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Abstract: The relationship between the disparity and depth information of corresponding pixels is
inversely proportional. Thus, in order to accurately estimate depth from stereo vision, it is important
to obtain accurate disparity maps, which encode the difference between horizontal coordinates of
corresponding image points. Stereo vision can be classified as either passive or active. Active stereo
vision generates pattern texture, which passive stereo vision does not have, on the image to fill the
textureless regions. In passive stereo vision, many surveys have discovered that disparity accuracy
is heavily reliant on attributes, such as radiometric variation and color variation, and have found
the best-performing conditions. However, in active stereo matching, the accuracy of the disparity
map is influenced not only by those affecting the passive stereo technique, but also by the attributes
of the generated pattern textures. Therefore, in this paper, we analyze and evaluate the relationship
between the performance of the active stereo technique and the attributes of pattern texture. When
evaluating, experiments are conducted under various settings, such as changing the pattern intensity,
pattern contrast, number of pattern dots, and global gain, that may affect the overall performance of the
active stereo matching technique. Through this evaluation, our discovery can act as a noteworthy
reference for constructing an active stereo system.

Keywords: active stereo matching; off-the-shelf active stereo sensor; matching cost; performance
evaluation; infrared image; disparity accuracy

1. Introduction

Estimating an accurate depth from stereo pair images is a critical problem for achieving
high-performance 3D applications in the field of computer vision [1–5]. In order to obtain
depth from stereo vision, a disparity map should be estimated. A disparity map is a two-
dimensional (2D) map that marks the pixel position difference between matching points
of two images. Because the accuracy of depth is dependent on the accuracy of disparity,
estimating an accurate disparity map is crucial in stereo vision [6].

Stereo vision can be categorized into two types: passive and active. The difference
between the passive and active methods is the existence of a pattern projector. The passive
stereo technique matches pixel correspondences using image features between two RGB
images without having the pattern texture projected from the projector onto the scene [7–11].
These image features of a scene are influenced by the complexity of the scene structure, as
well as by the passive texture, which is affected by light conditions. Thus, unique features
may not be captured in the textureless regions, so the probability of making false matches
increases due to the incapability of the technique to differentiate between the features of
different sources. As shown in Figure 1, the disparity map generated from passive stereo
vision shows many errors on the ground, curtain, and mannequin, which are textureless
regions. On the other hand, the active stereo techniques are supplemented by a projector
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that emits a patterned texture onto the surface of an object [12]. Generally, active stereo
techniques use an infrared (IR) pattern projector and an IR sensor to be reliable against
visible light interference such as background light sources.

(a) (b) (c) (d)

Figure 1. Depth estimation results with and without the active pattern. The active pattern increases
the depth estimation accuracy by providing additional information for calculating corresponding
points in textureless regions. (a) Non-active image. (b) Active image. (c) Non-active depth result.
(d) Active depth result

Thus, active stereo techniques accurately match the corresponding pixels between
stereo images, even for textureless areas of objects. As a result, Figure 1 illustrates that
the errors on the textureless regions are removed from the disparity map generated from
the active stereo vision. Generally, active stereo techniques use an infrared (IR) pattern
projector and an IR sensor to be reliable against visible light interference such as background
light sources.

Many surveys [13–17] have been conducted to evaluate the performance of many
matching techniques on passive stereo images. Previous surveys’ experiments and bench-
marks have analyzed the interaction between attributes affecting the passive texture and
the performance of the passive stereo techniques. However, unlike the passive stereo tech-
nique, the performance of active stereo techniques is affected by both passive texture and
pattern texture. Because previous surveys only evaluate a fraction of attributes affecting
the performance of the active stereo technique, the relationship between the performance
of the active stereo technique and the pattern attributes is still unknown.

Deep learning-based approaches may outperform traditional methods in many cases.
However, the performance of deep learning-based methods is highly dependent on the
dataset used to train the model. As a result, if the data given does not resemble any data in
the training dataset, the performance of the deep learning-based method would most likely
be low. Thus, the performance of the deep learning-based method is heavily dependent on
the environment. In addition, since the deep learning-based method is dependent on the
training data, it is difficult to analyze whether the performance evaluation result according
to the pattern attributes is over-fitting the learning data or is dependent on the pattern
attributes. In contrast, the traditional methods can be applied and analyzed generally.

Thus, in this paper, we evaluate the relationship between the attributes of pattern
texture, namely, the pattern intensity, pattern contrast, number of pattern dots, and active
stereo matching performance. For a quantitative evaluation, we acquired a synthetic active
stereo dataset with a ground-truth, which allows each attribute of pattern texture to be
independently controlled. The synthetic active stereo dataset is generated by adding the
synthetic pattern texture, which mimics the pattern texture projected by the real projector,
onto the public passive stereo dataset. Our evalutaion used not only the synthetic dataset,
but also the real dataset. The real dataset used is captured by the an off-the-shelf active
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stereo camera. The attributes of pattern texture depend on the settings of the active stereo
camera. Fortunately, most off-the-shelf active stereo matching cameras allow users to
control many attributes of pattern texture, such as the intensity of pattern. Through testing
on the real dataset, we confirm that our evaluation is valid in the real-world environment,
and ensure that it will provide guidance to construct an active stereo sensor system. In
addition, regardless of the dataset, our experimental results on the pattern attributes that
affect the IR environment can provide guidance for constructing an active stereo sensor
system for many applications of active stereo matching techniques.

2. Related Works
2.1. Active Stereo Matching

Active stereo matching computes the disparities between coordinates of corresponding
pixels in IR stereo images containing projected IR patterns. Images are first rectified by
changing them such that their epipolar lines are horizontal and have the same y-coordinate.
This change causes corresponding pixels to have the same y-coordinates, which reduces
the disparity computation from a 2D space to a one-dimensional (1D) space, which reduces
computational costs [6].

After the images are rectified, the matching cost is calculated, the costs are aggregated,
the disparities are actually calculated, and the matches are refined. Matching costs are
the errors that occur when the wrong pixels are identified as being corresponding ones.
Matching costs are computed using either parametric or non-parametric methods. The
matching costs computed for each disparity are aggregated in a local window and are then
used to find the correct disparity. After the disparity is selected, the computed disparity
is refined.

The evaluated combinations of matching costs and stereo algorithms are similar to
those used in other passive stereo image studies [13,14]. The parametric matching costs
used in this study were classified as either pixel-wise or window-based costs. The pixel-wise
parametric methods used in this study were the absolute differences (AD) and the Birchfield
and Tomasi (BT) methods [18]. The window-based methods were the sum of absolute
differences (SAD), the zero-mean sum of absolute differences (ZSAD), normalized cross-
correlation (NCC), and zero-mean normalized cross-correlation (ZNCC) methods. Instead
of computing matching costs based on raw data, we applied the mean, the Laplacian of
Gaussian [9], bilateral filters [19], and a rank filter to remove image offsets. Non-parametric
methods are based on the ordering of intensities, so they are robust against outliers near
object boundaries [20]. Ordering also improves robustness against global gains because the
ordering of the intensities remains consistent. In this paper, we used Census [21], which is
the most commonly used non-parametric matching cost.

For benchmarking, the commonly used stereo matching algorithms are window-based [9],
semi-global [10], and global methods using graph-cuts [11]. The window-based method
aggregates the matching cost by summing or averaging costs over a window, and selects a
disparity of the lowest cost. Global methods, such as graph-cuts, use an energy function to
minimize energy in a 2D space globally. The semi-global method works similarly to the
global method by utilizing the energy function to minimize the energy. However, instead
of collectively minimizing the energies in the entire 2D space, the semi-global method
minimizes the energy along the 1D path, which runs toward the pixel of interest.

2.2. Active Stereo Sensor

Because of accelerating research in computer vision, many off-the-shelf RGB-D cameras
are commercially available at affordable prices. The most commonly used commercial RGB-
D cameras are the Microsoft Kinect Azure (Microsoft, Redmond, WA, USA) [22], the Orbbec
Astra series (Orbbec, Troy, MI, USA) [23], and the Intel RealSense series D400 [24] and L515
(Intel, Santa, Clara, CA, USA) [25]. These RGB-D cameras use different technologies to
measure depth. The Microsoft Kinect Azure uses the time-of-flight (ToF) [26] technique to
obtain the depth map. The Microsoft Kinect Azure consists of an emitter and a receiver,



Sensors 2022, 22, 3332 4 of 33

which are used to measure the round-trip time when a signal from an emitter returns
to the receiver. Based on the measured round-trip time, the device estimates the depth.
Unlike the Microsoft Kinect Azure, the Orbbec Astra series uses a structured light technique
to estimate depth. In the structured light technique, patterns whose original shapes are
known in advance are projected to a target object. The depth is estimated using geometric
relationships between the original and deformed pattern shapes. The Intel RealSense L515
uses a light detection and ranging (LiDAR) technique, one of the ToF techniques. The
LiDAR system emits an IR laser that hits a target before being reflected back to a sensor
located close to the light source. By measuring the time taken for the light to travel, and
knowing the constant speed of light, the target’s distance can be calculated with a high
degree of accuracy. The Intel RealSense D400 series cameras are the only cameras that
utilize the active stereo technique to estimate depth among the mentioned cameras. The
Intel Realsense D400 series has a projector, which emits an unstructured pattern to add
texture to the object’s surface. At the same time, the depth is calculated by matching texture
correspondences between images captured by two infrared (IR) cameras

Table 1 summarizes the specification of these Intel RealSense D400 series cameras. Even
though the Intel RealSense D415, D435, and D455 series cameras all use the active stereo
technique, the pattern used by each model is different. The D415 uses two AMS Heptagon
projectors, while the D435 and D455 use an AMS Princeton Optronics projector with a wider
emission angle but fewer spots. Because the field of view (FOV) of the RealSense D415
model is narrower than the RealSense D435 and D455 models, the patterns are more densely
packed. Nevertheless, the pattern density for RealSense D435 and D455 can increase by
increasing the number of the same projector. In addition, the AMS Heptagon projector
projects a pattern with a specific structure. On the other hand, the AMS Princeton Optronics
projector randomly projects patterns. Thus, in terms of simulating the pattern projection on
the synthetic dataset, it is easier to simulate AMS Princeton Optronics projector than AMS
Heptagon projector. Furthermore, RealSense D455 has the longest baseline, which allows
this model to estimate depth with higher accuracy.

