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Abstract: Managing citizen and community safety is one of the most essential services that future
cities will require. Crowd analysis and monitoring are also a high priority in the current COVID-19
pandemic scenario, especially because large-scale gatherings can significantly increase the risk of
infection transmission. However, crowd tracking presents several complex technical challenges,
including accurate people counting and privacy preservation. In this study, using a tile-map-based
method, a new intelligent method is proposed which is integrated with the cloud of things and data
analytics to provide intelligent monitoring of outdoor crowd density. The proposed system can detect
and intelligently analyze the pattern of crowd activity to implement contingency plans, reducing
accidents, ensuring public safety, and establishing a smart city. The experimental results demonstrate
the feasibility of the proposed model in detecting crowd density status in real-time. It can effectively
assist with crowd management tasks such as monitoring, guiding, and managing crowds to ensure
safety. In addition, the proposed algorithm provides acceptable performance.

Keywords: outdoor localization; crowd safety; crowd monitoring; mobility; thermal cameras; cloud
of things

1. Introduction

The efficient management of citizen and community safety is one of the most important
services required for future cities. In particular, the management of safety, specifically crowd
management, is crucial during large-scale outdoor gatherings, such as those at beaches,
public parks, gardens, or public open spaces, or at sport, entertainment, or religious events.
In these spaces, it is important to monitor, guide, and manage large groups of people to
ensure their safety.

Crowd management is a difficult undertaking that has an impact on how public
spaces operate. In particular, analysis and monitoring are high priorities in the current
COVID-19 pandemic scenario. Even more so, following an initial lock-down period during
the pandemic, communities are still unsure how to resume normal life while the virus is
still circulating in the community [1,2].

Large-scale gatherings can significantly increase the danger of transmission of infection.
Hence, there is a vital need to develop a real-time crowd monitoring system that can
detect and intelligently analyze patterns of crowd activity in order to implement effective
contingency plans, reduce accidents, ensure public safety, and establish a smart city. With
an intelligent crowd-monitoring system capable of monitoring a crowd’s movement, it will
be easier to maintain social distancing safety in small and large public areas. Maintaining
a minimum physical distance (also known as “social distance”) has been one of the most
important means of disease control implemented by many nations worldwide. The main
question here is how to follow social distancing policies and limit the size of gatherings
in open public spaces. In this research, we propose a new method for the intelligent
monitoring of outdoor crowd density using a cloud of things and analytics. This study
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focuses on crowd monitoring in static locations; that is, when people congregate at a certain
spot or when a crowd moves from one place to another.

However, the tracking of crowd movement faces several complex technical challenges,
particularly in terms of accurate head counting and the preservation of privacy. The
design and application of sensors and procedures must be such that individual privacy is
assured at the same time that accurate information is provided about the crowd density at
the location.

The Internet of Things (IoT) has greatly improved numerous applications such as
healthcare systems, indoor tracking, and mobility monitoring in urban environments by
combining communication technologies and data analytics [3]. In addition, data from
mobile devices has received a lot of interest as human mobility becomes more essential
in many smart-city applications, such as the global positioning system (GPS), which has
been the most extensively utilized technology for outdoor positioning. In this work, IoT is
integrated with cloud and GPS-based mobility to improve crowd tracking and produce
accurate crowd size estimations.

In summary, the contributions of the research described in this study can be listed
as follows:

- A highly-structured intelligent method integrated with the cloud of things and data
analytics for monitoring outdoor crowd density.

- A map tile mechanism for open outdoor spaces that divides the map area into multiple
map tiles to adjust the social distancing in the outdoor area and control the density of
moving objects in a given location.

- A crowd data collection and monitoring system for the tracking of crowd movement
and estimation of crowd size. The proposed system combines GPS-based mobility and
thermal cameras. This addresses the challenge of obtaining accurate crowd density
estimates, as the shortcomings of one technology are compensated for by the features
of the other.

