
Citation: Dan, X.; Gong, Q.; Zhang,

M.; Li, T.; Li, G.; Wang, Y. Chessboard

Corner Detection Based on EDLines

Algorithm. Sensors 2022, 22, 3398.

https://doi.org/10.3390/s22093398

Academic Editor: Sergio Toral Marín

Received: 13 April 2022

Accepted: 26 April 2022

Published: 28 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Chessboard Corner Detection Based on EDLines Algorithm
Xizuo Dan 1, Qicheng Gong 1, Mei Zhang 1, Tao Li 1, Guihua Li 1,* and Yonghong Wang 2

1 School of Electrical Engineering and Automation, Anhui University, Hefei 230601, China;
20005@ahu.edu.cn (X.D.); z20201038@stu.ahu.edu.cn (Q.G.); hfren@126.com (M.Z.); ltaizp@163.com (T.L.)

2 School of Instrument Science and Opto-Electronics Engineering, Hefei University of Technology,
Hefei 230009, China; yhwang@hfut.edu.cn

* Correspondence: guihuali1@163.com; Tel.: +86-13956932686

Abstract: To improve the robustness and accuracy of the corner-detection algorithm, this paper
proposes a camera-calibration method based on the EDLines algorithm for the automatic detection of
chessboard corners. The EDLines algorithm is initially used to perform straight-line detection on
the calibration image. The features of the broken straight lines at the corners are then used to filter
the straight lines and remove the background straight lines outside the chessboard. The pixels in
the rectangular area around the filtered straight line are sorted by the gray gradient. After using
the sorted results to fit the straight line, the coordinates of the intersection of the straight lines are
taken as the initial coordinates of the corners and perform subpixel optimization on them. Finally, the
corner points are sorted by the conversion between pixel-coordinate systems. The camera exposure
time changes and complex imaging-background experiments show that the algorithm has no missed
detection and redundancy in corner detection. The average reprojection error is found to be less than
0.05 pixels, which can be used in actual calibration.

Keywords: corner detection; chessboard; EDLines; camera calibration; reprojection error

1. Introduction

Machine vision is extensively used in 3D measurement, 3D reconstruction, visual
navigation, and target recognition [1–4]. Among them, camera calibration [5–8] is the key
content in the field of machine vision. Different camera-calibration methods have been
proposed, and planar 2D calibration boards made of different calibration patterns such as
chessboard [9], circle [10], and concentric circles [11] are extensively used because of their
convenient operation. In particular, the chessboard-calibration board is widely used in
camera calibration because of its high precision and easy fabrication. The key to calibration
is how to accurately detect the corner coordinates from the calibration image. At present,
the corner-detection methods for chessboards primarily include gray-based [12–17] and
geometric-feature-based [18–25] detection methods.

The gray-based methods primarily use the grayscale information around the corners.
They are generally improved on the basis of the traditional Harris [26], SUSAN [27], and
Hessian [28] corner-detection methods. For example, Teng et al. [12] used three typical
local features at the corners to screen the Harris corner-detection results and identify the
real corners of the chessboard. Liu et al. [13] proposed an automatic corner-detection
algorithm. In the detection results of the Hessian corner detector, the algorithm uses the
geometric characteristics of the corners to eliminate false corners. However, detection
accuracy stays only at pixel level. Zhang et al. [14] used the detection results of the Harris
algorithm and adjusted the parameters to optimize the corners. The hyperbolic tangent
model of the point, using the optimal model to remove the false angle, improves the
accuracy of corner detection. Xiao et al. [15] combined the Harris algorithm with the circle
boundary. They used the Harris algorithm to detect corner points and the circle boundary
to screen these points. Zhuo et al. [16] used the Hessian matrix to detect corner points

Sensors 2022, 22, 3398. https://doi.org/10.3390/s22093398 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22093398
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://doi.org/10.3390/s22093398
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22093398?type=check_update&version=2

Sensors 2022, 22, 3398 2 of 14

followed by the second-order Taylor expansion to locate the subpixel coordinates at these
points after obtaining the pixel-level coordinates. This strategy has a certain accuracy, but
when the chessboard is rotated, the algorithm may fail. Zhu et al. [17] used an improved
SUSAN corner detector for a chessboard and used the gray-gradient method to optimize
the corner coordinates.

Geometric feature-based methods primarily use edge, line, and symmetry information
for corner detection. Escalera et al. [18] applied Hough transform to corner detection.
After using Hough transform to obtain the intersection, corners were detected around
the intersection with good accuracy. Li et al. [19] used the results of the line segment
detector (LSD) to filter straight lines and extract corner points. They used the gray-gradient
method to optimize the corner coordinates. However, when the length of the background
straight line and the chessboard straight line was close, the algorithm fails. Chen et al. [20]
applied a morphological filter to extract the sub-pixel-level coordinates of the edge for
polynomial fitting and found the intersection of the edge as the corner. Yang et al. [21] used
Hough transform to calculate the coordinates of the intersection of chessboard straight
lines as intersection coordinates and used circular template to iteratively optimize it. How-
ever, when the inclination and spacing of the background straight lines are close to the
straight lines inside the chessboard, the straight lines screening effect may be reduced.
Wang et al. [22–24] calculated the vanishing points of four straight lines around the cen-
troid, used the vanishing points to establish the intersection point set of straight lines as
the corner candidate point set, and screened the corner point set. This method will cause
repeated corner calculation and increase the elimination workload. Yang et al. [25] used the
surface model to fit the edge of the chessboard and extracted the intersection of the edge as
the corner. When the edge is distorted and bent by the lens, the accuracy of this method
will be reduced.

The present study aims to address the insufficient robustness or unverified robustness
in the above methods. A corner-detection method based on the EDLines algorithm is
proposed, which can improve the robustness and convenience of the algorithm while
ensuring high accuracy of the detection results. The second part of this paper introduces
the EDLines algorithm and the principle of the corner-detection algorithm in detail. The
third part verifies the performance of the proposed method through experiments. The
fourth part summarizes our work.

2. Chessboard Corner Detection Based on EDLines
2.1. Introduction to the EDlines Algorithm

The EDLines algorithm was proposed by Cuneyt Akinlar and Cihan Topal in 2011 [29],
and its main function is to detect straight lines existing in an image. Compared with
traditional straight-line detection algorithms such as Hough [30] and LSD [31], the EDLines
algorithm detects straight lines with high accuracy and fast speed, and its straight-line
detection speed is about 10 times that of the LSD algorithm.

The EDLines algorithm detects the straight lines process as follows.
The EDLines algorithm uses the edge drawing (ED) [32] edge detector to generate a

set of clean and continuous edge pixel chains, namely edge segments, for a given grayscale
image. The straight lines are extracted from the edge segments according to the principle
of least squares. Finally, the Helmholtz principle is used to determine whether to accept or
reject the extracted straight line by calculating the number of false alarms.

Similar to the LSD algorithm, the EDLines algorithm can belong to only one straight
line at most at each point on the image during operation. Thus, when the EDLines algorithm
is used to detect chessboard straight lines, the straight line at the corner point is broken
into two situations: the straight line at the corner breaks into four straight lines, as shown
in Figure 1a; or the straight line at the corner breaks into three straight lines, as shown in
Figure 1b.

Sensors 2022, 22, 3398 3 of 14Sensors 2022, 22, x FOR PEER REVIEW 3 of 14

Figure 1. Effect drawing of straight-line fracture at corner: (a) breaking into four straight lines at the
corner, (b) breaking into three straight lines at the corner.