Table 1. Specifications of commercial RGB-D cameras

D400 Series Depth Cameras D415 D435 D455

Depth module D415 D430 D450
Baseline 55 mm 50 mm 95 mm
Left/Right Imagers Type Standard Wide Wide
IR Projector Standard Wide Wide
IR Projector FOV H:67/V:41/D:75 H:90/V:63/D:99 H:90/V:63/D:99

Therefore, in this paper, we used the RealSense D455 model for our experiments. In
addition, we synthetically mimicked the pattern projected by the RealSense D455 and
applied it onto the public passive stereo dataset Middlebury [27] so that we could evaluate
the matching cost and stereo algorithms on the synthetically generated active stereo dataset.

3. Method
3.1. Preprocessing Filter
3.1.1. Mean Filter

The mean filter removes the local intensity offset by subtracting each pixel from the
mean intensities within a window centered at the pixel of interest, which is defined as:

Imean(p) = I(p)− 1∣∣Np
∣∣ ∑

q∈Np

I(q) + 128. (1)

After subtracting the pixel, the constant offset of 128 is added to the difference in order
to avoid negative numbers when storing the result back into an 8-bit image. Unlike ZSAD,
each pixel has its window for computing the mean intensity of its neighboring pixels.



Sensors 2022, 22, 3332 5 of 33

3.1.2. Laplacian of Gaussian Filter

The Laplacian of Gaussian (LOG) [9] is a bandpass filter used to remove noise and
offsets in intensities by performing smoothing. The LoG filter is defined as:

ILoG = I ⊗ KLoG,

KLoG(x, y) = − 1
πσ4

(
1− x2 + y2

2σ2

)
e

x2+y2

2σ2 ,
(2)

where x and y are pixel coordinates and σ is the smoothing parameter.

3.1.3. Bilateral Filtering

The bilateral filter [19] smooths images by removing local offsets without eliminating
the details of high-contrast textures. Removing local offsets reduces the chance of depth
discontinuities occurring. The bilateral filter works by assigning weights to pixels neighbor-
ing the target pixel based on their proximity and color similarity to the target pixel. Then,
the intensity values of the target pixel and its neighbors are summed. The filtered image is
then subtrated from the original image to remove the original image’s background. The
bilateral filter is defined as:

IBilSub(p) = I(p)−
Σq∈Np I(q)eser

Σq∈Np eser ,

s = − (q− p)2

2σ2
s

,

r = − (I(q)− I(p))2

2σ2
r

,

(3)

where σs is a spatial distance and σr is the radiometric distance. While the term s smooths
the pixel value, the term r prevents over-smoothing over high-contrast textures by referring
to the absolute difference between a neighboring pixel q and the center pixel p.

3.1.4. Rank Filter

The rank filter is used to increase robustness against outliers within a window. It
replaces pixel intensity with its intensity rank within the window. It is defined as:

IRank(p) = ∑
q∈Np

T[I(q) < I(p)] (4)

where T[·] is a conditional function that returns 1 if its argument is true, and 0 otherwise.
Filtered pixel values depend on the intensity rank, so the rank filter is robust against
radiometric distortions because they do not affect the intensity rank. However, replacing
the pixel intensity with intensity rank causes blurring around object borders, which, in
most cases, have depth discontinuities.

3.2. Matching Cost

The introduced matching costs can be classified into two categories: parametric and
non-parametric. Parametric matching costs use the magnitude of pixel values, while non-
parametric costs use only the local ordering of intensities and can, therefore, handle all
monotonic mappings.

3.2.1. Absolute Difference

One of the parametric costs evaluated in this paper is absolute difference (AD), which is
defined as:

CAD(p, d) = |IL(p)− IR(p− d)| (5)
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where p is a pixel in the left image, and d is a disparity between the left image IL and
the right image IR. AD simply uses an intensity difference between corresponding pixels
in the left and right images because it assumes that corresponding pixels will have the
same brightness.

While AD globally computes matching cost, the sum of absolute difference (SAD)
computes local matching cost within a window, and is defined as:

CSAD(p, d) = ∑
q∈Np

|IL(q)− IR(q− d)| (6)

where q is a pixel inside a neighborhood Np of pixels p.

3.2.2. Zero-Mean Sum of Absolute Differences

The zero-mean sum of absolute difference (ZSAD) works very similarly to SAD, except
the neighboring pixel q is subtracted by the mean intensity inside a window. ZSAD is
defined as:

CZSAD(p, d) = ∑
q∈Np

|(IL(q)− ĪL(p))− (IR(q− d)− ĪR(p− d))|,

ĪL(p) =
1∣∣Np
∣∣ ∑

q∈Np

IL(q),
(7)

where ĪL(p) and ĪR(p) are the means of pixels inside a window Np for IL and IR, respec-
tively. When computing the cost, all pixels inside a window are subtracted from the same
mean intensity.

3.2.3. Birchfield–Tomasi

The Birchfield and Tomasi (BT) [18] cost measures the sampling-insensitive absolute
difference between stereo images, and is defined as:

CBT(p, d) = min(A, B),

A = max
(

0, IL(p)− Imax
R (p− d), Imin

R (p− d)− IL(p)
)

,

B = max
(

0, IL(p)− Imax
R (p− d), Imin

R (p− d)− IL(p)
)

,

Imin(p) = min
(

I−(p), I(p), I+(p)
)
,

Imax(p) = max
(

I−(p), I(p), I+(p)
)
,

I−(p) =
(

I
(

p− [1 0]T
)
+ I(p)

)
/2,

I+(p) =
(

I
(

p + [1 0]T
)
+ I(p)

)
/2.

(8)

While AD directly computes the difference between left and right images, BT computes
the absolute distance between the left image and the extrema of a linearly interpolated
pixel of interest in the right image.

3.2.4. Normalized Cross-Correlation

Normalized cross-correlation (NCC) is a matching cost that can be applied only to
window-based stereo algorithm. It is defined as:

CNCC(p, d) = 1−
∑q∈Np IL(q)IR(q− d)√

∑q∈Np IL(q)
2 ∑q∈Np IR(q− d)2

. (9)

NCC normalizes pixels inside a window Np centered at the pixel p. For each normal-
ized pixel q in Np, the cross-correlation is computed to measure the degree to which pixels
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in the left and right images correspond. If the pixel q in the left image corresponds to the
pixel q− d at disparity level d in the right image, the value of NCC equals 0. Because NCC
normalizes pixels, NCC is robust to gain changes and Gaussian noise. However, it also
blurs depth discontinuities more than other matching costs, due to outliers.

3.2.5. Zero-Mean Normalized Cross-Correlation

Similar to NCC, ZNCC computes costs using the cross-correlation between normalized
pixels in a given window. The only difference between them is that ZNCC subtracts each
pixel’s intensity from the mean intensity before computing the cost. Hence, ZNCC is
defined as:

CZNCC(p, d) =
∑q∈Np(IL(q) ĪL(p))(IR(q− d)− ĪR(p− d))√

∑q∈Np(IL(q)− ĪL(p))
2 ∑q∈Np(IR(q− d)− ĪR(p− d))2

. (10)

ZNCC is the only parametric cost that can compensate for differences in gains and
offset within the correlation window.

3.2.6. Census

Census [21] is a non-parametric matching cost, which is based on the local order of
intensities. Census defines a bit string where each bit corresponds to a certain pixel in the
local neighborhood of the pixel of interest. A bit is set to one of the corresponding pixels
that has a higher intensity than the pixel of interest, and vice versa. Thus, the census cost
stores both the intensity rank and the spatial structure of the local neighborhood. Trans-
formed images are matched by computing the Hamming distance between corresponding
bit strings.

3.3. Stereo Algorithm

The performance of a matching cost can depend on the algorithm that uses the cost.
Thus, we consider three different stereo algorithms: a window-based method, the semi-
global method, and a graph-cut method. We implemented each of the matching costs for
each stereo method, except for NCC, ZSAD, and ZNCC, which can only be used with the
window-based method.

3.3.1. Window-Based

The window-based method [9] aggregates the matching cost over the window. Then,
the disparity with the lowest aggregated cost is selected. After selecting the disparity, a
subpixel interpolation, followed by a left–right consistency check, is performed in order to
invalidate disparity segments and occlusions. The invalid disparity areas are then filled
with new disparity values propagated from neighboring pixels. These post-processing
steps are used to reduce errors.

