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Abstract: Fire is indeed one of the major contributing factors to fatalities, property damage, and
economic disruption. A large number of fire incidents across the world cause devastation beyond
measure and description every year. To minimalize their impacts, the implementation of innovative
and effective fire early warning technologies is essential. Despite the fact that research publications
on fire detection technology have addressed the issue to some extent, fire detection technology still
confronts hurdles in decreasing false alerts, improving sensitivity and dynamic responsibility, and
providing protection for costly and complicated installations. In this review, we aim to provide
a comprehensive analysis of the current futuristic practices in the context of fire detection and
monitoring strategies, with an emphasis on the methods of detecting fire through the continuous
monitoring of variables, such as temperature, flame, gaseous content, and smoke, along with their
respective benefits and drawbacks, measuring standards, and parameter measurement spans. Current
research directions and challenges related to the technology of fire detection and future perspectives
on fabricating advanced fire sensors are also provided. We hope such a review can provide inspiration
for fire sensor research dedicated to the development of advanced fire detection techniques.

Keywords: fire detection; sensor; heat; flame; gas; smoke

1. Introduction

Fire has been a valuable gadget throughout mankind’s history, however, it can likewise
bring disaster if not carefully controlled. With the advances in electronic devices, sensors,
information communications, and technologies, the construction industry is experiencing a
transformation. This has led to the emergence of many technological developments. The
digital revolution has considerably aided in cutting running expenses while also improving
performance. Likewise, when materials and insulation technologies improve and become
more widely used in building constructions, the risk of loss of life and financial assets as a
result of fire increases. Fire vulnerability is an unceasing danger in daily life. Ever since the
late 1900s, there has been a considerable drop in the number of fire deaths due to increased
usage of technologies to prevent or stop fires, such as smoke detectors, sprinklers, and
emergency evacuation plans. Even with all these advancements, fire remains a significant
concern, costing roughly 1% of global GDP each year and resulting in the loss of thousands
of lives. Recent fire tragedies include the Lebanon Beirut explosion in 2020, the 2019–2020
Australian bushfires, the Notre Dame de Paris (Gothic cathedral) fire in 2019, the London
Grenfell Tower fire in 2017, etc. From 2013 to 2017, the “International Association of Fire
and Rescue Services” reported an average of 1097 deaths per year (~4 deaths/day) in fire
accidents around the world [1]. This has led in recent years to the emergence of several
new techniques for fire detection and prevention. Therefore, a greater emphasis is put on
the construction of smart buildings and structures worldwide [2].
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Over the last decade, several novel fire detection technologies have been created with
advancements in sensors, IT and microelectronics, as well as the in-depth understanding
of fire physics. Techniques for measuring practically every stable gaseous species gen-
erated before or during combustion are now available. The introduction of distributed
optical fiber temperature sensors in applications with difficult climatic conditions, such
as tunnels, underground railways and stations, can provide fire prevention [3]. Various
fire elements, such as smoke, heat, and carbon monoxide, are detected by multiple sensors,
and a complicated algorithm is used to intelligently discern the difference between fire
and non-threatening conditions. Furthermore, fire alarm systems are combined with other
building facility systems to eliminate false alarms, accelerate the evacuation of buildings
and aid in firefighting [4]. According to the National Fire Protection Association (NFPA), in
the United States, the number of major “house” fires has dropped down in recent years,
partly because fire detectors have been introduced into residential buildings [5]. On the
other hand, however, in the last decade, natural materials such as wood have been replaced
by synthetic materials in thermal insulation, structural materials, furniture, and finishes.
As a result, the risk to life and property has shifted dramatically, because the combustion
of synthetic materials not only produces very harmful poisonous smoke but also releases
much more carbon dioxide than natural materials [6], resulting in a shorter escape time.
Many of the places most in need of protection are unattended, such as telecommunication
facilities, and the service interruption caused by fire becomes more and more expensive. In
certain situations, a fire can only be found after it has fully developed, which will seriously
damage property or cause loss of life. To better safeguard the public and fulfill evolving
requirements, fire detection technology still confronts hurdles in decreasing false alerts,
improving sensitivity and dynamic responsibility, and providing protection for costly and
complicated installations.

In recent years, the development in fire sensors has been reviewed and summarized
from several perspectives: chemical sensors associated with fire detection [7], fire detection
algorithms [8], video fire detection [9], video smoke detection [10], sensors modules [11],
fire monitoring systems [12], forest fire detection [13], distributed heat sensors [14], and
fire sensors for specific location [15] and extreme conditions [16]. However, none of them
provides a comprehensive analysis that covers all of the highlighted and emerging fire
detection technologies to date, as well as the discussion of what further improvements
can be made. The purpose of this paper is to review recent fire detection technology
research and development, including emerging sensor technology, fire signal processing
and monitoring technology, and an integrated very early fire detection system for building
fires. Some concerns and potential operations related to the technology of fire detection are
discussed and compared, and future directions and perspectives on fabricating advanced
fire sensors are also provided.

2. Stages of Fire and Structural Designs for Fire Risk Mitigation

Ignition, fire growth, and eventually flashover, followed by a cooling phase, are the
stages of fire development in enclosures. The primary concern throughout the ignition and
growth phases is lifesaving, which is where fire sensors play a big role by warning and
alarming. The first 10 to 15 min of a building fire, during which the residents may leave for
safety, are the most critical in terms of life safety. The fire is described as a pre-flashover
fire because it is restricted by the amount of available pyrolyzed gaseous fuel. When a
flashover happens, the fire becomes fully developed. Post-flashover fire is described as fire
that burnt at its maximum capability with the available air supply [17].

Flashover is a highly dangerous and life-threatening situation for firefighters. The time
it takes for a room to reach this level varies, depending on the room’s size and geometry,
combustible contents, air supply, room insulation, and the chemistry of the hot top layer [18].
Studies have been conducted to calculate the temperature [19], predict its occurrence [20,21],
minimize its effect [22], and construct a design that can withstand the temperature of post-
flashover [23]. A flame will enter the decay phase when it reaches the decline stage. After
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the fully grown flame runs out of fuel or oxygen, this stage occurs. By limiting oxygen
supply using firefighting equipment, fires can be driven into the decay stage.

