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Abstract: An electroencephalography (EEG)-based brain–computer interface (BCI) is a system that
provides a pathway between the brain and external devices by interpreting EEG. EEG-based BCI
applications have initially been developed for medical purposes, with the aim of facilitating the
return of patients to normal life. In addition to the initial aim, EEG-based BCI applications have also
gained increasing significance in the non-medical domain, improving the life of healthy people, for
instance, by making it more efficient, collaborative and helping develop themselves. The objective of
this review is to give a systematic overview of the literature on EEG-based BCI applications from the
period of 2009 until 2019. The systematic literature review has been prepared based on three databases
PubMed, Web of Science and Scopus. This review was conducted following the PRISMA model. In
this review, 202 publications were selected based on specific eligibility criteria. The distribution of the
research between the medical and non-medical domain has been analyzed and further categorized
into fields of research within the reviewed domains. In this review, the equipment used for gathering
EEG data and signal processing methods have also been reviewed. Additionally, current challenges
in the field and possibilities for the future have been analyzed.

Keywords: brain–computer interface (BCI); electroencephalography (EEG); rehabilitation; systematic
literature review

1. Introduction

The electroencephalography (EEG)-based brain–computer interface (BCI) is one of
the most rapidly developing fields of BCI [1,2] and has potential to expand far beyond the
domain of medical applications, in which they were initially most popular. The use of EEG
has become possible due to the work and discovery by Hans Berger who discovered in 1924
that electrical signals of the human brain could be measured from the scalp [3]. The initial
discovery was made using a simple galvanometer and confirmed the possibility that neural
activity could be measured by this method [4]. EEG measures the brain electrical activity
caused by the flow of electric currents during synaptic excitations of neuronal dendrites
and is measured via electrodes placed on the scalp [1,4]. After the initial discovery by Hans
Berger, additional brainwave types and mental states associated with the brainwave types
have been determined. An EEG system can provide a pathway between the brain and
external device, making it possible to read biological signals and interpret certain aspects
of a person’s cognitive state [5]. BCI systems are EEG systems that allow users nearly
real-time control of an external actuator. EEG-based BCI applications could be used by a
person to control a computer or other device using one’s thoughts without using ordinary
methods of working with a computer (e.g., using hands) [6]. EEG-based BCI applications
could be used also to monitor subject’s mental states such as emotions [7], concentration [8]
or drowsiness [9]. BCI adds to the monitoring processes, for example, via enabling systems
to be adaptive or sending alert signals.

The BCI applications have been initially developed to help people with disabilities to
be able to communicate, control computers and use aiding equipment such as wheelchairs
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or robotic arms. One of the first BCI applications assisted individuals with speech anoma-
lies [5]. The possibility of using BCI to develop prosthetic arms was considered as early
as 1917 [1]. In the overview by Tariq et al., EEG-based BCI has also been used in order to
develop wearable lower-limb exoskeletons, as BCI has emerged as an alternative communi-
cation system between the human brain and output devices [10]. BCI-based prosthetics
are supporting patients in cases of paralysis, amputations and loss of central nervous
system functionality due to other reasons [2]. BCI could also be applied in order to enhance
neuroplasticity [11]. Neuroplasticity of the brain has been characterized as the capacity of
the brain to change or adapt its morphology and functioning in response to experience [12].
The applications have been used in the medical domain also by people suffering from
locked-in syndrome or amyotrophic lateral sclerosis (ALS) [1].

EEG-based BCI applications have been used in different areas stretching from the
medical domain to non-medical domain where EEG-based BCI applications have been
used for entertainment, art, as well as some other areas [5,6,13]. There have been studies
concerning the non-medical domain, for example, developing devices to monitor the
alertness level of employees [14]. Another aspect that has been investigated is the overall
car traffic safety and avoidance of driving fatigue and drowsiness during driving that
could result in fatal accidents [1]. BCI applications can be used for controlling smart
homes [15–18] or a car [19,20]. In the domain of non-medical applications, the BCI could
also be used for sport motor skills improvement, acting skills improvement or surgical
skills improvement [11]. The applications for entertainment could include games designed
for improving subject attention level or concentration level [13], but also control of drones
and humanoid robots [6].

During the current review, the literature on EEG-based BCI applications in the period
from 2009 to 2019 was analyzed. The current review gives an overview concerning articles
and conference proceedings per year, publications per region/continent, experimental
publications per year, publication distribution by domain, EEG devices used, number of
EEG channels used, techniques used to obtain EEG data, feature extraction and classification
methods used.

In the first part of the review, an overview concerning the published articles as well
as conference papers is also presented through the years. The regions/continents at the
forefront of the scientific progress in the field have been highlighted.

An overall review of EEG-based BCI applications has been created and the BCI ap-
plications have been categorized based on domain (medical or non-medical) and by field,
describing the current trends in BCI applications development in more detail. The BCI
applications have been included in the medical domain in case they have been designed to
provide assistance, monitor, assess or support rehabilitation and in the non-medical domain
in case the applications have been designed to entertain, control machines, authenticate,
monitor or assist without a medical purpose. The distinction between the domains has
been done in a way similar to the work by Al-Nafjan et al. [5].

This review introduces the current trends for the development of EEG-based BCI
applications. Although the initial need for BCI applications has been in the medical domain,
this review shows that there is currently a higher pace of development in the non-medical
domain. The applications meant for widespread use could be used for monitoring user
attention, supporting daily activities or for entertainment.

In this review, EEG signal acquisition and processing is also analyzed. The overview
concerning the prevalence of different EEG devices has been given together with the
details regarding the number of EEG channels used in previous studies. An overview is
given concerning the techniques used to obtain the EEG data. Regarding the EEG signal
processing, feature extraction and classification methods have been reviewed.

This review was conducted in connection to the first author’s master’s thesis [21]. This
review provides a comprehensive summary of recent works conducted in the field and an
overview of current obstacles that inhibit progress, both technically and in other aspects. In
addition to technical aspects there could be, for example, user-related aspects that limit the
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use of BCI applications due to difficulty for the user to learn to use the applications and
inability to generate or alter the required EEG signals.

The ethical, legal and safety considerations in BCI application development are as
important as the technical aspects. The synthesis on current challenges gives a mapping of
what to focus on in order to support BCI development and shows where the possible risks
exist that would need to be addressed. The trends and future possibilities give a better
understanding of what we could expect in years to come.

2. Background

BCI can be defined as a system that translates the brain activity patterns of a user
into messages or commands for an interactive application [22]. A BCI is a control and/or
communication system in which the user’s commands and messages are not dependent
on common brain-motor periphery communication channels [23]. The BCI user’s brain
activity is typically measured using EEG [22]. BCI generally functions through four distinct
processes consisting of recording neuronal activity, extracting features, gathering important
information and combining information for useful purposes [13]. The EEG signal analysis
has been further divided into four steps which are gathering of raw EEG data, signal
pre-processing, feature extraction and classification [2].

According to Padfield et al. [2], the signal analysis steps could be characterized as
follows. The collected raw EEG data comprises all the EEG data collected before pre-
processing and further analysis. After the collection of raw EEG data, pre-processing is
used to clean noise and enhance the quality of collected EEG data for further analysis.
During feature extraction, discriminative and non-redundant information is extracted
from the EEG data to form a set of features. Extracted features will capture distinct signal
characteristics which can be used as a basis for the differentiation between task-specific
brain states. According to Padfield et al. during classification step, the task carried out
by a subject is determined and corresponding actions are taken by the system. The use
of specific feature extraction and classification method depends on specific type of BCI
application under study.

The most common way to categorize BCI is on the basis of invasiveness. The BCI
could be invasive or non-invasive, depending on whether the device is connected physi-
cally to one’s brain and the electrodes are placed inside the brain or the device will read
brainwaves from the top of the scalp [1]. The use of invasive method of direct contact of
the electrodes with brain is more efficient as there are less interfering factors that influence
the signal quality [24], but the invasive method contains the risks of surgical procedures
and related complications.

More popular and easy is the non-invasive method, where the brainwaves are read
from the top of the scalp via electrodes located on the scalp. As this method also has some
drawbacks, including disturbance from external noise, effects from the posture and mood
of the subject, detecting a low strength signal resulting in a reduced signal quality [2], there
is a significant amount of on-going research to determine the best ways for signal detection
and analysis.

The most popular current non-invasive method for acquiring brainwaves for BCI is
detection through EEG. The popularity of EEG is supported by the inexpensiveness of
the equipment, reduced complications compared to invasive procedures, portability, easy
process to set-up and use and the possibility to directly measure neural activity [1,2]. EEG
reading is easy to use and has high potential to be applied by majority of the population
in order to use high variety of possibilities that BCI offers. Other non-invasive methods
include functional magnetic resonance imaging (fMRI), magnetoencephalography (MEG)
and near-infrared spectroscopy (NIRS) which can be used separately or combined [1]. The
advantages of EEG are high temporal resolution, good portability, high temporal resolution,
low cost, less invasive when compared to fMRI and independence from need of a complex
environment when compared to MEG according to Alsharif et al. The disadvantage of EEG
is low spatial resolution [25].
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BCI could be divided into separate subgroups based on the way to detect and convey
the signal from the brain to BCI application and principles of the functioning of the BCI. As
per Al-Nafjan et al. [5], BCIs could be categorized as active or passive, based on the control
of the BCI application. The categorization of BCIs based on active or passive control and
corresponding techniques used to obtain EEG data is presented in Table 1.

Table 1. Categorization of BCIs and corresponding techniques used to obtain EEG data according to
Al-Nafjan et al. [5] and Abiri et al. [1].

Category Technique Used to Obtain EEG Data Description

Active

Motor-imagery

Imagining the movement of a specific body part for example
hands, feet or tongue. The intent will affect the brain activity and

could be detected from the EEG. The imagination activates
the brain areas that are responsible for generating the

actual movement.

Visual evoked potential

The brain activity is affected by external visual stimulation and
the corresponding altered EEG activity is registered. For example,
in case of steady-state visual evoked potential (SSVEP) there are

different visual stimuli flickering at different frequencies and
depending on the direction of the gaze of the subject the EEG

pattern will be consistent with the specific flickering rate.

Auditory evoked potential Auditory stimulation is generated and depending on the focus of
the subject corresponding EEG activity is registered.

Vibrotactile evoked potential

Physical vibrations at different frequencies are generated for
example on the hands and feet of the subject. Depending on the
focus of the subject, a corresponding EEG pattern to the specific

physical vibration is registered and could be used to control some
external device.

Imagined speech Imagination of words or sentences that are recognized from EEG.

Error-related potential

The error-related potential is generated when there is a mismatch
between the subject’s intentions and response from the BCI

application. The technique can be used to correct tasks given by
the subject. For example, when the subject is controlling the
cursor, but the cursor is moving in the wrong direction, an

error-related potential is generated, and the course of the cursor
can be corrected.

Passive Analyzing EEG spectral changes

Systems wherein brain signals yield outputs without any
voluntary control. For example, monitoring drowsiness,
attention, mental workload, emotions, concentration and

other states of the mind.