3.3.2. Graph Cut

Global methods aim to find correspondences for all pixels in the image via minimizing
a global cost function. The graph-cut method [11] is used as one of the global methods for
stereo matching. Before performing the graph-cut, a specialized graph is constructed for the
energy function to minimize the global cost. The graph-cut method performs a max-flow
algorithm to find the minimum cut that minimizes the energy in the specialized graph. The
energy function E(D) used in this paper is defined as:

E(D) = ∑
p

C
(
p, Dp

)
+ ∑

q∈Np

P1T
[∣∣Dp − Dq

∣∣ = 1
]
+ P2T

[∣∣Dp − Dq
∣∣ > 1

] (11)

where C(p, Dp) is a pixel-wise matching cost for all pixel p at their disparities Dp; P
coefficients are penalty costs. Either the penalty cost P1 or the penalty cost P2 is chosen,
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depending on the disparity difference between the center pixel p and its neighbor q. If the
disparity difference equals to one, P1 is selected. If the disparity difference is greater than
one, P2 is selected; therefore, P2 gives a greater penalty cost than P1.

3.3.3. Semi-Global Matching

The semi-global matching (SGM) [10] algorithm solves the 2D energy function E(D)
by reducing it to a large number of 1D problems. The energy function E(D) used in SGM
is the same as that of the graph-cut. Unlike the graph-cut, which globally computes the
energy function E(D), SGM computes E(D) along the eight 1D paths toward the target
pixel. The costs computed along the paths are summed. The summed result is the cost of
the pixel of interest. The cost is computed for all disparity levels, and the disparity with the
lowest cost is selected. After choosing the disparity, the post-processing steps that were
applied to the window-based method are also applied to SGM.

3.4. Summary

To thoroughly evaluate the matching performance according to the image filter and
matching algorithm, we have tested all possible combinations of filters and stereo matching
costs with each stereo algorithm described below section. The combinations we tested in the
experiments below are: AD, BT, ZSAD, NCC, ZNCC, Mean/AD, Mean/BT, Mean/ZSAD,
Mean/NCC, Mean/ZNCC, LoG/AD, LoG/BT, LoG/ZSAD, LoG/NCC, LoG/ZNCC, Bil-
Sub/AD, BilSub/BT, BilSub/ZSAD, BilSub/NCC, BilSub/ZNCC, Rank/AD, Rank/BT,
Rank/ZSAD, Rank/NCC, Rank/ZNCC, and Census. While all filters can be used regard-
less of the matching algorithm, window-based matching costs (SAD, ZSAD, NCC, and
ZNCC) cannot be implemented with the semi-global matching (SGM) or the graph-cut
(GC) methods. This is because SGM optimizes the disparity values along 1D paths in eight
directions, and the GC method optimizes the disparity map error globally. Because they
are optimizing the disparity value globally or in 1D paths, it is not suitable to use the
window-based matching cost. Thus, due to implementation differences, window-based
matching costs cannot be applied to semi-global and GC methods. On the other hand,
the window-based algorithm can aggregate all possible combinations of matching costs
and filters.

4. Experiments

We generated synthetic active stereo images, which can control parameters affecting
the attribute of IR images, from a public passive stereo dataset using an image processing
tool [28] to quantitatively evaluate active stereo techniques against the ground-truths. The
pattern texture in the synthetic dataset imitates that of an active stereo camera to confirm
that our evaluation is valid in a real-world environment qualitatively. Figure 2 shows
left images of some sets that synthetically generated an active stereo dataset from the
Middlebury 2014 [27] stereo dataset.

We conduct the quantitative and qualitative evaluation by changing four attributes
of active IR images on a synthetic active stereo dataset. The first parameter is the pattern
intensity, which refers to the intensity of the pattern dots emitted from the IR projector. The
second parameter is the pattern contrast, which refers to the relative brightness difference
between the intensity of pattern dots and the intensity excluding pattern dots in the IR
image. The third parameter is the number of pattern dots, and in this experiment, the density
of pattern dots is controlled. Finally, we change the gain of the input IR image and the
overall brightness of the active stereo image. We analyze how changes in these parameters
affect the accuracy of disparity estimation in our experiments. Figure 3 shows the input left
images according to the change of each parameter.

We also analyze changes in these parameters on real IR images captured using com-
mercial RGB-D cameras, RealSense D455. Four attributes of the active IR images on a
synthetic active stereo dataset correspond to the laser power, the illumination ratio of the
laser power and the external light source, the number of IR projectors, and the illumination
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of the external light source, respectively. These attributes are adjustable. By comparing the
trend from the experiment on the real active dataset with the experiment on the synthetic
active stereo dataset, we analyze how the four parameters affect the real IR images.

Figure 2. Some sets of left images with synthetically projected pattern. The last image is the GT
disparity map of the first image.

Figure 3. Left synthetic images according to our experimental parameters affecting the attribute of IR
images. The figures show changes in the pattern intensity, pattern contrast, number of pattern dots, and
global gain from top to bottom.

4.1. Dataset and Implementation Details

Synthetic Active Stereo Image Generation. Generally, the active pattern projected
from the laser-based IR projector that follows the inverse square law is designed to emit
random dots. Moreover, the laser speckle must appear on the object’s surface. To fully
replicate the active pattern produced by the widely used off-the-shelf RGB-D camera
(i.e., RealSense D455 [29]) to our synthetic dataset, we empirically measured the size of
an IR dot, which is a composite of the active pattern. We measured the size of the dot
by projecting the pattern onto the fit plane from 1 m away. From this environment, we
discovered that the radius of each dot is 5 mm. First, we randomly sampled the location of
each pattern dot using Kocis et al.’s method [30]. After randomly sampling the location
of each dot, we applied a 2D Gaussian kernel to each dot to generate its speckle. Then,
we applied the inverse square law to adjust the size and intensity of each dot based on
depth. We fine-tuned the parameter for the 2D Gaussian kernel and the inverse square
law so that the size of a dot was 5 mm when it was 1 m away. Then, the RGB image was
converted to a gray-scale image, assuming that the receiving wavelength of the IR sensor
was encoded with the intensity of the monochrome imaging sensor converted in the RGB
camera. Finally, the gray-scale image and the image projected with random patterns were
integrated to generate a synthetic active stereo image. We used the standard Middlebury
2014 stereo datasets (Adirondack, Backpack, Bicycle1, Classroom1, Motorcycle, Piano, Pipes,
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Playroom, Playtable, Recycle, Shelves, Sticks, Sword1, Sword2, and Umbrella) to generate a
synthetic active stereo image [27].

Implementation Details. The disparity range was set to pre-defined ground-truth
values for each set. The resolution and disparity ranges of the images were downsampled
to one-third of their original size. We heuristically tuned and set the default values of the
four attributes of active IR images for all stereo matching algorithms. After setting the
default value, only each parameter was changed in the experiment on four attributes of the
active IR images. The pattern intensity had 60 levels, while the pattern contrast, number of
pattern dots, and global gain of the input images had 20 levels. In the preprocessing filter,
the size of all image filters was 7 × 7. The parameter of the LoG filter (2) was σ = 1,
and the parameters of the BilSub filter (3) were σs = 5 and σr = 100, respectively. For
the window-based method, we set the window size of all combinations to 9× 9 and the
aggregation filter size to 15. The smoothness parameters of the SGM method, namely,
P1 and P2, were the same as the parameters used in [13] (P1 refers to small disparity
differences of the neighboring pixels, and P2 was adapted to the local intensity gradient
by the neighboring pixels, respectively). The smoothness parameter of SGM was set as
value × number of image channel × matched block size × matched block size in the StereoSGBM
library of OpenCV (P1 = 8 × 1 × 3 × 3, P2 = 32 × 1 × 3 × 3) [13,31]. The smoothness
parameters of GC were the same as the parameters used in [11] (P1 is the same as the GC
parameter P1 and P2 is used to double the value of four gradients below a given threshold,
respectively). For the smoothness parameter of GC, the max smooth value was 1 and the
weight of the smoothness term was 8000 in the MRF library [32], respectively. The filter
size of Census and rank was 9× 9. Figure 4 illustrates the input images to which image
filtering was applied.

Figure 4. The figures show the filtered images used for combinations for the experiment. From
left to right, the figures show images with no filter, the mean filter, the LoG filter, the BilSub filter,
and the rank filter applied. For visualization, contrasts of all images have been enhanced through
histogram equalizing.

We computed the proportion of pixels with a pixel difference greater than one between
the ground-truth disparity value and the estimated disparity image for quantitative evalua-
tion. In the calculated proportion, we cannot determine the disparities in the area where
occlusion occurs by matching stereo images. Therefore, these occluded areas are ignored in
the proportion calculation.

The software for the window-based and SGM methods used in this paper was imple-
mented using C++ with OpenCV [31]. For the graph-cut method, we experimented with
the GC stereo algorithm using the MRF library provided by [32], an open library that has
already been implemented. We used a desktop machine equipped with an Intel Core i7 CPU
and a single GPU of Nvidia Geforce GTX 2080 Ti for our experiments.

4.2. Evaluation of Synthetic Active Dataset

In this section, each combination is tested on the default setting of synthetically gener-
ated active stereo images. Figure 5 shows the performance of each combination in terms of
an average error of disparity maps generated from our Middlebury dataset [27] classes.

Figure 5 shows the errors produced by matching costs when aggregated with the
window-based method. Using the window-based cost aggregation method, Census pro-
duced the lowest average error, and the mean filter with NCC produced the highest average
error. The mean filter produced more errors than the other filters because it removed low-
texture areas from the image, making it more difficult for the window-based algorithm to
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distinguish between the differences in the windows. As a result, the probability of false
matches increased. The performance of SAD, BT, ZSAD, and NCC varied according to the
filter used, but the performance of ZNCC did not. ZNCC is robust to intensity contrast
and noise through normalization, and compensates for intensity offsets between left and
right images. These advantages allowed ZNCC to show steady performance, regardless
of the filters applied to it. When comparing the filters except for Census, the BilSub filter
produced the lowest error on average. The BilSub filter locally removed the background
that might interfere with matching.

