)) x(t− τ) dτ. (40)

The challenge then becomes how to estimate β’s joint dependence on τ and x. In
some cases, β may be separable into some function of τ (which determines the shape of the
impulse response) multiplied by another function of x (which determines its magnitude).
In the general case, however, β’s dependence on x can differ for different lags τ, and thus
the shape of the system’s impulse response can potentially vary as a function of x (such
that, for example, higher-intensity inputs could yield a larger but briefer response). This
behavior should nonetheless be considered nonlinear rather than nonstationary, because β
does not depend on t itself. Although β depends on x, which varies with time, a given value
of x will yield the same relationship between β and τ at any time t. Thus, the convolution
in Equation (40) is more appropriately termed nonlinear, rather than nonstationary, since
β’s dependence on x is time-invariant, and thus the influence of x on future values of y is
also time-invariant.

The discrete counterpart to Equation (40), and thus the nonlinear counterpart to
Equation (4), is:

yj =
m

∑
k=0

βk

(
xj−k

)
xj−k + α + ε j, (41)

where now the impulse response coefficients βk are unknown functions of the lagged input
xj−k, which in general could be different for each lag interval k. The question is how to
estimate these functions. It might seem intuitively reasonable to simply divide the data
set into different ranges of x, and then jointly analyze these subsets using the methods
developed in Section 4 for nonstationary systems. Benchmark tests show that this approach
yields biased results, because it assumes that the same intercept α applies to all ranges of
x, although this is clearly not the case for linear approximations to subsets of nonlinear
relationships (e.g., Figure 8).

Instead, the approach developed here expresses the unknown dependence of βk on
xj−k at each lag k using a continuous piecewise linear approximation, sometimes called a
broken-stick model (see Figure 8). In Figure 8, the light blue curve shows an (unknown)
continuous nonlinear function relating an input x and its lagged effects on the output y.
The local slope of this light blue curve expresses how much a change in the lagged input
x(t− τ) will affect the system output y(t). The light blue curve can be approximated by
a continuous piecewise linear function (the dark blue dotted line) by dividing the x axis
at a series of “knots” (sometimes also called “breakpoints” or “turning points”) κ` with
` = 0 . . . nκ , as indicated by faint vertical lines and open circles in Figure 8 (these knots
do not need to be evenly spaced along the x axis, although they are shown as such in
the figure).

The knots divide the range of x into nκ discrete intervals. They thus permit each value
of x to be expressed in terms of a corresponding vector x′` of the increments of x that lie
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within each interval. The nκ elements of x′` express how much of each interval between
knots lies at or below any given value of x:

x =
nκ

∑
`=1

x′`,
x′` =


0 if x < κ`−1

x− κ`−1 if κ`−1 ≤ x < κ`
κ` − κ`−1 if x ≥ κ`

= max(0, min(x− κ`−1, κ` − κ`−1))

. (42)

(Note that the notation for the knots κ in Equation (43) should not be confused with
the covariance matrices K in Sections 2.2 and 2.6 or the subscripts k used throughout this
paper.) Equation (42) can be illustrated with a simple example. Consider a scale of x that
ranges from 0 to 50 and is divided into five intervals by knots at 0, 5, 10, 20, 30, and 50.
For a value of x = 27, the associated x′ vector would be (5, 5, 10, 7, 0), because the entire
intervals of 0–5 (5 units), 5–10 (5 units), and 10–20 (10 units) lie below x = 27, as do 7 units
of the interval 20–30, but none of the interval 30–50.

It may seem inefficient to re-express the scalar x as a vector of its increments x′`,
but doing so facilitates the straightforward estimation of nonlinear impulse response
functions using linear regression methods. As Figure 8 shows, the average impulse response
coefficient βk(x) for any value of x and lag k will be closely approximated by the weighted
average of the impulse response coefficients β

′
`,k associated with each increment x′` of x:

βk(x) ≈
nκ

∑
`=1

β
′
`,k x′`/

nκ

∑
`=1

x′` =
nκ

∑
`=1

β
′
`,k x′`/x. (43)

This result arises because, as Figure 8 shows, the total effect on the output y of an
individual input x at a lag of k will be approximated by the integral over the piecewise
linear function shown by the dotted line, and βk is this integral divided by x. Combining
Equations (41) and (43) yields a conventional multiple regression equation,

yj ≈
m

∑
k=0

((
nκ

∑
`=1

β
′
`,k x′`,j−k/xj−k

)
xj−k

)
+ α + ε j =

m

∑
k=0

nκ

∑
`=1

β
′
`,k x′`,j−k + α + ε j, (44)

which can be solved analogously to Equation (35), with a design matrix X of nκ(m + 1)
columns for each of the ` = 1 . . . nκ piecewise linear segments and k = 0 . . . m lags,
plus an additional h + 1 columns for the AR correction terms and the constant α. The
resulting regression coefficients β

′
`,k, when combined in weighted averages as described

in Equation (43), yield the effective βk(x) for any desired value of the input x at any lag
k. A vector of these βk(x) over a range of lags k defines the IRF for any given input
intensity x. The corresponding uncertainties can be estimated by first-order, second-
moment error propagation,

SE(βk(x)) =

√
1
x2 x′`

(
Kβ′β′

)
k

x′`
T , (45)

where
(

Kβ′β′

)
k

is the covariance matrix of the β
′
`,k coefficients for lag k, and x′` is a row

vector of the x increments. If the off-diagonal terms of this covariance matrix are ignored,
Equation (45) becomes equivalent to the Gaussian error propagation formula,