2.2. Corner-Extraction Algorithm Based on EDLines
As shown in Figure 1, EDLines breaks into multiple straight lines at the corners dur-

ing straight-line detection. The following methods are used to extract the corner coordi-
nates. The specific process is as follows.
1. The EDLines algorithm is used to detect chessboard straight lines.
2. According to the different breaking conditions of the straight line at the corner point,

the straight line is screened by the characteristic conditions of the broken straight line
and its surrounding straight lines. The screening conditions are as follows:

(1) When the straight line at the corner points breaks into four straight lines, the cri-
terion is as follows: ① Each straight line should have three other straight-line endpoints jP in the

neighborhood not greater than r from its endpoint iP , where i and j represent
the i and jth endpoints of the four straight-line endpoints.

2
, , 1,..., 4,i jP P r i j i j< = ≠ (1) ② The length of the four straight lines il should be greater than L, and L repre-

sents the shortest length of the straight line.

1,..., 4il L i> = (2)③ Among the four straight lines, two sets of straight lines are kept parallel within
the angular deviation threshold thrθ , and their inclination angles iθ , jθ , kθ
, and lθ should satisfy the following:

, , , 1,..., 4,i j thr

k l thr

i j k l i j k l
θ θ θ

θ θ θ

 − < = ≠ ≠ ≠
− <

 (3)

(2) When the straight line at the corner points breaks into three straight lines, the
criterion is as follows: ① Each straight line should have another straight-line endpoint jP within the

neighborhood not greater than r from the endpoint iP .

2
, , 1,2,i jP P r i j i j< = ≠ (4)② The distance d from point iP and point jP to each straight line is calculated,

and the set of straight lines { }nS satisfying d r< is obtained, 1,2,...n = . The
set of straight lines is traversed to find a straight line that satisfies the x or y
coordinates of points iP and jP within the interval of its endpoints. The
straight line is the third straight line in the neighborhood of the corner point,

Figure 1. Effect drawing of straight-line fracture at corner: (a) breaking into four straight lines at the
corner, (b) breaking into three straight lines at the corner.

2.2. Corner-Extraction Algorithm Based on EDLines

As shown in Figure 1, EDLines breaks into multiple straight lines at the corners during
straight-line detection. The following methods are used to extract the corner coordinates.
The specific process is as follows.

1. The EDLines algorithm is used to detect chessboard straight lines.
2. According to the different breaking conditions of the straight line at the corner point,

the straight line is screened by the characteristic conditions of the broken straight line
and its surrounding straight lines. The screening conditions are as follows:

(1) When the straight line at the corner points breaks into four straight lines, the
criterion is as follows:

1© Each straight line should have three other straight-line endpoints Pj in the
neighborhood not greater than r from its endpoint Pi, where i and j represent
the i and jth endpoints of the four straight-line endpoints.

‖Pi, Pj‖2 < r i, j = 1, . . . , 4 , i 6= j (1)

2© The length of the four straight lines li should be greater than L, and L repre-
sents the shortest length of the straight line.

li > L i = 1, . . . , 4 (2)

3© Among the four straight lines, two sets of straight lines are kept parallel
within the angular deviation threshold θthr, and their inclination angles θi, θj,
θk, and θl should satisfy the following:{

||θi| − |θj|| < θthr
||θk| − |θl || < θthr

i, j, k, l = 1, . . . , 4, i 6= j 6= k 6= l (3)

(2) When the straight line at the corner points breaks into three straight lines, the
criterion is as follows:

1© Each straight line should have another straight-line endpoint Pj within the
neighborhood not greater than r from the endpoint Pi.

‖Pi, Pj‖2 < r i, j = 1, 2 , i 6= j (4)

2© The distance d from point Pi and point Pj to each straight line is calculated,
and the set of straight lines {Sn} satisfying d < r is obtained, n = 1, 2, . . .
The set of straight lines is traversed to find a straight line that satisfies the x
or y coordinates of points Pi and Pj within the interval of its endpoints. The
straight line is the third straight line in the neighborhood of the corner point,

Sensors 2022, 22, 3398 4 of 14

and the straight line where Pi and Pj are located is within the angle-deviation
threshold. To maintain parallelism within θthr, the inclination angles θi and
θj should satisfy the following:

||θi| − |θj|| < θthr i, j = 1, 2 , i 6= j (5)

3© The shortest length of each of the three straight lines li should be greater than
L.

li > L i = 1, 2, 3 (6)

3. According to the above two cases, the straight lines not belonging to the chessboard
are eliminated.

4. The gray gradients of pixels are sorted in a rectangular area with width m near the
filtered straight line. The top n points with the largest gray gradient for least square
line fitting are selected. The coordinates of the intersections of the straight lines are
used as the initial coordinates of the corners.

5. The initial coordinates of the corners are optimized by the gray-gradient method, and
their subpixel coordinates are obtained.

6. The transformation between pixel-coordinate systems is used to sort the corner points.
The extra corner points generated by the straight lines that were not culled in step 3
are culled for subsequent camera calibration.

2.2.1. Straight-Line Detection and Screening

The conventional chessboard-calibration board is used in this experiment. The three
marked circles in the center of the calibration plate are used to define the coordinate
direction of the calibration plate. The two white circles are in the x direction, and the white
and black circles are in the y direction, as shown in Figure 2a.

Sensors 2022, 22, x FOR PEER REVIEW 4 of 14

and the straight line where iP and jP are located is within the angle-devia-
tion threshold. To maintain parallelism within thrθ , the inclination angles iθ
and jθ should satisfy the following:

, 1,2,i j thr i j i jθ θ θ− < = ≠ (5)③ The shortest length of each of the three straight lines il should be greater than
L.

1, 2,3il L i> = (6)

3. According to the above two cases, the straight lines not belonging to the chessboard
are eliminated.

4. The gray gradients of pixels are sorted in a rectangular area with width m near the
filtered straight line. The top n points with the largest gray gradient for least square
line fitting are selected. The coordinates of the intersections of the straight lines are
used as the initial coordinates of the corners.

5. The initial coordinates of the corners are optimized by the gray-gradient method, and
their subpixel coordinates are obtained.

6. The transformation between pixel-coordinate systems is used to sort the corner
points. The extra corner points generated by the straight lines that were not culled in
step 3 are culled for subsequent camera calibration.

2.2.1. Straight-Line Detection and Screening
The conventional chessboard-calibration board is used in this experiment. The three

marked circles in the center of the calibration plate are used to define the coordinate di-
rection of the calibration plate. The two white circles are in the x direction, and the white
and black circles are in the y direction, as shown in Figure 2a.

Figure 2. Comparison of results before and after straight-line screening: (a) EDLines test results, (b)
straight-line filter results.

After using the EDLines algorithm to detect the chessboard-calibration plate image,
the straight-line detection results as shown in Figure 2a can be obtained, including the
straight lines constituting the chessboard, the background straight lines, and the straight
lines introduced by noise. To eliminate the straight lines that do not constitute the corner
points of the chessboard, the straight lines are screened according to the two process situ-
ations proposed in Section 2.2. Several experiments have shown that when the radius r of
the circular domain and the length of the straight-line L take 10 pixels, and the angle
threshold thrθ takes 10°, the effect of straight-line screening is the best. The straight-line
screening result is shown in Figure 2b. All straight lines around the corners of the chess-
board are retained, and most of the straight lines outside the chessboard are eliminated.

Figure 2. Comparison of results before and after straight-line screening: (a) EDLines test results,
(b) straight-line filter results.