Figure 5b shows the errors produced by matching costs when aggregated with the
semi-global matching method. Similar to the result in Figure 5a, Census produced the fewest
errors. The most errors were produced by the BilSub filter with BT, which is unlike the
window-based method. This vividly shows that BT produces higher errors than AD when it
is applied with or without filters. A similar effect of BT can be observed in Figure 5a. BT is
known for its robustness against the sampling effect by linearly interpolating the intensity
with surrounding neighbors. Because the patterns are projected in the IR environment,
patterns do not interfere with the natural intensity of an object. Therefore, the use of linear
interpolation causes an inaccurate representation of intensity around the borders of the
projected patterns. This blur effect makes it difficult for the stereo algorithm to find a match.
On the other hand, AD computes costs by simply subtracting two images at a certain
disparity, Thus, AD is able to obtain a more accurate disparity map than BT in an active
stereo environment.

Figure 5c shows the errors produced by matching costs when aggregated with the
graph-cut method. Census shows the best performance, and the rank filter with AD
shows the worst performance. GC seems to produce results that are very different from the
window-based and SGM methods. We observed that BT produced more errors than AD,
and that the rank filter performed relatively better than some matching costs (Figure 5a,c).
However, Figure 5c shows that BT performed better than the AD, and that the rank filter
showed the worst performance.

Figure 6 shows the qualitative results of all matching costs tested under the default
settings of the attribute. In general, the matching costs applied with the window-based
stereo algorithm produced disparity maps similar to the ground-truth. While the matching
costs aggregated by SGM showed finer details of the objects’ boundaries, the disparity map
generated by GC displays some regions that were filled with the supposedly occluded
disparity values. This inaccurate filling of holes causes the misinterpretation of the disparity
maps. Overall, Census seems to produce the most accurate result, and AD, with the mean
filter applied onto the images, produces the least accurate representation, due to the blurring
effect near the boundaries of the objects.

(a) (b) (c)

Figure 5. Mean errors on the combinations of the cost and image filters, according to each stereo
matching method over the synthetic active dataset. The attributes of the active IR images were set to
default values. Each color represents different filters along the methods. (a) Window-based. (b) SGM.
(c) GC.
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

(m) (n) (o) (p) (q) (r)

Figure 6. Estimated disparity images of the combinations of the cost and the image filter, according to
each stereo matching method over the synthetic active dataset. All attributes of the active IR images
were set to default values. In SGM, the columns equal to the max disparity value are not used in
the left image because the corresponding pixels in the right image cannot be used for comparison.
Therefore, missing pixels appear at the left edge of the image [33]. (a) Window, SAD. (b) Window,
Mean/SAD. (c) Window, LoG/SAD. (d) Window, BilSub/SAD. (e) Window, Rank/SAD. (f) Window,
Census. (g) SGM, AD. (h) SGM, Mean/AD. (i) SGM, LoG/AD. (j) SGM, BilSub/AD. (k) SGM,
Rank/AD. (l) SGM, Census. (m) GC, AD. (n) GC, Mean/AD. (o) GC, LoG/AD. (p) GC, BilSub/AD.
(q) GC, Rank/AD. (r) GC, Census

4.3. Evaluation on Pattern Intensity Changes

We evaluated each combination at 60 levels (from 5 to 300) that specify the magnitude
of the 2D Gaussian kernel. The patterned texture of our synthetic active stereo image
was generated using a 2D Gaussian kernel that mimicked a laser speckle. Following the
inverse square law, the intensity of each pattern dot depends on the distance between the
surface and the camera, which is the depth. The further the distance to the surface, the
lower the intensity of the pattern is set. Even though pattern dots, which are close to the
camera, have already reached the intensity of 255, pattern dots on the far surface still have
room to increase. Thus, we tried to increase the intensity of the pattern dots far from the
camera. Figures 7 and 8 show the errors generated by the window-based, SGM, and GC
methods when the pattern intensity was varied. To begin with, matching costs are grouped
based on the filters applied to the image in Figure 7. The performance of the matching
costs is positively correlated with the pattern intensity, regardless of whether filters are
used. When comparing against other non-filtered matching costs, Census performed the
best. When the pattern intensity was below a certain level, BT performed the worst, but
above that level, NCC performed the worst. The performances of ZSAD, NCC, ZNCC, and
Census are relatively robust to changes in the pattern intensity because normalization and
zero-mean subtraction amplify the projected patterns with low intensity. Similar to NCC,
ZSAD performed better than SAD when the pattern intensity was set higher than 110, and
vice versa. The robustness of ZSAD’s, NCC’s, ZNCC’s, and Census’s performances are
not lost even when filters were applied because the filters already applied these matching
costs’ effects. However, the errors produced by these matching costs quickly saturate when
applied with filters. Thus, the graphs in Figure 7b–e show an exponential increase in errors
when the pattern intensity was extremely low. Census performed the best for the mean, LoG,
and rank filter. The stereo matching results produced using the BilSub filter are unclear
because all matching costs except for BT produced a similar amount of errors. The results
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produced from the images filtered by the BilSub filter cannot be clearly stated because
all matching costs except BT produced a similar amount of errors. The worst-performing
matching cost was NCC for the rank and the mean filter, and for the BilSub filter, the worst-
performing matching cost was BT. The worst-performing matching cost for the LoG filter
depends on the pattern intensity. When the pattern intensity is lower than 135, BT performs
worst. When the pattern intensity is higher than 135, ZSAD performs worst. As a result, the
errors exponentially increase when the pattern intensity drops below a certain level.

(a) (b) (c)

(d) (e) (f)

Figure 7. Errors of combinations of the cost and image filter using the window-based stereo method,
according to the variation of the pattern intensity parameter. (a) Non-filter. (b) Mean. (c) LoG. (d) BilSub.
(e) Rank. (f) Best of Window.

(a) (b) (c)

Figure 8. Errors of combinations of cost and image filter using the SGM and GC stereo methods,
according to the variation of the pattern intensity parameter. (a) SGM/AD. (b) GC/AD. (c) GC/BT

Figure 8a illustrates the errors generated by matching costs in SGM at each level of the
pattern intensity. From Figure 8a, we can observe that Census is the most robust matching
cost, and that it is the best-performing matching cost. In contrast to Census, AD with the
LoG filter is the least-robust matching cost against changes in the pattern intensity. When the
pattern intensity decreases below 25, AD with the LoG filter’s error increases exponentially
and performs the worst. When the pattern intensity is higher than 25, the BilSub filter with
AD produces the highest error, and the rate of change in errors is not stable, unlike other
matching costs. The error produced by the BilSub filter with AD heavily fluctuates relative
to other matching costs. This is because the performance of the BilSub filter is strongly
dependent on the scene structure of the images. As a result, the images with complex
scene structures produce more errors than other images, leading to the fluctuation in errors
produced by the BilSub filter with AD.

Similar to the window-based and SGM methods, Census performed the best when
aggregation was conducted by GC, as shown in Figure 8b,c. GC produces robust results



Sensors 2022, 22, 3332 14 of 33

when matching costs are computed on the images filtered by the BilSub filter and the
rank filter. The mean filter applied to images produces fluctuating errors when the pattern
intensity is low. Since the mean filter computes the mean intensity of images, the information
required for matching at low intensity becomes ambiguous in both the pattern texture and
the passive texture. This effect becomes dependent on the objects in the scene, causing the
average error to be non-constant. Nevertheless, its error is reduced to the same level as
other filters when the pattern power is high enough.

The qualitative results shown in Figures 9–11 are results produced by the window-
based, SGM, and GC methods, respectively. The results from the low (a)–(f) and high (g)–(l)
pattern intensity are illustrated to qualitatively evaluate the effect of the pattern intensity
and the performance of the matching costs against changes in the number of pattern dots.
Overall, regardless of the matching costs used, all stereo algorithms perform poorly when
the pattern intensity setting is low. Because the pattern dots become indistinguishable from
the background texture, mismatches and inaccurate estimations of disparity values for
each pixel are caused. When the pattern intensity is set sufficiently high, the pattern dots
become distinguishable, and regions are filled with complex pattern textures. Thus, holes
created by matching errors are filled with correct disparity values, and the results show the
accurate contour of scene structures. The matching cost that produced the least difference
between the two settings is Census.

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 9. Estimated disparity images of the combinations of cost and image filter using the window-
based stereo method, according to the low and high pattern intensity parameters. The images in the top
row show disparities at the low intensity parameter, and the images in the bottom row show those at
the high intensity parameter, respectively. (a) Window, SAD. (b) Window, Mean/SAD. (c) Window,
LoG/SAD. (d) Window, BilSub/SAD. (e) Window, Rank/SAD. (f) Window, Census. (g) Window, SAD.
(h) Window, Mean/SAD. (i) Window, LoG/SAD. (j) Window, BilSub/SAD. (k) Window, Rank/SAD.
(l) Window, Census.

In summary, all matching costs’ performances are positively correlated with the pattern
intensity. However, their performance saturates from a certain level of the pattern intensity.
The performances of the matching costs are almost even with each other when using the
window-based algorithm with the BilSub filter applied to the images. This is because the
BilSub filter strengthens the edge features while killing the planar features. Because the
pattern dots are small, the BilSub filter heavily emphasizes the pattern texture in the image.
As a result, only the pattern texture is used for matching as the pattern intensity increases.
Thus, the performance of all matching costs, except BT, produces similar errors when
using the BilSub filter with the window-based method. SGM produces variable numbers
of errors when using the AD and BilSub filters because SGM depends on both pattern
and passive textures for matching. The number of mismatches produced by SGM was
positively correlated with scene complexity because it solely relied on the pattern texture
and optimized the disparity value along the eight lines running toward the target pixels.
Thus, SGM becomes biased toward each pixel and, thereby, produces errors in images
with complex scene structures. In order to investigate the effect of the correlation between
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object and pattern textures, we evaluated how matching cost performance varied by the
pattern contrast.