SE(βk(x)) ≈

√√√√ nκ

∑
`=1

SE
(

β
′
`,k

)2
(

x′`
x

)2

. (46)

where SE indicates standard error.
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The impulse response of a nonlinear system can be characterized not only by how the
IRF changes with lag k for a given input intensity x, but also how it changes with input
intensity x for a given lag k. This can be visualized most straightforwardly by calculating
the contribution to the output y from any x value at any lag k,

yk(x) =
nκ

∑
`=1

β
′
`,k x′` = x βk(x) , SE(yk(x)) = x SE(βk(x)) (47)

Plotting Equation (47) over a range of x values will visually reveal the nonlinearity of
y’s response to x at a given lag k. Since this plot will be piecewise linear between each pair
of knots, everything that is known about yk(x) can be summarized by evaluating Equation
(47) for each combination of knots x = κ` and lags k. Conversely, βk(x) = yk(x)/x will in
general not be piecewise linear as a function of x, because x appears in the denominator of
Equation (43).

The calculations outlined above are implemented in the nonlinIRF function within
the R script IRFnnhs.R. The question remains of how the knots κ` should be selected. In
the R script provided here, the task of choosing these knots is left to the user. Users should
balance the twin objectives of keeping the segments between knots short enough that
they will approximate the (unknown) nonlinear response curve, while simultaneously not
making them so short that they contain too few x values to allow the individual β

′
`,k to be

accurately estimated. In principle, one could also use iterative search algorithms to find
optimal sets of knots, using criteria such as minimization of expected prediction error, but
such approaches have not been implemented in the nonlinIRF function.

5.2. Benchmark Tests

I conducted several benchmark tests to examine how well the approach outlined
in Section 5.1 captures nonlinear impulse response functions. All of these tests start
with a 10,000-point log-normally distributed white-noise random input time series x (e.g.,
Figure 9a), and convolve each point of this time series with gamma distributions whose
parameters vary as nonlinear functions of x. In the example shown in Figure 9b, each point
is convolved with a gamma distribution with a shape factor of 2 and a mean lifetime of
10, whose amplitude scales as x2, with the result that the contribution of each point to the
output y scales as x3. Diverse nonlinear functions of x are used to re-scale the amplitude
of the gamma-distributed convolution kernel (Figures 10 and 11), or to re-scale its shape
factor or mean lifetime (Figures 12 and 13). The overprinted nonlinear effects of all of the x
inputs (e.g., Figure 9b) comprise the single output time series y, which is then corrupted
by ARMA(1,2) noise with an AR coefficient of 0.9 and MA coefficients of −0.2 and +0.2,
with the noise variance adjusted to achieve a signal-to-noise ratio (SNR) of 4. A sample of
the noise-corrupted system output is shown by the light green line in Figure 9c; one can
see that the noise has substantially obscured many of the smaller-amplitude features in the
true system output (shown by the dark green line).

The input time series x and the noise-corrupted output time series y, along with a set
of knots κ, are supplied to the nonlinIRF routine, which applies the approach outlined in
Equations (42)–(47) above and calls the IRF routine to perform the core calculations. Note
that these algorithms are not provided with any information about the benchmark impulse
responses or their nonlinear dependence on x, beyond what is contained in the time series
themselves, where the effects of the individual inputs are overprinted on one another.
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Figure 9. Example input and output time series for nonlinear deconvolution benchmark tests.
The input is a log-normally distributed white noise time series, shown in (a) with different colors
representing different ranges of values. Each value in (a) was convolved with a gamma distribution
with shape factor of 2 and mean lifetime of 10, but with an amplitude proportional to the square of
the input (thus yielding a system response that is proportional to the cube of the input). The resulting
true output is shown in (b), with the same color coding as in (a) indicating the ranges of input values.
The more numerous low-intensity inputs (e.g., green and orange) in (a) result in a relatively stable
base output in (b), with the rarer but higher-intensity inputs (e.g., purple, light blue, and dark blue)
generating markedly larger but more intermittent outputs. The combined true system output, shown
by the dark green line in panel (c), was then corrupted by ARMA noise at a signal-to-noise ratio of 4,
to yield the apparent system output shown by the light green line in panel (c). The plots shown here
comprise 500 time steps, or 5% of the time series used for the benchmark tests.
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proportional to the input, and thus the system’s response—the impulse response function times the
input (c,d)—is a quadratic function of the input. The impulse response functions (system response per
unit input) and the system responses themselves, along with their benchmarks (a,c), are evaluated at
the knots κ` (in this case, at values of 1, 2, 3, 4, and 6, the highest value of the input x). The benchmarks
are shown by the colored lines in panels (a,c), with the impulse response functions shown by the
corresponding colored symbols. The corresponding peak values of the impulse response function
and system response are shown in panels (b,d), with the benchmark relationships shown by gray
lines. Error bars show 1 standard error, wherever this is larger than the plotting symbols.
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Figure 11. Benchmarks (light blue lines) and estimated peak system responses (dark blue dots) for
benchmark tests featuring a range of nonlinear relationships between the peak system response yk(x)
and the input x. In both (a,b), the benchmark’s peak response varies as the cube of the input, but knots
divide the input values into six intervals in (a) and only three intervals in (b). The other relationships
include a quartic curve (c), a linear function above a threshold (d), the Michaelis–Menten saturation
curve (e), and a sigmoid curve (f). Except for some systematic bias in (e), the estimates derived from
the approach outlined in Section 5.1 (blue circles) closely approximate the benchmark curves, with
deviations similar to the estimated standard errors (as shown by the error bars, where these are larger
than the plotting symbols).
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tions (system response per unit input) and the system responses themselves, along with their bench‐
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Figure 12. Nonlinear deconvolution of a benchmark impulse response that changes its mean lifetime
as a function of the input. Benchmarks (lines) and estimated impulse responses (dots) are shown for a
test in which the gamma-distributed benchmark impulse response function’s mean lifetime decreases
from roughly 40 at the lowest knot (corresponding to the red curve and dots) to approximately 5 at
the highest knot (corresponding to the blue curve and dots). The impulse response functions (system
response per unit input) and the system responses themselves, along with their benchmarks (a,c), are
evaluated at the knots x = κ` (in this case, at values of 1, 1.5, 2.5, 3.5, and 6, the highest value of the
input x ), indicated by the colors red, orange, green, purple, and blue, respectively. The corresponding
peak values of the impulse response function and system response are shown in panels (b,d). Error
bars show 1 standard error, wherever this is larger than the plotting symbols.
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in which the gamma-distributed benchmark impulse response function’s shape factor α decreases
from roughly 3 at the lowest knot (corresponding to the red curve and dots) to approximately 0.7 at
the highest knot (corresponding to the blue curve and dots). The impulse response functions (system
response per unit input) and the system responses themselves, along with their benchmarks (a,c), are
evaluated at the knots x = κ` (in this case, at values of 0.8, 1.8, 2.8, 3.8, and 6, the highest value of the
input x ), indicated by the colors red, orange, green, purple, and blue, respectively. The corresponding
peak values of the impulse response function and system response are shown in panels (b,d). Error
bars show 1 standard error, wherever this is larger than the plotting symbols.