After using the EDLines algorithm to detect the chessboard-calibration plate image, the
straight-line detection results as shown in Figure 2a can be obtained, including the straight
lines constituting the chessboard, the background straight lines, and the straight lines
introduced by noise. To eliminate the straight lines that do not constitute the corner points
of the chessboard, the straight lines are screened according to the two process situations
proposed in Section 2.2. Several experiments have shown that when the radius r of the
circular domain and the length of the straight-line L take 10 pixels, and the angle threshold
θthr takes 10◦, the effect of straight-line screening is the best. The straight-line screening
result is shown in Figure 2b. All straight lines around the corners of the chessboard are
retained, and most of the straight lines outside the chessboard are eliminated. Only a few
straight lines that have not been eliminated are retained. This part of the straight line fits
false corners and is eliminated in the subsequent corner sorting.

Sensors 2022, 22, 3398 5 of 14

2.2.2. Corner Initial Coordinate Acquisition

On the basis of Figure 2b, a rectangular area with width h and the length of the straight
line is delineated around each straight line. Many experiments have shown that when the
value of h is 4 pixels in length, the calculation amount is the smallest without reducing the
accuracy. When the straight line at the corner is broken into four straight lines, the result of
the rectangular area delineation is shown in Figure 3a. When the straight line at the corner
point is broken into three straight lines, the result of the rectangular area delineation is
shown in Figure 3b.

Sensors 2022, 22, x FOR PEER REVIEW 5 of 14

Only a few straight lines that have not been eliminated are retained. This part of the
straight line fits false corners and is eliminated in the subsequent corner sorting.

2.2.2. Corner Initial Coordinate Acquisition
On the basis of Figure 2b, a rectangular area with width h and the length of the

straight line is delineated around each straight line. Many experiments have shown that
when the value of h is 4 pixels in length, the calculation amount is the smallest without
reducing the accuracy. When the straight line at the corner is broken into four straight
lines, the result of the rectangular area delineation is shown in Figure 3a. When the
straight line at the corner point is broken into three straight lines, the result of the rectan-
gular area delineation is shown in Figure 3b.

Figure 3. Delineation result of rectangular area around the fracture straight line: (a) rectangular area
around the four straight lines, (b) rectangular area around the three straight lines.

The top n points with the largest gray gradient in each rectangular area are selected
to perform least-square straight-line fitting. When n is 20, with continued increase in the
n value, the accuracy does not change significantly. To reduce the amount of calculation,
n is set to 20. The coordinates of the intersection of the fitted straight lines are the initial
subpixel coordinates of the corners.

2.2.3. Subpixel-Coordinate Optimization of Corners
Owing to the randomness of straight-line breaks at corner points, when the image

quality is poor, the initial coordinates of individual corner points may be biased, which is
not convenient for subsequent camera calibration, so it needs to be optimized.

The gray-gradient method is used to optimize the initial coordinates of the corner
points. The principle is as follows.

Within the neighborhood of a corner p, two types of points 0q and 1q exist. 0q is
the point located on the edge line, and 1q is the point located on the non-edge line in the
flat area, as shown in Figure 4.

When the gray-gradient vector at point 0q is perpendicular to the edge line:

()0 0p q p∇ ⋅ − =

 (7)

When the point 1q is located in the flat area, its grayscale change is 0; that is, the
grayscale-gradient vector at the point 1q is equal to 0, so

()1 0p q p∇ ⋅ − =

 (8)

Among them, p∇

 represents the gray-gradient vector at the corner point p, 0q p−
represents the gray-gradient vector at the point 0q , and 1q p− represents the gray-gra-
dient vector at the point 1q . Equations (7) and (8) are true only under ideal conditions. In
practice, owing to the influences of noise, illumination, lens distortion, etc., an

Figure 3. Delineation result of rectangular area around the fracture straight line: (a) rectangular area
around the four straight lines, (b) rectangular area around the three straight lines.

The top n points with the largest gray gradient in each rectangular area are selected
to perform least-square straight-line fitting. When n is 20, with continued increase in the
n value, the accuracy does not change significantly. To reduce the amount of calculation,
n is set to 20. The coordinates of the intersection of the fitted straight lines are the initial
subpixel coordinates of the corners.

2.2.3. Subpixel-Coordinate Optimization of Corners

Owing to the randomness of straight-line breaks at corner points, when the image
quality is poor, the initial coordinates of individual corner points may be biased, which is
not convenient for subsequent camera calibration, so it needs to be optimized.

The gray-gradient method is used to optimize the initial coordinates of the corner
points. The principle is as follows.

Within the neighborhood of a corner p, two types of points q0 and q1 exist. q0 is the
point located on the edge line, and q1 is the point located on the non-edge line in the flat
area, as shown in Figure 4.

When the gray-gradient vector at point q0 is perpendicular to the edge line:

→
∇p · (q0 − p) = 0 (7)

When the point q1 is located in the flat area, its grayscale change is 0; that is, the
grayscale-gradient vector at the point q1 is equal to 0, so

→
∇p · (q1 − p) = 0 (8)

Among them,
→
∇p represents the gray-gradient vector at the corner point p, q0 − p

represents the gray-gradient vector at the point q0, and q1 − p represents the gray-gradient
vector at the point q1. Equations (7) and (8) are true only under ideal conditions. In practice,

Sensors 2022, 22, 3398 6 of 14

owing to the influences of noise, illumination, lens distortion, etc., an optimization problem
arises between the corner point p and the points in its neighborhood N(p), i.e.,

p = min ∑
qi∈N(p)

(
gT

qi
(qi − p)

)2
(9)

Among them, N represents the neighborhood around corner p,qi represents any point
in the neighborhood, and gqi

represents the gray-gradient vector at point qi.
Taking the derivation of p in Formula (9), the analytical solution can be obtained

as follows:

p =

 ∑
qi∈N(p)

gqi g
T
qi

−1

· ∑
qi∈N(p)

(
gqi g

T
qi

)
qi (10)

Sensors 2022, 22, x FOR PEER REVIEW 6 of 14

optimization problem arises between the corner point p and the points in its neighborhood
N(p), i.e.,

()()
()

2
min

i
i

T
q i

q N p
p g q p

∈

= − (9)

Among them, N represents the neighborhood around corner p, iq represents any
point in the neighborhood, and

iq
g represents the gray-gradient vector at point iq .

Taking the derivation of p in Formula (9), the analytical solution can be obtained as
follows:

()
1

() ()
i i i i

i i

T T
q q q q i

q N p q N p
p g g g g q

−

∈ ∈

= ⋅

 (10)

Figure 4. Gray-gradient image at corner.

2.2.4. Corner Sorting
After the above corner-point optimization, the false corner points that have not been

eliminated still exist and need to be eliminated, and the remaining corner points should
be sorted. The purpose of sorting is to enable correspondence of the pixel coordinates of
the corner points with the world coordinates one-to-one, which is convenient for subse-
quent calculations.

Compared with the method of establishing the pixel-coordinate system from the up-
per left corner of the image in MATLAB Toolbox [33] and OpenCV [34], the chessboard-
calibration board used in this paper establishes the pixel-coordinate system from the cen-
ter of the calibration board. Thus, regardless of how the calibration plate is rotated, the
relative position of the corner point and the pixel-coordinate system remains unchanged.
Based on this characteristic, false corners can be eliminated and sorted as follows.
1. Using the EDCircles algorithm [35], the circle in the calibration image is detected, and

the coordinates of the circle center are extracted.
2. The distances from all corner points to the coordinates of each circle center are calcu-

lated. The three center coordinates with the smallest sum of distances are the center
coordinates of the three circles in the center of the calibration plate, thereby eliminat-
ing the false circles outside the calibration plate.