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 10. Estimated disparity images of the combinations of cost and image filter using the SGM
stereo method according to the low and high pattern intensity parameters. The images in the top
row show disparities at the low intensity parameter, and the images in the bottom row show those
at the high intensity parameter, respectively. (a) SGM, AD. (b) SGM, Mean/AD. (c) SGM, LoG/AD.
(d) SGM, BilSub/AD. (e) SGM, Rank/AD. (f) SGM, Census. (g) SGM, AD. (h) SGM, Mean/AD.
(i) SGM, LoG/AD. (j) SGM, BilSub/AD. (k) SGM, Rank/AD. (l) SGM, Census.

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 11. Estimated disparity images of the combinations of cost and image filter using the GC
stereo method according to the low and high pattern intensity parameters. The images in the top row
show disparities at the low intensity parameter, and the images in the bottom row show those at
the high intensity parameter, respectively. (a) GC, AD. (b) GC, Mean/AD. (c) GC, LoG/AD. (d) GC,
BilSub/AD. (e) GC, Rank/AD. (e) GC, Census. (g) GC, AD. (h) GC, Mean/AD. (i) GC, LoG/AD.
(j) GC, BilSub/AD. (k) GC, Rank/AD. (l) GC, Census

4.4. Evaluation of Pattern Contrast Changes

After discovering the saturation of the errors produced by matching costs, we tested
the matching costs on the change in the pattern contrast, which defines the inverse relation-
ship between the passive texture and pattern texture. The pattern contrast is a significant
factor that influences the performance of matching costs and stereo algorithms, as shown
in Figures 12 and 13. The pattern contrast is the intensity ratio between the IR image and
the pattern image. The pattern contrast is set in the last stage of generating a synthetic active
stereo image. The x-axis in Figures 12 and 13 refers to 20 levels (from 0.05 to 0.1) of the
intensity of the pattern image, relative to the intensity of the IR image. For example, if the
relative intensity of the pattern image is set as 0.05, the relative intensity of the IR image is
set as 0.95. We analyzed how the passive texture, which is the original IR image excluding
the pattern dots, and the pattern texture, which is the pattern dots projected onto the image,
affect each other on stereo matching. To analyze the disparity estimation accuracy for the
passive texture and pattern texture intensity ratio, we measured the error by changing the
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intensity ratio of the pattern image and the original IR image, excluding the pattern dots.
Figures 12 and 13 show the quantitative results of the pattern contrast change experiments.
This shows that the disparity estimation is inaccurate not only when the intensity of the
pattern texture is low, but also when the passive texture is too dark. Therefore, it is necessary
to find the optimal pattern contrast level for accurate disparity estimations.

Figure 12 groups the results by the filters applied to the active stereo images in the
window-based method. Overall, all of the results show a parabolic shape. However, except
for ZNCC and Census in Figure 12a, Figure 12a still shows tendency in Section 4.3. The
results from the BilSub and rank filter show a more definitive parabolic shape, which means
more errors are produced when the contrast is set at an extreme level. Because the BilSub
and rank filters remove weak features from the image when the contrast is low, the pattern
texture is erased, and when the contrast is high, the passive texture is erased.
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Figure 12. Errors of combinations of cost and image filter using the window-based stereo method,
according to the variation of the pattern contrast parameter. (a) Non-filter. (b) Mean. (c) LoG. (d) BilSub.
(e) Rank. (f) Best of Window
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Figure 13. Errors of combinations of cost and image filter using the SGM and GC stereo methods,
according to the variation of the pattern contrast parameter. (a) SGM/AD. (b) GC/AD. (c) GC/BT.

The errors produced by matching costs with SGM are shown in Figure 13a. Census
produces the fewest error throughout the contrast level range. The results of the filters,
except for Mean/AD and BilSub/AD, are similar to those from Figure 12. The performances
of Mean/AD and BilSub/AD are notable. The BilSub filter removes the passive texture,
and the mean filter blurs the passive texture from the images. Therefore, matching is
performed by using pattern texture only. For these reasons, in the images with complex
scene structures, many similar pattern dots may cause mismatches by the SGM method. As
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Figure 13. Errors of combinations of cost and image filter using the SGM and GC stereo methods,
according to the variation of the pattern contrast parameter. (a) SGM/AD. (b) GC/AD. (c) GC/BT.

The errors produced by matching costs with SGM are shown in Figure 13a. Census
produces the fewest error throughout the contrast level range. The results of the filters,
except for Mean/AD and BilSub/AD, are similar to those from Figure 12. The performances
of Mean/AD and BilSub/AD are notable. The BilSub filter removes the passive texture,
and the mean filter blurs the passive texture from the images. Therefore, matching is
performed by using pattern texture only. For these reasons, in the images with complex
scene structures, many similar pattern dots may cause mismatches by the SGM method. As
a result, these filters produced many errors from images with complex scene structures,
and a few from simple ones.
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Similar to the result from the SGM method, Figure 13b,c illustrates that the best-
performing and the most-robust matching cost is Census, when used with GC as the stereo
algorithm. The least-robust matching costs, when used with GC, are AD, Mean/AD, BT,
and Mean/BT. These matching costs do not remove noise and unnecessary information
from the images. Thus, when globally optimizing the disparity map, these offsets negatively
affect the performance of the active stereo technique.

In addition, when the pattern contrast is low, the pattern texture is barely visible in the
image. As a result, the performance of BT and AD is similar to that of the passive stereo
technique. Furthermore, the mean filter blurs boundaries between the passive texture and
the pattern texture. Hence, the images are contaminated when the pattern contrast is low.
However, as the pattern contrast increases, it becomes obvious for GC to match correct pixels
because the feature of pattern texture becomes distinctive.

Figures 14–16 illustrate the qualitative results of the matching costs obtained from
the window-based, SGM, and GC methods, respectively. For all stereo algorithms, the
performance of the matching costs improved with the increase in the pattern contrast.
However, when comparing with the results from the default settings in Figure 6, we
observed that the results of BilSub/SAD and Rank/SAD are better with the default settings.
Nevertheless, the qualitative result of Census produced by GC showed almost uniform
results and generated a disparity map similar to the ground-truth of a scene structure.

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 14. Estimated disparity images of the combinations of cost and image filter using the window-
based stereo method, according to the low and high pattern contrast parameters. The images in the
top row show disparities at low contrast, and the images in the bottom row show those at high
contrast, respectively. (a) Window, SAD. (b) Window, Mean/SAD. (c) Window, LoG/SAD. (d) Win-
dow, BilSub/SAD. (e) Window, Rank/SAD. (f) Window, Census. (g) Window, SAD. (h) Window,
Mean/SAD. (i) Window, LoG/SAD. (j) Window, BilSub/SAD. (k) Window, Rank/SAD. (l) Win-
dow, Census.

In summary, finding the optimal pattern contrast level is crucial for the matching costs.
In the window-based method, Census and ZNCC also show that these optimal levels should
be found while showing the least overall errors and robustness. Because Census depends
on the relative ordering of image intensity, matching corresponding points invariant to
monotonic variations of illumination is possible. Changing the level of contrast can change
this relative ordering. As shown in Figure 12a, the lowest error appears at the appropriate
contrast level. For the ZNCC cost, only the intensity change in the image kernel is used
for matching the corresponding point. Therefore, the ZNCC cost also shows a tendency
similar to that of Census. On the other hand, changing the contrast level in the non-filter
only scales the image intensity value. The window-based method, using the image intensity
value, dramatically increases or decreases the cost value, depending on the scale. Therefore,
SAD, BT, ZSAD, and NCC show the trend shown in Section 4.3. We have evaluated the
effect of the pattern intensity and pattern contrast on the performance of matching costs.
These parameters affect the feature strength of the pattern texture. However, we have not
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evaluated the effect of the number of pattern dots filling the scene. Thus, in the next section,
we evaluate the performance of matching costs on changes in the number of pattern dots.

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 15. Estimated disparity images of the combinations of cost and image filter using the
SGM stereo method, according to the low and high pattern contrast parameters. The images in
the top row show disparities at low contrast, and the images in the bottom row show those at high
contrast, respectively. (a) SGM, AD. (b) SGM, Mean/AD. (c) SGM, LoG/AD. (d) SGM, BilSub/AD.
(e) SGM, Rank/AD. (f) SGM, Census. (g) SGM, AD. (h) SGM, Mean/AD. (i) SGM, LoG/AD. (j) SGM,
BilSub/AD. (k) SGM, Rank/AD. (l) SGM, Census.

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 16. Estimated disparity images of the combinations of cost and image filter using the GC stereo
method, according to the low and high pattern contrast parameters. The images in the top row show
disparities at low contrast, and the images in the bottom row show those at high contrast, respectively.
(a) GC, AD. (b) GC, Mean/AD. (c) GC, LoG/AD. (d) GC, BilSub/AD. (e) GC, Rank/AD. (f) GC,
Census. (g) GC, AD. (h) GC, Mean/AD. (i) GC, LoG/AD. (j) GC, BilSub/AD. (k) GC, Rank/AD. (l)
GC, Census.

