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Abstract: Indoor localization and human activity recognition are two important sources of infor-
mation to provide context-based assistance. This information is relevant in ambient assisted living
(AAL) scenarios, where older adults usually need supervision and assistance in their daily activities.
However, indoor localization and human activity recognition have been mostly considered isolated
problems. This work presents and evaluates a framework that takes advantage of the relationship
between location and activity to simultaneously perform indoor localization, mapping, and human
activity recognition. The proposed framework provides a non-intrusive configuration, which fuses
data from an inertial measurement unit (IMU) placed in the person’s shoe, with proximity and human
activity-related data from Bluetooth low energy beacons (BLE) deployed in the indoor environment.
A variant of the simultaneous location and mapping (SLAM) framework was used to fuse the location
and human activity recognition (HAR) data. HAR was performed using data streaming algorithms.
The framework was evaluated in a pilot study, using data from 22 people, 11 young people, and
11 older adults (people aged 65 years or older). As a result, seven activities of daily living were
recognized with an F1 score of 88%, and the in-door location error was 0.98 ± 0.36 m for the young
and 1.02 ± 0.24 m for the older adults. Furthermore, there were no significant differences between
the groups, indicating that our proposed method works adequately in broad age ranges.

Keywords: simultaneous location and mapping; ambient assisted living; human activity recognition

1. Introduction

The continuous advance in the development of ubiquitous devices, characterized by
their small size, excellent processing power, and low energy consumption, has allowed
progress in many applications fields. Indoor localization (IL) and human activity recog-
nition (HAR) have not been the exception. These two fields are essential for systems
that facilitate patient monitoring at home and in systems whose purpose is to offer daily
activities assistance, especially in older adults.

Both indoor location and human activity recognition have been widely studied. Many
studies have addressed IL and HAR in an isolated way [1]. However, few studies have
taken advantage of the IL and HAR relationship. For example, in the context of a house,
people usually carry out certain activities in specific places: cook in the kitchen, watch
television in the living room or bedroom, wash hands in the bathroom sink, etc. Knowing
the exact location of the person might improve the classification of the activity performed.
Additionally, information about the action being performed can improve the identification
of the individual’s physical location.

Systems used to track the location in indoor environments are usually called indoor
positioning systems (IPS). There is a diversity of IPSs that vary according to their tech-
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nologies [2–4]. As stated in [5–7], choosing an IPS should be made taking into account
seven aspects: the characteristics of the indoor environment, the accepted level of precision,
budget limitations, obtrusiveness, system complexity, robustness, and privacy. When choos-
ing the type of IPS to be used in an ambient assisted living (ALL) scenario, these aspects
need to be considered. In addition, the indoor localization and recognition of activities of
older adults should be carried out to assist them in their daily life tasks. In these types of
scenarios, privacy and obtrusiveness are fundamental aspects. Consequently, it is desirable
to avoid using IPSs that work with camera-based methods or require the person to wear
multiple devices on their body. Under these considerations, we chose to base our proposed
framework on the simultaneous indoor localization and mapping (SLAM) framework [8].

SLAM is used to estimate the person’s position in indoor environments. It combines
data from proprioceptive sensors such as inertial measurement units (IMU) attached to the
body, with exteroceptive sensors, such as cameras, RFID tags, Bluetooth beacons, and laser
range sensors configured in the surroundings. A unique feature of SLAM is that it allows
to independently create the map through which the person moves. The map is built from
the observation of landmarks. These can be objects, devices, or characteristics of the indoor
environment [9].

This paper aims to deploy a framework for indoor localization, mapping, and HAR
using a non-intrusive configuration (one single IMU placed in the person’s shoe and a set of
Bluetooth low energy beacons (BLE) deployed in the indoor environment). The feasibility
of the framework is evaluated in a home environment with older adults. Our approach is
minimally intrusive and opportunistic since, in addition to tracking the person’s location
and type of activity performed, it has the potential to analyze gait parameters in older
adults, as shown in our previous work [10]. This approach is very useful for the early
detection of gait disorders such as those derived from Parkinson’s disease [11,12].

This study has three main contributions: (1) The collection of a dataset that allows
assessing IL and HAR in both adults and older adults; (2) A method for classifying activities
based on a data stream learning algorithm [13]; (3) A comprehensive evaluation of a method
for simultaneous indoor localization, mapping, and human activity recognition in an AAL
scenario with older adults. We believe that the above results contribute to the future
development of dynamic systems for monitoring IL and HAR, especially for the AAL.