Figure 10 shows example results for a simple case in which the amplitude of the
impulse response function scales proportionally to the input x (Figure 10a,b) and thus the
system response yk(x) scales proportionally to x2 (Figure 10c,d). The estimated impulse
response functions and system responses yk(x) (dots) generally agree with the benchmarks
(lines, evaluated at the knots x = κ`), with the exception of the weakest responses (red dots,
corresponding to the smallest values of x), which often deviate from their benchmarks by
more than their standard errors. The weak signals from these small inputs are swamped
by the much larger noise (Figure 9b,c), and distorted by coincidental correlations with the
much stronger signals from much larger inputs. These deviations are much less visible
in plots of the system response yk(x), almost vanishing into the x axis (e.g., Figure 10c);
they are only evident in plots of the impulse response function IRF = βk(x) = yk(x)/x
(e.g., Figure 10a). Thus, although the impulse response per unit input (the IRF) can exhibit
substantial deviations when both the input and the resulting impulse response are small
(because the system output y is relatively insensitive to small values of x), for the same
reason, these deviations will have only a minimal effect on the overall system behavior.
By contrast, the stronger signals that correspond to higher input values are more reliably
quantified in both the IRF and the system response yk(x), although with relatively large
error bars at the upper tail of the x distribution (blue dots) due to the relative scarcity of
data points near that upper tail.

As Figure 10d shows, the nonlinearity in the benchmark system is well captured by
relationship between the input x and the peak system response yk(x). Looking beyond
this simple quadratic relationship, Figure 11 shows that the nonlinIRF routine can reliably
estimate a wide range of nonlinear relationships between the system input and output
(even though, as mentioned above, it has no prior information about either the shape of the
system’s impulse response or its nonlinear dependence on the input).

In the benchmark tests shown in Figures 10 and 11, the benchmark impulse response
function always has the same shape (a gamma distribution with a shape factor of 2 and a
mean lifetime of 10), and is simply re-scaled as a function of the input x. However, what if
changes in the input x do not merely re-scale the impulse response, but change its shape?
In Figure 12, I show the results of a benchmark test in which the impulse response function
is still a gamma distribution with a shape factor of 2, but its mean lifetime decreases from
about 40 days for the smallest inputs to about 5 days for the largest inputs. Figure 13 shows
a further benchmark test in which the shape factor of the gamma distribution decreases
from roughly 3 for small inputs to roughly 0.7 for large inputs. In both of these cases, the
IRFs and system responses yk(x) closely match their benchmarks. Considered together,
Figures 10–13 show that the approach outlined in Section 5.1 can accurately infer nonlinear
input–output relationships, even when those relationships are convolved over time and are
partly obscured by ARMA noise.

The nonlinearities considered here bear a superficial resemblance to Hammerstein
systems, for which several identification algorithms have been proposed (e.g., [22,23]),
but there are two important differences. First, Hammerstein systems consist of two parts
connected in series: the input is first transformed by a nonlinear function, which in turn
drives a linear AR or ARMA system. Thus, the entire system response scales nonlinearly as
a function of the input. In systems such as Equations (40) and (41), by contrast, the system
response may vary in shape, not just in scale, as the input changes. Second, in Hammerstein
systems, the autoregressive or ARMA behavior is assumed to originate within the system
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itself, whereas here it is assumed to characterize the noise. Thus, the primary focus here
is on estimating the impulse response coefficients βk(x) and their nonlinear dependence
on the input x, rather than the AR coefficients φ. This has important implications for the
solution method, as described at the end of Section 2.2 above.