4.5. Evaluation of the Number of Pattern Dots Changes

While the pattern intensity and pattern contrast control the extent of patterns’ definition
in the images, the number of pattern dots determines the complexity of the pattern texture
applied to the images. Thus, we evaluated the performance of matching costs against
changes in the number of pattern dots, and the results are shown in Figures 17 and 18.
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(a) (b) (c)

(d) (e) (f)

Figure 17. Errors of combinations of cost and image filter using the window-based stereo method,
according to variations of the number of pattern dots parameter. (a) Non-filter. (b) Mean. (c) LoG.
(d) BilSub. (e) Rank. (f) Best of Window

(a) (b) (c)

Figure 18. Errors of combinations of cost and image filter using the SGM and GC stereo methods,
according to variations of the number of pattern dots parameter. (a) SGM/AD. (b) GC/AD. (c) GC/BT.

The results of changing the number of pattern dots on each matching with the window-
based stereo algorithms are shown in Figure 17. As the number of pattern dots increases, so
does the matching cost performance, but this eventually increases plateaus. The perfor-
mance improves because more textures are applied to less strongly textured regions in the
images, leading to fewer false matches.

Figure 18a shows that the matching cost performance with the SGM cost performance
was positively correlated with the number of pattern dots, except for that of the Census
method, which was relatively unchanged. However, the Census method produced the
lowest number of errors. The Census method performed the best and was robust against
changes in the number of pattern dots when using SGM as the stereo algorithm. The perfor-
mance of BilSub/AD does not show a smooth curve, unlike other matching costs, because
the BilSub filter does not perform well with certain images having complex scene structures.
As a result, the performance of the BilSub filter fluctuates more than other matching costs.
In addition to results from window-based and SGM methods, the performance of matching
costs aggregated by GC are shown in Figure 18b,c. Unlike the results of SGM, the LoG and
BilSub filters do not show a tendency to converge as the number of pattern dots increases.

The qualitative results shown in Figures 19–21 are results produced by the window-
based, SGM, and GC methods, respectively. The results from the low (a)–(f) and high (g)–(l)
numbers of pattern dots are used to qualitatively evaluate the effect of the number of pattern
dots on the matching cost performance. Overall, regardless of the matching costs used, all
stereo algorithms performed poorly when the number of the pattern dots was low. This
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is because the inaccurate disparity values are estimated from the textureless regions in
the images, leading to a mismatch of pixels in the left and right images. Even though all
matching costs performed poorly, we observed that Census could produce a disparity map
that is relatively similar to the ground-truth. When the number of pattern dots increases,
the textureless regions are filled with complex pattern textures. Thus, holes created by
matching errors are filled with correct disparity values, and show the accurate contour of
scene structures.

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 19. Estimated disparity images of the combinations of cost and image filter using the window-
based stereo method, according to low and high parameters for the number of pattern dots. The images
in the top row show disparities with the small number of pattern dots, and the images in the bottom
row show those with the large number of pattern dots, respectively. (a) Window, SAD. (b) Window,
Mean/SAD. (c) Window, LoG/SAD. (d) Window, BilSub/SAD. (e) Window, Rank/SAD. (f) Window,
Census. (g) Window, SAD. (h) Window, Mean/SAD. (i) Window, LoG/SAD. (j) Window, BilSub/SAD.
(k) Window, Rank/SAD. (l) Window, Census.

To summarize, the number of pattern dots strongly affects the performance of matching
costs. As expected, in an active stereo environment, the pattern gives additional information
to matching, so the more pattern dots in the local method, the better the performance and
the tendency to saturate. On the other hand, mean, LoG, and BilSub, which are smooth
filters, do not converge in the global method but fluctuate significantly. Like the fluctuation
observed in Section 4.4, the smooth effect reduces the features of the passive texture for
matching and increases the feature of the pattern dots. The BilSub filter has a strong
smoothing effect because it subtracts the part, except for the edge, from the original image.
The mean and LoG filters have a weak smooth effect because they blur the image. This
strong smoothing effect makes it impossible to match the features of the passive texture
in both SGM and GC, causing a fluctuating error. A weak smooth effect weakens the
features of the passive texture in both SGM and GC. However, some information remains,
causing a convergence of errors. Moreover, inferred from these analyses, the experimental
results of SGM and GC for LoG have a smooth intermediate effect. The pattern intensity,
pattern contrast, and number of pattern dots are attributes of the projector affecting the IR
images. Not only the attributes of the projector, but also external attribute that affects the
IR images, should be analyzed. Therefore, in the next section, we tested the active stereo
techniques against changes in the global gain to find the effect of global brightness on the
active stereo technique.
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 20. Estimated disparity images of the combinations of cost and image filter using the SGM
stereo method, according to low and high parameters for the number of pattern dots. The images in the
top row show disparities with the small number of pattern dots, and the images in the bottom row show
those with the large number of pattern dots, respectively. (a) SGM, AD. (b) SGM, Mean/AD. (c) SGM,
LoG/AD. (d) SGM, BilSub/AD. (e) SGM, Rank/AD. (f) SGM, Census. (g) SGM, AD. (h) SGM,
Mean/AD. (i) SGM, LoG/AD. (j) SGM, BilSub/AD. (k) SGM, Rank/AD. (l) SGM, Census.

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 21. Estimated disparity images of the combinations of cost and image filter using GC stereo
method according to low and high parameter of the number of pattern dots. The images in the top
row show disparities with the small number of pattern dots, and the images in the bottom row show
those with the large number of pattern dots, respectively. (a) GC, AD. (b) GC, Mean/AD. (c) GC,
LoG/AD. (d) GC, BilSub/AD. (e) GC, Rank/AD. (e) GC, Census. (g) GC, AD. (h) GC, Mean/AD.
(i) GC, LoG/AD. (j) GC, BilSub/AD. (k) GC, Rank/AD. (l) GC, Census

4.6. Evaluation of Gain Changes

In this section, we evaluated the performance of the matching costs and stereo algo-
rithms on the changes in the global gain of the images. The results produced by matching
costs aggregated by the window-based, SGM, and GC methods are illustrated in Figures 22
and 23, respectively. As shown in Figure 22, the matching costs aggregated by the window-
based method are very robust against changes in the global gain. Because the increase and
the decrease in the global gain cause the intensity of background texture and pattern texture
to change linearly, the performance of the matching costs is not affected by this change.
While the images that are or are not filtered by the mean, LoG, and rank filters do not
affect the performance of matching costs, the BilSub filter causes the performance of the
matching costs to fluctuate. This fluctuation is caused by the subtraction of background
texture by the BilSub filter. The accuracy of the background subtraction by the BilSub filter
depends on the window size. Because we applied the BilSub filter with the same window
size for all images, the BilSub filter may not perform well for some images with complex
scene structures. Thus, the performance of the matching costs on the images filtered by
the BilSub filter severely fluctuates. For the window-based method, Census produced the
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fewest errors for all global gain levels. The worst-performing matching costs differed based
on the filters applied to the images. NCC performed worst when used on non-filtered
images and on images filtered by the mean and rank filters. However, for images filtered
by the LoG and BilSub filters, BT produced the most errors. We did not include the tables,
because we could not determine the optimal settings for the attribute pattern producing
the fewest errors.

(a) (b) (c)

(d) (e)

Figure 22. Errors of combinations of cost and image filter using the window-based stereo method,
according to the variation of the image’s gain parameter. (a) Non-filter. (b) Mean. (c) LoG. (d) BilSub.
(e) Rank.

(a) (b) (c)

Figure 23. Errors of combinations of cost and image filter using the SGM and GC stereo methods,
according to the variation of the image’s gain parameter. (a) SGM/AD. (b) GC/AD. (c) GC/BT.

When SGM is used as the stereo algorithm, the matching costs show similar behavior
to the window-based method, as shown in Figure 23a. Census produces the fewest errors,
and BilSub/AD produces the most errors. In addition, the error of the BilSub filter fluctuates
the most, compared to other filters. The result of BilSub/AD shows a drastic increase in
errors produced when the global gain exceeds a certain level. The subtraction of background
texture leaves the image with a pattern texture only. Due to the limitation of the data size
of each pixel, the intensity of the pattern cannot exceed 255. As the global gain increases, the
intensity of the patterns reaches the maximum level. As a result, the difference between the
pattern dots representing different depths cannot be distinguished. Due to this issue, SGM
with the BilSub filter produces more errors as the global gain reaches a certain level.

While the SGM and window-based methods show that the errors either saturate or
decrease with the increase in the global gain for most matching cost, GC shows that some
matching costs, especially BT and AD, produce more errors as the global gain increases. As
mentioned in the previous paragraph, some distinction between patterns is lost due to the
pixel reaching its maximum intensity. Because GC aggregates costs in a 2D perspective, it is
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more likely for GC to make a mismatch and compute an erroneous disparity. As a result,
the increase in the global gain causes more data to be lost globally. Overall, more errors are
produced. However, Census shows the high robustness against global gain changes even
when aggregated by GC, and still performs better than other matching costs. On the other
hand, BT and AD perform worse as the global gain increases.

The qualitative results shown in Figures 24–26 were produced by the window-based,
SGM, and GC methods, respectively. The figures from (a) to (f) are the results obtained at
the low global gain, and those from (g) to (l) are the results obtained at the high global gain.
The qualitative results of the window-based and SGM methods follow a trend similar to
the quantitative results. As explained in the quantitative results, there are no significant
differences between the low and high global gain results. On the other hand, the results from
GC show that more details are captured from the images when the global gain increases.
For example, there is a large blob around the chair, and a disconnection of the chair’s arm
in Figure 26b. This inaccurate representation is caused by the blurring effect of the mean
filter on the images. However, the finer details of the chair are represented with an accurate
disparity value when the global gain was set high.