The BCIs using active control react on conscious efforts to alter brainwave patterns
and the applications could be controlled via active efforts by the user. The BCIs applying
passive control react to the involuntary status of the brainwaves, for example on emotional
states such as meditation, excitement and stress. Different emotions could be elicited by,
for example, visual-based elicitation using images, prepared task or audio-visual elicitation
using short film video clips [5].

During active control of the BCI application, the signal could be detected via different
techniques. The range of these techniques is broad and covers motor imagery, external
stimulation (such as visual, auditory and vibrotactile), error-related potential, hybrid and
other techniques. During the motor imagery task, for example, the subject is imagining
the movement of a specific body part, and during error-related potential task, error-related
potential is generated when there is a mismatch between the subject’s intentions and
response from the BCI application [1].

As per Pasqualotto et al. [23] and Machado et al. [26] BCI could also be categorized
depending on whether BCI is dependent or independent of certain muscle movements.
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Padfield et al. [2] have also categorized BCI as evoked or spontaneous. As per Nicolas-
Alonso and Gomez-Gil [27] BCI could be categorized as synchronous or asynchronous.
An overview concerning additional different categorization of BCIs in the literature is
presented in Table 2.

Table 2. Additional different categorization of the BCIs in the literature by Pasqualotto et al. [23],
Machado et al. [26], Padfield et al. [2] and Nicolas-Alonso and Gomez-Gil [27].

Author BCI Categorization Description

Pasqualotto et al. [23]
Machado et al. [26]

Dependent
Dependent on muscles and peripheral nerves. For example, in

case of visual evoked potential (VEP), gaze is directed by
muscles to focus on different visual stimuli.

Independent Muscle movement is not needed to control BCI. For example, in
case of P300 response is detected from EEG and analyzed.

Padfield et al. [2]

Evoked

Also named as exogenous. Some type of external stimulation is
required such as visual, auditory, or sensory. Can be further
divided to evoked potentials and event-related potentials. In

case of evoked potentials, changes in EEG can be detected due
to responses to external stimuli. In case of event-related
potentials, the changes in EEG are caused by sensory or

cognitive events.

Spontaneous

Also named as endogenous. External stimulation is not
required. For example, motor-imagery technique, where

subjects imagine movement of a limb and there is no additional
input from external stimuli.

Nicolas-Alonso and
Gomez-Gil [27]

Synchronous The BCI analyzes signals during certain time windows, and the
subject is able to give commands after fixed time intervals.

Asynchronous

The brain waves of the subject are analyzed constantly, and the
subject can give commands whenever the subject wants.

Asynchronous BCI gives the subject more possibilities and
flexibility concerning controlling the BCI.

“Dependent BCIs” require muscle control, for example, via gaze control. “Independent
BCI” on the other hand detect signals only based on changes in the brainwaves without
required muscle movement [23,26]. According to Padfield et al. [2], another possibility
to categorize BCIs would be depending on whether external stimulation is required for
the functioning of the BCI or not, thus dividing the systems into “evoked” when external
stimulation is needed and to “spontaneous” in case external stimulation is not needed.
According to the aforementioned categorization by Padfield et al., evoked systems include
for example steady-state visual evoked potential (SSVEP), where visual stimulation is
received via flickering at unique frequencies that causes corresponding changes in EEG
when focusing on specific stimulus at a specific flickering frequency. According to this
categorization spontaneous systems also include for example motor-imagery technique,
where external stimulation is not needed and the changes in EEG patterns are generated
via imagining the movement of a limb. Padfield et al. have noted that the categorization
to evoked and spontaneous systems has also been named by some authors as exogenous
and endogenous.

An additional way to classify BCIs is based on the time when the signals from the
user are gathered by the BCI. The BCIs could therefore be divided as synchronous and
asynchronous [27]. BCI is considered synchronous, when the information concerning the
brainwave status is gathered during specific time intervals. It means that the user can give
commands only at distinct timing, and the brainwaves are not measured at other times. In
case of asynchronous analysis, the brain patterns are analyzed on an ongoing basis and the
user is more flexible when giving commands to the system.
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3. Objectives

The systematic literature review was prepared based on three databases, PubMed,
Web of Science and Scopus, in order to cover a wide range of reliable peer reviewed
publications on EEG-based BCI applications. In previous studies, either one [5] or multiple
databases [28,29] have been used to conduct the literature search, but in the current review
a selection of multiple databases was used in order to cover a broader range of publications
on the topic.

The time period for the publications from between 2009 and 2019 was selected in order
to give an overview concerning longer period of time and to be able to compare the results
with other studies. While 2019 might not seem truly up to date, we would like to highlight
that it is a systematic review. Thus, once such a review has begun, altering the chosen period
would mean either (i) compromising the systematic nature of the review, or (ii) conducting
a new systematic review from scratch, which are undesirable and impractical, respectively.
Similar lengths of the time interval have been selected in previous studies [5,28]. From the
time period above, 635 publications were selected according to the search criteria specified
in Appendix A, which were then further screened and assessed for eligibility. As this
review includes articles until 2019, in Appendix B we list additional publications which
have been published after the time period of the current review, i.e., 2009 to 2019.

After the identification of the publications, a screening of the publications was per-
formed. After the assessment of eligibility, 202 publications were included in the final
analysis. The process was conducted as per the PRISMA model [30]. Listed below are the
objectives that were set at the beginning for conducting our systematic literature review.

The objectives of the systematic literature review on EEG-based BCI applications:

1. Determine the trends concerning the publication of articles, conference proceed-
ings and overall number of publications on EEG-based BCI applications from 2009
until 2019.

2. Determine the techniques used for obtaining EEG data and give an overview con-
cerning the trends in EEG signal processing, which includes feature extraction and
classification methods.

3. Give an overview concerning the devices used for EEG signal collection and specify
the number of EEG channels used for obtaining the data.

4. Determine the proportion of scientific studies conducted on the topic in the medical
and non-medical domain and further analyze the distribution of the studies per
application field.

5. Analyze the literature by regions/continents, i.e., which regions/continents are at the
forefront of scientific progress in EEG-based BCI applications and highlight the most
contributing authors on the topic.

4. Methods

As per best practice, the PRISMA model [30,31] has been used to conduct systematic
literature reviews in many fields of research. In addition to the PRISMA model, guidance
from Cochrane Collaboration can be followed in order to prepare a systematic literature
review [32]. As the PRISMA model has been developed together with the Cochrane
Collaboration and with a large number of experts in the field, the PRISMA model was
selected as the best current collection of principles in order to conduct the current systematic
literature review on EEG-based BCI applications. The PRISMA method has been developed
by Moher et al. [30] and has been used widely in conducting well organized systematic
literature reviews such as [5,23,28,29].

4.1. Information Sources

The publications concerning EEG-based BCI applications can be found from a high
number of different sources. In the current review, three well-known databases, i.e.,
PubMed [33], Scopus [34] and Web of Science [35] were selected to conduct the publication
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search [5,28,29]. The search terms have been included in Appendix A. The process of
including publications in the analysis is shown in Figure 1.
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Figure 1. The flow of information during selection of studies according to the PRISMA model
comprising Identification, Screening, Eligibility and Inclusion phase.

During the full review of the 202 publications included in the analysis, 25 separate
data items were extracted from each publication. The extraction of the data items follows
the PRISMA model for preparing systematic literature reviews, and categorization of the
extracted data items has also been applied in the past by Roy et al. [28] in a similar way
while following the PRISMA model.

4.2. Eligibility Criteria

Selection of the publications for the current review was based on pre-determined
eligibility criteria. The eligibility criteria were determined to filter relevant publications
concerning EEG-based BCI applications as per objectives of this review for further analysis.
The eligibility criteria were selected according to similar principles used in previous review
studies and studies that follow the PRISMA model [5,23,28–30].

The following eligibility criteria were applied during review of the publications during
screening and eligibility assessment:

• Publications needed to be relatively current. In the further analysis, publications were
included from the period between 2009 and 2019.

• We excluded meeting abstracts, book chapters, masters and doctoral dissertations and
non-English publications.

• We excluded non-peer-reviewed journal articles and non-peer-reviewed confer-
ence proceedings.

Following the above-mentioned inclusion and exclusion steps, a manual scanning
was conducted for the titles, keywords and abstracts of the publications. The screening
process was conducted by one person. Publications that did not address the subject, but
rather mentioned the subject in passing in general were excluded. During the review,
402 publications were excluded that did not meet the eligibility criteria. The scanning
resulted in 233 publications for further full text assessment of eligibility. The overview
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concerning the process of identification, screening, assessing the eligibility and inclusion of
the publications in the final analysis as per PRISMA model is shown in Figure 1.

During the full text review of 233 publications, 31 publications which did not cor-
respond to the eligibility criteria were further excluded. After all steps of publication
selection per PRISMA model were completed, 202 publications were included (i.e., left at
the completion of the process) for the final analysis, which are [1–11,13–20,24,26,36–216].

5. Results

The results have been divided into Sections 5.1–5.9. The first part of the results
covers the distribution of articles and conference proceedings per year, publications by
regions/continents, experimental publications per year and publication distribution by
domain. The sections in the second part focus on the EEG devices used, number of EEG
channels, signal analysis, techniques used to obtain EEG data, feature extraction and
classification. The results reflect the publications matching the search terms used during
the Identification phase.

5.1. Articles and Conference Proceedings per Year

During the period from 2009 to 2019, the overall number of articles and conference
proceedings published per year had been gradually rising. In the beginning of the period,
the total number of the publications had been 11–15 publications per year from 2009 until
2011. During the period from 2012 to 2016, there was a slight increase in the volume
of the publications to 16–19 publications, and only in year 2014 was there a decrease to
10 publications per year. Significant increases can be noted from year 2017 onwards when
the number of publications per year had increased to up to 32 publications per year in 2017.
Please see the overview concerning the number of articles and conference proceedings per
year in Figure 2. As the search of the publications was conducted in the three databases
during the period from 20 October 2019 to 30 October 2019, the final number of publications
for 2019 could be a slightly higher number.
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The trend concerning increase in the overall number of publications per year has
also been noted by Al-Nafjan et al. [5] when analyzing the volume of EEG-based emotion
recognition publications. In the aforementioned article, there has been a rapid increase in the
overall number of publications on the topic from 2010 to 2016, and it was suggested that the
increase could be caused by increased knowledge of neurobiological processes, computers
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with faster computational processing, greater availability of devices for recording brain
signals and more powerful signal processing and machine learning algorithms. Increase
in the number of publications concerning EEG-based BCIs has been also demonstrated by
Hwang et al. [99], where a significant increase has been illustrated during the period from
2007 to 2011.

It can be noted from Figure 2 that during the period from 2009 to 2019, the overall
number of conference proceedings published on EEG-based BCI applications has been
higher than the number of articles published. Out of the 202 publications, 117 are conference
proceedings (58% of the publications) and 85 are articles (42% of the publications). Although
in the years from 2009 until 2016 the number of conference proceedings has been greater
than the number of published articles (except for year 2014), a trend has been noted for
recent years concerning the increase in the relative volume of the published articles.