2. Related Work

Few previous works have used one single IMU on the foot to perform simultaneous
localization and mapping. Son Gu et al. [14] proposed a method for corner detection based
on motion data captured with one IMU attached to one foot. The corridors and corners
of the indoor environment were used as landmarks. They evaluated their method in two
settings. One was an office environment (20 m × 20 m) and a library (70 m × 70 m). The
error in the indoor localization was 1.34 m and 0.8 m, respectively. This error shows that
the complexity of the indoor environment is related to the precision obtained. In another
study by Robertson et al., RFID tags were used as landmarks [15]. Tags were put on doors
and hallways. The reported precision was 2 m in an indoor environment of 20 m × 40 m.
In Wi-Fi GraphSLAM [16], Wi-Fi antennas were used as landmarks. The received signal
strength indicator (RSSI) from the Wi-Fi antennas deployed in the indoor environment was
used to estimate the distance between the person and the antennas. The reported precision
was 2.23 m in a 60 m × 10 m environment. In ActionSLAM [17], the landmarks were
activities: sitting, standing, opening, or closing doors and windows. The precision achieved
was 1.16 m. The main disadvantage of this method is the need to use two additional IMUs
to the one worn on the foot: one on the waist to detect when the person sits or stands, and
another in the hand to detect opening or closing doors or windows. BLE beacons were
used as landmarks by Zuo et al. [18]. The method was evaluated in an area of 90 m × 37 m.
Its accuracy was 3.25 m using 48 beacons and 4.69 m using 24 beacons. In [19], a pilot test
of our authorship, we used BLE beacons as landmarks in a simulated indoor environment
of 16 m × 7 m. The precision obtained was 1.05 m ± 0.44 m.
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Recognizing human activity, especially in AAL scenarios, involves dealing with data
that changes or evolves over time. The way in which an older adult performs activities of
daily living can change over time due to the natural aging process or a specific condition,
such as Parkinson’s. Traditional supervised learning has been extensively used to obtain
classification models for HAR. However, this type of approach does not have the capacity
to easily update the generated classification models. Data stream algorithms have the
ability to update their classification model with each sample they classify [13]. Therefore,
they can deal with dynamic systems, such as HAR in AAL. Khannouz et al. [20] compared
the performance of five data stream algorithms using two real [21,22] and three synthetic
HAR datasets. The real datasets used by Khannouz et al. do not contain activities of daily
living. They only include data from IMUs. As a result, the Mondrian Tree and Naive Bayes
algorithms obtained the best F1 measures. The data stream algorithms of the StreamDM-C
++ [23] and OrpailleCC [24] apps were used in that work.

3. Materials and Methods

The framework was constructed using simultaneous indoor localization, mapping,
and human activity recognition, previously proposed by the authors [19]. This method
is the first to use a combination of BLE beacons and HAR as landmarks. In this paper,
we propose an improved HAR method using a data stream algorithm. The data stream
paradigm was created in response to the need to deal with a continuous stream of data
sampled in real-time [13]. The most important characteristic of algorithms written for
data streams is updating their model by inspecting each training example. This means
that the model can be updated without splitting a static dataset into training and test
sets. In addition, as they inspect each training example once, there is no risk of memory
overflow, and usually, the processor load is very low. The characteristics of this type of
algorithm are appropriate for HAR because: (1) they are capable of working in real-time,
i.e., processing and classifying the examples that arrive one by one; (2) they optimize
the data processing, reducing memory use. Therefore, they can efficiently run on mobile
and wearable devices with reduced memory and battery capacity; (3) Unlike traditional
classification algorithms, data stream algorithms can maintain up-to-date classification
models. This feature is particularly important in AAL settings, in which the way older
adults perform activities of daily living may change over time.

3.1. Dataset

The data used in this research were collected in a house in Popayán, Colombia
(Figure 1). In total, 22 people performed 9 different activities, as described in Table 1.
Overall, 11 people were older than 60 years (older adults’ group) with an average age of
70.72. The average age of the remaining 11 people was 41.81 (control group). Three types
of data were collected: data of the movement of the person’s foot, the person’s proximity to
Bluetooth beacons deployed in the house (Figure 1), and the motion of the beacons attached
to daily objects. The average duration of data collection for each participant was 7.4 min.
The ethics committee approved the collection protocol of this dataset of the University of
Cauca. Before data collection, the participants signed informed consent. All participants
are able to perform activities of daily living based on their answers to the Katz Index
(measuring independence in activities of daily living).

Table 1. Activities carried out by participants during data collection.

Activity Description

Enter the house The session begins on the second floor of the house.

Serve something to eat Go down the stairs, go to the kitchen and use a jug to serve
something to drink



Sensors 2022, 22, 3364 4 of 21

Table 1. Cont.

Activity Description

Eat at the dining table Take what was served to the dining room and drink it. Food is
also available at the dining table if desired.

Wash hands Go to the bathroom and wash hands in the bathroom sink

Watch TV Go to the living room, sit on the couch, and watch TV for at
least two minutes

Water a plant Go to the garden, take the jug, and water a plant

Sweep the floor Take the broom and sweep for at least one minute

Use the toilet Go to the bathroom and use it or pretend to use it (lift the
toilet lid, wait a few seconds, and lower it)

Leave the house Head towards the same starting point on the second floor.
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Figure 1. Map of the house. Top view of the house where the dataset was collected. The green star
indicates the start and end coordinates of data collection. The blue triangles represent stationary
beacons, and the red squares are active or mobile beacons.