Post-earthquake fires (PEFs) are a damaging hazard induced by big earthquakes that
can result in significant financial and human losses [24]. Large earthquakes can destroy
structural and non-structural components, including fire extinguishing systems, fallen
ceilings, and partitions, all of which can exacerbate the formation of PEFs [25]. When
fire extinguishing systems are damaged, their ability to extinguish fires is dramatically
reduced, causing smoke and fire to spread throughout the building and jeopardizing a safe
evacuation process. It is critical to use building information modeling (BIM) as part of the
modeling and planning for the rescue procedure [26]. Lu et al. [27] proposed a simulation
framework based on BIM and virtual reality (VR) for an indoor post-earthquake fire rescue
scenario, which includes a smoke visualization method that combines volume rendering
and the particle system. The findings suggest that the developed VR scenario has a high
level of realism and flawless interactivity, and that smoke has a greater impact on fire rescue
than fallen debris. Lofti et al. [28] provided a feasible and practical model for evacuation
assessment during a PEF using BIM and PyroSim, which included simulated smoke and
fire developments in various floors, implying that additional equipment, such as smoke
curtains and rescue chute should be provided in different floors.

3. Fire Sensors

Technology for fire detecting depends on the fire’s location and nature. In this review,
the application and implementation status of alarm systems, advantages of the latest
technologies, as well as their limitations and shortcomings are explained. Over a period
of time, numerous fire detecting technologies have evolved. Some of these methods are
still in use today, while others are becoming obsolete. A brief timeline of the development
of fire sensors is given in Figure 1. The key five detecting methods, comprising heat,
gas, flame, smoke, and graphene oxide (GO) based sensing, as well as other fire sensing
technologies and current research, are explained in depth. In fire detection based on heat
sensing, most current fire detection systems use electronic and distributed optical thermal
detectors based on thermistors. Thermal sensing based on infrared is a helpful technique,
especially appropriate for thermal detection of the targeted location. Compared with non-
visual methods, visual approaches for smoke and flame detecting are attracting research
focus because of their rapid response time and low imprecision output rate. The great
algorithmic capability of existing digital systems has opened up new research prospects
for deep learning of complicated neural network-based technologies. Among different gas
sensing technologies, gas sensors based on semiconductor metal oxides have been useful
in practice due to their great sensibility, small size and reduced cost. However, they have
problems with stability, which require more study to resolve. Currently, research is also
underway in the field of carbon nanotube-based gas sensing for fire detection. Microwave
radiometer-based fire sensing is one of the most important contemporary approaches due
to its key benefit of fire detection across barriers such as walls. For fire detection, the multi-
sensor fusion method based on wireless sensor networks (WSNs) and the Internet of Things
(IoT) is suitable. The new emerging technique of graphene oxide (GO) based sensing has
shown an outstanding short response time. Given the combustible materials, the property
of fire-resistant and fire sensing can certainly reduce fire incidents, but further work still
has to be done for its practical implementation. These current fire sensing techniques are
illustrated in Figure 2.

3.1. Heat Sensors

Heat sensors are used to measure the ambient heat in a residence because of the occur-
rence of fires. The sensors are sensitive to the temperature that is related to the resistance
variation, displacement, and refractive index, etc. [29]. Generally, there are three types of
heat sensors: fixed temperature, increase rate, and compensation rate. The fixed tempera-
ture heat sensor is triggered when the temperature rises above the threshold value, which
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is at or above 60 ◦C. There are many categories of fixed temperature sensors, such as fuse-
element, bimetals, and distributed fiber optics. The fuse-element type heat sensor operates
at a set temperature level based on the melting of the heating element and is mainly used
in the fire sprinkler system. The bi-metal heat sensor works according to the mechanism of
thermal expansion of the metals (Figure 3a). When the temperature rises, the bimetallic
strip will bend to the metal with a low coefficient of thermal expansion. Distributed heat
sensors are further divided into three groups: electrical, sheathed thermocouples and opti-
cal. The electrical and sheathed thermocouple heat sensors work according to the principle
of change in the wire resistance and surface temperature (Figure 3b) [30]. Electronic type
heat detectors operate with a thermoelectric effect, which uses one or two thermistors to
detect the temperature [31]. The type of optical distributed heat sensor which finds its
application in mines, tunnels, and underground pipelines is operated by the back-scattered
light pattern principle [32]. The heat sensor is built with a minimal working temperature
or a threshold temperature environment. The rate of compensation heat sensor is enabled
when the air temperature is higher than the fixed temperature. Further discussion on each
type of heat sensor is given as follows.
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3.1.1. Distributed Optical Fiber Heat Detectors

One of the most favorable heat monitoring technologies for fire safety applications
is the distributed optical fiber temperature sensor [33]. The optical fiber sensor, unlike
ordinary heat sensors, uses the entire optical fiber as the detecting medium. Temperature
measurements can be carried out along the fiber optic cable at any and every point. The
temperature that is recorded ranges from 160 to 800 ◦C, and is only restricted by the fiber’s
durability or, more accurately, by its main coating. The optical fiber sensor cable reacts
rapidly to temperature variations owing to its low mass compared to traditional heat
sensors. The fiber cable itself is sturdy, resilient, and adaptable to a variety of geometries,
and could be installed directly in or near protected areas. They have been utilized to provide
fire protection in some applications with challenging environmental circumstances, such as
tunnels, conveyor lines, subterranean railways and stations, steelworks, and petrochemical
industries [34].

Distributed optical fiber heat sensors were implemented for fire detection based on
Rayleigh or Raman scattering [35,36]. For instance, Meacham et al. [37] has invented a
Rayleigh scattering cable sensor that consists of three main components: optical fiber, a
wax-filled tube, and a protective cover (Figure 4a). The wax starts to melt and expand when
heated at any point, creating a difference in the reflected light. The system’s maximum
sensing range is up to 2 km. The system’s main disadvantage is that it does not guarantee
any temperature rise over time and only has one alarm that drives temperatures between
40 and 90 ◦C.
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The Raman scattering optical fiber sensor senses the temperature by calculating the
ratio of stokes and anti-stokes backscattering intensity signals as a function of temperature.
The Raman system has a maximum sensing range of up to 4 km and its spatial resolution
ranges from 8 to 1 m, depending on the response time and temperature resolution require-
ments. The Brillouin light scattering (BLS) fiber optics system is a viable alternative to
Rayleigh and Raman scattering for temperature measurement [38]. The BLS perceives the
temperature change by evaluating the Brillouin backscattering intensity and its frequency
variation as a function of temperature [39]. Figure 4b illustrates the general scheme of fire
sensing setup and scattering components for Rayleigh, Brillouin, and Raman scattering in
optical glass fibers.