It bears emphasis that the nonlinearities that are addressed by this approach are
nonlinear relationships between the input x and the output y. Such relationships should be
handled using the methods presented here, rather than the demixing methods presented in
Section 4. Impulse response functions may also be nonlinear functions of other variables
besides x, but those are more properly cases of nonstationarity that should be handled by
the methods of Section 4, rather than those presented in Section 5.1 above.

5.3. Biases in the Apparent Average Impulse Response of Nonlinear Systems

Conventional methods for estimating impulse response functions are based on the
premise that the underlying system exhibits linearity and stationarity, that is, that the
function β(τ) in Equation (1) and the coefficients βk in Equation (3) depend only on the
lag time τ or the lag index k, and are otherwise constant (i.e., stationary), and in particular
are independent of the input x (i.e., linear). What if the real-world system is not linear and
stationary, but nevertheless is analyzed as if it were? The benchmark tests in Section 4.3
above examined what would happen if time series from nonstationary (but linear) systems
were analyzed as if those systems were stationary instead. The results showed that such
cases can be expected to yield estimates (dots in Figures 6b and 7e) that approximate the
average of the actual, nonstationary impulse response (lines in Figures 6b and 7e).

This is generally true for nonlinear systems. Insight into the reasons why can be gained
from a simple theoretical analysis. Consider the following relationship,

yj = β j xj + α + ε j, (48)

which can be viewed as an analogue to Equation (3) in which the lags k are ignored (a
simplification) and the constant β has been replaced by the time-varying β j (a complication).
Because β j is not constant, and potentially could be different for every time step j, Equation
(48) is not a regression equation. However, what if we did not know that? What if our data
originated from a system described by Equation (48), but we analyzed it as if it came from
the regression equation yj = β xj + α + ε j instead? How will a regression estimate of the
single coefficient β (here denoted β̂ to distinguish it from the true value β) depend on the
(unknown) values of the individual β j, including their possible dependence on the input
values xj?

The answer to this question, derived without approximations in Appendix A of [20], is

β̂− β = x
cov
(

β j, xj
)

var
(
xj
) +

〈(
β j − β

)〉 〈(
xj − x

)〉2(
xj − x

)2 +
cov
(
ε j, xj

)
var
(
xj
) , (49)

where overbars and angled brackets indicate averages. Equation (49) cannot be evaluated in
practice because the individual β coefficients are unknown, but it nonetheless demonstrates
how their properties influence the regression estimate β̂. Equation (49) says that this
regression estimate will equal the true mean β of the individual β coefficients, plus the three
terms on the right-hand side. The first of these terms is the average value of x, multiplied
by the regression slope of the relationship between x and β. This first term shows that if
β is positively correlated with x, the regression estimate β̂ will be inflated relative to the
true mean β. The second term of Equation (49) is a weighted average of the deviations of
the β coefficients from their mean, where the weights are the leverages of the individual
values of x (their squared deviations from their mean). This second term shows that β̂ will
be biased upward if the relationship between β and x is upward-curving, and downward if
the relationship is downward-curving. The third term of Equation (49) says that β̂ could
also be biased by correlations between the errors ε and the inputs x, as can arise in “hidden
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variable” problems, although these correlations should be zero (within statistical noise) if
the errors ε are truly random.

In summary, Equation (49) shows, consistent with the results reported in Section 4.3
above, that input and output time series from nonstationary systems will generally yield
unbiased estimates β̂ of their average impulse response β, even if their nonstationary
character is overlooked in the analysis, as long as these systems are not also nonlinear
(that is, as long as their impulse responses β are independent of the input x). Conversely,
however, Equation (49) also shows that input and output time series from nonlinear systems
will generally yield biased estimates β̂ of their average impulse response β, unless their
nonlinearity is taken into account.

Figure 14 illustrates this bias for four different nonlinear benchmark systems from
Figures 10–13. The gray lines depict the impulse responses βk for each lag k at the knot
values x = κ` of the inputs, and the blue lines depict the average impulse response
functions βk, averaged over all input values. The red points show naïve estimates of
the average impulse response functions, obtained using the methods of Sections 2.1–2.4,
without accounting for the systems’ nonlinear behavior. If yk(x) ∼ x2 and thus βk ∼ x
(Figures 14a and 10), these naïve estimates exaggerate the true average impulse response
by nearly a factor of 3, because β is positively correlated with x and also with the leverage
of x, and thus the first two terms of Equation (49) are both positive. By contrast, in a
system governed by Michaelis–Menten saturation, in which yk(x) ∼ x/(1 + x) and thus
βk ∼ 1/(1 + x), as shown in Figures 14b and 11e, the naïve estimate is roughly one-third
of the true average impulse response, because β is negatively correlated with x and with
the leverage of x, and thus the first two terms of Equation (49) are both negative. In
benchmark systems in which different input values yield impulse responses with different
mean response times (Figures 14c and 12) or shape factors (Figures 14d and 13), naïve
estimates can differ markedly from the shapes of the true average impulse response.
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relationship between input and output (Figure 11e); (c) gamma mean lifetime decreases with in-
creasing input (Figure 12); (d) gamma shape factor decreases with increasing input (Figure 13). Test
procedures are identical to Figures 10–13, except signal-to-noise ratio is 100 so that mean IRFs are
shown with minimal scatter. Gray lines show benchmark impulse responses at knot values x = κ`;
these are not evenly spaced either in x or in percentiles of x, and thus the spacing between the gray
lines does not indicate the underlying degree of nonlinearity. Light blue lines show the average bench-
mark impulse response functions for each system, averaged over all values of x. Dark blue points
show the average impulse response functions estimated from Equations (43) and (47). These estimates
generally follow the average benchmarks. Dark red points show naïve estimates of impulse response
functions estimated using the methods of Sections 2.1–2.4, without accounting for the systems’ non-
linear behavior. These naïve estimates can be much larger (a) or smaller (b) than the benchmark
average impulse response functions shown by the blue lines, or have a substantially different shape
(c,d). Error bars show 1 standard error, wherever this is larger than the plotting symbols.