3.1.1. Foot Movement Data

The person’s foot movement data collected was their acceleration and angular velocity.
For this, an IMU (Shimmer sensing, Dublin, Ireland) was attached to each participant’s
lateral part of the right shoe (Figure 2). The IMU was previously calibrated, and a sensitivity
of ±16 g was used for acceleration and ±2000◦/s for angular velocity. The sampling
frequency used was 204.8 Hz.
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3.1.2. Proximity Data

Then, 10 BLE beacons (Estimote proximity beacons, Estimote Inc., San Francisco, CA,
USA, https://estimote.com, accessed on 10 March 2022) were used (Figure 1). A mobile
application was developed to run in the background on a smartphone that each participant
carried in each session to receive the data streamed by the beacons. The beacons were
configured to transmit 10 packets per second. Each packet contains the received signal
strength indicator (RSSI). This indicator relates the distance between the smartphone and a
given beacon through the equation known as the log-distance path loss model:

RSSI = 10n log10

(
d

d1m

)
+ RSSI1m (1)

The transmission power used in all beacons was −20 dBm. According to the manufac-
turer, this power coverage is achieved in a radius of 3.5 m. After experimenting with the
beacons, we conclude that the RSSI at a distance of one meter is approximate −80 dBm.
Therefore, d1m = 1 m and, RSSI1m = −80. The n term depends on the signal transmission
medium. To obtain a consistent relationship between RSSI and distance in Equation (1),
n = 0.6 was used. The variable d is the distance between a given beacon and the smartphone
that the person carries.

3.1.3. Motion Data from Beacons Attached to Objects (Active and Mobile Beacons)

In addition to RSSI, the packets sent by the beacons contain three-dimensional acceler-
ation signals of the beacon. This functionality allows the movement of the beacon to be
directly related to the use of the object to which it is attached.

Depending on its purpose, a beacon can be categorized as stationary, active, or mobile
(Figure 3):

1. Stationary beacons: Beacons intended to be stationary in a defined place, for example,
on the table or in the kitchen. Their movement is not of interest. They are only used
to estimate proximity.

2. Active beacons: An active beacon is attached to an item related to a daily life activity,
for example, the toilet and the bathroom sink. In this way, the movement of an active
beacon can indicate that the person is carrying out the activity related to that beacon.
For example, if it is detected that the beacon placed on the bathroom sink is moving,
this could indicate that the person is washing their hands.

3. Mobile beacons: Beacons that are also attached to an object of daily use, whose
movement indicates an activity. Still, unlike active beacons, the position of mobile
beacons can change drastically since they are attached to elements, such as the broom
and a jug.

The deployment of the beacons, especially the stationary beacons, was carried out
following the recommendations of Castillo-Cara et al. [25]. They conclude that the trans-
mission power and the number of beacons are the main parameters to perform indoor
localization. Therefore, they recommend dividing the area into sectors. Each sector must
be covered by a beacon signal. The sectors must be far enough apart to avoid overlapping
the Bluetooth signal. They also recommend using a transmission power that is not too high
to avoid signal multipath problems.

3.2. Proposed Framework

The framework for indoor localization, mapping, and human activity recognition
improves our previously presented method [19]. This new approach adds a module for
human activity recognition that uses the data stream algorithm. The main components of
the proposed framework are described in Figure 4.

https://estimote.com
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3.2.1. IMU and Beacons Data Processing Block

In the “IMU and beacons data processing” block (Figure 4), the data of the IMU and
the beacons are processed, the initial estimation of the position of the beacons is made,
and the recognition of the activities begins. With the results obtained in this block, the
“Trajectory and beacons location estimators” block is in charge of updating the map of the
house and the position of the person in it.

PDR-ZUPT

The acceleration data from the IMU feeds an algorithm that implements the pedes-
trian dead reckoning technique (PDR) with zero velocity update (ZUPT). PDR ZUPT has
been proven to be an excellent strategy to reduce drift intrinsically caused by the use of
accelerometers and gyroscopes [26]. In addition, the PDR ZUPT module generates an
estimate of the length and orientation of each step. With these data, an estimate of the
person’s current position in the Cartesian plane is obtained. This estimate is called the
motion measurement ut. Finally, that is sent to the prediction module of the “Trajectory
and beacons location estimators.”

RSSI Filter

Like all RF signals, the Bluetooth signal is susceptible to multipath propagation and
fading [27]. Therefore, it is necessary to filter the RSSI data before it can be used to obtain
an adequate estimate of the proximity between the person and the beacons. The filter used
for this purpose is a one-dimensional Kalman filter [19].

Human Activity Recognition Module

The SLAM method mitigates the error derived from calculating the motion measure-
ment ut obtained with the PDR-ZUPT method by observing landmarks [28]. Furthermore,
the set of all landmarks detected at time t θ = {θ1, θ2, . . . , θt,} represent the map through
which the person is moving. In this work, the 10 beacons described above were used as
landmarks. There is a specificality with active and mobile beacons since their movement is
related to a specific activity. In [19], we established a simple rule to relate the motion of
beacons to an activity: if it is detected that a beacon is being moved, it was presumed that
the person was using that beacon and, consequently, was carrying out the activity related
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to it. However, this assumption can cause false positives in multi-inhabited environments,
since it might be that the cause of the movement of a beacon is not the person who is using
the system. For that reason, there is a need to classify human activity more rigorously,
taking as input the data from the beacons and the movement data collected with the IMU.
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Figure 4. Proposed framework. The left block receives IMU and beacons data, executes a pedestrian
dead-reckoning algorithm, initializes the beacon’s location, and recognizes the human activities. The
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resample. As a result, the person and beacon’s indoor location are obtained.