In addition, Dong et al. [40] developed a low-cost, high-efficiency optical cable with
a temperature sensing ability utilizing fiber Bragg grating (FBG), which blocks specific
wavelengths, based on a linear relationship between FBG’s reflected wavelength and cable
temperature. Wang et al. [41] also implemented an FBG array for small fire detection, which
can detect small targets with excellent accuracy that are smaller than the spatial resolution.
Hoff et al. [32] created a fiber optic distributed temperature sensing (DTS) based fire
detection system for industrial conveyor belt fires, in addition to acoustic fire measurement.
For compartment fires, Zhu et al. [42] proposed an instrumentation technique that used
distributed fiber optic sensors to assess temperature through composite floor beams.

3.1.2. Thermal Resistance Sensors

Based on the reduction of graphene oxide (GO) at high temperature, GO-based fire
sensor has been a new approach for effective and timely detection of fire danger. Typically,
GO has low electrical conductivity. When encountering fire or high temperature, GO
reduces thermally to graphene (rGO) with a high electrical conductivity through the
decomposition of the oxygen-containing functional groups, such as carboxyl groups, epoxy
groups, and hydroxyl groups [43]. The explanation for this response behavior for detecting
a flame and heat lies in the change in the electrical resistance of the GO (insulator), which
turns into rGO (conductor) during the flame attacking process (Figure 5a). Another key
feature of these sensors is that they should be flame resistant to ensure that the alarm
signals endure as long as possible. Combustible materials (e.g., cotton, paper, wood, and
foam) are used as the substrate in these sensors since they are sensitive to fire and heat and
degrade quickly. As shown in Figure 5b, the cotton fabric that was employed as a substrate
still maintained its structural integrity for continuous alarm after fire exposure.
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As from the previous work in the field of flame retardancy and fire warning sensors,
fabricating a flame retardant GO-based coating is considered to be a promising way to over-
come the danger of fire hazards. For instance, Wu et al. [45] used the dip-coating method
to fabricate hierarchical GO/silicone on combustible materials. On fire encounters, silicone
offers the necessary flame retardancy while GO nanosheets undergo thermal reduction and
provide a conduction path for the warning circuit in 2–3 s. Functional cellulose and GO
were fabricated on wood, polyurethane, and polypropylene foam using the self-assembly
dip-coating method by Xie et al. [46]. Another research reported by Xie et al. [47] showed
an ultra-sensitive signal time that is 0.83 s, by fabricating a coating containing GO, silver
nanowire (AgNW) and fluoride polyvinyl butyral (FPVB) using the spray-coating method.
Xu et al. [48] fabricated melamine-formaldehyde sponge coated with GO wide-ribbon using
the facile dip-coating method. The coating has good hydrophobicity, structural stability, and
reversible compressibility, and can complete the alarm circuit in about 2 s. Huang et al. [49]
reported silane-GO papers that display outstanding flame resistance, acidic/alkaline toler-
ance and mechanical flexibility, having a rapid flame detecting response time of about 1.6 s.
Qu et al. [50] designed a composite film using black phosphorene-MoS2 nano-filler and GO
that can detect fire in 1 s, and also developed a highly flexible film from black phosphorene
and GO that can trigger the fire alarm in less than 1 s [51].

Most of the GO-based fire sensors have small detection areas. To overcome this
limitation, we recently developed a large-scale sensor (>33 cm and extendable) that exhibits
a short alarming time of <3 s in response to external abnormal high temperature, heat, or
fire, through the use of parallel lines of conductive ink as built-in electrodes, which are
coated on cotton fabric that has a hierarchical flame retardant nanocoating composed of GO,
poly(dimethylaminoethyl methacrylate) (PDMAEMA) and hexagonal boron nitride (BN)
(Figure 6) [44]. At any place where it encounters fire or heat, at that place, the reduction of
GO takes place and will complete the circuit and thus give the alarm of fire danger. The
hierarchical nanocoating can self-extinguish, thus enabling the substrate not to be burnt
out, and gives a continuous long-lasting alarm. It is suitable for use indoors and outdoors,
flexible if the substrate is flexible, suitable for a large area of detection, and also provides
effective fire resistance to combustible materials that will certainly reduce the occurrence of
fire incidence.
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3.1.3. Miscellaneous Heat Detectors

This section describes some of the multiplicity and, in some cases, lesser-known heat
detection approaches that have been used for fire detection. For instance, a system that
is able to track the temperature difference between inside and outside surfaces of the
wall was proposed by Chiang et al. [52]. For the control of fire phases, the temperature
change between the wall surfaces is monitored. By conducting experiments and accompa-
nying simulations, Jevtic et al. [53] examined three distinct electric wires for fire sensing
and location. Several variables of central wire (e.g., capacitance, impedance, resistance,
impedance, etc.) will change with temperature. They tested a coaxial cable up to 100 m. A
fire location model based on far-field and near-field was offered by Wang et al. [54], and
the temperature sensor array was used to measure the fire stages. For the best location of
the fire sensor, the proposed model is acceptable. However, for the capacity of fire phases,
the suggested model is not sufficient. Bosch et al. [55] carried out fire detection with an
infrared thermal imager using spatiotemporal features, and the flame zone is separated by
the image threshold using histogram. The infrared method is ideal for fires that have low
radiance due to alcohol and hydrogen. Table 1 summarizes the recent developments in the
field of heat sensors.

Table 1. Recent developments and comparison of different heat sensors and their characteristics.

Sensor Detection Element Construction and
Working Principle Response Time Detection Area Features and Advantages Ref.

Distributed
Optical Fiber

Heat Detectors

Two parallel
optical fibers

By measuring the
temperature of hot

air flows
40 s Wide ranges Simple and efficient [56]

Graphene-coated
optical fiber Fiber Bragg grating

18-fold faster than
conventional fiber

heat detectors
1 km Long-distance and fast

optical transmission [57]

Multi-core fiber Raman scattering Real-time 10 km Self-calibration [58]

Thermal
Resistance

Sensors

Ammonium
polyphosphate and GO Freeze-drying ~2.6 s Small Compressible [59]

FGO/CNTs Layer-by-layer 5 s Small Twisted and bended [60]
AgNW/FPVB and

GO/FC Spray coating 0.83 s Large (>30 cm) Hydrophobic and
self-cleaning [47]

MPMS and LLA EISA ∼1 s Small Twisted, folded and
Structure stability [61]

RGOP-NaCl Evaporation-induced
self-assembly 5.3 s Small Twisted, can fuse function

and can cut off in fire [62]

GO-BA Evaporation-induced
self-assembly ∼0.8 s Small Twisted and bended [63]

APP/GO/TFTS Water-based coating 2 s Small Flexible and
Super-hydrophobic [64]