The remainder of the study is organized as follows: Section 2 explains the background
and current works relevant to this field of study. Section 3 explains the architecture of
the proposed structure including crowd data collection and monitoring, outdoor map
tile mechanism, and cloud IoT big data processing and analytics. Section 4 describes the
experiments and presents the results of the evaluation of the proposed algorithms. Section 5
concludes the study with suggestions for future research directions.

2. Background and State of the Art

In recent years, a variety of crowd monitoring systems have been developed, and
a variety of sensor types have been used to provide input to them. This section gives
an overview of the most common sensor types used in crowd monitoring systems, as
well as their shortcomings. Crowd mobility analytics is concerned with determining the
distribution of people and their movements in certain locations. In general, computer
vision-based approaches, RFID sensors, automatic counting systems, Bluetooth and WiFi
sensors, and GPS sensors are some of the monitoring tools that offer real-time information
about crowd movements.

Computer-based approaches make the classification based on features learned from
photos or videos to discover people. Reference [4] proposed using an optimal neural
network for improving the detection accuracy and speeds in order to estimate crowd
density. References [5,6] proposed a mechanism to identify the object from images or video
feed taken from different cameras. Reference [7] proposed a mechanism to detect dense
crowds in images. Reference [8] proposed image processing approaches that can assist
both data collection and online crowd monitoring, utilizing current closed-circuit television
systems (CCTV). Reference [9] presented a tool that detects abnormal situations in crowd
movement, using optical flow algorithms. Reference [10] presented a method for estimating
crowd density based on variations in texture patterns in crowd photos. Several computer
vision-based methods were presented in [11], although they may compromise personal
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privacy. Furthermore, this sort of crowd monitoring system requires a substantial quantity
of support infrastructure (i.e., electricity and communication infrastructure), which might
be difficult to establish.

RFID (Radio Frequency Identification) sensors, both active and passive, are frequently
utilized at sporting, entertainment, and religious events [12,13]. Reference [14] developed
an RFID system for tracking pilgrims by using the RFID tag placed inside a mobile phone
and using the Internet to send location information to a server managed by the Hajj
authority. Apart from RFID, crowd identification and human motion tracking can be done
through WiFi and Bluetooth sensors, which capture communication signals transmitted
over WiFi/Bluetooth. Reference [15] presented a method for estimating travel time from
data gathered by Wi-Fi sensors. Reference [16] provided a system for crowd behavior
analysis using non-invasive Wi-Fi probes. In Reference [17], Wi-Fi sniffers were used at
an industrial show to capture WiFi probes from participants’ mobile devices, and mobility
habits in each monitored zone were examined. Reference [18] presented a system that
uses WiFi sensors to detect people flow based on a series of frequently visited sensing
zones. WiFi sniffer technology has been used for crowd detection and monitoring in certain
industrial products [19,20]. The shortcoming of using RFID is that the range of sensing
stations is relatively small. In addition, Wi-Fi and Bluetooth sensors require strict digital
security measures, which are inevitable to ensure public privacy and to identify and record
the MAC address of Wi-Fi-enabled devices in their vicinity.

Other digital sensors, such as thermal cameras [21] and depth sensors [22,23], have
recently been developed that can count pedestrians. The primary benefit of these modern
counting systems is that they inherently respect pedestrian privacy. According to the
literature, GPS trackers have been utilized for determining walking speeds, visitors’ routes,
and activity zones [24]. Similarly, smartphone applications have been used to control
crowds at the Hajj [25] and track traffic at music festivals [26].

In this study, the tile-map-based method for intelligent monitoring of outdoor crowd
density offers several advantages. First, the outdoor area is divided into map tiles, according
to the requirements of the place, to adjust the social distancing in the outdoor area and to
control the density of moving objects in a given place. Second, it makes use of the GPS
for crowd monitoring purposes. The growth of the mobile phone industry has resulted
in powerful phones that are now equipped with a variety of sensors, including GPS
localization. Privacy issues with GPS devices are typically minimal as users explicitly
consent to their movements being tracked. Third, the key significant technological advance
is the ability to combine both GPS-based mobility and IoT digital sensors, as seen in thermal
cameras. This addresses the challenge of obtaining accurate crowd density estimates, as the
shortcomings of one technology are compensated for by the features of the other. Finally,
the proposed system is integrated with the cloud of things and data analytics to provide
intelligent monitoring of outdoor crowd density using a tile-map-based method.