The reason why the proportion of articles has increased over the recent years could be
the overall development of the technology making it easier and more efficient to conduct the
research on EEG-based BCI applications and inclusion of the topic more in the articles. In the
beginning of the period under current focus, a higher variety and number of publications
were included in conference proceedings. This trend noted in the current review illustrates
the observation by Roy et al. [28] noting that there would be a wide variety of research ideas
within different repositories and among different type of publications. The effect highlights
the need to include a higher variety of repositories and different type of publications in the
literature review in order to include objective coverage of the research ideas on the topic
and avoid possible publication bias.

5.2. Publications per Region/Continent

The distribution of the publications concerning EEG-based BCI applications were
further analyzed by region/continent. Out of the 202 publications, the highest number of
publications on the topic has been published in Asia (111 publications) where the highest
number of publications per country has been published in China (39 publications).

The other regions/continents where higher number of publications have been pub-
lished on the topic during the period of 2009 to 2019 are Europe (56 publications) and North
America (27 publications). In Europe, most productive countries have been Germany and
Italy (both countries with 9 publications), and in North America, the highest number of
publications have been published in the USA (23 publications). Similar results have also
been found by Hwang et al. [99] and Roy et al. [28] where USA and China have dominated
as the countries with the highest number of publications on EEG-based BCI. A detailed
overview concerning the publications per region/continent is presented in Figure 3.
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Altogether, 37 different countries have contributed to the publications on EEG-based
BCI applications within the time period reviewed. The highest number of contributing
countries came from Europe, where the publications have been contributed by 18 different
countries. From Asia, the publications have been contributed by 14 different countries,
but the average number of publications per country is higher. From North America,
publications have been contributed by three countries: USA, Canada and Mexico. In
Australia, 7 publications were published, but from South America only one publication from
Brazil has been published. It is interesting to note that no publications were contributed
from Africa. It is important to note that the results reflect the publications matching the
search terms used.

5.3. Experimental Publications per Year

Among the experimental publications on EEG-based BCI applications, non-medical
publications have contributed the majority of the experimental publications per year.
Exceptions to this trend have been seen in 2009 and 2013 when more medical publications
were published when compared to the number of non-medical publications per year.
Although in general there has been higher number of non-medical publications per year
during the period under review, during recent years the proportion of medical publications
has risen, reaching up to 36% of the publications.

During recent years, the overall number of experimental publications has increased
from 8–15 publications per year during 2014–2016 to 19–25 publications per year during
the period of 2017–2019. The trend of a rapid increase in the overall number of publications
on EEG-based BCI applications can also be seen in Hwang et al. [99].

Throughout the period that was analyzed, there has been 99 publications (58% of
the publications) published in the non-medical domain and 53 publications (31% of the
publications) in the medical domain. In 19 cases (11% of the publications) the publications
cover both domains. During interpretation of the results, it should be also noted that as
the database search was conducted during the period from 20 October 2019 to 30 October
2019, the final number of publications for 2019 could have been slightly increased by the
end of 2019. Please see the overview concerning the number of experimental publications
per year in Figure 4.
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domains have been covered.

Although initially the EEG-based BCI applications were mainly developed for medical
reasons to help patients to communicate, grasp objects, move around and support in
other daily activities, the focus has been moving from the medical domain to non-medical
applications. The shift in the focus does not reduce the importance of these applications in
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the medical domain but rather shows the wider potential of EEG-based BCI applications
and opens doors for new possibilities.

5.4. Publication Distribution by Domain

Among the publications within the period from 2009 to 2019, there were 58% of the
publications (99 publications) from the non-medical domain. Among the overall number
of publications that were analyzed, 31% of the publications (53 publications) are from
the medical domain and in an additional 11% of the publications (19 publications) both
domains have been included. Please see the distribution of the publications per domain in
Figure 5. Similar prevalence of publications in medical domain has been determined by
Al-Nafjan et al. [5], where 23% of the publications belonged to the medical domain.
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Figure 5. Distribution of publications per domain. The figure illustrates the distribution of the
publications among medical and non-medical domain and volume of the publications covering
both domains.

The publications in the medical domain could be further divided based on the type
of applications into fields such as assistive, monitoring, rehabilitation, assessment and
others. Applications in the assistive field help users with disorders or disabilities to perform
daily tasks and provide assistance. Within the medical domain, the field covering assistive
applications is the largest contributing 74% of the publications in the domain. The assistive
field includes studies on robotic arm movement in a medical setting [78], lower-limb
prosthesis control [155] and intelligent wheelchair driving system [111]. The applications
in the rehabilitation field for example help to restore the physical functions that have been
lost by the patients due to accident or disease. Among studies analyzing possibilities for
rehabilitation there is an important role for the studies supporting the rehabilitation of
stroke patients [70,185,213]. As per Chaudhary et al., the assistive BCIs are intended to
enable patients to communicate or control external devices and rehabilitative BCIs are
intended to facilitate patient recovery [217]. When compared to assistive BCIs, the amount
of rehabilitative BCIs is lower, covering 9% of the publications. An important field in the
medical domain is monitoring, covering 9% of the publications in the medical domain.

The publications concerning monitoring include for example monitoring emotional
changes in patients [43]. Among studies analyzing possibilities for rehabilitation there is an
important role for the studies supporting the rehabilitation of stroke patients [70,185,213].
The fields of “assessment” and “other” cover a total of 8% of the publications in the medical
domain, both contributing 4% of the publications in the domain.

The prevalence of different fields in the medical domain differ when compared to
previous work of Al-Nafjan et al. [5], as the most popular fields in this domain then were



Sensors 2022, 22, 3331 12 of 44

assessment and monitoring. The difference would be explained by the difference in the
scope of the studies where in previous case the focus was on emotion recognition based
on EEG-based BCI, but in the current review we focus on EEG- based BCI applications
in general. An overview covering the publications in the medical domain is presented in
Figure 6.
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The largest field in the non-medical domain is monitoring contributing 50% of the
articles in the non-medical domain. Additionally, the two large fields are control machine
and entertainment contributing 17% and 16% of the publications, respectively. Smaller cov-
erage in the non-medical domain is by the publications in the field of assistive applications
covering 4% of the publications and authentication covering 2% of the publications.

Other different types of publications cover the rest of 11% of the publications in the
domain. When compared to previous similar studies, Al-Nafjan et al. [5] has also noted
that the majority of the publications in the non-medical domain concerning EEG-based
BCI for emotion recognition has contributed to the monitoring field. An overview of the
publications in the non-medical domain is presented in Figure 7.

In the monitoring field, a total of 49 publications have been included. The publications
in the monitoring field include studies where data are collected from the subjects in order to
monitor and analyze their mental activity. The studies cover for example mental fatigue es-
timation [182], emotion recognition [7] and detecting meditation [4]. In the control machine
field, the applications include those that enable people to control different machines in
their daily environment, via EEG, to make their life easier. These applications can be used
for example for home appliance and smart home control [15,16] or robotic systems [38].
EEG-based BCI applications are also used for entertainment such as live brain-computer
cinema performance [216], driving in a virtual city [19] or recommendations for music
based on a person’s mood [174]. Other applications include user authentication using
visual stimuli of geometric shapes [37], age and gender prediction [109] and other various
possibilities. As illustrated in Figure 7, the majority of applications in the non-medical
domain are related to monitoring. As monitoring applications have many practical applica-
tions such as monitoring mental fatigue at the workplace or during driving monitoring
field has high potential for further development and practical applications for daily life.
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Figure 7. Distribution of publications in non-medical domain. In the non-medical domain, the largest
field is monitoring followed by control machine, entertainment and other smaller fields.

In a smaller number of the publications, both medical and non-medical domains have
been covered. The domain has been further divided into the following fields: assistive,
framework, control machine, monitoring and others, as per type of publications. The details
concerning the distribution of publications covering both domains have been illustrated
in Figure 8. Among studies covering both the medical and non-medical field, 42% of the
cases publications cover the assistive category, such as detection of imagined speech and
classification of unspoken words from EEG signals [85,86]. A total of 21% of the studies
concern works such as developing a new framework for practical BCI communication
development [57].
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Figure 8. Distribution of publications covering both domains. The publications covering both
domains have been focused mainly on assistive, but other fields such as framework and control
machine also make up a significant proportion of the publications.

Studies in the field of control machine are covering 16% of the studies. They include
research for example on controlling a car in an experimental environment outside laboratory
conditions [20]. Some studies are focused on monitoring such as detection of kinesthetic



Sensors 2022, 22, 3331 14 of 44

attention [147]. Other fields cover for example the development of serious games that could
be used in entertainment, e-learning or medical applications [186].

5.5. EEG Devices Used

Among the studies analyzing EEG-based BCI applications, the most commonly used
EEG devices are Emotiv EPOC from Emotiv (San Francisco, CA, USA), Quik-Cap from
Compumedics Neuroscan (Charlotte, NC, USA) and MindWave from NeuroSky (San Jose,
CA, USA). These three devices combined cover 57% of the publications on the topic. The
most common EEG device, the Emotiv EPOC (Emotiv, San Francisco, CA, USA), has been
used in 40% of the publications analyzed while the prevalence of other popular EEG devices
Quik-Cap (Compumedics Neuroscan, Charlotte, NC, USA) and MindWave (NeuroSky, San
Jose, CA, USA) was 9% and 8%, respectively. The high prevalence of Emotiv EPOC (Emotiv,
San Francisco, CA, USA) and Quik-Cap (Compumedics Neuroscan, Charlotte, NC, USA)
use among studies analyzing EEG-based BCI applications for emotion recognition has also
been noted by Al-Nafjan et al. [5] and in general for EEG equipment by Roy et al. [28].

The most common EEG devices (Emotiv EPOC, Emotiv, San Francisco, CA, USA;
Quik-Cap, Compumedics Neuroscan, Charlotte, NC, USA; MindWave, NeuroSky, San Jose,
CA, USA) are all manufactured in USA. Other EEG devices used in the studies have been
manufactured also in Germany (Easycap, Easycap GmbH, Wörthsee, Germany; actiCAP,
Brain Products GmbH, Gliching, Germany), Netherlands (Active Two, Biosemi, Amsterdam,
The Netherlands), Spain (Enobio, Neuroelectrics, Barcelona, Spain) and UK (MyndPlay
BrainBandXL, MyndPlay, London, UK). The details of different EEG devices used, number
of publications and percentage of publications covered is presented in Figure 9.
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Emotiv EPOC (Emotiv, San Francisco, CA, USA) and MindWave (NeuroSky, San
Jose, SC, USA) are considered to be low-cost consumer EEG devices, while Quik-Cap
(Compumedics Neuroscan, Charlotte, NC, USA) is more expensive to purchase [28]. While
the Emotiv EPOC (Emotiv, San Francisco, CA, USA) EEG device has 14 channels and
MindWave (NeuroSky, San Jose, CA, USA) has 1 channel, the Quik-Cap (Compumedics
Neuroscan, Charlotte, NC, USA) EEG device uses 32 channels. The cause of the general
popularity of the Emotiv EPOC (Emotiv, San Francisco, CA, USA) EEG device is due to
the relative low cost of the device, sufficient number of EEG channels and the device being
considered easy to use. The MindWave (NeuroSky, San Jose, CA, USA) EEG device has
limitations for use due to the limited number of EEG channels, but the low cost and ease of
use make the device still popular. The device could be applied in specific applications that
do not require a higher number of EEG channels. The Quik-Cap (Compumedics Neuroscan,
Charlotte, NC, USA) device on the other hand is more expensive but has the advantage of
a higher number of EEG channels.
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Dadebayev et al. [218] have found that low-cost consumer-grade EEG devices can
perform equally well as research-grade devices for EEG-based emotion recognition. The
advantages of the Emotiv EPOC (Emotiv, San Francisco, CA, USA) device are the high
quality of the signal, less artifacts, 14 sensors, ready to use assembly and modern design.
The disadvantages of the Emotiv EPOC (Emotiv, San Francisco, CA, USA) device are
being non-dry sensors, 10–15 min setup time and required license for raw data access. For
MindWave (NeuroSky, San Jose, CA, USA), the advantages are its low price, compactness
and practical wireless device. The disadvantages of MindWave (NeuroSky, San Jose, CA,
USA), as highlighted by Dadebayev et al., are the inclusion of only 1 sensor and a lower
quality for EEG experiments.