MPTS-GO TEISA 1 s Small Twisted and bended [65]

CCS/MMT/A-CNT Freeze-drying ~0.25 s Small Light weight and
Compressible [66]

Miscellaneous
Heat Detectors

Thermistor Steinhart-Hart equation 260 s Small Suitable for sprinklers [67]

Bi-spectrum camera YOLOv3 and TNNI 0.6 s Limited to
camera vision

Low cost, and automatic
disposal of devices [68]

Thermocouple
anddigital multimeter Operational algorithm 2.3 times faster Small Useful where

temperaturevaries [69]

Artificial intelligence LSTM and TCNN 1 s 5 m Predict fire danger
before 60 s [70]

Rate of temperature rise Operational algorithm 120–180 s Small Useful where
temperature varies [71]

Note: FGO: functionalized graphene oxide; AgNW: silver nanowire; FPVB: fluoride polyvinyl butyral; FC: func-
tional cellulose; MPMS: 3-methacryloxypropyltrimethoxysilane; LAA: L-ascorbic acid; EISA: evaporation-induced
self-assembly process; CCS: carboxymethyl chitosan; MMT: montmorillonite; A-CNT: amino-functionalized
carbon nanotube; RGOP: reduced graphene oxide paper; TFTS: tetra hydroperfluorodecyltrimethoxy silane;
TEISA: low-temperature evaporation-induced self-assembling; LSTM: long short-term memory; TCNN: transpose
convolution neural network; TNNI: turing neural network inference.

3.2. Gas Sensors

Gases are emitted at every stage of combustion, and unique gas characteristics can be
used to reliably detect fires. Jackson et al. [72] identified the density of CO, CO2, H2, O2,
and smoke produced by wood fire, cotton fire, plastic fire, liquid n-heptane and spirit fires.
The chemical composition of smoke from various types of fires varies radically, according
to their source. CO is the best of the four warning gases, appearing in all six types of fires.
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CO fire sensors that work at room temperature, require a low-power source in comparison
to traditional detectors and can protect against smoldering fire, including the combustion
of organic materials in which substantial amounts of carbon dioxide are emitted early in
the combustion process [73].

Liu et al. [74] presented a thorough analysis of gas sensing technology and compared
the selectivity and sensitivity of various gas sensing technologies. Energy consumption,
response time, reversibility, adsorption capability, stability, manufacturing costs and other
parameters were discussed. By measuring the change in gas sensor output, the existence of
gases in a certain position is sensed by the gas sensor. The existing gas sensors are based
on catalytic beads, semiconductors, optics, photoionization, acoustics, IR, electrochemistry,
gas chromatography, calorimetric systems, etc. Compared with the components of good air
quality, air quality standards are disturbed by fire hazards. In the case of fire hazards, a
significant amount of CO2 is emitted [75], and the most harmful gases in a fire are CO and
HCN [76]. The oxygen content drops as the CO content rises. Low oxygen concentration
changes are a sign of smoldering, while a high oxygen concentration change is a warning
of the combustion of liquid fuel. Catalytic bead sensors, also known as pellistors, are the
most common sensing elements for detecting combustible gas concentrations in the air
(Figure 7a). They can be used in mobile and stationary equipment in mines and other
industries to indicate the presence of explosive conditions [77]. One of its issues is that their
output signals fluctuate with changes in ambient temperature. In the event of explosive
situations, it can result in either false alarms or a lack of response [78]. Numerous types
of gas sensors have been used, but semiconducting metal oxide gas sensors have received
a lot of attention because of their low cost, ease of operation, high stability, and ability to
respond to a wide range of chemicals.
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3.2.1. Metal Oxide Semiconductor Gas Sensors

Metal oxide semiconductor (MOS) gas sensors have high sensitivity and a low price.
The gas sensing mechanism of MOS-based sensors is primarily based on changes in resis-
tance caused by chemical interactions between target gas molecules and adsorbed oxygen
ions on the MOS surface when they are exposed to the target gases. They do, however,
have stability concerns that lead to a false alarm. By applying additional layers (such
as zeolites) over metal oxides, the discrimination of these sensors can be enhanced [79].
Some composite materials also demonstrate better-quality performance for gas sensors of
this type [80]. A sensor array is chosen for multi-parameter gas sensors [81]. The usage
of polymers in gas sensing applications has been demonstrated in the enhancement of
sensitivity, because its doping levels are easily modified by chemical interactions with
various analytes at ambient temperature, giving a straightforward technique for detecting
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gas analytes [82]. In order to detect electronic fires, Riches et al. [83] tested the sensitivity
of surface acoustic wave (SAW) and metal oxide semiconductor (MOS) sensors. The SAW
detector detects fire by evaluating the frequency change caused by the absorption of gas
or vapor on the surface of piezoelectric crystal. The conductivity of a metal oxide sheet in
organic vapor is measured by the MOS sensor, which detects fire. A micro-machined tin ox-
ide system was developed and manufactured by Mandayo et al. [84] for CO detection. An
Au/MO (metal oxide)/n-low temperature polysilicon MOS Schottky diode was designed
by Juang et al. [85] on a glass substrate. Because of having a large band gap along with
a high surface to volume ratio, SnO2 has the highest relative sensitivity ratio of multiple
metal oxides, such as SnO2, TiO2, and ZnO. To detect fire-related gases, such as benzene,
CO, and isopropanol, a gas sensor was developed by Abid et al. [86] using SnO2 nanowires.
When heated to 200 ◦C, it detects cotton, beech, and printed circuit board smells. It operates
on the principle of calculating the variation in the resistance of the components of the
sub-sensor caused by the above gases. A new class of metal-oxide sensor for fire detection
uses metallic heaters, such as Pt, Pd, Ag, Ni, and Cr to raise the sensor temperature to
the desired value [87]. As a result, simple and inexpensive gas sensors based on device
resistance measurements have been developed (Figure 7b).

3.2.2. Optical Gas Sensors

The optical gas detection method based on the principles of spectroscopy is more reli-
able and sensitive and has a short response time. However, with these detection approaches,
the main issues are their high cost and large size. Heidari et al. [88] suggested a technique
in miniaturized form to build these gas sensors. Their technology uses microfluidic penetra-
tion and is ideal for detecting CO2, CO, and some other gases. Dankner et al. [89] designed
an electronic-optical gas sensor. It can monitor and transmit alarm signals before fire or
explosion, and detect flammable paraffin, aromatics, and hydrogen sulfide at low concen-
trations. Furthermore, the developed gas sensor is able to work in diverse environmental
conditions, including rain, fog, aqueous vapors, and nebulized gases.