3. Cloud of Things in Crowd Engineering

The details of the proposed system for intelligent monitoring of outdoor crowd density
are presented in this section. Task automation is enabled by the system illustrated in
Figure 1 and by procedures based on data collected by the distributed sensors and GPS-
based mobility. The construction of the proposed approach involves the following: crowd
data collection and monitoring, outdoor map tile mechanism, and cloud IoT big data
processing and analytics. Technically, the system will gather crowd position data, using
GPS status and sensor assistance methods, and then build up a repository in a cloud server
through the Internet service provider. Using our outdoor map tile technique, the server
partitions the outdoor map into map tiles. In the final phase, data analytics and the cloud
of things are utilized to determine crowd density. Each step is described in detail in the
following sections.
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Figure 1. The task automation of intelligent monitoring of outdoor crowd density system.

3.1. Crowd Data Collection and Monitoring

For crowd movement tracking, and accurate crowd size counts, various techniques
are used for data generation and processing.

- GPS: In open spaces, the GPS data module is one of the best means of estimating
outdoor crowd sizes and observing pedestrian movements in a certain location. Smart-
phones have become one of humanity’s most ubiquitous technologies, as millions of
people now carry them and, therefore, they are equipped with assisted GPS in their
hands or pockets. A GPS utilizes smartphone networks in conjunction with a GPS
antenna to improve the speed of identifying or fixing positions. However, in some
cases, a GPS cannot operate in a location where there is no network coverage or if the
user does not collect his/her own location information.

- Infrared Thermal Imaging System: The number of people in a location can be deter-
mined by thermal image processing. It detects the density of the crowd in a particular
location via infrared radiation detection, which is triggered by body heat. Figure 2
shows an example of a thermal imaging system based on a temperature sensor array
to detect heat sources. Because thermal radiation penetrates smoke, aerosols, dust, and
mists more efficiently than it does visible radiation, it is superior to visible imaging
methods for detecting crowds in a wide variety of normally troublesome atmospheric
conditions. Table 1 summarizes the pros and cons of employing RGB and thermal
cameras to detect and track people.

Table 1. The benefits and drawbacks of utilizing RGB and thermal cameras to detect and track people.

Benefits Drawbacks

RGB
Not expensive
Re-identification possible

Privacy problems Shadows
light sensitivity

thermal cameras
No privacy issues Unaffected by light
Easier segmentation More expensive Reflections

To determine the crowd density in a location, the data collected by GPS devices in the
area are utilized. GPS positioning is based on trilateration, which is a technique for esti-
mating position by measuring distances between points with known coordinates [27–30].
Trilateration calculations use the coordinates (longitude, latitude) of neighboring cell tow-
ers, as well as the estimated distance between the device and the cell towers, to determine
the coordinates of a mobile device. Figure 3 shows the trilateration process used by GPS
receivers.
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Figure 2. Example of thermal imaging system based on a temperature sensor array.

(x1,y1)

(x2,y2)

(x3,y3)

(x,y)
r1

r3

r2

Figure 3. Trilateration used by GPS receivers.

Definition 1. Data detection is represented as tuple Ti = (Did, ti, li) where:

- Did is the device ID whose location will be tracked.
- ti is the timestamp showing when the user device entered or exited the zone.
- li is the latitude and longitude used to determine the user’s precise position within the zone

(spatio-temporal data of the user).

Anomalies/outliers in GPS data, which affect positioning precision, are an example of
sensor defects. The GPS signals may be affected by multipath error or obstructed in urban
areas in some circumstances. To address this issue, thermal image sensors can also be used
to provide detection of objects and count and to alleviate difficulties caused by a lack of
GPS signals. Compared with conventional image cameras, the superior capabilities and
accuracy of thermal imaging have led to the use of thermal cameras in people-counting and
tracking applications, particularly because thermal imaging uses a non-intrusive passive
sensor that also preserves privacy.