The low-cost EEG headsets can be more convenient for the user and the devices
such as Emotiv EPOC (Emotiv, San Francisco, CA, USA) and MindWave (NeuroSky, San
Jose, CA, USA) have been successfully used in the studies developing EEG-based BCI
applications [219]. The final decision concerning the use of a specific EEG device depends
on the type of EEG-based BCI application determining the need for a specific number of
EEG channels. The decision also depends on the cost planned for the study and devices
for the end users. The EEG equipment market shows rapid development and new devices
appear on the market continuously [220].

Concerning the design of the EEG devices it has been highlighted by Soufineyestani
et al. [221] that the EEG headsets with dry electrodes such as MindWave (NeuroSky, San
Jose, CA, USA) have been more robust to line noise when compared to EEG devices with
wet electrodes, such as Emotiv EPOC (Emotiv, San Francisco, CA, USA) or Quick-Cap.
According to Soufineyestani et al., the dry electrodes contain more artifacts. The dry EEG
devices may lose humidity during use that may lead to decline in signal quality. In case of
wet electrodes, the solution could evaporate over time, and it could be necessary to reapply
the solution to the electrodes. The most convenient for the user would be dry wireless
EEG devices that enable flexibility in movement and lower setup time. In case of dry
electrodes, it would need to be considered that dry electrodes present lower performance
when compared to wet electrodes [222]. It has been also highlighted by Soufineyestani
et al. that when using wireless connectivity, the data would need to be encrypted prior to
wireless transfer in order to avoid any security risk to the data of the user.

Similarly, Hinrichs et al. [223] have compared the use of dry and wet EEG systems
for clinical applications and have found that although the number of artifacts was slightly
higher for the dry EEG system the results were comparable between dry and wet EEG sys-
tems. The dry EEG system is more robust and less sensitive to electromagnetic interference
that the subject could encounter at the clinic or at home. It has been stated by Hinrichs
et al. that importantly both patients and healthy volunteers preferred the dry electrodes
and reported that the dry headset was more suitable for self-application and home use.

Ratti et al. [224] have shown that although medical EEG systems offer clear advantages
in data quality over consumer systems, EEG data can be collected from all systems tested
in both medical and consumer contexts. Consumer EEG systems are more convenient and
faster to set up. According to Ratti et al., consumer EEG systems would be more useful
for a quick assessment when time is limited, while the medical grade systems would be
preferred in research and clinical trial settings.

In the study by Zerafa et al. [225], a comparison was performed between a broad range
of EEG devices for SSVEP BCIs. Zerafa et al. showed that low-end research grade EEG
systems are comparable to the high-end research grade EEG systems in terms of signal
quality. Low-cost EEG headsets suffer more from poor EEG signal quality, and it could be
suggested that the best choice for developing BCI applications outside of the laboratory
setting would be affordable wireless research grade systems.

When comparing the advantages and disadvantages of low-cost and more expensive
EEG headsets LaRocco et al. [219] have found that traditional medical- and research-grade
EEG systems have been successfully used in various applications, but are less versatile
outside a laboratory environment. Low-cost EEG headsets show greater design convenience
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for daily occupational use and many of the low-cost devices including Emotiv EPOC
(Emotiv, San Francisco, CA, USA) and MindWave (NeuroSky, San Jose, CA, USA) have
been used, for example, as drowsiness detectors. LaRocco et al. have further suggested
that the use of open-source software and occupational refinement may further boost the
capabilities of the systems over time.

5.6. Number of EEG Channels

Among the studies analyzed, the number of EEG channels used varies across a large
range. The highest number of EEG channels used was 163 by Zhou et al. for EEG-based
classification of elbow versus shoulder torque intentions [213]. Altogether there were
5 studies (3% of studies) where more than 100 EEG channels were used, indicating that the
use of this high number of EEG channels is rather exceptional. The majority of the studies
(64% of studies) involve 1–20 EEG channels, where 34% of the studies employ 1–10 EEG
channels and 30% of the studies employ 11–20 EEG channels. There are also a significant
number of studies that use 21–40 EEG channels and 11 studies have been conducted with
61–70 EEG channels. The detailed overview regarding the number of EEG channels used in
the studies is presented in Figure 10.
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40 EEG channels have been used.

Previously, Roy et al. [28] found that for obtaining EEG signals, 1 to 256 electrodes
have been used, with half of the studies using between 8 to 62 electrodes. It was thought
that a very high number of electrodes would not give added value to the studies, more
important is the exact location of smaller number of electrodes. In that article, it was found
that, concerning the number of electrodes, there is a significant increase in sensitivity and
specificity when increasing the number of channels up to 22, but a further increase in the
number of EEG channels would not give a similar advantage.

Al-Nafjan et al. [5] have also concluded that the majority of studies use up to 64 channels
for obtaining EEG data. In the study by Al-Nafjan et al., it has been emphasized that when
planning the use of a specific number of EEG channels, it is important to also consider the
time required for the system setup, the comfort level for the subject and the number of
features to be processed. When planning studies or developing applications for users, it is
important to select the electrode positions carefully and limit the number of EEG channels.
A limited number of carefully selected electrode positions would make the future devices
more user friendly and optimize the system performance.
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5.7. Technique Used to Obtain EEG Data

In the publications, a variety of techniques are used for the interaction between
brain and computer in BCI applications. The most popular techniques include the motor-
imagery paradigm (applied in 38 publications), visual evoked potential paradigm (applied
in 31 publications) and monitoring drowsiness/attention (applied in 29 publications)
or emotions/affective states (applied in 15 publications). The overview concerning the
prevalence of different techniques is shown in Figure 11. These techniques have been used
in 73% of the reviewed publications (where the technique used was stated).
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Among the publications applying motor-imagery paradigm, there were 62% of the
publications in the medical domain and 24% of the publications in the non-medical domain.
In addition to the aforementioned, 14% of the publications covered both the domains.
Among the medical domain there are innovative applications such as EConHand [163],
neuro-rehabilitation using virtual reality feedback [106] and intelligent brain-controlled
robotic limbs [158], applying the motor-imagery paradigm.

In the visual evoked potential paradigm, the non-medical domain is dominant as
in 61% of the reviewed publications (where the technique used was stated) applied this
technique. In the medical domain, the prevalence of this type of technique used was 23%
and both domains were included in 16% of the cases. Visual evoked potential paradigm is
widespread among BCI applications as it has been long used and tested in a high number
of previous studies. The visual evoked potential paradigm also involves the visual P300
paradigm and the steady state visual evoked potential paradigm [1]. Among the most
interesting applications of the aforementioned technique in the non-medical domain are
the deceit identification test [74], use of EEG-based BCI devices to subliminally probe for
information [83] and authentication based on emotionally significant images [166].

There is significant interest in monitoring the mind for drowsiness/attention or emo-
tions/affective states. Both techniques use the analysis of changes in the EEG spectrum
to determine the states and changes in one’s mind. The vast majority of the publications
concerning drowsiness/attention (88%) or emotions/affective states (93%) are categorized
in the non-medical domain. The monitoring of drowsiness/attention based on EEG spec-
tral changes has high practical value as there are a number of studies implementing the
technique in order to create helmets for on-site workers for drowsiness detection [14],
predicting driver fatigue [134] or implementing EEG-based attention feedback in order to
improve focus in e-learning [171].

Other techniques used in the publications are applied less frequently, but there is
a general trend noted in the overall use of various techniques. As in the case of motor-
imagery, auditory evoked potential and vibrotactile evoked potential technique, the main
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application is in the medical domain, but the majority and larger variety of techniques are
applied in the non-medical domain. The trend indicates the high potential of non-medical
applications for the EEG-based BCI applications. When taking into consideration that the
majority of general population apply for non-medical domain, vast number of people could
benefit from this type of applications in the future.

5.8. Feature Extraction

The feature extraction is an important processing step in order to extract the relevant
details from the wide range of signals collected during acquisition of the EEG data. In
previous studies, high number of different methods have been used for feature extraction.
According to Al-Nafjan et al. [5] the feature extraction step is one of the major challenges in
BCI systems and the technique is not optimal across different applications. The overview
concerning the prevalence of different methods for feature extraction among the studies
investigating EEG-based BCI applications is presented in Figure 12.
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publications where the extraction method has been used.

Among the studies reviewed the most frequent feature extraction approaches are
analysis of power spectral density (used in 23 publications), Fourier transform (used in
20 publications) or the analysis of common spatial pattern (used in 18 publications). Alto-
gether, the aforementioned publications contribute to 48% of the reviewed publications.
These results are similar to previous work by Al-Nafjan et al. [5], who state that power spec-
tral density and Fourier transform have been most frequently used for feature extraction in
the studies to classify emotional features from EEG.

According to Xie et al. [226] the advantage of power spectral density is feature stability.
In terms of disadvantages, the power spectral density is not suitable for unstable signals,
and it would not be possible to analyze time-domain signals. The Fourier transform is,
according to Xie et al., applicable for stationary signals and is appropriate for narrowband
signals, but does not work for nonstationary signals, greatly sustains noise sensitivity and
does not have shorter duration data record. Common spatial pattern has a good effect
when applied to EEG data based on motor imagination and does not require the selection
of a specific frequency band in advance, but is sensitive to noise and requires multiple
electrodes [226].
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Other methods for feature extraction are used less frequently, but in many cases
different feature extraction methods are used within one study. Similar general prevalence
concerning the use of power spectral density and use of different feature extraction methods
within studies has been noted by Al-Nafjan et al. [44], for analyzing human emotions from
EEG, Padfield et al. [2] when analyzing EEG-based BCI interfaces using motor-imagery
technique and Sourina et al. [178] for real-time brain state recognition from EEG.