3.2.3. Acoustic Gas Sensors

A gas detecting method based on acoustics is reported in the literature, which displays
a change in acoustic wave velocity due to the variation of particular parameters (such as
mass) of sensing material [90,91]. The measuring gas is passed through by a wavelength or
intensity-modulated LASER beam. The molecules of the LASER beam absorb and release
energy and produce an acoustic wave that is sensed by an acoustic sensor [92]. The acoustic
wave’s size offers information on gas concentration.

3.2.4. Miscellaneous Gas Sensors

A classifier-based gas identification method was proposed by Shi et al. [93] and various
gas identification algorithms were used to accurately detect fires. The measurement of
parameters, including temperature, CO and CO2 can be used not just to identify early fire
but also for building comfort. A wireless gas measurement device such as CO2 and CO with
ambient temperature and humidity was developed by Kumar et al. [94]. Researchers have
also investigated the use of the FTIR spectrometer for fire detection [95]. FTIR observes
the spectrum from 2.5 to 25 mm and measures the existence of several species of interest,
allowing for timely fire detection with minute false alarms. FTIR measurements also
provide a large amount of other data before ignition and early fire, comprising monomer
species, olefins, unburned fuels, oxalates, and pyrolysis products [96]. The integrated
CO and smoke sensor will alleviate the inadequacies of either CO or smoke sensors in
fire detection and deliver improved fire sensing by differentiating numerous nuisance
sources and enhancing sensitivity [97]. Qiu et al. [98] developed an early warning fire
detection system based on the wavelength modulation spectroscopic CO sensor using a
32-bit system-on-chip that can detect fire in 24 s with no false alarm.
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3.3. Flame Sensors

The fire itself is a radiation source, which can be sensed by identifying the radiation
generated in the combustion zone [99]. Flame is the visible part of fire, which is caused by
the exothermic reaction between fuel and oxidant [100]. The flame temperature depends on
the material being burned. It has both features of flame that are color (chromatic properties)
and radiation. Centered on non-visual and visual techniques, there are two methods of
flame detection. The non-visual technology is based on flame radiation, while the visual
technology is based on the color of the flame.

3.3.1. Non-Visual Flame Detection

The radiation emitted by the flame depends on the temperature of the flame and the
type of fuel burned. The ultraviolet, visible, and infrared sensors are available for flame
sensing and categorized on the basis of their spectrum. Xu et al. [101] designed a flame
sensor based on three photovoltaic cells. The three photocells test the spectral bands of IR,
visible, and UV, respectively. Owing to the deposition of aerosols on receptor glass, the ratio
of false positives is increased in the UV flame sensors. The UV sensors emit UV spectrum
sparks that serve as a warning to interrupt the sensor. Pauchard et al. [102] suggested a
model with the aid of a UV flame sensor to remove the impact of sparks. A low-cost near-
infrared (NIR) photodetector for flame detecting has been described by Lacovo et al. [103]
based on colloidal quantum dot (CQD) technology using a PbS semiconductor. Two SiC
photodiodes were used and the relationship between the temperature variation and the
shape variation of the 260–350 nm OH band was utilized for flame detection.

3.3.2. Visual Flame Detection

The issue with customary fire, smoke, flame, and gas sensing sensors is transport
delay. To trigger them, it takes time for particles to hit the point sensors, and thus limited
coverage area is another problem. Therefore, large numbers of point sensors are needed
to cover large areas. Fire has several characteristics, such as size, position, color, growth,
burning degree and dynamic texture [104]. Although all of these data cannot be captured
by conventional sensors, human presence is required in order to verify the rationality of
these alarm signals because these traditional sensors may send out erroneous alert signals.
All of these concerns can be greatly decreased by employing cameras to gather fire photos
and evaluating them for fire detection. In order to minimize the cost, a surveillance camera
can be used instead of a dedicated fire detection camera. The two types of cameras utilized
for flame detecting are IR and visible cameras.

The flame was detected by an infrared thermal imager, and a hidden Markov model
was used for flame flicker detection by Toreyin et al. [105]. The camera offers various
formats of image signals, such as JPEG, RGB, RAW, etc. The algorithm is then used to
process these signals to forecast fire or non-fire frames. Broadly speaking, there are two
ways to design algorithms. The first method is based on learning, and it involves extracting
a dataset of fire and non-fire test photos to refine the device. These are neural network-
focused deep-convolution algorithms. In this direction, research is still in its early stages.
In the second method, color, form, flicker frequency, and the dynamic structure of fire are
significant elements. In fire detection applications, the RGB, Hue, L*a*b*, YUV, and HSI
color spaces are utilized.

For flame detection, Celik et al. [106] used YCbCr color space. This color space
efficiently distinguishes brightness from chrominance. Kozeki et al. [107] explored the
use of a thermal camera system to detect and monitor burning fires using appropriate
image processing algorithms. The experimental results show that the effect of image
processing software on the combustion stage of silk/cotton mat and that of non-fire dangers
(e.g., electric radiant heater) is correct. Khalil et al. [108] proposed a model which used
multicolor space and background modeling that has an average detection rate of 97.1%.
Chen et al. [109] demonstrated different features of fire detection in the fusion method, that
is flame movement, color traces, and a flame flickering detection algorithm. For fire pixel
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detection, Celik et al. [110] used CIE L*a*b* color space. It does, however, have high false
alarm proportions [111], which is only appropriate for short distances and major fires [112].
A basic flow process for fire pixel detection from the original image using RGB and YCbCr
color models is given in Figure 8.
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Only color information is not enough to obtain reliable results; the movement of fire
is another element. Similar to other moving objects (such as walkers), their behavior is
distinct. Different techniques are reported in the literature [113], such as the method of
background subtraction, temporal differentiation, and optical flow analysis [114]. The
motion features and YUV color model for fire detection were used by Marbach et al. [115].
Gunay et al. [116] used the Markov model to distinguish the flame motion from other
objects with similar flame color, and the temporal wavelet analysis is used to detect the
flame boundary. In addition, the authors have programmed an active learning function
based on LMS. Toreyin et al. [117] used the temporal wavelet, spatial analysis, and heuristic
thresholds for color and movement data for flame detection, which is impractical for fire
hazards in real life. A system for fire-flame detection was proposed by Habiboglu et al. [118],
where a mobile camera detects moving fire pixels without background removal. For each
space-time block, they used time-based, color, and spatial information in feature vectors,
but the system’s range of detection is very limited. Ko et al. [119] proposed flame detection
using fuzzy finite automata, and this approach takes the irregularity of the flames into
account. Wang et al. [120] used color and movement likelihood determination to form
feature vectors for the detection of flame. The Wald–Wolfwitz algorithm is applied to
feature vectors, and then convolution is used to improve the reliability. A stochastic
method based on color and motion characteristics was proposed by Zhang et al. [121].
Foggia et al. [122] suggested a form of fire detection that uses a multi-expert system based
on color, shape variation, and motion analysis. The relative change of the red, green, and
blue pixels in the histogram-based strategy is another interesting warning. If the green
pixel has a large standard deviation, it indicates that further validation is required [123].