Because the specific problem of recognizing human activity involves dealing with data
that comes from a dynamic system, that is, that changes or evolves over time, the technique
to perform the recognition of human activity should be able to deal with this problem. That
is why data stream algorithms were chosen.

The data collected from the IMU and the beacons were synchronized using scripts
written in Python. Four of the activities to be classified are directly related to active and
mobile beacons (Table 2). The labeling of each dataset sample with its corresponding
activity was carried out manually with an application developed in MATLAB that allows
synchronizing the previously synchronized data with the video of its collection.

Table 2. Human activities recognized by the HAR module.

Activity Beacon Related Type of Beacon

1 Walking NA NA
2 Climbing/descending stairs NA NA
3 Being still NA NA
4 Using jug Beacon in pitcher Mobile
5 Sweeping Beacon in broom Mobile
6 Using bathroom sink Beacon in bathroom sink Active
7 Using toilet Beacon in toilet Active

After the RSSI data has been filtered {RSSI1, RSSI2, . . . , RSSI10,}, it is used together
with the motion data of the beacons {M1, M2, M3, M4} and the acceleration and angular
velocity data {Acc, Gyro} to perform the feature extraction process. This process consisted
of taking 5-s windows of data (1024 samples) and extracting features from them. The
features initially extracted were 40, which included:

1. The maximum and minimum value for each axis of the accelerometer and gyroscope
(n = 12);

2. Mean, median, and standard deviation of the acceleration and angular velocity, re-
spectively, for each accelerometer axis (n = 18);
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3. The mean of the square root of the sum of the values of each axis squared (mean
energy of the accelerometer and gyroscope signal, n = 2);

4. The ID of the four closest beacons detected (n = 4);
5. State of movement of beacons: binary variables that indicate if the active and mobile

beacons are in movement (n = 4).

The windows of 5-s of data were used according to the results obtained in [29]. The
correlation-based feature subset selection algorithm was used to select the most relevant
features. This algorithm detects the subset of highly correlated features with the class while
having low intercorrelation [30]. As a result, nine features were selected by the algorithm
using ten-fold cross-validation in all the datasets:

1. Maximum acceleration value of the x-axis;
2. Median acceleration of the z-axis;
3. Median angular velocity of the z-axis;
4. Gyroscope energy;
5. Movement status of the active and mobile beacons (2 active and 2 mobile beacons);
6. The ID of the closest beacon.

These nine features were used to train and evaluate three data stream classification
algorithms: Naive Bayes, Hoeffding tree, and K-nearest neighbor (KNN). The algorithms
Hoeffding tree and KNN are adaptations of the original algorithms to fulfill the conditions
of the data stream classification. On the other hand, the original Naive Bayes algorithm
does not need to be adapted for data stream classification because it is trained incrementally
based on Bayes’ theorem, and its memory requirements are low.

Summary of the functioning of the human activity recognition module:
For each RSSIx reading (coming from beacon x) greater than −85 dbm, it is checked

if beacon x is in motion or if the reading belongs to a 5-s window classified as one of the
activities 4, 5, 6, or 7 (Table 2). If so:

1. If the RSSI comes from a mobile beacon in motion, its position is updated in the
“update activity/beacon location” module. If the RSSI comes from an active beacon in
motion, the person’s position at time t (St) is set equal to the known location of the
beacon;

2. If the RSSI comes from a stationary beacon, it is checked whether the location of
beacon x is known.

a. If so, the set of landmarks at time t θ = {θ1, θ2, . . . , θt,} is sent to the block
“trajectory and beacons location estimators” together with the array of IDs of
the beacons detected at the time (nt);

b. If not, its position is updated in the “update activity/beacon location” module.

Update Beacon/Activity Location

When starting the execution of the proposed framework, the location of all beacons is
unknown. In consequence, their location must be initialized. We developed a method based
on the particle filter for this purpose [31]. For stationary and active beacons, the method
estimates the distance between the beacon and the person (smartphone) and assumes
that the error in this estimate is 10%. For example, if the estimated distance between the
person and the beacon is 2 m, the beacon should be within a circle with a radius between
1.8 m and 2.2 m. The 10% value was obtained by recording the RSSI of a beacon with a
smartphone at different distances from 0 m to 3.5 m every 0.5 m. The distance from the
smartphone to the beacon was calculated using Equation (1). The maximum distance error
(difference between the actual distance and the calculated distance) obtained was close to
10% (~35 cm). This process was executed twice using two different beacons. Subsequently,
2000 particles are created uniformly distributed on that disk. Each particle represents a
possible location of the beacon. Each time a new RSSI reading is received from the beacon,
the particle filter updates until it finally converges on a point on the map. How the position
of mobile beacons is initialized and updated is similar to that described for stationary and
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active beacons. It only differs that instead of creating a disk, a sphere is created. Inside it,
the particles are uniformly distributed.

3.2.2. Trajectory and Beacon’s Location Estimators

At the beginning of data capture, and each time the current position of the person
st is updated when an activity is recognized, a particle filter is responsible for creating
600 particles, each of them representing a possible trajectory St of the person. With each
motion measurement ut generated when the PDR-ZUPT module detects a step, the particle
filter prediction phase estimates the new state of each particle. The current state of each st
particle represents a possible x–y position of the person. The possible trajectories followed
by the person are given by the set of previous states of each St particle. Each particle has an
associated weight w that represents the probability of describing the person’s true trajectory.