3. All subpixel corner coordinates are transformed into a new coordinate system estab-
lished by the three circle centers.

Figure 4. Gray-gradient image at corner.

2.2.4. Corner Sorting

After the above corner-point optimization, the false corner points that have not
been eliminated still exist and need to be eliminated, and the remaining corner points
should be sorted. The purpose of sorting is to enable correspondence of the pixel coordi-
nates of the corner points with the world coordinates one-to-one, which is convenient for
subsequent calculations.

Compared with the method of establishing the pixel-coordinate system from the
upper left corner of the image in MATLAB Toolbox [33] and OpenCV [34], the chessboard-
calibration board used in this paper establishes the pixel-coordinate system from the center
of the calibration board. Thus, regardless of how the calibration plate is rotated, the relative
position of the corner point and the pixel-coordinate system remains unchanged. Based on
this characteristic, false corners can be eliminated and sorted as follows.

1. Using the EDCircles algorithm [35], the circle in the calibration image is detected, and
the coordinates of the circle center are extracted.

2. The distances from all corner points to the coordinates of each circle center are calcu-
lated. The three center coordinates with the smallest sum of distances are the center
coordinates of the three circles in the center of the calibration plate, thereby eliminating
the false circles outside the calibration plate.

3. All subpixel corner coordinates are transformed into a new coordinate system estab-
lished by the three circle centers.

Sensors 2022, 22, 3398 7 of 14

4. In the new coordinate system, the distance between each corner point to the origin
is calculated and sorted in ascending order. Given that the false corners are outside
the chessboard pattern, all false corners can be eliminated by selecting the nearest m
corners, where m is the number of corners in the chessboard.

5. The y-coordinates of the chessboard are sorted in ascending order. The corners with the
same y-coordinates are then sorted in ascending order according to the x-coordinates.

3. Experiment Analysis

The experimental calibration equipment is shown in Figure 5. The camera is MANTA
G-201B from Allied Vision Technologies, Germany, with a maximum frame rate of 30 fps
and a resolution of 1624 × 1234. The lens is Cinegon-1.4/12 from Schneider–Kreuznach,
Germany. The aperture range is 1.4–11. The calibration plate is an 8 × 8 chessboard-
calibration plate. The width of a single grid is 6 mm, and the diameter of the three
marked circles in the center is 3 mm. The fill-light source is an LED light array with
adjustable brightness.

Sensors 2022, 22, x FOR PEER REVIEW 7 of 14

4. In the new coordinate system, the distance between each corner point to the origin is
calculated and sorted in ascending order. Given that the false corners are outside the
chessboard pattern, all false corners can be eliminated by selecting the nearest m cor-
ners, where m is the number of corners in the chessboard.

5. The y-coordinates of the chessboard are sorted in ascending order. The corners with
the same y-coordinates are then sorted in ascending order according to the x-coordi-
nates.

3. Experiment Analysis
The experimental calibration equipment is shown in Figure 5. The camera is MANTA

G-201B from Allied Vision Technologies, Germany, with a maximum frame rate of 30 fps
and a resolution of 1624 × 1234. The lens is Cinegon-1.4/12 from Schneider–Kreuznach,
Germany. The aperture range is 1.4–11. The calibration plate is an 8 × 8 chessboard-cali-
bration plate. The width of a single grid is 6 mm, and the diameter of the three marked
circles in the center is 3 mm. The fill-light source is an LED light array with adjustable
brightness.

Figure 5. Experimental equipment diagram: (1) LED light array, (2) LED light front, (3) camera, (4)
lens, and (5) calibration board.

3.1. Experimental Results
A picture from normal lighting, moderate exposure, and non-complex imaging back-

ground is selected to demonstrate the process of corner detection in this paper, as shown
in Figure 6.

Figure 6. Corner-detection process: (a) original image, (b) image after straight-line detection by ED-
Lines, (c) result after straight-line screening, (d) initial coordinate results of corner points, (e) result
of corner points subpixel optimization, and (f) result after corner sorting.

Figure 5. Experimental equipment diagram: (1) LED light array, (2) LED light front, (3) camera,
(4) lens, and (5) calibration board.

3.1. Experimental Results

A picture from normal lighting, moderate exposure, and non-complex imaging back-
ground is selected to demonstrate the process of corner detection in this paper, as shown in
Figure 6.

Sensors 2022, 22, x FOR PEER REVIEW 7 of 14

4. In the new coordinate system, the distance between each corner point to the origin is
calculated and sorted in ascending order. Given that the false corners are outside the
chessboard pattern, all false corners can be eliminated by selecting the nearest m cor-
ners, where m is the number of corners in the chessboard.

5. The y-coordinates of the chessboard are sorted in ascending order. The corners with
the same y-coordinates are then sorted in ascending order according to the x-coordi-
nates.

3. Experiment Analysis
The experimental calibration equipment is shown in Figure 5. The camera is MANTA

G-201B from Allied Vision Technologies, Germany, with a maximum frame rate of 30 fps
and a resolution of 1624 × 1234. The lens is Cinegon-1.4/12 from Schneider–Kreuznach,
Germany. The aperture range is 1.4–11. The calibration plate is an 8 × 8 chessboard-cali-
bration plate. The width of a single grid is 6 mm, and the diameter of the three marked
circles in the center is 3 mm. The fill-light source is an LED light array with adjustable
brightness.

Figure 5. Experimental equipment diagram: (1) LED light array, (2) LED light front, (3) camera, (4)
lens, and (5) calibration board.

3.1. Experimental Results
A picture from normal lighting, moderate exposure, and non-complex imaging back-

ground is selected to demonstrate the process of corner detection in this paper, as shown
in Figure 6.

Figure 6. Corner-detection process: (a) original image, (b) image after straight-line detection by ED-
Lines, (c) result after straight-line screening, (d) initial coordinate results of corner points, (e) result
of corner points subpixel optimization, and (f) result after corner sorting.

Figure 6. Corner-detection process: (a) original image, (b) image after straight-line detection by
EDLines, (c) result after straight-line screening, (d) initial coordinate results of corner points, (e) result
of corner points subpixel optimization, and (f) result after corner sorting.

Sensors 2022, 22, 3398 8 of 14

3.2. Robustness Experiment

To test the robustness of the corner-detection algorithm, this study verifies it from the
perspectives of exposure-time change and calibration-environment complexity. The corner-
detection results area then compared with those from the literature [36] and MATLAB
Toolbox. Owing to the particularity of the OpenCV corner-detection algorithm, it fails
to detect corner points from the calibration plate with the characteristic circle, so this
experiment is not compared.

3.2.1. Robustness Verification for Overexposure and Underexposure

With other conditions unchanged, the exposure time is adjusted, and the image
undergoes obvious light and dark changes. Accordingly, the corner points are extracted,
and the results are compared with those of the other two methods. Considering the situation
under extreme exposure time, through actual measurement, the image is completely black
and the corners are undetectable when the exposure time is less than 1 ms. When the
exposure time is greater than 60 ms, the image is too bright, and the black squares in the
chessboard are separated. Thus, taking a comprehensive consideration, six sets of images
captured at different exposure times were set up. Figure 7a is the image taken under the
camera’s underexposure state, and the exposure times are 1, 2.5, and 5 ms. Figure 8a is
the image taken under the camera’s overexposure state, and the exposure times are 50,
55, and 60 ms, respectively. Figures 7b–d and 8b–d are the corner-detection results of the
literature [36], MATLAB Toolbox, and present methods.