The proposed system consists of GPS-based mobility and thermal cameras that work
together to compensate for each other’s main shortcomings. GPS-based mobility provides
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a low-cost and preserving solution for crowd tracking and monitoring. Based on captured
GPS data, the system can count mobile devices in target tiles. Thermal cameras can provide
higher accuracy and optimized counts based on precise near-ground truth. The key idea
of the proposed cross-crowd detection approach is to form a database that stores the
correlation between the number of people and density captured by GPS-based mobility and
the number of people counted by the thermal camera with anomaly detection in GPS data.
Both GPS-based detection and thermal camera counts are reported to the cloud, where
data analytics modules reside. The analytical results are applied based on the correlation
between the two data modalities.

3.2. Outdoor Map Tile Mechanism

In this work, in order to determine the maximum number of people gathering at the
same time at a specific location in an outdoor space, we present a map tile mechanism for
open outdoor space as represented in Figure 4. The basic idea is to adapt social distancing
in the outdoor portion in order to control the density of moving objects in a certain location.

Outdoor map tile in cloud
Server

Outdoor map tile location  
in Client

Figure 4. Outdoor map tile mechanism.

In the map tile mechanism, outdoor space is split into map tiles depending on the
requirements of the location (Definition 2). Each tile contains X and Y according to the
location (longitude and latitude) of uploaded data in the server. A client-side local database
stores the map tile mti as well. Based on GPS-based mobility, the purpose of utilizing the
user device is to verify that the user is roughly situated in the map tile mti in the local
database.

In addition, data captured by the thermal image is decomposed into ∂ blocks. Each
block is then analyzed to calculate the density of moving objects in a certain block. The
data collected from both GPS-based mobility and sensor assistance methods results in a
build up of a repository in a cloud used to determine crowd density status.

Definition 2. The outdoor map area Om is divided into multiple map tiles (Om = mt1, mt2, . . .,
mtn; i = 1, . . ., n) where mti indicates a specific map tile. Let S be the square area of an outdoor tile;
then, the length of each tile is set to mti → S.

Definition 3. Assume that thermal image I is broken down into ∂ blocks. Consider the ∂i bloc
and crowd density d as the following: ∂i → I∂

d, where I∂
d represents the crowd density values of the

target block.
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The schematic diagram of the proposed crowd mobility tracking and crowd size counts
is illustrated in Figure 5. It shows the stages of the crowd-density assessment of a location
using GPS status and the proposed thermal distribution of the crowd monitoring system.
As shown in Figure 5, the GPS-based mobility counting stages convert X and Y according to
the location (longitude and latitude) into tile values. In each map tile, the number of people
and the density are extracted based on GPS status. The thermal distribution of the crowd
monitoring system (Figure 5) shows the stages involved in the thermal counting of people.
The thermal image is first upsampled, which increases the size and quality. After that,
the foreground image is subtracted from the background image. The equalized image is
converted to binary. The blob detection method is applied (Definition 4) to the foreground
image to separate the merged blobs. It can help to distinguish people passing close to each
other [31]. Finally, we extract the detection results, and the number of people and density
are displayed.

Definition 4. Laplacian of Gaussian (LOG) is applied in the ∂i block to detect blobs and identify
the possible crowd density values of the target block.

Stage 1: Input crowd data collection

Om = mt1, mt2, ... , mtn;  
mti         S

∀mti ∈ 1, ... ,n

Object counting

GPS-based mobility thermal camera

I                    ∂ blocks

Stage 2: Applied the map tile mechanism

decomposed 

Removing background

Filtering

Object Detection

Stage 3: Pre-processing and counting  

Stage 3b: Object count

Result comparison and
optimized count

Stage 4: Comparison 

Stage 2: Applied the map tile mechanism

Convert x, y to tile value 

Stage 3a: Pre-processing at Sensor (Object
Detection via Image Processing) 

 

Figure 5. The schematic diagram of the proposed crowd mobility tracking and crowd size counts.