The substantial biases in these naïve estimates motivate the question of how the
average impulse response functions βk can be estimated in nonlinear systems. The straight-
forward answer is that once the incremental impulse response coefficients β

′
`,k have been

estimated by regression via Equation (44), one can use Equations (43) and (47) to calculate
βk(x) and yk(x) for any value of x, and thus calculate their average from the distribution of
x. These estimates of βk, shown by the blue dots in Figure 14, generally follow the average
benchmarks shown by the blue lines.

6. Capturing Multiscale Impulse Response with Unevenly Spaced Piecewise
Linear IRFs

Many systems exhibit impulse response over multiple time scales, often starting with
a sharp, brief initial response, which then transitions to a persistent lower-level response
that decays much more slowly. It is difficult to capture these different timescales with a
conventional IRF defined by coefficients for evenly spaced lag times.

In principle, of course, one could simply use the methods of Sections 2–5 to evaluate
IRF coefficients over hundreds or thousands of lags, extending out to the longest lag time
of interest. Doing so, however, is computationally inefficient: although it is possible to eval-
uate IRFs over thousands of lags, the necessary matrix operations become time-consuming
(see Section 2.2), although modern matrix solvers make this issue much less pressing than
it once was. A more serious problem is that it is also statistically inefficient to estimate too
many IRF coefficients from inherently limited data, because the finite information those
data contain must be spread among the many coefficients to be estimated. This increases
the uncertainties in the estimated IRF at each lag, making it difficult to accurately estimate
the slowly varying long tails of many real-world impulse response functions.

The long tails could be better constrained if the input and output time series were
aggregated to coarser time steps, with a corresponding reduction in the number of IRF
coefficients that must be estimated. The obvious drawback of this approach is that one
loses the ability to accurately quantify the system’s short-term impulse response.

Another common approach to this problem is to assume that the IRF has a known
functional form (e.g., a gamma distribution or a set of exponentials), and to estimate the
parameters for that function. However, this typically results in a model that is nonlinear in
its parameters, with the implication that parameters must be estimated by computationally
intensive iterative search methods (e.g., [24]) and one can never be certain that the single
best set of parameters has been found (the local optimum problem). Such approaches also
depend critically on the assumption that the chosen function is the correct one, which is
usually impossible to verify.

6.1. Piecewise Linear Approximations to Impulse Response Functions

In principle, IRFs are continuous functions of lag time, so they can potentially be
approximated by piecewise linear functions, with the vertices connecting the linear seg-
ments being closely spaced at short lag times (where the IRF is changing rapidly), and
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more widely spaced at longer lag times (where the IRF is only changing slowly). Such a
piecewise linear IRF is completely determined by the values at the vertices between the
linear segments. Thus, it is only necessary to constrain the relatively few (unevenly spaced)
coefficients for the vertices, rather than the conventional IRF coefficients for every lag.

Here I demonstrate how this can be efficiently solved as a linear regression prob-
lem. As shown in Figure 15, the nonlinear IRF shown by the light blue curve would
conventionally be evaluated at the evenly spaced light blue dots. However, it can also be
approximated by a piecewise linear function (the dark blue dashed lines) between specified
knots κ`, ` = 1 . . . nκ , shown by the open circles. In this piecewise linear approximation,
each of the IRF coefficients βk in Equation (3) can be expressed instead in terms of the IRF
coefficients of the two adjacent knots β∗κ , as follows (here showing an example where βk
lies between the third and fourth knots):

βk = β∗3

(
κ4 − k
κ4 − κ3

)
+ β∗4

(
k− κ3

κ4 − κ3

)
(50)

Substituting each of these βk into Equation (3) and rearranging terms yields

yj =
nκ

∑
`=1

β∗`

(κ`)−1

∑
k=κ`−1

(
k− κ`−1
κ` − κ`−1

)
xj−k +

κ`+1

∑
k=κ`

(
κ`+1 − k
κ`+1 − κ`

)
xj−k

, (51)

where the terms in curved brackets define a set of triangular weighting functions over lag
time surrounding each knot lag κ`, as shown below the x-axis in Figure 15. This approach
converts Equation (4) into an equivalent regression with transformed variables,

yj =
nκ

∑
`=1

β∗` x∗j,` + α + ε j, (52)

where the x∗j,` are defined by the quantity in square brackets in Equation (52). Equation (52)
can then be solved by the methods outlined in Section 2, with the proviso that the corrections
for ARMA and ARIMA noise will be less exact because the x∗j,` are not evenly spaced in
lag time.
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(light blue line), with 40 conventional IRF coefficients (light blue dots) replaced by values at 8 knots
(open circles). The overlapping yellow and blue triangles depict the relative influence of each lag on
the even and odd numbered knots, respectively (see Equations (51) and (52)).