The location of each beacon is calculated independently with extended Kalman filters
(EKF). Since beacons only provide information about their proximity but not orientation, the
EKF had to be adapted based on the range-only SLAM method proposed by Menegatti [31].
Every time an RSSI reading is received from a beacon whose location is known, the distance
between the beacon and the person’s position given by the current state of each particle is
calculated. With these data, the EKF updates the beacon’s position and the weight w of each
particle. Finally, the resampling process eliminates particles with very low weights and
replaces them with those with higher weights. This process is performed by the systematic
resampling method [32]. In conclusion, the framework is able to locate the beacons from
scratch based on the information from the PDR-ZUPT module and the RSSI measurements
of the beacons. Therefore, the information of the position of the beacons and the location of
the person is complemented and updated as the person moves in the indoor environment.
An example of how the particle filter is responsible for estimating the person’s trajectory
can be seen in Figure 5.
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floor into the corridor. In the prediction phase, the filter estimates the possible trajectories, denoted
by dark gray lines. (b,c) the person enters the range of a stationary beacon placed in the corridor. The
particles are updated with the RSSI data from that beacon, and the resampling process is executed.
The filter converges in a single trajectory (d). The person continues on his way to the kitchen. The
process is repeated.

3.3. Evaluation

The evaluation process for the human activity recognition module and indoor localiza-
tion is detailed below. In addition, all the software developed in Python and MATLAB for
the acquisition and processing of data and the dataset used for the evaluation (presented in
Section 3.1) is publicly available.

3.3.1. Human Activity Recognition

The software “Massive Online Analyzes” (MOA) [13] was used for the evaluation of
the human activity recognition module. This software, written in Java, contains a pool
of data stream classification algorithms and offers an API that provides many features,
including training and evaluation, obtaining evaluation metrics, and exporting the created
models for later use.

The evaluated algorithms were used with their default parameters. For example, the
number of activities to be recognized was 7. Consequently, K was set to 7 in KNN.

The evaluation method used is called interleaved Test-Then-Train. In this, each ex-
ample is used to evaluate the model before it is used to train it. In this way, the model
is continuously assessed with unseen examples, ensuring the model’s generalization. In
addition, this method enables obtaining updated statistics with each example that the
algorithm processes, thus drawing its learning curve.

We used the F1 score to evaluate the performance of the classifiers. This metric is a
measure that gives equal importance to precision and recall and is frequently used to assess
the performance of models generated from unbalanced datasets, such as the one collected
in this study:

F1 = 2
precision ∗ recall
precision + recall

(2)

In total, 3716 examples were extracted from the data of the 22 participants. On average,
there were 169 examples per participant. The evaluation process was similar to the leave-
one-subject-out method. As the data stream classification algorithm is trained example by
example, an arff file was created in which the examples of the participant were placed at
the end of the file, after the examples of the other 21 participants. In addition, the examples
of the 21 participants were randomized in each file to obtain results that show the variance
of the F1 measure between participants and hinder the algorithms’ learning process.

3.3.2. Indoor Trajectory Reconstruction

The complete trajectory followed by each participant during data collection can be
divided into six sub trajectories:

1. From the main entrance to the kitchen (where a drink is served with the jug);
2. From the kitchen to the sink (person washes his hands in the sink);
3. From the sink to the garden (water the plant with a jug);
4. From the garden to the living room (sweep the living room with the broom);
5. From the living room to the bathroom (use or pretend to use the toilet);
6. From the bathroom to the main entrance.

Except for the initial and final activity, the rest of the sub-trajectories begin and finish
when an activity is detected. Thus, the start and end coordinates of data collection are
the same. In addition, the exact starting and ending coordinates of each sub-trajectory
are known. Therefore, it is possible to calculate the error of the estimated trajectory by
calculating the Euclidean distance between the coordinates of the last step of the sub-
trajectory estimated and the true coordinates where the activity starts.
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It is interesting to demonstrate that the proposed framework can work appropriately
for adults and older adults. Therefore, a Student t-test was performed to compare the
means of the location errors between the two groups. The null hypothesis states that there
is no significant difference between the means of the indoor localization errors of the older
adults and control groups. A 95% confidence interval was used.

4. Results
4.1. Human Activity Recognition

To evaluate the three data stream classification algorithms’ overall performance, Table 3
shows the precision, F1 score, and processing time to process the 3716 examples. The data
in each column correspond to the average of all participants.

Table 3. General performance of algorithms.

F1 Score (Percent) Evaluation Time
(CPU Seconds)

Classifications
Correct (Percent)

KNN 88.01 45.68 89.92
Naive Bayes 86.78 0.51 89.70

Hoeffding tree 83.76 0.73 87.56

The main evaluation metric used to evaluate HAR was the F1 measure. Table 4 shows
in detail the average value of this metric for each sub-trajectory.

Table 4. Performance of the algorithms in the classification of each activity.