Another function is the image frame’s dynamic texture analysis. This function can
improve the precision of fire spotting, but the price of computing is higher, and a significant
stage in video fire detection is edge detection. Dimitropoulos et al. [124] used dynamic
texture analysis to detect flames in video. Qiu et al. [125] suggested a flame edge algorithm
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with steps, such as Sobel operator, gray level adjustment, smoothing, TH and TL adjustment,
and PEI removal of irrelevant edges to obtain simple edges. A visualization technique for
flame sensing through logistic feature regression was proposed by Kong et al. [111]. It
has the advantages of being simple to construct and computationally light for real-time
fire detection, and a slight loss of sensitivity is used to minimize false alarms by temporal
smoothening. Chi et al. [126] used color, complex texture, and contour function for a wide
range of almost 50 m of fire detection. Based on the fractal dimension, the fire contour
is analyzed, and the gradient motion history picture is used to extract moving regions.
Shen et al. [127] used YOLO’s flame detection model and compared it with methods of
shallow learning. Moreover, it was proposed to incorporate other deep learning techniques,
such as Boltzmann, auto-encoder and so on for potential improvements.

3.4. Smoke Sensors

Smoke is emitted far earlier than other fire characteristics throughout the growth
and development phases. In the initial phases of fire, quick smoke detection will increase
the likelihood of effective fire suppression, successful firefighting, escape, and survival.
Through making a light beam or electromagnetic radiation pass the interface of the particles,
smoke can be detected. Smoke mass concentration, volume fraction, and size dissemination
are known as primary smoke detection parameters. Smoke detectors must be able to
respond to combustion and the smoke generated by flaming because there are significant
differences in the structure and composition of the smoke generated by these fires [128].
The smoke produced by the burning flame is often larger than the combustion product
particles. Fire creates smoke during combustion, which is a collection of solid particles,
liquid particles, and gases in the air. It is created by material combustion and also reduces
the air quality in the environment [129]. For smoke measurement, non-visual and visual
techniques are used. They are summarized according to their characteristics as below.

3.4.1. Non-Visual Smoke Detection

Smoke measurement depends on the conditions of smoke combustion, for instance,
pyrolysis, flaming, and smoldering. The method for detecting smoke is determined by
the type of fire and its location. Smoke measurement technology based on photoelectric is
specifically used for smoldering and can detect fire more quickly. The smoke is measured
by the ionization level of the air by an ionization smoke sensor. The detection is done
by creating a potential difference between the chambers and measuring the current that
results. The ability of smoke to scatter light is determined by the amount of smoke in the air.
By measuring the difference in light dispersion using an optical device, the photoelectric
smoke sensor calculates the smoke level [11]. The ionization chamber smoke detector
(ICSD) senses the fire generated when smoke particles reach the ionization chamber and
alter the current by interfering with the ions’ flow. The movement of ions is influenced by
temperature, pressure, gas composition, and moisture. One kind of ICSD with segregated
ionization chambers has been designed to accomplish detection sensitivity; one chamber
was completely sealed and not affected by the environment, while the other chamber was
exposed to ambient air samples [130].

The multi-point induction detector, which combines smoke detection with other types
of sensors, is seen to be a good option that can deliver a varied range of detection capa-
bilities and minimize the irritant alarm without sacrificing the sensitivity of the smoke
detector [131]. A multi-sensing detector was generated to detect both burning and smolder-
ing flames by combining optical smoke detection with thermal sensing [132]. A substitute
for ionization detectors is the integration of optical and thermal sensors with intellectual
algorithms. Other multimodal sensing research includes detectors that combine photo-
electric and gas sensing [133], ion and gas sensing [134], and photoelectric and ion with
thermal sensing [135]. Gottuk et al. [136] presented multi-sensory smoke sensing methods,
using various smoke measurement combinations, such as photoelectric-based gas sens-
ing and ion-sensing gas sensing, to minimize false alarms. In an open door apartment,
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Jeong et al. [137] studied the smoke path and also built a fire field model to calculate the
pace of fire spread. Liu et al. [138] suggested a smoke particle detector with an amorphous
silicon film as the radiation source. A highly sensitive smoke detector was introduced
by Bakhoum et al. [139] in which the alpha particles impact the MOSFET’s gate terminal
and generate a positive charge. The surge in smoke particles in the region of the detector
reduces the amount of alpha particles on the terminal of the gate, causing a reduction
in the current that indicates a rise in the amount of smoke. Aspey et al. [140] devised a
smoke optical detection device, composed of optical fiber, white polychromatic LED, Pyrex
glass window and photodiode, to provide information on the burning materials. For wood
smoke, the authors analyzed the transmission spectrum.

3.4.2. Visual Smoke Detection

Smoke and fire both can be captured by cameras. The flow of smoke is quicker and
presents usually at the beginning of a fire, but compared with flame detection, it is difficult
to detect [141]. For flame and smoke detection, pixel rules for the values R, G, B, and
models have been established based on different color spaces to show better results [142].
Gubbi et al. [143] detected smoke via the block approach by discrete cosine transforms
and wavelets. In order to eliminate the false positives caused by the heuristic function,
Ko et al. [144,145] suggested a luminance map and Bayesian network algorithm based fire
sensing approach that supports the vector machines (SVM) algorithm. It needs a large num-
ber of frames, so the response time is long. In the video-based detection, Yuan et al. [146]
used dynamic texture analysis to detect smoke. Qureshi et al. [147] developed a flame and
smoke detection system based on color and motion cues. To enhance the system’s effi-
ciency, they conducted morphological operations. Yuan et al. [148] merged Adaboost with
a smoke detection staircase search technique and used dynamic smoke validity analysis
to improve the effectiveness of smoke detection. This method for fire detection provides
good performance if the trained dataset is quite big and algorithms are portable without
sacrificing precision.