Our overall results correlate with previous studies in the field highlighting the im-
portance of analyzing power spectral density, the use of Fourier transform and common
spatial pattern for feature extraction and emphasizing the need to apply different types of
feature extraction methods depending on the application under study.

5.9. Classification

For the purpose of classification, different machine learning algorithms have been
used in previous studies for EEG-based BCI applications. The most common machine
learning algorithms used are linear discriminant analysis and support vector machine,
which have been applied in 52% of the studies. Other machine learning algorithms have
the coverage of 2–5%. Among all of the methods, linear discriminant analysis has been
applied in 31% of the cases and support vector machine in 21% of the studies. An overview
of the classification methods employed in the reviewed studies is presented in Figure 13.
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Linear discriminant analysis has been characterized as a simple classifier with low
computation requirements and acceptable accuracy [122]. Linear discriminant analysis is
easy to use with low computational complexity, but requires a linear model [226]. Support
vector machine is a speedy classifier that supports binary and multi-class method and can
perform linear and nonlinear modes [122]. Support vector machine performance is better
compared to other linear classifiers, but it has low computational complexity [226].

Other methods applied in EEG-based BCI applications are machine learning algo-
rithms such as convolutional neural network, naive Bayes and random forest that account
for 4–5% of the cases and artificial neural network, deep neural network, Gaussian mixed
model and k-nearest neighbors that account for 2–3% of the cases.

The results of the current review are in correlation with previous studies where Al-
Nafjan et al. [5] have shown that the use of support vector machine is one of the most
popular methods used for classification for EEG-based BCI systems for emotion recognition.
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According to the aforementioned study, the choice for classification algorithm depends on
the type of brain signal being recorded and the type of application that is being controlled.
Wide use of linear discriminant analysis and support vector machine for classification has
also been shown by Padfield et al. [2] for EEG-based BCIs using motor-imagery.

Dadabayev et al. [218], which pertains to feature extraction techniques and classifica-
tion methods used for EEG-based emotion recognition, has stated that no feature extraction
technique or classification method could be named exclusively the best option for all cases,
but the right strategy relies on the specific system paradigm and objectives. It has been
suggested that it would be needed to consider many different machine learning algorithms
and compare the results before choosing the best model for the given objective [218]. Simi-
larly, during a comparison of machine learning methods for emotion recognition, including
linear discriminant analysis, support vector machine, naive Bayes and k-nearest neighbors,
Doma and Pirouz [227] did not find that any of the methods would outperform one another.

According to Nakagome et al. [228], when comparing neural networks and machine
learning algorithms for EEG gait decoding neural network-based decoders with downsam-
pling or a wide range of frequency band features could improve the decoder performance
and robustness for stable use of BCIs. Varszegi [229] has suggested that in order to improve
artificial neural networks it would be further needed to look inside them, develop methods
to analyze their internal activations, figure out the behavior of their architectural elements
and create knowledge basis for conscious artificial neural network design to handle EEG
signal processing tasks. According to Lotte et al. [22] the ideal classification method would
use features and classifiers that are invariant over time, over users and contexts. There is a
need for a new generation of BCI classification methods that consider the user in the loop
and could adapt to the user [22].

6. Discussion

In the field of EEG-based BCI applications, there is a number of challenges hindering
the development of the applications that would need to be addressed during future studies.
It is important to acknowledge these aspects to find solutions or alternatives as needed.
There are also many opportunities in the field to be used in the future and this is also an
important aspect to highlight and share ideas among researchers. The sharing of new ideas
and possibilities for the future facilitates the development of a large variety of applications
in the field of EEG-based BCI applications.

During the preparation of this systematic review, a strict process has been followed
including the use of planned search terms and databases before the analysis of the literature.
The time period for the publications was selected from 2009 until 2019 for conducting of the
analysis in order to give an overview concerning a longer period of time. The review was
designed in order to be able to compare the results with other previously conducted reviews
on similar topics. Similar time interval has been selected also in previous studies [5,28].
The additional publications published after the aforementioned time period and outside of
the previous process have been included in the Appendix B of this review.

The selected search terms also set specific limitations for the publications identified
and analyzed in the review. Using the term “EEG-based” could set specific limitations
for the search results and term “EEG” could be used in order to obtain a wider variety of
search results. The aforementioned use of specific search words could be the reason why
some of the publications, for example [222,230–233], have not been identified for screening
during the first phase of the review. As the publications have been identified for analysis
until 2019, this aspect would need to be also considered as a limitation for the review.

6.1. Challenges

The challenges for the BCI applications could be divided into technology-related
and user-related, where technology-related challenges comprise technical aspects and the
usability of the system and the user-related contain the aspects of a person to learn to use
the BCI application and subjectiveness of the person to interpret the cues that generate
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or alter the acquired EEG signals [5]. Padfield et al. [2] has categorized the possible
challenges also as challenges faced in the research and development, challenges impeding
commercialization, flawed testing process, issues with BCI use and ethical issues. The
categorizations could be also combined and distinguish different technology-related and
user-related challenges under the five categories proposed by Padfield et al. [2].

In terms of challenges, the major aspect would be the current reliability of the BCI
system in everyday noisy environments [87]. This hindrance affects both medical and
non-medical applications, but higher effect is for the non-medical applications due to the
wider use outside of a controlled environment. The effect on non-medical applications
is also significant as the possibilities for the use of the EEG-based BCI applications in the
non-medical domain is relatively wider and number of users is higher in comparison to the
applications used in the medical domain.

In the medical domain (in the assistive field), the challenges include low recognition
rate for mental commands [158], problems with the signal acquisition equipment reliability
and training process [117]. The character of the brain signals and the amplitude varies
between persons, which makes it more difficult to develop BCI applications suitable for
all patients [6]. The work on separating specific EEG signals from other signals [234] and
the hindrances concerning the aspect of cross-subject classification [235] and accuracy of
interpreting the commands [236] is ongoing. The authors agree that one of the important
aspects is also the low throughput of information which may be a limiting factor in some
applications [117,158]. The challenge of the low accuracy of the system has also been
experienced in the field of monitoring emotional responses [161]. In the rehabilitation field,
the complexity of the system setup and high cost of the devices has been noted [163]. In
neurorehabilitation, it has been highlighted that the success of the therapeutic methods is
hard to measure and the repetitiveness that is needed from the subject during the therapy
could be demotivating [106]. Further research needs to be conducted to overcome the
repetitions needed by the patient during the use of the BCI and possibilities to overcome
time-consuming calibration for the BCI users [237].

Concerning BCI applications in the non-medical domain, Wei et al. have highlighted
that in order to transition laboratory-oriented BCI applications into real-world environ-
ments, the convenience to use and long-term wearing comfort for the devices needs to be
improved [193]. There have been alternative devices created for this reason, to increase for
example the user-friendliness of the devices meant to measure drowsiness at work [14].
During detection of human emotions, the hinderance could be the ambiguity of human
emotions and the complexity of EEG signals [203]. There has also been works on the
closed-loop interactions of human emotions with emotional stimuli for example in the
case of music interface which complicates the system setup further [77]. In the field of
entertainment, it has been emphasized that the seamless interaction between user and the
device is of utmost importance and a crucial concern [110].

The challenges hindering the development of BCI applications in both medical and
non-medical settings involve poor portability of the hardware, low user-friendliness of
the device, low signal quality and individual differences among persons that result in
difficulties interpreting the EEG signals across users [6,193,238,239]. The accuracy of EEG
pattern decoding is one of the key aspects for developing reliable BCI applications [240]. In
current development of BCI applications the variability of EEG signals received from one
subject and inter-subject variability has remained one of the most important obstacles [241]
and the designing of subject-independent BCI systems has remained a challenge [242].

The use of current subject-dependent applications is time consuming due to training
and especially inconvenient for people with mental disabilities [243]. Therefore, in addition
to the BCI application functioning for one specific person, it would be important to develop
subject-independent BCI systems that can be used by various users without previous train-
ing [241]. The challenge in developing subject-independent BCI applications is to overcome
person-dependent scenarios where the training and sets come from the same person and
would require high-performance person-independent classification [238]. Overcoming the
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challenge would enable efficient use of subject-independent system in turn enabling wider
implementation of the BCI applications.

Both medical and non-medical domains are affected by potential ethical issues in
the EEG-based BCI applications filed of research. It would need to be determined for
example who would be liable in case of any accidents during the use of BCI applications or
could the applications affect, for example, user’s mood and therefore affect user’s decision
making in a broader sense [2]. It has been shown that under certain circumstances it would
be possible to probe subliminally private information from the users using EEG-based
BCI devices [83]. In case the ethical and security aspects of the BCI applications are not
controlled, an especially wider spread of non-medical devices could be used to exploit
user emotions to push targeted marketing and political agendas [2]. These aspects would
need to be considered and the users would need to be notified about the possible risks
and responsibilities. Ethical standards would need to be established in order to guide the
general development of BCI technology and prevent ethical issues preemptively [2].

6.2. Future Possibilities

It has been suggested that in order to make the EEG-based BCI applications more
accurate and efficient hybrid BCI systems should be developed that combine BCI systems
with another BCI or other kinds of interfaces [2]. In addition to the use of only EEG for
obtaining the biological signals, other methods could be used to support the strength and
quality of the signals such as fNIRS or fMRI [6]. Such other physiological measures could
also be heart rate or eye movements [1].

Increasing attention has been paid to fNIRS due to the advantages such as non-
invasiveness, user safety, affordability and portability, but fNIRS signals are highly subject-
specific and have low test-retest reliability [244]. Barrios et al. [245] have also suggested
that combining fMRI with EEG could overcome significant limitations that are present
in the use of EEG alone. Padfield et al. [2] have suggested to combine as well different
approaches using EEG, such as motor-imagery system together with steady-state visually
evoked potential as a training aid. In addition, combining different methods such as fNIRS
with motor-imagery EEG or motor-imagery EEG with sensory interface has been proposed
by Padfield et al. [2].

6.2.1. Possibilities in Medical Domain

In the medical domain, the BCI could be used to control a variety of assistive robotic
devices. EEG-based BCI applications have been developed for controlling wheelchairs [111,200],
and research has been conducted on the development of robotic limbs [158]. Recent studies
have shown additional success for the development of EEG-based BCI applications for
controlling robotic devices [246,247]. Further research could be pursued in order to develop
humanoid robots and drones for the support of daily activities for the patients [6].

It has been further suggested to use virtual reality in neuro rehabilitation, where motor-
imagery BCI virtual reality systems could be used for real time applications for stroke
rehabilitation, to increase motivation of the patient during the rehabilitation process [106].
The monitoring of EEG could be used to enhance speech therapy sessions for people who
stutter, providing real-time visualization of the brain and insights concerning the brain
activity during the sessions [43]. Jeunet et al. [11] have suggested BCI neurofeedback for
the reduction of hypokinetic activity in case of a stroke and reducing hyperkinetic activity
in case of attention deficit hyperactivity disorder (ADHD).