Walking Climbing/Des-
cending Stairs Using Pitcher Being Still Using Bathroom

Sink Sweeping Using Toilet

KNN 82.24 49.87 99.41 94.60 91.57 99.50 96.84
Naive Bayes 82.21 31.29 99.58 95.13 91.53 99.61 98.27

Hoeffding tree 79.63 29.71 97.28 93.82 85.06 98.27 92.52

The interleaved Test-Then-Train evaluation method allows obtaining the learning curve of
the data stream algorithms (Figure 6). Each example that the algorithm receives evaluates the
model created so far and then uses the same example to train and update the model.
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In addition, a t-test was carried out to test for any significant difference in the F1
measure of the older adults and control group for each activity (Table 5). There was a
significant difference between the two groups only in the case of the recognition of the
walking activity.

Table 5. Student’s t-test result. Comparison of F1 measure between older adults and control group.

F1 Mean (Control
Group)

F1 Mean (Older
Adults Group)

Mean
Difference

Std. Error
Difference p-Value

Walking 82.41 82.06 −0.35 0.17 0.05
Climbing/descending stairs 49.82 49.91 0.09 0.88 0.91

Using pitcher 99.42 99.39 −0.02 0.03 0.49
Being still 94.56 94.63 0.07 0.09 0.45

Using bathroom sink 91.48 91.65 0.16 0.19 0.39
Sweeping 99.50 99.49 −0.01 0.03 0.71

Using toilet 96.71 96.95 0.23 0.15 0.14
All activities 88.02 88.00 −0,01 0.13 0.90

4.2. Indoor Localization Error

The generation of particles in the prediction phase is a random process. This means
that the proposed method must be executed several times to have a reasonable estimate
of the indoor location error for each participant. Therefore, the proposed method was
run 10 times for each participant. Tables 6 and 7 show the average location error in each
sub-trajectory for the older adults and control group, respectively.

Table 6. Average error (in meters) of the location for each sub-trajectory (older adults’ group).

Participant Door to
Kitchen

Kitchen to the
Bathroom Sink

Bathroom
Sink to Plant

Plant to
Room

Broom to
Toilet

Toilet to
Door

Total Average
Error

1 1.928 1.504 0.496 1.568 0.447 0.568 1.085
2 1.752 1.303 1.220 1.499 1.376 1.682 1.472
3 1.981 1.497 0.403 0.747 0.446 0.758 0.972
4 0.453 1.024 1.994 0.620 1.059 0.990 1.023
5 1.209 0.938 0.631 3.058 0.301 1.181 1.220
6 0.633 1.135 0.724 0.224 0.686 0.785 0.698
7 1.679 3.055 0.319 0.535 0.681 0.834 1.184
8 2.095 3.279 0.299 0.151 0.475 0.881 1.197
9 1.248 1.367 0.559 0.284 0.151 0.598 0.701
10 1.297 0.761 1.385 0.901 0.391 0.683 0.903
11 1.069 0.174 1.015 0.224 0.591 1.697 0.795

Average 1.395 1.458 0.822 0.892 0.600 0.969 1.023

Table 7. Average error (in meters) of the location for each sub-trajectory (Control group).

Participant Door to
Kitchen

Kitchen to the
Bathroom Sink

Bathroom
Sink to Plant

Plant to
Room

Broom to
Toilet

Toilet to
Door

Total Average
Error

1 0.912 0.872 0.307 0.613 0.181 0.221 0.518
2 1.061 0.367 0.347 0.477 0.233 0.360 0.474
3 0.995 1.510 1.513 0.855 0.975 0.945 1.132
4 1.133 0.907 0.643 0.442 0.288 0.284 0.616
5 0.710 2.137 2.916 0.234 0.198 2.767 1.494
6 1.413 1.919 0.545 0.464 0.257 0.887 0.914
7 1.046 1.143 1.367 0.607 1.075 0.948 1.031
8 1.238 1.254 1.590 1.133 0.268 0.798 1.047
9 1.731 2.427 2.154 1.359 1.072 0.241 1.498
10 0.957 1.322 1.516 0.166 0.345 0.415 0.787
11 2.955 1.718 1.148 1.107 0.227 0.867 1.337

Average 1.287 1.416 1.277 0.678 0.465 0.794 0.986

The mean error in the location of the older adults’ group was 1.023 m, and that of the
control group was 0.986 m.
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Figure 7 shows an example of the location tracking for two participants. The location
tracking results for all the 22 participants can be shown in Appendix A.

There are no significant differences in the location error between older adults and the
control group (Table 8).
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Table 8. Student’s t-test result. Comparison of errors between older adults and control group.

Error Mean
(Control Group)

Error Mean (Older
Adults Group)

Mean
Difference

Std. Error
Difference p-Value

Main door to the kitchen 1.28 1.28 −0.00 0.29 0.90
Kitchen to bathroom sink 1.41 1.41 0.18 0.34 0.60

Bathroom sink to plant 1.27 1.27 −0.49 0.30 0.11
Plant to broom 0.67 0.67 0.21 0.29 0.47
Broom to toilet 0.46 0.46 0.10 0.16 0.53

Toilet to main door 0.79 0.79 0.21 0.25 0.40
Complete trajectory 0.98 0.98 0.03 0.13 0.78

5. Discussion

The three main contributions of the paper are discussed as follows: (1) The collection
of a dataset that allows assessing IL and HAR in both adults and older adults; (2) A method
for classifying activities based on a data stream learning algorithm; (3) A comprehensive
evaluation of a method for simultaneous indoor localization, mapping, and human activity
recognition for AAL scenarios.