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 24. Estimated disparity images of the combinations of cost and image filter using the window-
based stereo method, according to low and high gain parameters. The images in the top row show
disparities at the low gain parameter, and the images in the bottom row show those at the high gain
parameter, respectively. (a) Window, SAD. (b) Window, Mean/SAD. (c) Window, LoG/SAD. (d) Win-
dow, BilSub/SAD. (e) Window, Rank/SAD. (f) Window, Census. (g) Window, SAD. (h) Window,
Mean/SAD. (i) Window, LoG/SAD. (j) Window, BilSub/SAD. (k) Window, Rank/SAD. (l) Win-
dow, Census.

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 25. Estimated disparity images of the combinations of cost and image filter using the SGM
stereo method, according to low and high gain parameter. The images in the top row show dis-
parities at the low gain parameter, and the images in the bottom row show those at the high gain
parameter, respectively. (a) SGM, AD. (b) SGM, Mean/AD. (c) SGM, LoG/AD. (d) SGM, BilSub/AD.
(e) SGM, Rank/AD. (f) SGM, Census. (g) SGM, AD. (h) SGM, Mean/AD. (i) SGM, LoG/AD. (j) SGM,
BilSub/AD. (k) SGM, Rank/AD. (l) SGM, Census.
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In summary, changes in the global gain did not affect the performance of matching
costs when used with the window-based method and SGM. However, AD and BT showed
a subtle increase in errors produced with the global gain when used with GC because
the likelihood of making mismatches increases due to the smoothness term used in GC.
Overall, Census produces the least errors and is robust against changes in the pattern
contrast, regardless of the stereo algorithm used. The worst-performing matching costs
for the window-based method are NCC and BT, and for SGM it is NCC. For GC, BT and
AD applied on images filtered with the rank filter perform worse when the global gain is
low. When the global gain surpasses a certain level, BT and AD without filters produces the
most errors.

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 26. Estimated disparity images of the combinations of cost and image filter using the GC stereo
method, according to low and high gain parameters. The images in the top row show disparities at
the low gain parameter, and the images in the bottom row show those at the high gain parameter,
respectively. (a) GC, AD. (b) GC, Mean/AD. (c) GC, LoG/AD. (d) GC, BilSub/AD. (e) GC, Rank/AD.
(e) GC, Census. (g) GC, AD. (h) GC, Mean/AD. (i) GC, LoG/AD. (j) GC, BilSub/AD. (k) GC,
Rank/AD. (l) GC, Census.

4.7. Comparison of Runtime

We measured the runtime of all the combinations tested in our experiment, and
Table 2 shows the measured runtime of each combination. The results shown in Table 2 are
measured under default settings of the pattern attributes. When comparing the runtime in
terms of the matching algorithm, the window-based algorithm is faster than SGM and GC.
The high runtime of the global method is caused by the optimization process of iteratively
reducing the error.

Table 2. Runtime of stereo matching techniques using GPU for synthetic Adirondack(s).

Window-Based SGM GC

SAD BT ZSAD NCC ZNCC Census AD BT Census AD BT Census

Time (s) 0.0214 0.0237 0.0317 0.0261 0.0329 0.0316 0.453 0.465 0.505 10.321 10.326 10.438

A comparison of the runtime of the matching costs for each algorithm helped us to
conclude that AD and SAD took the least amount of time and that Census took the longest
time to finish their respective tasks. AD and SAD take the least time because they compute
matching costs by simply subtracting the target and source intensity values. NCC takes
longer than SAD and BT because it takes the extra step of normalizing the values within
the window and performing cross-correlation. For ZSAD and ZNCC, they take a longer
time than their original forms, which are SAD and NCC, respectively. This is because the
values within the window are first processed to make the mean equal to zero, and then
the matching cost is computed. Census takes the longest time because it first requires the
binary encoding of values within the window to determined its intensity ordering.
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Due to a high runtime, the global method is not applicable to dynamic object recon-
struction, but is applicable to high-quality static scene reconstruction. On the other hand,
the window-based method is more suitable for real-time applications, such as dynamic
object reconstruction, even though it produces less accurate results than the global methods.

5. Evaluation of the Real Active Images
5.1. Quantitative Results

We used the root mean square (RMS) error of Keselman, Leonid, et al. [24] to obtain
quantitative results on real active images:

ε%o f z =
εmm

z
= 100× 1

z

√
n

∑
i=1

(zi − z)2

n
(12)

where z is the best-fit plane value that is provided by RealSense SDK [34], zi is the estimated
depth value of the i-th pixel, and n is the number of pixels of the plane position in the images.
We aligned a flat plane perpendicular to the off-the-shelf RGB-D camera (i.e., RealSense
D455 [29]). To express four pattern attributes that affect matching cost performance, we
used factors of RealSense SDK and external environments, such as the laser power, the
illumination ratio of the laser power and the external light source, the number of IR
projectors, and the illumination of the external light source. Table 3 shows the quantitative
results obtained through experiments described in below sections. The overall quantitative
results for the real active images follow a similar trend to the results of those for the
synthetic active images.

Census most-accurately estimates the disparity values for all stereo matching methods.
The least-accurate matching cost differs based on the filter and stereo algorithm used. When
comparing the results between the stereo matching methods, GC produces less errors than
the others.

Table 3. RMS errors of real active images (%).

Type Laser Power Illumination Ratio The Number of Projectors

Attribute Value 30 90 150 210 270 0.1 0.3 0.5 0.7 0.9 1 3 5 7 9

(W) Non/ZNCC 2.81 2.23 1.96 1.61 1.32 1.92 1.67 1.32 1.25 1.49 3.21 2.84 2.31 1.83 1.56

(W) Mean/ZNCC 3.27 2.98 2.42 1.96 1.41 2.14 1.63 1.58 1.71 1.83 2.98 2.66 2.20 1.84 1.45

(W) LoG/ZNCC 3.11 2.84 2.34 1.75 1.29 2.88 2.50 1.83 1.94 2.01 3.29 2.91 2.44 1.98 1.62

(W) BilSub/ZNCC 2.74 2.42 1.98 1.68 1.35 1.61 1.47 1.53 1.57 1.49 2.59 2.04 1.79 1.55 1.44

(W) Rank/SAD 2.94 2.71 2.12 1.56 1.33 2.09 1.84 1.56 1.61 1.66 3.75 2.91 2.28 1.87 1.67

(W) Census 1.71 1.58 1.41 1.29 1.31 1.99 1.71 1.57 1.45 1.61 2.71 2.47 1.89 1.58 1.41

(SGM) Census 0.96 0.94 1.08 1.03 0.99 1.06 0.95 1.10 0.99 1.11 1.07 1.03 0.98 0.95 1.01

(GC) Census 1.08 1.02 0.98 0.92 0.94 1.10 1.05 0.97 1.01 0.99 1.13 1.07 1.02 0.96 0.94

5.2. Qualitative Results

After fully evaluating the active stereo matching algorithms using the synthetic dataset,
we conducted the same experiments using a real dataset that was captured using an Intel
RealSense D455 camera that contained stereo IR cameras and an IR pattern projector. The
attributes of the active IR images can be controlled to simulate the same settings used for
the evaluation of the synthetic dataset, as shown in Figure 27. While the pattern intensity
and global gain can be adjusted by a single device, simulating the changes in the number
of pattern dots and pattern contrast required a more complex solution. Because each IR
pattern projector projects the specific number of patterns, we utilized nine devices of the
same model and positioned them to project patterns toward the same field of view. We
simulated the change in the number of pattern dots by changing the number of devices used
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accordingly. The adjustment of pattern contrast was simulated by controlling the brightness
of the external light source and the pattern intensity. When obtaining an image with the
high pattern contrast, we set the brightness of the external light source low and the pattern
intensity high, and vice versa.

Figure 27. Left real active images, according to environments that match four attributes of active IR
images. The figures show changes in the pattern intensity, pattern contrast, number of pattern dots, and
global gain of IR images from top to bottom.

Default Settings. The results shown in Figure 28 are obtained under the default condi-
tions. When comparing the results based on the performance of the matching costs, Census
produced the fewest holes and mismatches. The results of AD, Mean/AD, LoG/AD, and
BilSub/AD show a disconnection in a chair leg, while Census and Rank/AD captured
the entire structure of the chair. The distinct difference between Census and Rank/AD
can be found in the holes generated on a computer monitor. There are bigger holes in the
Rank/AD than in Census on the monitor, representing more errors generated by Rank/AD.
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AD Mean/AD LoG/AD BilSub/AD Rank/AD Census

Figure 28. Estimated real disparity images of the combinations of cost and image filter using each
stereo matching method. All attributes of active IR images were set to default values.

Pattern Intensity Changes. The results in Figure 29 are obtained by changing the
pattern intensity. The top and bottom rows of the results for each stereo algorithm show the
results produced with low and high pattern intensities, respectively. In terms of changes
in the pattern intensity, the performance of all matching costs and the stereo algorithms
improve when the pattern intensity is set high. Because the pattern texture becomes more
distinguishable, features of pattern texture become more distinct. Thus, the holes in the
results from the low-pattern-intensity images are correctly filled in the results from the high-
pattern-intensity images. When comparing the results between the matching costs, Census
performed better under both low- and high-pattern-intensity settings than other matching
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costs. Under low-pattern-intensity conditions, Census could yield the correct representation
of the chair and mannequin. In contrast, other matching costs show a disconnection in the
chair’s frame and inaccurately fill holes between the arms and torso of the mannequin.
Under high-pattern-intensity conditions, the qualitative result of Census shows fewer holes
than other matching costs.
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Figure 29. Estimated real disparity images of the combinations of cost and image filter using
each stereo matching method, according to the pattern intensity parameter. The upper line indi-
cates the low parameter, and the lower line indicates the high parameter for each stereo matching
method, respectively.