3.3. Cloud IoT Big Data Processing and Analytics

Our cloud-based system for the intelligent monitoring of crowds has a number of
advantages. To create an effective infrastructure, more than mere sensors and an Internet
connection are required. Indeed, a system capable of collecting, storing, analyzing, process-
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ing, and managing the huge amount of intelligent data created is required to support this
infrastructure (the big data challenge). Accordingly, the cloud-based system can handle
massive data storage and intensive data processing and analysis tasks. It can also provide
users with real-time information on the crowd density in a specific location, and it enables
them to make well-informed and timely decisions.

The data from the bottom layer is modeled using the outdoor map tile mechanism
to build up a repository in a cloud. The data in the cloud infrastructure is evaluated
to determine the crowd density in a location. Based on the two data collections (GPS or
thermal image) that were decomposed into tiles, the calibration of the data analytical results
is applied.

The outdoor square size rule is adopted in this framework as it has been applied in
different countries to control crowd density in outdoor spaces. In general, the maximum
number of people allowed in an indoor space is one per 4 square meters, and for outdoor
areas it is two per 2 square meters [32,33]. For example, if an outdoor space tile is 8 square
meters long, and it has a density quotient of 2, then no more than four moving objects
(people) should be in the outdoor space at the same time. Figure 6 shows an example of the
square meter rule applied to an outdoor space area.

mt2

mt1mt3

mt4

mt5

mt6mt8

mt7

Figure 6. An example: mti = 36 square meters long, Dmax ≤ 18.

Definition 5. Let us consider S outdoor square size; the maximum density of moving objects u at
ti time can be calculated as:

Dmax = S/2.

One of the properties of map tiles is that they can be represented differently at different
scales. Because tile size varies, the calculation of crowd density usually depends on the tile
size. In this study, a tiling map will divide the map into several tiles of a fixed size. Assume
that the moving objects in a certain tile mti have exceeded the allowed density based on
Definition 5. The tile mti will be “restricted” and no new objects should be allowed in until
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the tile has been “released”. The users’ devices located in the map tile mti will receive an
alarm message that the mti has the maximum capacity of moving objects and is restricted.
In addition, it identifies the moving objects that have spent a long time in that tile and
advises them to exit or to move to a tile that has no restrictions. Furthermore, users within
a certain radius around restricted tiles receive notifications of the crowd density status of
each map tile. Figure 7 shows the model proposed in this study, which consists of multiple
algorithms, each with a distinct objective. The intelligent monitoring of outdoor crowd
density can be summarized as the pseudo-code shown in Algorithm 1. The outdoor map
tile is shown in Algorithm 2. The density rule is shown in Algorithm 3, and the evaluation
of the moving objects with time to exit or move to another tile is shown in Algorithm 4.

Algorithm 1 Algorithm 2

Ti Om

Monitoring_crowd

mti

Algorithm 3

Density_count

mti

Algorithm 4

Adjacent_tile 

tiles

Figure 7. The proposed model is composed of multiple algorithms: monitoring crowd, estimating
density count, and evaluating adjacent tile.

Algorithm 1: Live outdoor monitoring density algorithm.
Input: Ti = (Did, ti, li), I, Om
Output: Restricted 	 | Released ⊕
Function OTILE(Om)
for all mti tiles ∈ Om do

check DENSITYRULE(Om)
if DENSITYRULE() = true then

tile→	
Generate alarm notification to user platform
ADJACENTTILE(mti)

else
tile→⊕
return normal
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Algorithm 2: Outdoor map tile algorithm.

Function OTILE(Om)
Square size of tile→ S
Obtain← GPS coordinate (x, y)
Convert x, y to tile value

Om
split→ tiles(mt1, mt2, . . ., mtn; i = 1, . . ., n)

for each mti ∈ tiles(Om) do
Locate user’s location on the map based on GPS data
Extract density← mti

li
decompose→ ∂ blocks

for each the ∂i block do
Convert to gray scale
Apply LOG in image
Detect blobs and identify the crowd density values
Extract density← ∂i

Algorithm 3: Density algorithm.