5.1. Dataset

No single dataset was found with data that allow the evaluation of the proposed
framework. Therefore, the collected dataset constitutes a fundamental part of our research,
and it is publicly available to other authors. It included synchronized data from the IMU
that each participant carried on their right foot and the BLE beacons deployed in the indoor
environment. In addition, each example was labeled with one of the seven activities that
the participants performed (Table 2). The collected dataset includes data from 22 people, of
which 11 are older than 60 years. This allowed us to compare the framework’s performance
concerning HAR and IL with adults and older adults. Finally, the dataset was collected in
Colombia, allowing the training of local models in low-and middle-income settings and it
has been widely recommended in the literature [33,34].
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5.2. Human Activity Recognition

In our work, HAR was carried out using three data stream algorithms: K-Nearest
Neighbor (KNN), Naive Bayes (NB), and Hoeffding Tree (HT). The percentage of the
examples correctly classified using these three algorithms was high. KNN and NB almost
reached 90%, and HT reached 87.56%. However, the results of the F1 measure are a little
lower, but the order of algorithms concerning their performance is preserved: the best F1 is
KNN (88.01%), followed by NB (86.78%), and, finally, HT (83.76%) (Table 3). In Khannouz’s
work, the level of F1 was much lower, although a direct comparison of the performance of
the algorithms cannot be made because the datasets used are different. For example, their
real datasets do not contain data from BLE beacons, and the activities carried out in them
are different.

The activity of going up or down the stairs produced a low F1 in all cases. On a
closer inspection, the reason for this is that algorithms classified many examples labeled as
“climbing/descending stairs” as “walking.” Consequently, the number of false positives
affects the F1 measure of the “walking” activity. This phenomenon seems to affect more to
the older adult group. Consequently, there was a significant difference in recognition of
the walking activity between older adults and control groups (Table 5). There are ways to
handle the low F1 obtained for the “Climbing / descending stairs” activity. The simplest
solution is to merge the activities “walking” and “Climbing / descending stairs.” In that
case, when looking at the results in Table 4, it is foreseeable that KNN and NB would have a
very similar F1. Another option would be to look for features that help classify that activity
and include them in the learning phase. It would also be possible to place two stationary
beacons on both sides of the stairs, which in addition to helping to refine the location,
would help to classify the activity in question. Finally, including the data from a barometer
is a viable option. Some IMUs have a built-in barometer, and it has already been proven as
a valuable sensor for measuring changes in height in indoor environments [35,36].

Although the learning curves for the KNN and NB algorithms maintain an upward
trend after 1800 examples, the learning curve for the HT algorithm has a downward behav-
ior that stabilizes approximately at example number 3000. Consequently, the algorithms
KNN and NB are the candidates to be chosen as the algorithm to include in our framework.
Furthermore, the learning curve of the KNN algorithm is lower than the curves of the NB
and HT algorithms up to approximately 1000 examples. This behavior is expected since
KNN must base its classification on the most similar examples previously classified. Still,
since it is a data stream algorithm, it does not save all the history of the examples from
performing the comparison. Instead, it only stores some [13].

The evaluation of a data stream algorithm includes calculating the time it takes to
process each example. The processing time of the three algorithms has a linear behavior
through time. Therefore, the time it takes for the algorithm to process an example corre-
sponds to the division of the total time it took to process the 3716 examples by the total
number of examples. The nearest neighbor search performed in KNN and the need to store
a set of examples to compare the similarity with unknown examples is costly computational
tasks compared to the tasks required in NB and HT. However, KNN processes each sample
in 12.9 ms, and the proposed framework needs to classify an example every 5 s. In addition,
the classification model obtained with KNN could be quickly executed on a device with a
very low memory capacity since it only uses 0.69 kB.

Another important result is that the t-test showed no significant difference between
the means of the F1 measure of the older adults and the control group (Table 8). As a
result, it can be stated that the KNN data stream algorithm can classify the activities of both
groups satisfactorily.

5.3. Simultaneous Indoor Localization, Mapping, and Human Activity Recognition

The total average localization error was 1.023 m for the older adults group participants
and 0.986 m for the control group. These results are similar to those obtained in our
previous works [10,19] and the reported in the related work section (Table 9).



Sensors 2022, 22, 3364 15 of 21

It is not appropriate to make a direct comparison between the studies in Table 9 since
each of them was evaluated under different conditions, that is, with different devices,
different indoor environments, and different number of beacons. However, it is important
to note that the IL precision of the proposed framework is better than the reported in the
other works. The analysis made by [18] is important since they improved the precision by
increasing the number of beacons from 24 to 48. The novelty of our study is the comparison
of the results between the groups. To the best of our knowledge, this is the first study
comparing the precision of IL in adults and older adults.

Table 9. Comparison with related works.