Sensors 2022, 22, x FOR PEER REVIEW 8 of 14

3.2. Robustness Experiment
To test the robustness of the corner-detection algorithm, this study verifies it from

the perspectives of exposure-time change and calibration-environment complexity. The
corner-detection results area then compared with those from the literature [36] and
MATLAB Toolbox. Owing to the particularity of the OpenCV corner-detection algorithm,
it fails to detect corner points from the calibration plate with the characteristic circle, so
this experiment is not compared.

3.2.1. Robustness Verification for Overexposure and Underexposure
With other conditions unchanged, the exposure time is adjusted, and the image un-

dergoes obvious light and dark changes. Accordingly, the corner points are extracted, and
the results are compared with those of the other two methods. Considering the situation
under extreme exposure time, through actual measurement, the image is completely black
and the corners are undetectable when the exposure time is less than 1 ms. When the ex-
posure time is greater than 60 ms, the image is too bright, and the black squares in the
chessboard are separated. Thus, taking a comprehensive consideration, six sets of images
captured at different exposure times were set up. Figure 7a is the image taken under the
camera’s underexposure state, and the exposure times are 1, 2.5, and 5 ms. Figure 8a is the
image taken under the camera’s overexposure state, and the exposure times are 50, 55,
and 60 ms, respectively. Figures 7b–d and 8b–d are the corner-detection results of the lit-
erature [36], MATLAB Toolbox, and present methods.

Figure 7. Comparison of corner-detection results in underexposure state: (a) original image, (b) cor-
ner-detection result of the literature [36] method, (c) corner-detection result of MATLAB Toolbox,
and (d) corner-detection results of the method in this paper.

Figure 7. Comparison of corner-detection results in underexposure state: (a) original image,
(b) corner-detection result of the literature [36] method, (c) corner-detection result of MATLAB
Toolbox, and (d) corner-detection results of the method in this paper.

Under different exposure times, the number of corner points detected by the three meth-
ods is shown in Table 1.

Sensors 2022, 22, 3398 9 of 14Sensors 2022, 22, x FOR PEER REVIEW 9 of 14

Figure 8. Comparison of corner-detection results in overexposure state: (a) original image, (b) cor-
ner-detection result of the literature [36] method, (c) corner-detection result of MATLAB Toolbox,
and (d) corner-detection result of the method in this paper.

Under different exposure times, the number of corner points detected by the three
methods is shown in Table 1.

Table 1. Comparison of the number of corners detected by the three methods.

Exposure Time (ms) Literature [36] Algorithm MATLAB Toolbox Our Algorithm
1 3 64 64

2.5 18 64 64
5 63 64 64

50 64 64 64
55 61 64 64
60 40 64 64

Table 1 shows that when the literature [36] method performs corner detection, when
the camera is in the underexposure state, the number of detected corners decreases with
decreased exposure time. When the camera is in the overexposure state, similar to the
underexposure state, the number of detected corner points gradually decreases with in-
creased exposure time. The literature [36] method is greatly affected by the camera expo-
sure time, and the robustness is poor when the camera is underexposed and overexposed.
Using MATLAB Toolbox can always accurately detect all corner points without causing
missed detection or false detection. Therefore, both the method proposed in this paper
and the MATLAB toolbox have high robustness when the camera exposure time changes.

3.2.2. Robustness Verification in Complex Backgrounds
To verify the robustness of the algorithm’s robustness in detecting corners in complex

imaging backgrounds, three groups of pictures were taken for detection, as shown in Fig-
ure 9. Figure 9a–d are the original image before detection, the result of straight-line detec-
tion, the result of straight-line screening, and the result after sorting corner points, respec-
tively. The corresponding straight-line filter rate is shown in Table 2.

Figure 8. Comparison of corner-detection results in overexposure state: (a) original image, (b) corner-
detection result of the literature [36] method, (c) corner-detection result of MATLAB Toolbox, and
(d) corner-detection result of the method in this paper.

Table 1. Comparison of the number of corners detected by the three methods.

Exposure Time (ms) Literature [36] Algorithm MATLAB Toolbox Our Algorithm

1 3 64 64

2.5 18 64 64

5 63 64 64

50 64 64 64

55 61 64 64

60 40 64 64

Table 1 shows that when the literature [36] method performs corner detection, when
the camera is in the underexposure state, the number of detected corners decreases with
decreased exposure time. When the camera is in the overexposure state, similar to the un-
derexposure state, the number of detected corner points gradually decreases with increased
exposure time. The literature [36] method is greatly affected by the camera exposure time,
and the robustness is poor when the camera is underexposed and overexposed. Using
MATLAB Toolbox can always accurately detect all corner points without causing missed
detection or false detection. Therefore, both the method proposed in this paper and the
MATLAB toolbox have high robustness when the camera exposure time changes.

3.2.2. Robustness Verification in Complex Backgrounds

To verify the robustness of the algorithm’s robustness in detecting corners in complex
imaging backgrounds, three groups of pictures were taken for detection, as shown in
Figure 9. Figure 9a–d are the original image before detection, the result of straight-line
detection, the result of straight-line screening, and the result after sorting corner points,
respectively. The corresponding straight-line filter rate is shown in Table 2.

Sensors 2022, 22, 3398 10 of 14Sensors 2022, 22, x FOR PEER REVIEW 10 of 14

Figure 9. Detection of corner points under complex background: (a) original image before detection,
(b)straight-line detection result, (c) result after straight-line screening, and (d) result after sorting
corner points.

Table 2 shows that under the three complex backgrounds, after the straight-line
screening in this paper, the number of irrelevant background straight lines is greatly re-
duced. The background straight-line filtering rate is above 90%, and the background
straight lines that are not eliminated by the filtering conditions generate fewer false back-
ground corners. Thus, the workload for subsequent corner sorting is reduced. This part of
the background false corners is eliminated by corner sorting, and the accurate corner-de-
tection result is obtained, as shown in Figure 9d.

Table 2. Background straight-line filter rate.

Complex Background Number of Background Straight
Lines before Screening

Number of Background
Straight Lines after Screening

Background Straight-Line
Filter Rate

Complex background 1 419 8 98.1%
Complex background 2 321 26 92.0%
Complex background 3 341 14 95.9%

3.3. Convenience Comparison
Through the robustness comparison experiment in Section 3.2, the robustness of the

method in this paper under the extreme exposure time of the camera is better than that of
the method in literature [36], but we cannot judge which is better between our method
and MATLAB toolbox from the point of view of robustness. Therefore, this section com-
pares the convenience of the method in this paper and MATLAB toolbox to verify that the
method proposed in this paper has good convenience in operation.

Figure 10 shows the comparison between the method in this paper and the flow chart
of MATLAB toolbox. MATLAB toolbox needs to manually determine the four corners at
the most edge of each calibrated picture in the corner extraction stage. By connecting the
four edge corners into a rectangular area, the corners are extracted at the edge and inside
of the rectangular area. Manual corner selection itself has large errors. When the number
of images involved in calibration is large, the workload of manual operation will increase
greatly and will lead to the accumulation of errors in the process of manual selection. In

Figure 9. Detection of corner points under complex background: (a) original image before detection,
(b)straight-line detection result, (c) result after straight-line screening, and (d) result after sorting
corner points.

Table 2. Background straight-line filter rate.

Complex Background Number of Background Straight
Lines before Screening

Number of Background Straight
Lines after Screening

Background
Straight-Line Filter Rate

Complex background 1 419 8 98.1%

Complex background 2 321 26 92.0%

Complex background 3 341 14 95.9%

Table 2 shows that under the three complex backgrounds, after the straight-line screen-
ing in this paper, the number of irrelevant background straight lines is greatly reduced.
The background straight-line filtering rate is above 90%, and the background straight lines
that are not eliminated by the filtering conditions generate fewer false background corners.
Thus, the workload for subsequent corner sorting is reduced. This part of the background
false corners is eliminated by corner sorting, and the accurate corner-detection result is
obtained, as shown in Figure 9d.