6.2.2. Possibilities in Non-Medical Domain

In the non-medical domain, there is a high potential for the EEG-based BCI applications
monitoring cognitive load, attention, drowsiness and other aspects of the mind. Monitoring
cognitive load has been studied by Friedman et al. for intelligence tests, but measuring
cognitive load could also be used to better design and conduct e-learning, psychometric
exams, military training and other trainings [84].
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Several studies have been published on monitoring attention via EEG-based BCI
applications [3,150,171]. The level of attention is essential, both in the learning process
and during tasks with high responsibility. Sethi et al. [171] have developed EEG-based
attention feedback to improve focus in e-learning, but the principles could also be applied
for drivers to test their reflexes and attentiveness and for driving instructors to assess the
capability of the drivers. The monitoring of attention level could also be used to correlate
stress with attention level and creativity with attention level. According to Sethi et al. [171]
for example, optimal stress level can boost attention, and with the help of monitoring,
attention optimal stress level could be determined, i.e., when the attention level for the
individual is the highest.

EEG-based BCI applications could be further developed for wider authentication of
persons in addition to currently available methods [37]. It has been suggested that EEG
data could also be used for deceit identification. As polygraphy test is not fully reliable
and the results could be altered in case of specific practice and training by the subject. EEG
data could be an important alternative for deceit identification in the future [74]. Punsawad
et al. [161] have suggested that the monitoring of human emotions via EEG-based BCI
application could be applied in neuromarketing for product branding and advertising
slogan design.

Entertainment is an ever-developing field and includes, for example, gaming. The
availability and user friendliness of the games using EEG-based BCI has been increasing
over time [110]. With further development of the technology and integration with currently
available technologies there are numerous possibilities for the use of EEG-based BCI for
games for both entertainment and serious games for training purposes [8].

The main reasons for the higher pace of development in the non-medical domain
are due to the high potential of the domain for a wider range of users when compared
to the medical domain. While development in medical domain is focusing on specific
patient groups the EEG-based BCI applications in non-medical domain could be used by
the general public, for example for smart home control, entertainment or gaming. The
range of use for the devices in the non-medical domain is continuously broadening as new
possibilities emerge for the use of the devices in new situations such as deceit identification
test [74] or authentication based on emotionally significant images [166].

EEG-based BCI applications have a wide variety of applications in both medical and
non-medical domains, with even higher potential recently in the non-medical domain
due to a high number of potential users around the world. With the development of the
technology, reduction in cost and increase in comfort of use the EEG-based BCI applications
can gain increasing attention in the non-medical domain.

6.2.3. Safety and User-Friendliness

During the daily use of EEG-based BCI applications, the safety of use is one of the
most important aspects to focus on. In case of synchronous BCI, the controlling of the BCI is
divided into time windows when the commands by the user could be given and the transfer
of commands from the user to the device is well defined. For the user, asynchronous BCI
applications would be preferred, as in case of asynchronous applications the commands
could be given to the device at any time, independent of specific time windows. From the
safety perspective, it is important to define, in case of asynchronous devices, when the
user actually wanted to give command and when the user was thinking other thoughts
not related to the use of the device. For this reason, the concept of “brain switch” would
need to be further developed in practice, enabling the user to mentally disconnect from the
device when the user is not intending to use the device [6,131].

Further possibilities for the EEG-based BCI applications include new, more convenient
methods for obtaining EEG signals. Wei et al. [193] have suggested measuring EEG from
non-hair-bearing scalp areas for the further ease of use during long-term usage of the
EEG-based BCI devices in everyday situations. It has also been shown that in some cases it
would be sufficient to measure EEG only near the ear that could make the use of EEG-based
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BCI applications more convenient [113]. In order to make the use of BCI applications
more efficient and further integrate the possibilities into our daily tasks, BCIs could be
integrated with augmented reality which would create new dimensions of user experience
and practicality [15].

7. Analysis/Synthesis

In the current review, both articles and conference proceedings have been included.
The inclusion of both these types in the analysis gives better representation of the ideas in
the field and helps reduce possible publication bias.

Although initially the EEG-based BCI applications were mainly developed for medical
purposes to help patients and support in daily activities, the focus has been moving
from the medical domain to non-medical applications. The shift in focus does not reduce
the importance of these applications in the medical domain but rather shows the wider
potential of EEG-based BCI applications and opens new doors for applying the possibilities
mode broadly.

As per region, 111 publications (55%) have been contributed by Asia being firmly in
the lead concerning number of studies published. From Asia most of the publications per
country have been contributed by China. This is a relevant finding as China has increasing
influence in general in high technology sector and EEG-based BCI could be one important
field of research resulting in a high variety of high technology applications designed for
many different fields of life, both medical and non-medical. The high potential of EEG-
based BCI applications and diverse possibilities for use could support the future economic
strength of the countries and regions investing in the research and development in the field.

The reasons of the general popularity of Emotiv EPOC (Emotiv, San Francisco, CA,
USA) EEG device are its relatively low cost, sufficient number of EEG channels and it being
considered easy to use. Emotiv EPOC (Emotiv, San Francisco, CA, USA) and MindWave
(NeuroSky, San Jose, CA, USA) are considered to be low-cost consumer EEG devices
whereas Quik-Cap (Compumedics Neuroscan, Charlotte, NC, USA) is higher in cost.
Emotiv EPOC (Emotiv, San Francisco, CA, USA) EEG device has 14 channels and MindWave
(NeuroSky, San Jose, CA, USA) 1 channel, whereas the Quik-Cap (Compumedics Neuroscan,
Charlotte, NC, USA) EEG device uses 32 channels. MindWave (NeuroSky, San Jose, CA,
USA) EEG device has limitations in use due to the limited number of EEG channels, but
the low cost and ease of use make the device popular. The device could be applied in
specific applications that do not require higher number of EEG channels. The Quik-Cap
(Compumedics Neuroscan, Charlotte, NC, USA) device on the other hand is more expensive
but has the advantage of higher number of EEG channels. The final decision concerning
the use of a specific EEG device depends on the type of EEG-based BCI application,
determining the need for specific number of EEG channels. The decision also depends on
the cost planned for the study and the end users.

When planning the selection of the EEG device and number of channels, it is important
to consider the end users for the EEG-based BCI application, which determines the technical
requirements and possible overall cost of the device. A smaller number of carefully
selected electrode positions would also make the device more user friendly and support
the performance of the system.

There is a general trend noted in the overall use of various techniques. As in case of
motor-imagery, auditory evoked potential and vibrotactile evoked potential technique the
main application is in the medical domain, but the majority and larger variety of techniques
are applied in the non-medical domain. As seen from the results of the current review, a
highly diverse selection of techniques has been applied in the non-medical field supporting
further the development of diverse applications and supporting the high potential of
non-medical applications among the EEG-based BCI applications.

In the current review, a trend of high prevalence of using power spectral density and
Fourier transform for feature extraction has been noted. The overall results correlate with
previous studies in the field, highlighting the importance of these methods for feature
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extraction and emphasizing the need to apply different types of feature extraction methods
depending on the application under study. The results of the current review also show the
importance of linear discriminant analysis and support vector machine for classification
in correlation with previous studies in the field. The choice for classification algorithm
depends on the type of brain signal being recorded and the type of application that is
being controlled.

With the widespread use of the devices, the safety on an individual and community
level would need to be further analyzed. Nowadays, it has been unfortunately common
that due to security breaches malicious software have infiltrated computer networks even
with a high security level. This needs to be taken into consideration, especially when
considering the sensitivity of the biomedical information obtained from the BCI device and
also the possibility to alter the brain signals for example via neurofeedback. As the field
of EEG-based BCI is fast developing, the ethical aspects would need to be analyzed and
safeguarded in parallel with the development of technology.

The BCI applications are developing rapidly and therefore it is important to have an
up-to-date overview on the EEG-based BCI applications together with possible challenges
and the way forward. The significance of the current review is to provide an overview
of the current work conducted in the field of EEG-based BCI applications, along with the
challenges and future possibilities.
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Appendix A. Search Terms Used

The search was conducted in the databases PubMed, Scopus and Web of Science using
basic search settings with the below-described search terms relevant for current review.
The search was conducted in PubMed database on 20 October 2019 with the search term
(“electroencephalography based” OR “EEG based”) AND (“brain computer interface” OR
“BCI” OR “brain machine interface” OR “BMI”) AND (“application” OR “applications”).
The search resulted in 185 publications that were then included for further screening.

The search in the Web of Science database was conducted on 28 October 2019 with the
search term (“electroencephalography based” OR “EEG based”) AND (“brain computer
interface” OR “BCI” OR “brain machine interface” OR “BMI”) AND (“application” OR
“applications”) and the search in Web of Science database resulted in 451 publications.

The search in the Scopus database was conducted on 30 October 2019 using search
term (“electroencephalography based” OR “EEG based”) AND (“brain computer interface”
OR “BCI” OR “brain machine interface” OR “BMI”) AND (“application” OR “applications”)
and 569 publications were identified through the search for inclusion to further screening.
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Appendix B

Table A1. Listing of Additional Publications from the Period of 31 October 2019 Until 26 June 2021.

Author Year Published Title

Choi et al. 2019 A multi-day and multi-band dataset for a steady-state visual-evoked
potential-based brain–computer interface

Ganorkar and Raut 2019 Comparative analysis of mother wavelet selection for eeg signal application to
motor imagery-based brain–computer interface

Hekmatmanesh et al. 2019
Combination of discrete wavelet packet transform with detrended fluctuation
analysis using customized mother wavelet with the aim of an imagery-motor
control interface for an exoskeleton

Khan et al. 2019 Multiclass EEG motor-imagery classification with sub-band common
spatial patterns

Khoshnevis and Ghorshi 2019 Recovery of event-related potential signals using compressive sensing and
kronecker technique

Liu et al. 2019 Fully Passive Flexible Wireless Neural Recorder for the Acquisition of
Neuropotentials from a Rat Model

Mebarkia and Reffad 2019 Multi optimized SVM classifiers for motor imagery left and right hand
movement identification

Nagabushan et al. 2019 A comparative study of motor imagery-based BCI classifiers on EEG and
iEEG data

Onay and Kose 2019
Assessment of CSP-based two-stage channel selection approach and local
transformation-based feature extraction for classification of motor
imagery/movement EEG data

Oralhan 2019 2 Stages-region-based P300 Speller in Brain–Computer Interface

Saikia and Paul 2019 EEG signal processing and its classification for rehabilitation device control

Taran and Bajaj 2019 Motor imagery tasks-based EEG signals classification using tunable-Q
wavelet transform

Wu et al. 2019 A Parallel Multiscale Filter Bank Convolutional Neural Networks for Motor
Imagery EEG Classification

Yao and Shoaran 2019 Enhanced Classification of Individual Finger Movements with ECoG

Yu Chen and Mehmood 2019 A critical review on state-of-the-art EEG-based emotion datasets

Zhang et al. 2019 A Graph-Based Hierarchical Attention Model for Movement Intention
Detection from EEG Signals

Zhang et al. 2019 Deep Learning Decoding of Mental State in Non-invasive Brain
Computer Interface

Aggarwal and Chugh 2020 A decade of EEG Analysis: Prospects & Challenges in Biometric System