Pattern Contrast Changes. The results in Figure 30 are obtained by changing the
pattern contrast and setting the other attributes at default. The top and bottom rows for
each stereo algorithm show the results produced with the low and high pattern contrasts,
respectively. Following a similar trend as the pattern intensity, the increase in the pattern
contrast causes an increase in the performance of the matching costs because the complex
pattern texture becomes more vivid. When comparing the results between the matching
costs, Census produces the fewest errors in the disparity map. Census performed better
than AD, Mean/AD, LoG/AD, and BilSub/AD because Census visualized the structure
of the chair, mannequin, and studio more accurately than those other matching costs.
Rank/AD performed outstandingly when the window-based method and SGM were
applied. However, when GC is used, many errors can be witnessed in the results, while
Census maintains its high performance.

Number of Pattern Dots Changes. The results in Figure 31 are obtained by changing
the number of pattern dots and setting the other attributes at default. The top and bottom
rows for each stereo algorithm show the results for low and high numbers of pattern dots,
respectively. The effect of the number of pattern dots projected onto the scene is visualized
for all matching costs. Numerous holes generated due to few pattern dots projected are
filled when the number of pattern dots increases because the complex texture is added to
textureless areas, prohibiting mismatches from occurring. Even with the increase in the
number of pattern dots, the matching costs could not estimate the disparities of the computer
monitor. On the other hand, many errors occur around the chair when SGM is used.
Nevertheless, when used with Census, GC could produce an accurate representation of the
chair, monitor, mannequin, and studio background under both a low and high number of
pattern dots.

Gain Changes. The results in Figure 32 are obtained by changing the global gain. The
top and bottom rows for each stereo algorithm show the results produced with the low and
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high global gain, respectively. The synthetic dataset evaluation showed that changes in the
global gain did not affect the result of the active stereo matching. However, when testing
the effect of the global gain on the real dataset, we discovered some improvements in the
results with the increase in the global gain. The matching costs did not perform well with
textureless regions, such as the computer monitor, and complex structures, such as the chair.
With the increase in the global gain, the features of these regions become more noticeable
and allowed the active stereo matching technique to match the pixels correctly. Overall,
Census produced the fewest errors around the chair and computer monitor, proving, thus,
that Census is the best-performing matching cost.
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Figure 30. Estimated real disparity images of the combinations of cost and image filter using
each stereo matching method, according to the pattern contrast parameter. The upper line indi-
cates the low parameter, and the lower line indicates the high parameter for each stereo matching
method, respectively.
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Figure 31. Estimated real disparity images of the combinations of cost and image filter using each
stereo matching method, according to the parameter of the number of pattern dots. The upper line
indicates the low parameter, and the lower line indicates the high parameter for each stereo matching
method, respectively.
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Figure 32. Estimated real disparity images of the combinations of cost and image filter using each
stereo matching method, according to the gain parameter. The upper line indicates the low parameter,
and the lower line indicates the high parameter for each stereo matching method, respectively.

6. Discussion and Conclusions

The previous surveys [13–15] that evaluated passive stereo matching techniques
analyzed various attributes, such as radiometric and color differences. While the passive
stereo technique relies solely on the information provided by the passive texture, the
active stereo technique performs matching using both passive texture and pattern texture.
The active stereo matching technique is performed under the IR environment, where the
IR pattern is projected onto the scene. The attributes affecting the passive texture under
the IR environment are similar to those affecting the passive stereo technique. However,
attributes affecting the pattern texture are different. As a result, the results of these previous
studies cannot address the full capacity of the active stereo technique. Thus, we analyzed
and evaluated the relationship between the attributes affecting the pattern texture and
performance of the active stereo technique.

In this paper, we have evaluated how the pattern intensity, pattern contrast, number of
pattern dots, and global gain affect matching cost performance. Through thorough experi-
ments on four pattern attributes (the pattern intensity, pattern contrast, number of pattern dots,
and global gain) that affect the performance of the active stereo technique, we separately
analyzed and discussed the results produced by the window-based and global methods.

The window-based method is an algorithm which computes disparity along a scanline
using the neighboring pixels of a target pixel. In a general environment of passive stereo
matching, textureless regions in an image have similar features; as a result, the ambiguity
in matching increases. Consequently, the accuracy of disparity estimations for textureless
regions significantly drops. On the other hand, a locally unique pattern is projected onto the
image in the active stereo environment. Thus, more accurate matching can be accomplished
by comparing the unique features within a window. The results show that as the uniqueness
of the pattern features increases, the accuracy of the disparity estimation also increases
(Figures 7 and 17).

We evaluated the effect of changing four pattern attributes on the performance of the
window-based method. Firstly, as the intensity of the pattern and the number of pattern
dots increase, we have discovered that the error in estimating disparity decreases and
converges (Figures 7 and 17). At a certain level of the pattern intensity, a further increase
in the pattern intensity ceases to affect the performance of the window-based method. In
addition, an extreme increase or decrease in the pattern contrast brings out a negative
effect on the disparity estimation, due to the loss of the pattern’s uniqueness (Figure 12).
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From this observation, finding the optimal level of contrast between passive texture and
pattern texture becomes a crucial task to produce the least errors in estimations of disparity.
In contrast to other pattern attributes, changes in the global gain do not influence the
accuracy of disparity estimations (Figure 22). The cause of this phenomenon is due to
the implementation of the window-based method, because all matching costs compute
differences between the windows of the source and the target. Since an increase or decrease
in the global gain does not change the outcome of the difference between these two patches,
the performance of the window-based method stays consistent.

Different from the window-based method, global methods not only compute matching
costs at certain pixels, but also reduce disparity inconsistencies between neighboring pixels
and discontinuities along the edge via optimization. By optimizing the disparity consistency,
global methods can accurately estimate disparity to a certain extent without the unique
features given by pattern texture. Due to the optimization process, the runtime of the global
methods is higher than that of the window-based method. Even though their runtime is
higher than that of the window-based method, global methods show higher accuracy than
the window-based method, which simply computes the difference between the source and
target windows (Figures 8, 13, 18 and 23).

We performed the same experiment with the global methods as with the window-
based method. Similar to the window-based method, as the pattern intensity and number of
pattern dots increase, the error in disparity estimation decreases and converges. However,
the error does not dramatically converge, as with the window-basd method (Figures 8 and
18). This is because the global methods produce disparity maps using global optimization,
which regularizes pixels with large disparity discontinuity. With regards to the experiment
on changes in the pattern contrast, the SGM’s result shows a shallower parabolic curve
compared to that of the window-based method, while GC’s result does not show any
resemblance to either method’s results. Unlike GC, SGM’s result shows a similarity to that
of the window-based method because SGM uses dynamic programming to optimize a
certain pixel’s disparity values based on other disparity values along 1D paths running in
eight directions from the target pixel (Figure 13). Lastly, because global methods perform
optimization based on differences in image features, changes in the global gain seem to not
affect the performance of the global methods (Figure 23).

After evaluating the performance of the window-based and global methods on changes
in all attributes, Census seems to show the highest accuracy. Census first sets the value of
the reference pixel and its neighbor with a binary number. The neighboring pixels with
intensities higher than the reference number are set as 1, and the others are set as 0. Through
binary encoding, Census can not only store the intensity ordering but also the spatial
structure of the local neighborhood. As a result, Census becomes robust to illumination.

In terms of the accuracy aspect, the global method seems to produce more accurate
results than window-based method in estimating the disparity values. However, due to its
high runtime caused by the optimization step, the global method is more suitable when
applied to high-quality static scene reconstruction. On the other hand, the window-based
method is more suitable for real-time applications, such as dynamic object reconstruction,
even though it produces less accurate results than the global methods.

The limitation of our experiment on the real dataset was faced when testing the effect
of the pattern contrast on the real dataset. The pattern contrast is a parameter that the IR
pattern projector cannot directly control. In order to test the effect of the pattern contrast on
the real dataset, we controlled the external light source and the projector power to simulate
a similar effect of the pattern contrast. Indeed, the external light source affects the intensity
of pattern dots existing in the IR domain. Thus, in the real dataset, the pattern contrast is
manually controlled and chosen based on visual feedback. However, the inverse linear
relationship between the ratio of the brightness level of the external light source and the
pattern intensity is kept, and the desired effect is acquired. Therefore, the qualitative result on
the pattern contrast in the real dataset shows a similar trend as that of the synthetic dataset.



Sensors 2022, 22, 3332 31 of 33

With the results and analysis we obtained from thorough experiments, we assist with
the implementation of the active stereo setup. Using these analyses and results, many
applications of active stereo matching techniques [35–40] will be benefited by using the
appropriate combination of matching cost, image filter, and stereo algorithms.
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Abbreviations

The following abbreviations are used in this manuscript:

RGB-D Red, green, blue-depth
IR Infrared
AD Absolute difference
BT Sampling-insensitive absolute difference of Birchfield and Tomasi
SAD Sum of absolute difference
ZSAD Zero-mean sum of absolute difference
NCC Normalized cross-correlation
ZNCC Zero-mean normalized cross-correlation
LoG Laplacian of Gaussian
BilSub Background subtraction by bilateral filtering
Census Census transform
Window Window-based stereo matching
SGM Semi-global matching
GC Graph cut stereo matching
ToF Time-of-flight
LiDAR Light detection and ranging
FOV Field of view
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