3.3. Convenience Comparison

Through the robustness comparison experiment in Section 3.2, the robustness of the
method in this paper under the extreme exposure time of the camera is better than that of
the method in literature [36], but we cannot judge which is better between our method and
MATLAB toolbox from the point of view of robustness. Therefore, this section compares the
convenience of the method in this paper and MATLAB toolbox to verify that the method
proposed in this paper has good convenience in operation.

Figure 10 shows the comparison between the method in this paper and the flow chart
of MATLAB toolbox. MATLAB toolbox needs to manually determine the four corners at
the most edge of each calibrated picture in the corner extraction stage. By connecting the
four edge corners into a rectangular area, the corners are extracted at the edge and inside
of the rectangular area. Manual corner selection itself has large errors. When the number

Sensors 2022, 22, 3398 11 of 14

of images involved in calibration is large, the workload of manual operation will increase
greatly and will lead to the accumulation of errors in the process of manual selection. In
the corner detection stage, the method proposed in this paper automatically realizes from
the line detection stage to the final corner sorting stage through the algorithm, without
additional manual participation. In contrast, the method in this paper is more convenient
in practical application and reduces the risk of introducing additional errors.

Sensors 2022, 22, x FOR PEER REVIEW 11 of 14

the corner detection stage, the method proposed in this paper automatically realizes from
the line detection stage to the final corner sorting stage through the algorithm, without
additional manual participation. In contrast, the method in this paper is more convenient
in practical application and reduces the risk of introducing additional errors.

Figure 10. The flow chart comparison between our algorithm and MATLAB toolbox.

3.4. Accuracy verification
By calculating the reprojection error, it can be verified whether the subpixel corner

coordinates obtained by the above method meet the calibration requirements. Ten cap-
tured calibration pictures are selected for the calculation of reprojection error, as shown
in Figure 11a–j. When calculating the reprojection error, we need to consider the effect of
lens distortion on the calculation results. Therefore, the distortion of the initial image
needs to be corrected to reduce the error caused by lens distortion. The distortion correc-
tion function is defined as:

() ()
() ()

2 4 2 2
1 2 1 2

2 4 2 2
1 2 2 1

1 2 2

1 2 2

x x K r K r P y P r x

y y K r K r P x P r y

 ′ = + + + + +

′ = + + + + +
 (11)

Among them, K1 and K2 are radial distortion coefficients, respectively, P1 and P2 are
tangential distortion coefficients, respectively, 2 2 2r x y= + , and the second-order distor-
tion coefficient is enough to solve the conventional large distortion. After correcting the
distorted image points (,)x y′ ′ , the approximate ideal image points (,)x y can be ob-
tained. After correcting the distortion of the calibration images, the reprojection error cal-
culation results are compared with the results of literature algorithm [36] and MATLAB
Toolbox, as shown in Table 3. Among them, fx and fy are the equivalent focal lengths in the
x and y directions, μ0 and ν0 are the center of the image, s is the tilt coefficient, and σ is the
average reprojection error of 10 calibration images. The average reprojection-error com-
parison of the 64 corners of each image is shown in Figure 12. Figure 13a–c show the scat-
ter plots of reprojection errors in the x and y directions of the 10 images obtained using
the algorithm [36], MATLAB Toolbox, and present methods.

Figure 11. Calibration images (a–j) captured in different pose.

Figure 10. The flow chart comparison between our algorithm and MATLAB toolbox.

3.4. Accuracy Verification

By calculating the reprojection error, it can be verified whether the subpixel corner
coordinates obtained by the above method meet the calibration requirements. Ten captured
calibration pictures are selected for the calculation of reprojection error, as shown in
Figure 11a–j. When calculating the reprojection error, we need to consider the effect of lens
distortion on the calculation results. Therefore, the distortion of the initial image needs
to be corrected to reduce the error caused by lens distortion. The distortion correction
function is defined as:{

x′ = x
(
1 + K1r2 + K2r4)+ 2P1y + P2

(
r2 + 2x2)

y′ = y
(
1 + K1r2 + K2r4)+ 2P2x + P1

(
r2 + 2y2) (11)

Sensors 2022, 22, x FOR PEER REVIEW 11 of 14

the corner detection stage, the method proposed in this paper automatically realizes from
the line detection stage to the final corner sorting stage through the algorithm, without
additional manual participation. In contrast, the method in this paper is more convenient
in practical application and reduces the risk of introducing additional errors.

Figure 10. The flow chart comparison between our algorithm and MATLAB toolbox.

3.4. Accuracy verification
By calculating the reprojection error, it can be verified whether the subpixel corner

coordinates obtained by the above method meet the calibration requirements. Ten cap-
tured calibration pictures are selected for the calculation of reprojection error, as shown
in Figure 11a–j. When calculating the reprojection error, we need to consider the effect of
lens distortion on the calculation results. Therefore, the distortion of the initial image
needs to be corrected to reduce the error caused by lens distortion. The distortion correc-
tion function is defined as:

() ()
() ()

2 4 2 2
1 2 1 2

2 4 2 2
1 2 2 1

1 2 2

1 2 2

x x K r K r P y P r x

y y K r K r P x P r y

 ′ = + + + + +

′ = + + + + +
 (11)

Among them, K1 and K2 are radial distortion coefficients, respectively, P1 and P2 are
tangential distortion coefficients, respectively, 2 2 2r x y= + , and the second-order distor-
tion coefficient is enough to solve the conventional large distortion. After correcting the
distorted image points (,)x y′ ′ , the approximate ideal image points (,)x y can be ob-
tained. After correcting the distortion of the calibration images, the reprojection error cal-
culation results are compared with the results of literature algorithm [36] and MATLAB
Toolbox, as shown in Table 3. Among them, fx and fy are the equivalent focal lengths in the
x and y directions, μ0 and ν0 are the center of the image, s is the tilt coefficient, and σ is the
average reprojection error of 10 calibration images. The average reprojection-error com-
parison of the 64 corners of each image is shown in Figure 12. Figure 13a–c show the scat-
ter plots of reprojection errors in the x and y directions of the 10 images obtained using
the algorithm [36], MATLAB Toolbox, and present methods.

Figure 11. Calibration images (a–j) captured in different pose.

Figure 11. Calibration images (a–j) captured in different pose.

Among them, K1 and K2 are radial distortion coefficients, respectively, P1 and P2
are tangential distortion coefficients, respectively, r2 = x2 + y2, and the second-order
distortion coefficient is enough to solve the conventional large distortion. After correcting
the distorted image points (x′, y′), the approximate ideal image points (x, y) can be obtained.
After correcting the distortion of the calibration images, the reprojection error calculation
results are compared with the results of literature algorithm [36] and MATLAB Toolbox,
as shown in Table 3. Among them, fx and fy are the equivalent focal lengths in the x and y
directions, µ0 and ν0 are the center of the image, s is the tilt coefficient, and σ is the average
reprojection error of 10 calibration images. The average reprojection-error comparison
of the 64 corners of each image is shown in Figure 12. Figure 13a–c show the scatter
plots of reprojection errors in the x and y directions of the 10 images obtained using the
algorithm [36], MATLAB Toolbox, and present methods.

Sensors 2022, 22, 3398 12 of 14

Table 3. Camera calibration results.