Function DENSITYRULE(mti)
for i=1 to n do

Dmax = S/2

Obtain Dmti

density← mti
if Dmti == Dmax then

return true

else
return false

Algorithm 4: Adjacent tile algorithm.

Function ADJACENTTILE(mti)
ui: user(moving object) ti: time
if mti →	 then

for all ui in mti do
evaluate ti of ui
for j=1 to n do

if ADJACENTTILE(mtj)→⊕ then
generate message to all u that have ti max range
ui allow movement to mtj

ui allow to exit tile

4. Performance Analysis and Simulation

In this section, the experimental results obtained after evaluating the proposed intelli-
gent monitoring model are presented. The technique was implemented in Python, and the
data were stored using the MongoDB distributed database. MongoDB is also connected
with Apache Spark which has greater real-time analytics and machine-learning capabilities.
The implementation of a mobile application is outside the scope of this study.

In this experiment, we used an actual outdoor environment: Central Park in New
York City (Figure 8). We generated the GPS data of moving objects synthetically based on
realistic scenarios at random locations within the park. Furthermore, before beginning the
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experiment, the outdoor map area Om was divided into multiple map tiles (Om = mt1, mt2,
. . ., mtn; i = 1, . . ., n) and we set S, the square area of an outdoor tile, to mti → 500 m2.

Figure 8. Example of outdoor environment.

After the first phase in which the database was constructed, the GPS data of moving
objects in our database were allocated to the corresponding map tile. Figure 9 shows the
average time required to store the data to MongoDB from the moment that GPS-based
mobility data were collected. We also evaluated the proposed method for the effective
measurement of construction performance. We increased the number of moving objects
and conducted random test cases of sufficient quantity to evaluate performance. Figure 10
show that the tile-map-based method for the intelligent monitoring of outdoor crowd
density performs well. For example, the proposed model demonstrates a consistently stable
and low response time in a test scenario which involves 500 moving objects.

Figure 9. The average time to store the data to MongoDB.
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Figure 10. Random test cases (200 and 500 moving objects).

We also measured the construction costs of the proposed method, taking into account
the latency of the network. In fact, with a density of 500 objects and a conventional 4G
latency of 50 ms for delivering data and warnings, our system can send an alert notification
in 532 ms, as illustrated in Figure 11. In addition, we provide some examples of the
simulation of the proposed model. Figure 12 depicts a simulation of the proposed model
for 200 objects at time point t1.

The evaluation results show the feasibility of the proposed model in detecting crowd
density status in real-time, indicating that it can effectively assist with crowd management
tasks such as monitoring, guiding, and managing crowds in order to ensure safety. Fur-
thermore, it is obvious that when the density of moving objects in different circumstances
increases, the proposed algorithm can still perform well in terms of construction costs.

While the results presented in this study provide acceptable performance, we recognize
that the experience needs to be enhanced, which will serve as a foundation for future studies.
A comparison with similar approaches will be presented. In addition, through real-world
deployment, we aim to evaluate its effectiveness and performance. In addition, we aim to
investigate the accuracy of our methodology by comparing our crowd density estimates to
ground truth information.
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Figure 11. The construction costs of the proposed method, taking into account the latency of the
network.

Figure 12. A simulation example at time t1 of the proposed model.



Sensors 2022, 22, 3328 14 of 15

5. Conclusions

In this study, using a tile-map-based method, we proposed a highly-structured in-
telligent system integrated with the cloud of things and data analytics for monitoring
outdoor crowd density. From a functional perspective, the construction of the proposed
approach structure involves the following: crowd data collection and monitoring, outdoor
map tile mechanism, and cloud IoT big data processing and analytics. An intelligent
crowd-monitoring system that is capable of monitoring the crowd movement makes it
easier to maintain social distancing safety in small and large public areas. The results reveal
that the proposed model can identify crowd density status in real-time, implying that it
can effectively assist crowd management tasks such as monitoring, guiding, and managing
crowds to ensure safety.

The experiment described in this study will be improved in the future, and findings
for larger data sets will be obtained. Future work on actual experiments will be used to
develop this framework for practical use.
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