Alakus and Turkoglu 2020 Emotion recognition with deep learning using GAMEEMO data set

Alhakeem et al. 2020 Wheelchair Free Hands Navigation Using Robust DWT-AR Features
Extraction Method with Muscle Brain Signals

Ali et al. 2020 Classification of Motor Imagery Task by Using Novel Ensemble
Pruning Approach

Al-Nafjan et al. 2020 Lightweight Building of an Electroencephalogram-Based Emotion
Detection System

Andrade et al. 2020 An EEG Brain–Computer Interface to Classify Motor Imagery Signals

Angrisani et al. 2020 Instrumentation for motor imagery-based brain computer interfaces relying on
dry electrodes: A functional analysis
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Araki et al. 2020 Wireless Monitoring Using a Stretchable and Transparent Sensor Sheet
Containing Metal Nanowires

Arico et al. 2020 Brain–Computer Interfaces: Toward a Daily Life Employment

Aroudi and Doclo 2020 Cognitive-Driven Binaural Beamforming Using EEG-Based Auditory
Attention Decoding

Bablani et al. 2020 A multi stage EEG data classification using k-means and feed forward
neural network

Bigirimana et al. 2020 Emotion-Inducing Imagery Versus Motor Imagery for a
Brain–Computer Interface

Borra et al. 2020 Interpretable and lightweight convolutional neural network for EEG decoding:
Application to movement execution and imagination

Borra et al. 2020 Convolutional Neural Network for a P300 Brain–Computer Interface to
Improve Social Attention in Autistic Spectrum Disorder

Cao and Grover 2020 STIMULUS: Noninvasive Dynamic Patterns of Neurostimulation Using
Spatio-Temporal Interference

Castro et al. 2020 Development of a Deep Learning-Based Brain–Computer Interface for Visual
Imagery Recognition

Cha et al. 2020
Prediction of individual user’s dynamic ranges of EEG features from
resting-state EEG data for evaluating their suitability for passive
brain–computer interface applications

Chamola et al. 2020 Brain–computer interface-based humanoid control: A review

Chen et al. 2020 EEG-based biometric identification with convolutional neural network

Chen et al. 2020 Emotion recognition from spatiotemporal EEG representations with hybrid
convolutional recurrent neural networks via wearable multi-channel headset

Cheng et al. 2020 Motion Imagery-BCI Based on EEG and Eye Movement Data Fusion

Cho et al. 2020 A Novel Approach to Classify Natural Grasp Actions by Estimating Muscle
Activity Patterns from EEG Signals

Cho et al. 2020 Decoding of Grasp Motions from EEG Signals Based on a Novel Data
Augmentation Strategy

Cortez et al. 2020 Improving Speller BCI performance using a cluster-based
under-sampling method

Cortez et al. 2020 Under-sampling and Classification of P300 Single-Trials using Self-Organized
Maps and Deep Neural Networks for a Speller BCI

Cozza et al. 2020 Dimension Reduction Techniques in a Brain–Computer Interface Application

Cudlenco et al. 2020 Reading into the mind’s eye: Boosting automatic visual recognition with
EEG signals

de Melo et al. 2020 EEG Analysis in Coincident Timing Task Towards Motor Rehabilitation

Delvigne et al. 2020 Attention Estimation in Virtual Reality with EEG-based Image Regression

Deng et al. 2020 Self-adaptive shared control with brain state evaluation network for
human-wheelchair cooperation

Deng et al. 2020 A Bayesian Shared Control Approach for Wheelchair Robot with Brain
Machine Interface

Dimitrov et al. 2020 Increasing the Classification Accuracy of EEG-based Brain–computer
Interface Signals
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Dutta and Nandy 2020 An extensive analysis on deep neural architecture for classification of
subject-independent cognitive states

Dutta et al. 2020 Development of a BCI-based gaming application to enhance cognitive control
in psychiatric disorders

Elessawy et al. 2020 A long short-term memory autoencoder approach for EEG motor
imagery classification

Elkafrawy et al. 2020 Proposed model for thought-based animation based on classifying EEG signals
using estimated parameters and multi-SVM

Fathima and Kore 2020 Enhanced Differential Evolution-Based EEG Channel Selection

Feng et al. 2020 Decoding of voluntary and involuntary upper-limb motor imagery based on
graph fourier transform and cross-frequency coupling coefficients

Filipp et al. 2020 Application of brain–computer interfaces in assistive technologies

Fontanillo et al. 2020 Beyond Technologies of Electroencephalography-Based Brain–Computer
Interfaces: A Systematic Review From Commercial and Ethical Aspects

Gembler et al. 2020 Five Shades of Grey: Exploring Quintary m-Sequences for More User-Friendly
c-VEP-Based BCIs

Ghosh et al. 2020 Bi-directional Long Short-Term Memory model to analyze psychological
effects on gamers

Gorriz et al. 2020 Artificial intelligence within the interplay between natural and artificial
computation: Advances in data science, trends and applications

Grissmann et al. 2020 Context Sensitivity of EEG-Based Workload Classification Under Different
Affective Valence

Gu et al. 2020 The effects of varying levels of mental workload on motor imagery-based
brain computer interface

Gubert et al. 2020 The performance impact of data augmentation in CSP-based motor-imagery
systems for BCI applications

Gurve et al. 2020 Trends in Compressive Sensing for EEG Signal Processing Applications

Haira et al. 2020 A comparison of ECG and EEG metrics for in-flight monitoring of helicopter
pilot workload

Hernandez-Cuevas et al. 2020 Neurophysiological Closed-Loop Control for Competitive Multi-brain Robot
Interaction

Hussain and Park 2020 HealthSOS: Real-Time Health Monitoring System for Stroke Prognostics

Idowu et al. 2020 Efficient Classification of Motor Imagery using Particle Swarm
Optimization-based Neural Network for IoT Applications

Ieracitano et al. 2020 A novel multi-modal machine learning-based approach for automatic
classification of EEG recordings in dementia

Jeng et al. 2020 Low-Dimensional Subject Representation-based Transfer Learning in
EEG Decoding

Jin et al. 2020 EEG classification using sparse Bayesian extreme learning machine for
brain–computer interface

Kalafatovich et al. 2020 Decoding Visual Recognition of Objects from EEG Signals based on
Attention-Driven Convolutional Neural Network

Kang et al. 2020 EEG-Based Prediction of Successful Memory Formation During
Vocabulary Learning
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Kaongoen and Jo 2020 An Ear-EEG-based Brain–Computer Interface using Concentration Level
for Control

Kaur et al. 2020 A study of EEG for enterprise multimedia security

Khan et al. 2020 High performance multi-class motor imagery EEG classification

Kouddad et al. 2020 Indexing and Image Search by the Content According to the Biological Base of
the Cognitive Processing of Information using a Neural Sensor

Kurapa et al. 2020 A Hybrid Approach for Extracting EMG signals by Filtering EEG Data for IoT
Applications for Immobile Persons

Kuzovkin et al. 2020 Mental state space visualization for interactive modeling of personalized BCI
control strategies

Kwon et al. 2020 Decoding of Intuitive Visual Motion Imagery Using Convolutional Neural
Network under 3D-BCI Training Environment

Landau et al. 2020 Mind Your Mind: EEG-Based Brain–Computer Interfaces and Their Security in
Cyber Space

Lee et al. 2020 Complex Motor Imagery-based Brain–Computer Interface System: A
Comparison between Different Classifiers

Lee et al. 2020 Classification of Upper Limb Movements Using Convolutional Neural
Network with 3D Inception Block

Leon et al. 2020 Deep learning for EEG-based Motor Imagery classification: Accuracy-cost
trade-off

Li et al. 2020 Enhancing BCI-Based Emotion Recognition Using an Improved Particle
Swarm Optimization for Feature Selection

Liang et al. 2020 EEG-Based EMG Estimation of Shoulder Joint for the Power Augmentation
System of Upper Limbs

Lin et al. 2020 A Multi-Scale Activity Transition Network for Data Translation in EEG
Signals Decoding

Luo et al. 2020 EEG Signal Reconstruction Using a Generative Adversarial Network With
Wasserstein Distance and Temporal-Spatial-Frequency Loss

Luo et al. 2020 Estimation of Motor Imagination Based on Consumer-Grade EEG Device

Ma et al. 2020 Online learning using projections onto shrinkage closed balls for adaptive
brain computer interface

Mattia et al. 2020

The Promotoer, a brain–computer interface-assisted intervention to promote
upper limb functional motor recovery after stroke: a study protocol for a
randomized controlled trial to test early and long-term efficacy and to identify
determinants of response

Miao et al. 2020 Spatial-Frequency Feature Learning and Classification of Motor Imagery EEG
Based on Deep Convolution Neural Network

Min and Cai 2020 Driver Fatigue Detection Based on Multi-scale Wavelet Log Energy Entropy of
Frontal EEG

Mishra et al. 2020 Effect of hand grip actions on object recognition process: a machine
learning-based approach for improved motor rehabilitation

Mondini et al. 2020 Continuous low-frequency EEG decoding of arm movement for closed-loop,
natural control of a robotic arm

Nakagome et al. 2020 An empirical comparison of neural networks and machine learning algorithms
for EEG gait decoding
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Netzer et al. 2020 Real-time EEG classification via coresets for BCI applications

Nisar et al. 2020 Reducing Sensors in Mental Imagery-Based Cognitive Task for Brain
Computer Interface

Pa Aung and New 2020 Regions of Interest (ROI) Analysis for Upper Limbs EEG Neuroimaging Schemes

Padmavathy et al. 2020 A novel deep learning classifier and genetic algorithm-based feature selection
for hybrid EEG-FNIRS brain–computer interface

Paek et al. 2020 Towards a Portable Magnetoencephalography-Based Brain Computer Interface
with Optically-Pumped Magnetometers

Pan et al. 2020 Prognosis for patients with cognitive motor dissociation identified by
brain–computer interface

Pan et al. 2020 EEG-Based Emotion Recognition Using Logistic Regression with Gaussian
Kernel and Laplacian Prior and Investigation of Critical Frequency Bands

Parikh and George 2020 Quadcopter Control in Three-Dimensional Space Using SSVEP and Motor
Imagery-Based Brain–Computer Interface

Petukhov et al. 2020 Being present in a real or virtual world: A EEG study

Philip and George 2020 Visual P300 Mind-Speller Brain–Computer Interfaces: A Walk Through the
Recent Developments With Special Focus on Classification Algorithms

Qin et al. 2020 Smart Home Control for Disabled Using Brain Computer Interface

Rakshit et al. 2020 A Hybrid Brain–Computer Interface for Closed-Loop Position Control of a
Robot Arm

Rashid et al. 2020 Current Status, Challenges, and Possible Solutions of EEG-Based
Brain–Computer Interface: A Comprehensive Review

Rashid et al. 2020 Five-Class SSVEP Response Detection using Common-Spatial Pattern
(CSP)-SVM Approach

Riyad et al. 2020 Incep-eegnet: A convnet for motor imagery decoding

Roy et al. 2020 A hybrid classifier combination for home automation using EEG signals