Method fx/Pixel fy/Pixel µ0/Pixel ν0/Pixel s K1 K2 P1 P2 σ/Pixel

Our algorithm 2906.97 2907.83 802.14 632.03 0 −0.150 0.385 6.3 × 10−4 1.9 × 10−4 0.044
Literature [36]

algorithm 2899.84 2900.47 803.15 628.76 0 −0.168 1.160 7.8 × 10−4 1.6 × 10−4 0.046

MATLAB Toolbox 2911.23 2911.94 802.47 632.54 0 −0.171 1.295 1.2 × 10−3 2.7 × 10−4 0.054

Sensors 2022, 22, x FOR PEER REVIEW 12 of 14

Table 3. Camera calibration results.

Method fx/Pixel fy/Pixel μ0/Pixel ν0/Pixel s K1 K2 P1 P2 σ/Pixel
Our algorithm 2906.97 2907.83 802.14 632.03 0 −0.150 0.385 6.3 × 10−4 1.9 × 10−4 0.044

Literature [36] algorithm 2899.84 2900.47 803.15 628.76 0 −0.168 1.160 7.8 × 10−4 1.6 × 10−4 0.046
MATLAB Toolbox 2911.23 2911.94 802.47 632.54 0 −0.171 1.295 1.2 × 10−3 2.7 × 10−4 0.054

Figure 12. Comparison of reprojection error with literature [36] and MATLAB toolbox.

Figure 13. Reprojection-error scatter plot: (a) Literature [36] algorithm, (b) MATLAB Toolbox, and
(c) Our algorithm.

Figure 12 shows that the maximum average reprojection error of a single image of
the method proposed in this paper is no more than 0.05 pixel, and the maximum standard
deviation in the error bar is no more than 0.028. Figure 13 shows that the reprojection error
of our method is primarily concentrated within the range of 0.1 pixel, and the maximum
reprojection error in the x and y directions does not exceed 0.15 pixel. Compared with
MATLAB Toolbox and the literature [36] algorithm, the reprojection error of our algo-
rithm is more concentrated. The reprojection error of the algorithm in this paper is smaller,
and the calibration accuracy can meet the calibration requirements.

Figure 12. Comparison of reprojection error with literature [36] and MATLAB toolbox.

Sensors 2022, 22, x FOR PEER REVIEW 12 of 14

Table 3. Camera calibration results.

Method fx/Pixel fy/Pixel μ0/Pixel ν0/Pixel s K1 K2 P1 P2 σ/Pixel
Our algorithm 2906.97 2907.83 802.14 632.03 0 −0.150 0.385 6.3 × 10−4 1.9 × 10−4 0.044

Literature [36] algorithm 2899.84 2900.47 803.15 628.76 0 −0.168 1.160 7.8 × 10−4 1.6 × 10−4 0.046
MATLAB Toolbox 2911.23 2911.94 802.47 632.54 0 −0.171 1.295 1.2 × 10−3 2.7 × 10−4 0.054

Figure 12. Comparison of reprojection error with literature [36] and MATLAB toolbox.

Figure 13. Reprojection-error scatter plot: (a) Literature [36] algorithm, (b) MATLAB Toolbox, and
(c) Our algorithm.

Figure 12 shows that the maximum average reprojection error of a single image of
the method proposed in this paper is no more than 0.05 pixel, and the maximum standard
deviation in the error bar is no more than 0.028. Figure 13 shows that the reprojection error
of our method is primarily concentrated within the range of 0.1 pixel, and the maximum
reprojection error in the x and y directions does not exceed 0.15 pixel. Compared with
MATLAB Toolbox and the literature [36] algorithm, the reprojection error of our algo-
rithm is more concentrated. The reprojection error of the algorithm in this paper is smaller,
and the calibration accuracy can meet the calibration requirements.

Figure 13. Reprojection-error scatter plot: (a) Literature [36] algorithm, (b) MATLAB Toolbox, and
(c) Our algorithm.

Figure 12 shows that the maximum average reprojection error of a single image of
the method proposed in this paper is no more than 0.05 pixel, and the maximum standard
deviation in the error bar is no more than 0.028. Figure 13 shows that the reprojection error
of our method is primarily concentrated within the range of 0.1 pixel, and the maximum
reprojection error in the x and y directions does not exceed 0.15 pixel. Compared with

Sensors 2022, 22, 3398 13 of 14

MATLAB Toolbox and the literature [36] algorithm, the reprojection error of our algorithm
is more concentrated. The reprojection error of the algorithm in this paper is smaller, and
the calibration accuracy can meet the calibration requirements.

4. Conclusions

A method of extracting chessboard corner points is proposed based on EDLines
algorithm. The method uses the length and angle characteristics of the broken straight line
at the corner point to screen the straight line and performs straight-line fitting on the n
points with the largest gray gradient on both sides of the straight line after screening to
obtain the initial coordinates of the corner point. Then, the gray-gradient method is used to
optimize the initial coordinates to obtain the subpixel coordinates of the corner points and
finally sort the corner points for actual calibration. The experiment verifies the robustness
of the algorithm in this paper under complex background and camera underexposure and
overexposure conditions. The result are compared with those of the literature [36] algorithm
and MATLAB Toolbox. The detection results of our corner-detection algorithm are better
than the algorithm in literature [36] under the conditions of camera underexposure and
overexposure. Compared with the MATLAB Toolbox calibration process, the one in this
paper is more convenient. In terms of calibration accuracy, the reprojection error of the
proposed algorithm is smaller, which can meet actual calibration needs.

Author Contributions: Conceptualization, X.D.; Formal analysis, X.D. and Q.G.; Funding acquisition,
M.Z.; Investigation, Y.W. and G.L.; Methodology, X.D., Q.G. and T.L.; Supervision, M.Z. and G.L.;
Writing—original draft, X.D.; Writing—review and editing, Q.G., G.L., M.Z., T.L. and Y.W. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by Anhui Natural Science Foundation, grant number 1908085ME172.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to thank Anhui Provincial Government, for providing
funding support (1908085ME172) to Mei Zhang.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Grote, A.; Schwab, E. Contact-Free Optical Measurement of Precast Prestressed Concrete Parts. TM—Tech. Messen 2013,

80, 283–289. [CrossRef]
2. Ren, Y.H.; Wang, Z.H.; Fan, D.E.J. 3D Reconstruction From Monocular Images Based on Deep Convolutional Networks. In

Proceedings of the 13th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics
(CISP-BMEI), Chengdu, China, 17–19 October 2020; pp. 248–252.

3. Lech, P.; Okarma, K.; Fastowicz, J. Fast Machine Vision Line Detection for Mobile Robot Navigation in Dark Environments. In
Proceedings of the 8th International Conference on Image Processing and Communications (IP and C), Bydgoszcz, Poland, 9–11
September 2015; pp. 151–158.

4. Wang, J.W.; Zhang, X.W.; Dou, H.Z.; Sugisaka, M. Study on the Target Recognition and Location Technology of industrial Sorting
Robot based on Machine Vision. J. Robot. Netw. Artif. Life 2014, 1, 108–110. [CrossRef]

5. Chu, J.; Liu, X.P.; Jiao, C.L.; Miao, J.; Wang, L. Multi-view reconstruction of annular outdoor scenes from binocular video using
global relaxation iteration. Int. J. Robot. Autom. 2011, 26, 272–281. [CrossRef]

6. Dansereau, D.G.; Pizarro, O.; Williams, S.B. Decoding, Calibration and Rectification for Lenselet-Based Plenoptic Cameras. In
Proceedings of the 26th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Portland, OR, USA, 23–28 June
2013; pp. 1027–1034.