Convolutional neural networks (CNNs) have enabled vision-based systems to detect
fire and smoke during surveillance following recent developments in embedded process-
ing [149,150]. It is one-of-a-kind in that it can efficiently recognize and understand patterns
in images and feed-forward. Sergio et al. [151] proposed a real-time and embedded imple-
mentation of smoke detection technology that can be used with conventional surveillance
video cameras using YOLOv2 CNN. Khan et al. [152] proposed an early fire detection
framework for CCTV security cameras that use fine-tuned CNNs to detect smoke in a
variety of interior and outdoor scenarios, and correspondingly proposed a model for hazy
environments using semantic segmentation architecture [153]. Yakhyokhuja et al. [154] em-
ployed dilated convolutions to detect smoke, which was fully automated and the amount
of false alarms was reduced due to generalization. Figure 9 shows a basic model of deep
learning algorithm CNNs.
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3.5. Multifarious Sensors

In the literature, additional fire detection technologies are mentioned. For fire and
motion detection, Ruser et al. [155] presented an ultrasonic microwave multi-sensor fusion
technique. The Doppler shift of an ultrasonic signal was used to assess the fluctuation
in smoke density and heat. Schmitz et al. [156] proposed a sensor design based on the
unique sensory process of fire measurement which is found in a specific type of insect.
A sensor using a current loop circuit made up of numerous nickel wire segments was
proposed by L’vov et al. [157]. Each section contains a voltage that can be evaluated using
a microprocessor. Ishigaki et al. [158] suggested an approach to information fusion with
only a single sensor. Each sensor is ideal for a specific variable to be sensed, nevertheless, it
is also vulnerable to a slew of other factors that can act as disturbance or noise signals. In
order to achieve more precise fire detection, a novel way of detecting fire was tested using
microholography by Hai et al. [159]. The microscopic holographic technology is capable
of detecting three-dimensional models of fire smoke particles. Recently, Zhang et al. [160]
have presented a dynamic model for fire detection based on triboelectric nanogenerators
and fluid-dynamic modeling that can capture multi-directional breeze energy and be self-
powered. The following are the various types of miscellaneous approaches that have been
reported for fire detection.

3.5.1. Microwave Radiometers for Fire Detection

Under severe conditions, microwave radiometers can also be used for fire detection.
Sensors based on these technologies, in the presence of smoke, vapors, and dust work
suitably. These strategies are appropriate for fire sensing in open regions, such as forests. A
Ku band radiometer prototype for forest fire findings was suggested by Bianchi et al. [161].
The current studies in this field were further addressed by Dvorak et al. [162]. The signifi-
cance of the parameters of fire spot emissivity, which was not found in previous studies,
was discussed, and measurements were made for various fire types.

3.5.2. Acoustic Wave Fire Detection

Surface acoustic wave sensors can also be used in harsh environments for fire detection.
They are small in size and powerful and can work under conditions of variable frequency
and high bandwidth. These sensors are wireless, passive, and less radiation-affected.
Therefore, they are useful for other fields, such as industry and aerospace. However,
during resonant frequency measurement, these sensors have a number of disadvantages.
An algorithm to correct these errors was proposed by Liu et al. [163]. Beisner et al. [164]
suggested sound wave-based fire elimination research and found that the sound waves at
30.6 Hz are ideal frequency waves for rapidly stopping the flames. Salauddin et al. [165]
developed a space station fire extinguishing system based on sound waves.

3.5.3. Deep Learning for Fire Detection

Deep learning is used to handle challenging problems in the realm of digital image pro-
cessing, such as picture colorization, classification, segmentation, and detection, which are
the core aspects of fire and smoke detection. Deep learning technology incorporates a non-
linear and complex model abstraction transformation into a vast database. Hong et al. [166]
presented a combination of machine learning, as well as an adaptive fuzzy algorithm, with
a fire detection accuracy of above 95%. The model contains five convolution layers and one
fully-connected layer that learns two classes of fire situations and warning situations. The
Qin et al. [167] model classified fire images using depthwise separable convolution and
YOLOv3 for target classification and position regression; detection accuracy was 98% with a
detection rate of 38 frames per second. Using large fire dataset imagery to generate accurate
predictions, Avazov et al. [168] developed an enhanced YOLOv4 algorithm that accurately
detects even little sparks in varied weather conditions and sounds an alarm within 8 s of a
fire outbreak. The multimodality fusion approach suggested by Ren et al. [169] was efficient
in identifying electric fires by locating the arc fault that causes electrical fires in the build-
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ings’ low-voltage distribution system. In comparison to earlier studies, Park et al. [170]
proposed an algorithm utilizing ELASTIC-YOLOv3, temporal fire-tube, and histograms for
real-time fire detection at night in urban areas, which demonstrated good results at night.
Deep learning has pushed the boundaries of what was previously thought to be achievable
in the field of digital image processing.

3.5.4. Fire Fighting Robot System

The fire detecting system based on immovable sensors has limitations. Under harsh
conditions, the mobility rendered to the fire sensors makes them comparatively secure.
These limitations can be overcome by deploying fire sensors and extinguishers deployed
robots. In order to detect and fight fire, robots can travel on the ground or fly. Causalities
and dangers of firefighters may be reduced in this way. In order to make lightweight robots,
research is being carried out so that it is easier for them to fly. Liu et al. [171] addressed the
ongoing research in this field and identified the various characteristics of current firefighting
robots as well as the sensors they employ. Ando et al. [172] suggested flying a lightweight
robot-style hose propelled by a water jet near the fire source. To control the trajectory of
emissions, it contains a nozzle module and motors on the top. A hydraulic based firefighting
snake robot was built by Liljeback et al. [173], and its applications and design challenges
were addressed. Researchers at the Italian Institute of Technology have created a walk-man
firefighting robot, which has a human form and is capable of carrying up to 10 kg of
weight and lifting a variety of goods [174]. LUF technology devised a ground vehicle robot
(LUF 60) for outdoor firefighting. Smoke reduction, stair climbing and fire extinguishing
are the characteristics defined for this robot, and they stated the capacity to throw water up
to 80 m in height at a rate of 800 GPM [175]. Parosha group designed another firefighting
robot vehicle, that has feathers of laser range finders, thermal imagers, and an acoustic
detection system [176]. The Control Farayand Pasargad (CFP) group manufactured a
turbine aided firefighting robot that has feathers of smoke reduction, obstacle clearance,
remote activity, and fire extinguishing [177]. Howe and Howe technologies created the
Thermite RS1-T3 robot [178]. High-definition analog camera and infrared FLIR were used
by the robot to acquire fire data, and it has a huge water distribution capability of 1250 GPM.
Firemote is a UGV fire robot made by the Ryland research team [178]. The function is that it
operates and distributes water and foam to extinguish a fire in hazardous areas. Archibot-m
is a water-resistant firefighting robot produced by DRB fate Ltd., that detects fire using a
visual camera. The most remarkable feature of this robot is that it is suitable for indoor
firefighting operations and effective stair climbing [179]. The demolition process is also
required in the fire threat region to clear the escape path. Brock is a robot, specially designed
for narrow working areas (such as climbing stairs) designed by the Brokk company [180].
Fire extinguishment is the foremost objective of these firefighting robots. Water, chemicals,
foam, and CO2 are used by traditional fire extinction techniques, however, in dangerous
scenarios, their use will cause issues.