Readers may note a superficial similarity between Figures 8 and 15. There is an
important difference, however: in Figure 8, each IRF coefficient βk is expressed as a
piecewise linear function of the input intensity x, whereas in Figure 15, the IRF coefficients
are expressed as piecewise linear functions of the lag k. Whereas the broken-stick model
in Figure 8 multiplies the number of coefficients that must be estimated (replacing each
of the m + 1 IRF coefficients with nκ knots, for a total of (m + 1) ∗ nκ knots in total), the
broken-stick model in Figure 15 reduces the number of coefficients that must be estimated,
substituting nκ knots for all m + 1 IRF coefficients.

The approach outlined above is invoked in the IRFnnhs.R script by setting the nk
parameter to an integer between 3 and m, instead of the default value of nk = 0. The script
then estimates the piecewise linear IRF connecting nk knots, placed at lags 0, 1, and a
geometric progression of lags between 1 and m (or as close to a geometric progression as
possible, given that the lags are integers).

6.2. Benchmark Test

I tested the approach outlined above using a benchmark convolution kernel that
combines a sharp peak at short lags and a weaker but more persistent long-term response
(as shown in the gray curves in Figure 16). This known convolution kernel was convolved
with a 10,000-point random input time series to generate the benchmark system’s true
output, which was then corrupted by noise at a signal-to-noise ratio of 1. I then deconvolved
the noise-corrupted time series using the IRF methods developed in Section 2 (left column,
Figure 16) and the piecewise linear approach of Section 6.1 (middle and right columns,
Figure 16, showing 50 and 20 knots, respectively). The three rows of Figure 16 show results
for white noise (top row), moderately autocorrelated AR(1) noise with an AR coefficient
of ρ = 0.5 (middle row), and more strongly autocorrelated AR(1) noise with ρ = 0.95
(bottom row).

One can see from Figure 16 that the sharp short-term response is accurately depicted
in all cases. However, the weaker, longer-term response is either obscured, distorted, or
accurately revealed, depending on both the method that is used and the autocorrelation in
the added noise. When the noise is uncorrelated (top row) or moderately autocorrelated
(middle row), the longer-term response is obscured by scatter in the regular, evenly spaced
IRF (Figure 16a,d). The piecewise linear IRF, by contrast, can clearly distinguish the longer-
term response from zero (indicated by the dashed gray line in Figure 16b,c,e,f), because it
averages over the random fluctuations in the noise. This averaging becomes somewhat less
effective as the noise becomes more strongly autocorrelated, as shown by the progression
from the top row to the bottom row in Figure 16. When the first-order autocorrelation in
the noise is ρ = 0.95, implying a characteristic decorrelation time of roughly 20 time steps
(bottom row of Figure 16), the scatter in the regular IRF is greatly reduced but replaced with
artifactual coherent distortions (Figure 16g). These distortions are somewhat reduced, but
still persist, in the piecewise linear IRF with 50 knots (Figure 16h), but are more effectively
removed by the piecewise linear IRF with 20 knots (Figure 16i). This is because when the
knots are more widely spaced, their averaging timescales become larger in comparison to
the decorrelation time of the noise, and thus the noise can be more effectively averaged out.
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Figure 16. Benchmark test of the piecewise linear approach to estimating multi-scale impulse response
functions. The benchmark IRF (gray line) is a gamma distribution with shape factor of 4, combined
with a broad, low Gaussian curve at lags between roughly 90 and 450. The gray dashed line indicates
zero on the vertical axis. The left column (a,d,g) shows conventional impulse response functions
estimated for the first 500 lags (blue dots, shown without error bars). The middle and right columns
(b,c,e,f,h,i) show piecewise linear IRFs obtained by the approach outlined in Section 6.1 (with 50
and 20 knots, respectively), with error bars wherever these are larger than the plotting symbols. The
three rows show different degrees of autocorrelation in the added Gaussian noise, from white noise
(first-order serial correlation coefficient ρ = 0, top row), to moderately autocorrelated noise (ρ = 0.5,
middle row), and strongly autocorrelated noise (ρ = 0.95, bottom row); in all cases, the signal-to-noise
ratio is 1. The brief, sharp system response is clearly detected in all cases shown here. However, the
weaker, longer-term response is obscured (a,d) or distorted (g) in the conventional IRF, and is only
revealed by the piecewise linear approach (middle and right columns). As the noise becomes more
serially correlated (middle and bottom rows), more widely spaced knots (right column) are needed to
accurately reflect the long-tail behavior of the benchmark impulse response.

7. Discussion

The benchmark tests presented in Section 2.5, Section 2.7, Section 3.2, Section 3.5,
Section 4.2, Section 4.3, Section 5.2, Section 5.3, and Section 6.2 demonstrate that the
methods developed here can accurately estimate the impulse response of heterogeneous,
nonstationary, and nonlinear systems, even in the presence of autoregressive and nonsta-
tionary noise. These tests are not comprehensive, however, because real-world applications
will entail many diverse systems with different impulse response characteristics, forcing
time series, and potentially contaminating noises. No feasible benchmark testing program
could test all of these possibilities, in all possible combinations. Thus, users are encouraged
to benchmark these methods using synthetic data reflecting their particular applications.