Paper SLAM Landmark Testbed Size (Approx.) Precision

[14] Corners of the indoor
environment 20 m × 20 m 1.34 m

[15] RFID tags 30 m × 40 m 2 m

[16] WIFI routers 60 m × 10 m 2.22 m ± 1.25 m

[17] Human activities 10 m × 10 m 1.16 m ± 0.07 m

[18] BLE beacons 90 m × 37 m 3.25, 4.69 (using 24 and 48 beacons)

[19] BLE beacons 16 m × 7 m 1.05 m ± 0.44 m

This study BLE beacons 20 m × 10 m 1.02 m in older adults
0.98 m in adults

In [10], we demonstrated that the proposed PDR-ZUPT module was capable of re-
constructing trajectories that involved walking, jogging, and running. That result was
an indication that the proposed final framework would be able to locate people while
they are walking at different speeds. This is important because the gait of older adults
is usually slower than in adults. As a result of the evaluation, there was no significant
difference in the location error between older adults and control groups. This result, along
with the results obtained in the HAR section, indicates that the proposed framework to
perform simultaneous indoor localization, mapping, and human activity recognition works
adequately with older adults, and, therefore, is suitable to be implemented in ambient
assisted living scenarios. It is important to note that this result implies that the inclusion of
the data stream classifier for HAR was successful since the proposed framework follows
the location based on the results of the HAR module.

Going deeper into the comparison of the results of the two groups, the largest average
error occurs for the sub-trajectory between going from the kitchen to the bathroom sink.
That trajectory implied that the participant served something to drink in the kitchen, walked
to the dining room, sat down and ate something, stood up, and went to wash their hands.
It is known that sitting activities are likely to cause loss of heading, even more, when the
person moves her feet when is seated. One way to deal with heading drift is to deploy
as many beacons as possible and position them to have a line of sight with the Bluetooth
signal receiver device as much as possible. This design consideration must be considered
if the receiving device is the same IMU put in the person’s shoe. In that case, it would be
preferable for the stationary beacons to be kept level with the ground.

There is a drift in reconstructing the final sub-trajectory of participants 1 and 5 of the
control group (Figure A3) and participant 2 and 5 of the older adults’ group (Figure A1).
That drift results in a large error in the location of said sub-trajectory for the participants
mentioned above (Tables 6 and 7, respectively). The activity consists of going from the
bathroom to the main entrance on the second floor. The loss of heading occurs from the
moment the sub-trajectory begins, just after using the toilet. As in the previous case, having
more beacons to correct the orientation would be very useful. As proposed in Section 5.2,
placing a beacon at each end of the stairs would improve heading drift and classify the
“climbing/descending stairs” activity.
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The longest sub-path (around 20 m in length) is to go from the starting point to the
kitchen. Although this activity involves going downstairs, the indoor localization on the
stairs worked very well for both groups (Figures A1–A4). However, the average location
error for this sub-trajectory was 1.95 m for the control group and 1.287 m for the older
adults group. Then, the cause of the error is in the correction of the position carried out
by the particle filter. As in the case of heading loss, they have more beacons, especially
stationary ones, that are at the same level as the receiving device of their signals, which
would be the way to improve localization.

6. Conclusions

We have presented a framework that takes advantage of the relationship between
location and activity to simultaneously and non-invasively perform indoor localization,
mapping, and human activity recognition. The framework fuses data from an IMU placed
in the person’s shoe with proximity and human activity-related data from BLE beacons.
The feasibility of the framework was demonstrated in a smart home environment with
adults and older adults performing simultaneous location, mapping, and recognition of
daily life activities.

The results show that SLAM allows a dynamic indoor localization. The recognition
of activities aided with the interaction with Bluetooth beacons constitutes an excellent
alternative to landmarks in SLAM. This allows mapping the area by which the person
moves and refining the localization of the person in it. Although previous works have used
BLE beacons for indoor localization, to the best of our knowledge, this is the first one that
uses the movement of beacons as an input variable for classifying activities that are later
used as landmarks in the SLAM framework. HAR was carried out with a KNN data stream
algorithm, which can be executed on any wearable because its little memory consumption.
In a future work, to have the HAR classification model up to date, an automatic process to
label the learning examples could be performed based on the movement of the beacons
and their proximity to them.

The proposed framework is the backbone for future projects to develop flexible systems
for monitoring IL and HAR based on two non-intrusive components: an IMU and Bluetooth
beacons. The IMU in the shoe and BLE beacons deployed in the house are the necessary
devices for the operation of the proposed framework. The smartphone was required since
the IMU used does not have the functionality to receive Bluetooth signals. However, it
is possible to adapt or develop an IMU capable of avoiding using the Smartphone. The
use of the IMU at the foot, in addition to being slightly intrusive, is opportunistic because
it facilitates the detection of gait parameters in older adults. It is beneficial for detecting
gait disorders, such as those derived from Parkinson’s disease [37]. As future work, the
development of a smart insole that contains one accelerometer and gyroscope and the
capacity of receiving the BLE signal from the beacons can be beneficial to increase the use
comfortableness. Other interesting future work consists of evaluating the framework in
different indoor environments to demonstrate its dynamism. In addition, it is proposed to
develop a software solution for the local or remote processing of the framework that allows
identifying a specific user and visualizing their location and activities.
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