4. Conclusions and Perspective

Several innovative fire sensing systems developed in the past decade possess the
exceptional potential to decrease false alarms, improve fire sensitivity and quick response,
and increase fire safety. This section provides an overview of the research that has been
performed in the field of fire detecting technology. It focuses on sensor actuator-based fire
detection systems for buildings. It outlines the shortcomings and limitations of existing fire
sensing systems and provides suggestions for essential changes. The basic goal of a fire
detection system is to identify fire early, with as few false alarms as possible. A quick fire
detection system necessitates a sensor with a quick response time that can sense fire threats
in their early stages.

Pre-flashover and post-flashover periods have often been used to split the course of a
compartment fire. It is stated that understanding the course of a fire before it flashes over
is critical for saving lives, and understanding its characteristics after it flashes over gives
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a foundation for creating property-saving measures. During a rescue, PEFs evacuation
conditions put both firefighters and trapped persons in grave danger, which may be
successfully dealt with using BIM.

Heat sensing systems are more reliable and provide fewer false alarms, but they are
sluggish to react. By mobilizing these heat sensors, their response time can be enhanced.
Heat sensors are usually mounted on the walls or ceilings, and fire spreads mostly through
the flooring. Optical heat detectors that use a change in refractive index are highly sensi-
tive to even modest temperature changes. It is important to conduct research into their
application in fire detection systems, and their light weight and low-power units must
be able to meet the latest wireless sensor network requirements. Optical heat sensors are
widely used in mines and tunnels, according to the majority of the literature. However,
they are ideal for use in environments with galleries, big halls, and complex spaces. It can
replace and minimize the budget of using a number of point heat sensors in a building.
Direct automated actuation signal for valves utilized in fire extinguishing systems is ideal
for bi-metal style heat sensors. Thermal sensors based on the rate of heat change are ideal
for fire detecting applications since an absolute temperature value is inadequate to sense a
fire danger. However, change rate data can be obtained from any non-rate type of thermal
sensor by altering the algorithm employed on the output signal of the thermal sensor. It is
important because non-rate heat sensors are quicker to respond than rate style heat sensors.
The thermistor is a small, light, and responsive temperature sensor. In the literature, better
linearization algorithms are provided that can be put in sensor arrays and are appropriate
for fire localization. However, further research is needed to evaluate their feedback for
various shape arrays. These sensors are preferred over conventional thermal sensors with a
bulkier mechanical structure.

A smoke sensor has a high false alarm, but the combination of visual sensing systems
can increase its performance. Different sensors produce different signal formats, and
effective signal conditioning is required for their interaction with other sections of the fire
detection system. The existing signal conditioning hardware and algorithms are inadequate
and there is a lot of room for improvement.

The main issues with most gas sensors are irreversibility, volatility, and low selectivity,
and as a result, their usage in buildings is restricted. Metal oxide semiconductor gas sensors
have high sensitivity and are inexpensive. However, their inability to maintain equilibrium
necessitates temperature compensation. Since temperature usually varies during a fire
hazard, this aspect becomes even more significant, because it has the potential to reduce
the productivity of gas sensors. Hence, it is necessary to carry out experimental research on
the temperature recompense of CO, CO2, HCN, and other fire dangerous gases produced
during fire. Nonlinearity is another issue with metal oxide semiconductor gas sensors.
As a result, compensation in the form of hardware or software is also required to account
for this aspect. The gas sensor based on carbon nanotubes has a high sensitivity, is less
corrosive, and has a low cost, short response time, strong adsorptive capability, and a wide
bandwidth. Optical gas sensors are highly sensitive, selective, and reliable but they have
heavy weight and are more expensive. Further study is needed to minimize their price and
weight for application in smart constructions.

Non-visual fire sensing methods are supplemented by vision-based fire, flame and
smoke detecting approaches. Both visible and infrared camera detecting approaches have
benefits and limitations. Near-infrared cameras are less expensive, but they have a limited
range. Thermal distance issues, IR blocking, and thermal reflection are all disadvantages of
IR techniques.

Deep learning allows for better accuracy in fire detection, including picture classifica-
tion, semantic segmentation, object detection, and simultaneous location when compared
to traditional computer vision techniques. Deep learning applications require less expert
analysis and fine-tuning since neural networks are trained rather than programmed, allow-
ing them to take advantage of the massive amounts of video and image data available in
today’s systems.
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The use of robots in the detection of fires has opened up a new research field. The
firefighting robots will supplement the work of human firefighters, while they cannot take
their place since human intellect surpasses that of robots. However, if there is a major fire
hazard, human life cannot be put in jeopardy, and using robots is a safer choice. They
could either be self-contained or governed by humans on the outside. The importance
of balancing when running cannot be overstated. In this regard, robots are currently not
up to par with humans. The fire extinguishing and sensor systems mounted on them
make them heavier, which makes balancing and reaching high speeds difficult. This is a
significant issue for indoor fire detection systems. At present, the emphasis is on using
robots to extinguish fires in emergency situations, and, in the vast majority of situations,
this procedure is carried out from outside the burning building.

In the fire sensing system based on a wireless sensor network (WSN), detectors are
placed as detector nodes with built-in communication hardware. The key problem is to
make them low-power, stable, and error tolerant. The flame sensor has a high false alarm
due to infrared, visible, and ultraviolet radiation. These interferences are caused by non-fire
sources and need to be compensated. EMI/RFI noise will also affect the performance of the
sensor, so it needs to be studied.

Fire detection and control is a complicated operation. Because of its various phases,
diverse appearance, colors, emission spectra, combustion fuel, and position, complexities
arise. In these circumstances, using fuzzy logic and deep learning-based algorithms to
improve the current fire detection system’s performance could be beneficial. Optimization
techniques need to be improved to minimize false alarms. After simultaneous interpret-
ing, all data from various sensors must be processed and analyzed according to sensor
fusion technology.
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