Sections 2–6 each present solutions to specific problems that arise in estimating im-
pulse response functions from real-world data: system heterogeneity, nonstationarity, and
nonlinearity, autoregressive and nonstationary noise, and multiscale impulse response.
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Real-world cases will often combine two or more of these problems. Thus, we might need to
estimate the multiscale impulse response (Section 6) of a system that may also be nonlinear
(Section 5), nonstationary (Section 4), and/or heterogeneous (Section 3), and that may also
generate signals that are obscured by autoregressive or nonstationary noise (Section 2).
The IRFnnhs.R script can handle any combination of such problems, subject of course to
any limitations in the information content of the available input and output time series.
However, benchmark testing all of the possible permutations is not feasible, so users will
need to conduct appropriate benchmark tests for the combinations of problems that they
face in individual real-world problems.

Although the methods developed here can accurately estimate the impulse response
of many different systems (including, in particular, systems that are heterogeneous, non-
stationary, or nonlinear), three potentially important limitations should be noted. First,
one should not expect the resulting impulse response functions to accurately predict these
systems’ time-series outputs, unless their behavior is completely described by their IRFs,
which will often not be the case. The approaches developed here are primarily intended to
gain insight into how systems work, using IRFs as a measure of their integrated behavior.
In this context, the key question is whether these methods can accurately capture systems’
nonlinear, nonstationary, and heterogeneous impulse responses (which they indeed can,
according to the benchmark tests presented here), not whether those IRFs, by themselves,
accurately predict system outputs over time.

Second, although the methods developed here can yield accurate IRF estimates despite
substantial autocorrelated or even nonstationary noise in the system output, they do not
correct for errors in the system inputs (often termed the “errors-in-variables” problem).
Techniques for handling the errors-in-variables problem in this context are currently under
development and may be presented in a future paper.

Third, the term “nonlinear” as used here refers to systems whose impulse response
functions depend nonlinearly on the input intensity, and thus can be quantified by nonlinear
deconvolution techniques such as those described in Section 5. Similar terminology is often
used to refer to a broad class of nonlinear dynamical systems—that is, systems of nonlinear
differential equations characterized by bifurcations and chaotic dynamics. Such systems
are not described by linear convolutions such as Equation (1), or nonlinear convolutions
such as Equations (40) and (41), and thus cannot be deconvolved by the methods outlined
here. Simply put, such systems do not have impulse response functions, so the methods
outlined here cannot estimate them.

Readers should keep in mind that the reliability of any deconvolution method, in-
cluding the methods described here, will depend on the autocorrelation behavior (and
thus the frequency content) of the input to the system. In convolutional systems such as
Equation (1), the impulse response will be poorly constrained at any frequency for which
the input to the system exhibits little or no variation. This is inherent in the mathematics of
convolution, and is independent of the particular deconvolution methods that are used.
The principles can be easily seen by re-casting the linear convolution in Equation (1) as its
Fourier transform:

Y( f ) = B( f )·X( f ) (53)

where Y( f ), B( f ), and X( f ) are the (complex) Fourier transforms of y(t), β(t− τ), and
x(t− τ). From Equation (53), one can see that Y( f ) will have no spectral power at any
frequency f where X( f ) contains no spectral power. Thus, the deconvolution estimate of
B( f ),

B( f ) = Y( f )/X( f ) (54)

will be undefined at that frequency, because Equation (54) will be dividing zero by zero.
For nonlinear convolutions the situation is more complex, because an input X( f ) at any
given frequency f will yield outputs not only at f but also at its harmonics, and thus
Equations (53) and (54) will no longer apply.
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Nonetheless, the principle remains that broadband inputs will generally yield more
reliable estimates of the impulse response function than narrowband inputs will. In most of
the benchmark tests shown here, the inputs are Gaussian white noise (and hence are ideal
broadband signals), except for Figure 2, Figure 3, and Figure 16, in which the inputs are
Gaussian noise with a lag 1 correlation of 0.5. Fortunately, many real-world systems also
have broadband inputs, and thus may be well suited to deconvolution approaches such as
those outlined here. Users with any concerns in this regard are encouraged to explore them
with benchmark tests tailored to the characteristics of their own systems and data sets.

Given the recent widespread interest in machine learning models, it may be helpful
to contrast the present approach with artificial intelligence approaches. Machine learning
methods typically attempt to predict the system output as accurately as possible, using
flexible, parameter-rich models calibrated against large sets of training data. Whereas the
functional relationships within machine learning models are often difficult or impossible to
visualize, the focus of the present approach is precisely to reveal the functional relationships
between systems’ inputs and outputs—their impulse response functions—and make them
visible to the user. These impulse response functions would not be promising candidates
for estimation by machine learning models, because the true impulse response functions
are unknown, and thus no training data exist to estimate them. Whereas machine learning
approaches are unguided explorations of all possible relationships between inputs and
outputs, the present approach is strongly guided by the a priori assumption that the
dominant relationships (or at least the relationships of primary interest) between the inputs
and outputs are impulse response functions. The present approach is designed to encourage
users to query their data iteratively, testing alternative explanations for the inferred input–
output relationships. In this respect, the present approach primarily focuses on human
learning rather than machine learning.