Sadiq et al. 2020 Identification of motor and mental imagery EEG in two and multiclass
subject-dependent tasks using successive decomposition index

Sahu et al. 2020 EEG signal analysis and classification on P300 speller-based BCI performance
in ALS patients

Schembri et al. 2020 The Effect That Auditory Distractions Have on a Visual P300 Speller While
Utilizing Low Cost Off-the-Shelf Equipment

Schneider et al. 2020 Real-time EEG Feedback on Alpha Power Lateralization Leads to Behavioral
Improvements in a Covert Attention Task

Shao et al. 2020 EEG-Controlled Wall-Crawling Cleaning Robot Using SSVEP-Based
Brain–Computer Interface

She et al. 2020 Multi-class motor imagery EEG classification using collaborative
representation-based semi-supervised extreme learning machine

Shi et al. 2020 Feature Extraction of Brain–Computer Interface Electroencephalogram Based
on Motor Imagery

Siddharth and Trivedi 2020 On assessing driver awareness of situational criticalities: Multi-modal
bio-sensing and vision-based analysis, evaluations, and insights

Singh and Singh 2020 Realising transfer learning through convolutional neural network and support
vector machine for mental task classification

Song et al. 2020 A Practical EEG-Based Human-Machine Interface to Online Control an
Upper-Limb Assist Robot
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Suma et al. 2020 Spatial-temporal aspects of continuous EEG-based neurorobotic control

Sun et al. 2020 Multimodal affective state assessment using fNIRS+ EEG and spontaneous
facial expression

Talukdar et al. 2020 Adaptive feature extraction in EEG-based motor imagery BCI: tracking
mental fatigue

Tan et al. 2020 Spiking Neural Networks: Background, Recent Development and the
NeuCube Architecture

Tao 2020 Classification-Oriented Fuzzy-Rough Feature Selection for the EEG-Based
Brain Computer Interfaces

Tiwari et al. 2020 Machine Learning approach for the classification of EEG signals of multiple
imagery tasks

Torkamani-Azar et al. 2020 Prediction of Motor Imagery Performance based on Pre-Trial Spatio-Spectral
Alertness Features

Torres et al. 2020 EEG-Based BCI Emotion Recognition: A Survey

Tzdaka et al. 2020 Assessing the Relevance of Neurophysiological Patterns to Predict Motor
Imagery-based BCI Users’ Performance

Vigue-Guix et al. 2020 Can the occipital alpha-phase speed up visual detection through a real-time
EEG-based brain–computer interface (BCI)?

Wafeek et al. 2020 A Novel EEG Classification Technique Based on Particle Swarm Optimization
for Hand and Finger Movements

Wang et al. 2020 Enhancing gesture decoding performance using signals from posterior parietal
cortex: a stereo-electroencephalograhy (SEEG) study

Wang et al. 2020 P300 Recognition Based on Ensemble of SVMs

William et al. 2020 ERP Template Matching for EEG Single Trial Classification

Wolpaw et al. 2020 Brain–computer interfaces: Definitions and principles

Xu et al. 2020 Implementing Over 100 Command Codes for a High-Speed Hybrid
Brain–Computer Interface Using Concurrent P300 and SSVEP Features

Xu et al. 2020 Motor Imagery-Based Continuous Teleoperation Robot Control with
Tactile Feedback

Xu et al. 2020 Two-level multi-domain feature extraction on sparse representation for motor
imagery classification

Yan et al. 2020 An improve d common spatial pattern combine d with channel-selection
strategy for electroencephalography-based emotion recognition

Yang et al. 2020 MI3DNet: A Compact CNN for Motor Imagery EEG Classification with
Visualizable Dense Layer Parameters

Yao et al. 2020 Information-preserving feature filter for short-term EEG signals

Yi 2020 Efficient machine learning algorithm for electroencephalogram modeling in
brain–computer interfaces

Zeng et al. 2020 InstanceEasyTL: An Improved Transfer-Learning Method for EEG-Based
Cross-Subject Fatigue Detection

Zhang et al. 2020 Pain Control by Co-adaptive Learning in a Brain–Machine Interface

Zhang et al. 2020 Application of transfer learning in eeg decoding based on brain–computer
interfaces: A review

Zhou et al. 2020 A Hybrid Asynchronous Brain–Computer Interface Combining SSVEP and
EOG Signals



Sensors 2022, 22, 3331 32 of 44

Table A1. Cont.

Author Year Published Title

Zhuang et al. 2020 State-of-the-art non-invasive brain–computer interface for neural
rehabilitation: A review

Aldayel et al. 2021 Consumers’ Preference Recognition Based on Brain–Computer Interfaces:
Advances, Trends, and Applications

Alhudhaif 2021 An effective classification framework for brain–computer interface system
design based on combining of fNIRS and EEG signals

Al-Saegh et al. 2021 Deep learning for motor imagery EEG-based classification: A review

Alzahab et al. 2021 Hybrid deep learning (Hdl)-based brain–computer interface (bci) systems: A
systematic review

Asogbon et al. 2021 A linearly extendible multi-artifact removal approach for improved upper
extremity EEG-based motor imagery decoding.

Aydarkhanov et al. 2021 Closed-loop EEG study on visual recognition during driving

Belo et al. 2021 EEG-Based Auditory Attention Detection and Its Possible Future Applications
for Passive BCI

Benaroch et al. 2021 Long-Term BCI Training of a Tetraplegic User: Adaptive Riemannian
Classifiers and User Training

Bhattacharyya et al. 2021 Neuro-feedback system for real-time BCI decision prediction

Cattai et al. 2021 Phase/Amplitude Synchronization of Brain Signals During Motor Imagery
BCI Tasks.

Chaudhary et al. 2021 Neuropsychological and neurophysiological aspects of brain–computer
interface (BCI) control in paralysis

Chen et al. 2021 EEG-Based Anxious States Classification Using Affective BCI-Based Closed
Neurofeedback System

Chen et al. 2021 Implementing a calibration-free SSVEP-based BCI system with 160 targets.

Fu et al. 2021 Recognizing single-trial motor imagery EEG based on interpretable
clustering method

Georgiev et al. 2021 Virtual reality for neurorehabilitation and cognitive enhancement

Gu et al. 2021
EEG-based Brain–Computer Interfaces (BCIs): A Survey of Recent Studies on
Signal Sensing Technologies and Computational Intelligence Approaches and
Their Applications

Guner and Erkmen 2021 A Low-Cost Real-Time BCI Integration for Automated Door Opening System

Gupta et al. 2021 Brain computer interface controlled automatic electric drive for neuro-aid system

Hong et al. 2021 Dynamic Joint Domain Adaptation Network for Motor Imagery Classification

Islam et al. 2021 Auditory Evoked Potential (AEP)-Based Brain–Computer Interface (BCI)
Technology: A Short Review

Islam et al. 2021 Probability mapping-based artifact detection and removal from single-channel
EEG signals for brain–computer interface applications.

Jeng et al. 2021 Low-Dimensional Subject Representation-Based Transfer Learning in EEG
Decoding

Ketu et al. 2021 Hybrid classification model for eye state detection using
electroencephalogram signals

Khan et al. 2021 Analysis of Human Gait Using Hybrid EEG-fNIRS-Based BCI System:
A Review

Kharchenko et al. 2021 Influence of Signal Preprocessing When Highlighting Steady-State Visual
Evoked Potentials Based on a Multivariate Synchronization Index
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Kharchenko et al. 2021 Implementation of robot–human control bio-interface when highlighting
visual-evoked potentials based on multivariate synchronization index

Kumar et al. 2021 The classification of EEG-based winking signals: a transfer learning and
random forest pipeline

Liu et al. 2021 P300 event-related potential detection using one dimensional convolutional
capsule networks

Liu et al. 2021 Multiscale space-time-frequency feature-guided multitask learning CNN for
motor imagery EEG classification

Liu et al. 2021 A Utility Human Machine Interface Using Low Cost EEG Cap and Eye Tracker

Miladinovic et al. 2021 Effect of power feature covariance shift on BCI spatial-filtering techniques: A
comparative study

Mishra et al. 2021 Effect of hand grip actions on object recognition process: a machine
learning-based approach for improved motor rehabilitation

Qi et al. 2021 Spatiotemporal-Filtering-Based Channel Selection for Single-Trial
EEG Classification

Qi et al. 2021 Wielding and evaluating the removal composition of common artefacts in EEG
signals for driving behaviour analysis.

Rammy et al. 2021 Sequence-to-sequence deep neural network with spatio-spectro and temporal
features for motor imagery classification

Ravirahul et al. 2021 Mind Wave Controlled Assistive Robot

Reyes et al. 2021 LSTM-based brain–machine interface tool for text generation through eyes
blinking detection

Riyad et al. 2021 A novel multi-scale convolutional neural network for motor imagery
classification

Rybar et al. 2021 Decoding of semantic categories of imagined concepts of animals and tools
in fNIRS

Saga et al. 2021 Elucidation of EEG Characteristics of Fuzzy Reasoning-Based Heuristic BCI
and Its Application to Patient With Brain Infarction

Santos et al. 2021 Comparison of LORETA and CSP for Brain–Computer Interface Applications

Shaban et al. 2021 Classification of Lactate Level Using Resting-State EEG Measurements

Shahbakhti et al. 2021 VME-DWT: An Efficient Algorithm for Detection and Elimination of Eye Blink
from Short Segments of Single EEG Channel

Shi et al. 2021 A binary harmony search algorithm as channel selection method for motor
imagery-based BCI

Somadder et al. 2021 Frequency Domain CSP for Foot Motor Imagery Classification Using SVM for
BCI Application

Stival et al. 2021 Connectivity modeling meets machine learning: The next generation of
eeg-based brain computer interfaces

Sulaiman et al. 2021 Offline eeg-based dc motor control for wheelchair application

Sun et al. 2021 WLnet: Towards an Approach for Robust Workload Estimation Based on
Shallow Neural Networks

Wang et al. 2021 EEG-based auditory attention decoding using speech-level-based segmented
computational models

Xu et al. 2021 Review of brain encoding and decoding mechanisms for EEG-based
brain–computer interface



Sensors 2022, 22, 3331 34 of 44

Table A1. Cont.

Author Year Published Title

Yoo 2021 Electroencephalogram-based neurofeedback training in persons with stroke: A
scoping review in occupational therapy

Yu et al. 2021 Cross-correlation-based discriminant criterion for channel selection in motor
imagery BCI systems

Zeng et al. 2021 An EEG-Based Transfer Learning Method for Cross-Subject Fatigue Mental
State Prediction

Zhang et al. 2021 Improving EEG Decoding via Clustering-Based Multitask Feature Learning

Zhang et al. 2021 EEG-inception: an accurate and robust end-to-end neural network for
EEG-based motor imagery classification

Zhang et al. 2021 Tiny noise, big mistakes: adversarial perturbations induce errors in
brain–computer interface spellers

Zolfaghari et al. 2021 Using convolution neural networks pattern for classification of motor imagery
in bci system
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