The analyses presented here suggest a potentially promising extension. If the impulse
response function βk can be estimated accurately enough, it is in principle straightforward
to deconvolve the system output time series yj by βk to estimate the input time series
xj. If, in addition, the “errors in variables” problem can be successfully handled, such
that the input errors average out in estimating βk, this deconvolution approach could
potentially even estimate the input time series xj more accurately than it can be measured
(given sufficiently accurate measurements of the output time series yj). Initial tests of this
approach are promising, but will need to be refined in future work.

8. Summary and Conclusions

Systems’ impulse responses can be useful measures of their integrated behavior. How-
ever, real-world systems are often heterogeneous, nonstationary, and nonlinear, and their
time series often have autoregressive or even nonstationary errors. All of these characteris-
tics are problematic for conventional methods for estimating impulse response functions.
Here, I have presented a suite of data-driven, model-independent, nonparametric methods
for inferring the impulse responses of systems that may be heterogeneous, nonstationary, or
nonlinear, and whose time series may be substantially corrupted by poorly-behaved noise.
The IRFnnhs.R script can solve these problems efficiently, even including problems that
generate design matrices with hundreds or thousands of columns and millions of rows.

These methods can estimate impulse response functions from time series that are
substantially contaminated by ARMA noise (Sections 2.2 and 2.3, Equations (12)–(26)) and
nonstationary ARIMA noise (Section 2.6, Equations (27)–(32)) through a single inversion of
a linear system of equations, without requiring an iterative search of the parameter space.
Benchmark tests demonstrate that these methods can effectively handle large amounts of
ARMA noise (Figure 2) and ARIMA noise (Figure 3), and that they are orders of magnitude
faster than, for example, R’s arima function, which searches iteratively.

These methods can be straightforwardly extended to not only un-scramble (decon-
volve) the lagged effects of inputs over time, but also to separate (demix) the overlap-
ping effects of inputs to individual compartments of heterogeneous systems (Section 3.1,
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Equations (33)–(35)). Benchmark tests demonstrate that this approach can effectively dis-
tinguish even broadly similar impulse responses from one another, even when they are
overprinted on one another in the system output (Figure 4). If a system’s heterogeneities
are ignored, and one instead deconvolves the combined output by the combined input, the
methods of Section 2 will generally yield a good approximation to the system’s average
impulse response—which may differ greatly from the impulse responses of its individual
compartments (Figure 5).

This deconvolution–demixing approach can be further extended to quantify the IRFs
of systems that are nonstationary on timescales shorter than their impulse responses
themselves, such that their different impulse responses are overprinted on each other
(Section 4.1, Equation (39)). Even though these individual impulse responses are obscured
in the system output, benchmark tests show that they can be accurately detected and
quantified (Figures 6 and 7). In systems that are nonstationary but are not recognized
as such, the methods of Section 2 will generally yield a good approximation to the time-
averaged impulse response (Figures 6b and 7e).

The deconvolution–demixing approach can also be extended to estimate impulse
response functions that depend nonlinearly—in shape or amplitude or both—on the
system input. A broken-stick model of the impulse response at each lag (Figure 8) al-
lows nonlinear impulse responses to be efficiently quantified using purely linear algebra
(Equations (42)–(47)) without making any a priori assumptions about either the shape of
the impulse response function or its nonlinear input-dependence. Benchmark tests demon-
strate that this approach yields realistic estimates of both the impulse response function and
its nonlinear variability, even in systems whose inputs vary much more rapidly than their
impulse responses—and thus whose impulse responses are overprinted on one another
in the output (Figures 9–13). If nonlinear systems are not recognized as such, and instead
are analyzed as if they were linear, their apparent impulse response functions can deviate
substantially, in both shape and amplitude, from their true average impulse response
(Figure 14). These deviations can be explained by a relatively straightforward analysis of
statistical moments (Equations (48) and (49)).

Many systems are characterized by a combination of strong short-term impulse re-
sponse and much weaker, but more persistent, long-term response. IRFs that extend to
long lags will often be too noisy to reveal this long-term response, because their many
coefficients will dilute the information content of the input time series. In such cases, a
piecewise linear approximation to the IRF (Equations (50)–(52)) can be used to evaluate
the IRF at knots that are unevenly spaced in lag time (Figure 15), allowing the system’s
long-term response to be more accurately quantified (Figure 16) while also accurately
portraying its much sharper short-term response.

Finally, it is worth noting that the benchmark tests performed here included significant
levels of (often poorly behaved) noise, and the benchmarks did not necessarily conform to
the assumptions underlying the analysis methods. For example, the nonlinear analysis in
Section 5 assumed that the impulse response at each lag is a piecewise linear function of
the input, but the benchmarks used to test those methods were not. Likewise, the analysis
algorithms had no information about how the benchmarks were generated, beyond what-
ever they could infer from the input and output time series (the latter being substantially
contaminated with badly behaved noise). Thus, these benchmark tests are more rigorous
than many found in the literature, in which the benchmarks and analysis methods are
tailored to fit one another.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/s22093291/s1. File S1: IRF code.
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Data Availability Statement: R scripts that implement the techniques presented here and perform
the benchmark tests in Figures 2–16 are available as supplementary material accompanying this
article. The same scripts are also available at Kirchner, James W. (2022). Impulse response functions for
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nonlinear nonstationary and heterogeneous systems. EnviDat. https://doi.org/10.16904/envidat.312,
which will be updated with bug fixes as needed.
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