7. Leal-Taixe, L.; Pons-Moll, G.; Rosenhahn, B. Branch-and-price global optimization for multi-view multi-target tracking. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Providence, RI, USA, 16–21 June 2012;
pp. 1987–1994.

8. Aubry, M.; Kolev, K.; Goldluecke, B.; Cremers, D. Decoupling Photometry and Geometry in Dense Variational Camera Cali-
bration. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Barcelona, Spain, 6–13 November
2011; pp. 1411–1418.

http://doi.org/10.1524/teme.2013.0037
http://doi.org/10.2991/jrnal.2014.1.2.2
http://doi.org/10.2316/Journal.206.2011.3.206-3418

Sensors 2022, 22, 3398 14 of 14

9. Zhang, Z.Y. A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 2000, 22, 1330–1334. [CrossRef]
10. Heikkila, J. Geometric camera calibration using circular control points. IEEE Trans. Pattern Anal. Mach. Intell. 2000, 22, 1066–1077.

[CrossRef]
11. Kim, J.S.; Gurdjos, P.; Kweon, I.S. Geometric and algebraic constraints of projected concentric circles and their applications to

camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 2005, 27, 637–642. [CrossRef]
12. Teng, J.; Li, J.; An, X.J.; He, H.G. A Multi-Features Based Corner Detection Method. In Proceedings of the IEEE International

Conference on Signal and Image Processing (ICSIP), Beijing, China, 13–15 August 2016; pp. 672–675.
13. Liu, Y.; Liu, S.P.; Cao, Y.; Wang, Z.F. A PRACTICAL ALGORITHM FOR AUTOMATIC CHESSBOARD CORNER DETECTION. In

Proceedings of the IEEE International Conference on Image Processing (ICIP), Paris, France, 27–30 October 2014; pp. 3449–3453.
14. Zhang, Y.C.; Li, G.L.; Xie, X.; Wang, Z.H. A New Algorithm for Accurate and Automatic Chessboard Corner Detection. In

Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS), Baltimore, MD, USA, 28–31 May 2017.
15. Xiao, Y.; Wang, Y.H.; Dan, X.Z.; Huang, A.Q.; Hu, Y.; Yang, L.X. Corner detection and sorting method based on improved

Harris algorithm in camera calibration. In Proceedings of the Conference on Optical Metrology and Inspection for Industrial
Applications IV held as part of SPIE/COS Photonics Asia Conference, Beijing, China, 12–14 October 2016.

16. Zhuo, J.J.; Sun, L.Q.; Shi, J.J.; Zhang, Z.W.; Zhao, J.S. Research on a Type of Camera calibration method Based on high precision
detection of X corners. In Proceedings of the 8th International Symposium on Computational Intelligence and Design (ISCID),
Hangzhou, China, 12–13 December 2015; pp. 193–196.

17. Zhu, W.X.; Ma, C.H.; Xia, L.B.; Li, X.C. A fast and accurate algorithm for chessboard corner detection. In Proceedings of the 2nd
International Congress on Image and Signal Processing, Tianjin, China, 17–19 October 2009.

18. De la Escalera, A.; Armingol, J.M. Automatic Chessboard Detection for Intrinsic and Extrinsic Camera Parameter Calibration.
Sensors 2010, 10, 2027–2044. [CrossRef] [PubMed]

19. Li, H.; Zhang, X.M.; Chen, Z. Automatic corner detection of checkerboard based on LSD. Opt. Precis. Eng. 2015, 23, 10.
20. Chen, Y.C.; Huang, F.Y.; Shi, F.M.; Liu, B.Q.; Yu, H. Plane chessboard-based calibration method for a LWIR ultra-wide-angle

camera. Appl. Opt. 2019, 58, 744–751. [CrossRef] [PubMed]
21. Yang, W.S.; Guo, S.P.; Li, X.J.; Li, H.G. Checkerboard corner detection based on Hough transform and circular template. Laser

Optoelectron. Prog. 2020, 57, 8.
22. Wang, Z.S.; Wu, W.; Xu, X.H.; Xue, D.Y. Recognition and location of the internal corners of planar checkerboard calibration

pattern image. Appl. Math. Comput. 2007, 185, 894–906. [CrossRef]
23. Wang, Z.S.; Wang, Z.G.; Xu, X.H. Extraction of the Corner of Checkerboard image. In Proceedings of the 7th World Congress on

Intelligent Control and Automation, Chongqing, China, 25–27 June 2008; pp. 6789–6792.
24. Wang, Z.S.; Wang, Z.G.; Wu, Y.B.; Northeastern Univ, C. Recognition of Corners of Planar Checkboard Calibration Pattern Image.

In Proceedings of the 22nd Chinese Control and Decision Conference, Xuzhou, China, 26–28 May 2010; pp. 3224–3228.
25. Yang, T.L.; Zhao, Q.C.; Wang, X.; Zhou, Q. Sub-Pixel Chessboard Corner Localization for Camera Calibration and Pose Estimation.

Appl. Sci. 2018, 8, 2118. [CrossRef]
26. Harris, C.G.; Stephens, M.J. A combined corner and edge detector. In Alvey Vision Conference; Roke Manor: Romsey, UK, 1988.
27. Smith, S.M.; Brady, J.M. SUSAN—A new approach to low level image processing. Int. J. Comput. Vis. 1997, 23, 45–78. [CrossRef]
28. Chen, D.Z.; Zhang, G.J. A New Sub-Pixel Detector for X-Corners in Camera Calibration Targets. In Proceedings of the WSCG

’2005, Plzen-Bory, Czech Republic, 31 January–4 February 2005.
29. Akinlar, C.; Topal, C. EDLines: A real-time line segment detector with a false detection control. Pattern Recognit. Lett. 2011,

32, 1633–1642. [CrossRef]
30. Ballard, D.H. Generalizing the Hough Transform to Detect Arbitrary Shapes. Pattern Recognit. 1981, 13, 111–122. [CrossRef]
31. von Gioi, R.G.; Jakubowicz, J.; Morel, J.M.; Randall, G. LSD: A Fast Line Segment Detector with a False Detection Control. IEEE

Trans. Pattern Anal. Mach. Intell. 2010, 32, 722–732. [CrossRef] [PubMed]
32. Akinlar, C.; Topal, C. Edlines: Real-time line segment detection by edge drawing (ed). In Proceedings of the 18th IEEE International

Conference on Image Processing (ICIP), Brussels, Belgium, 11–14 September 2011.
33. Bouguet, J.Y. Camera Calibration Toolbox for Matlab. 2013. Available online: www.vision.caltech.edu/bouguetj (accessed on 21

March 2021).
34. Bradski, G.R.; Kaehler, A. Learning OpenCV—Computer Vision with the OpenCV Library: Software That Sees; O’Reilly Media: Newton,

MA, USA, 2008.
35. Akinlar, C.; Topal, C. EDCIRCLES: REAL-TIME CIRCLE DETECTION BY EDGE DRAWING (ED). In Proceedings of the IEEE

International Conference on Acoustics, Speech and Signal Processing, Kyoto, Japan, 25–30 March 2012; pp. 1309–1312.
36. Geiger, A.; Moosmann, F.; Car, O.; Schuster, B. Automatic Camera and Range Sensor Calibration using a single Shot. In

Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), St. Paul, MN, USA, 14–18 May
2012; pp. 3936–3943.

http://doi.org/10.1109/34.888718
http://doi.org/10.1109/34.879788
http://doi.org/10.1109/tpami.2005.80
http://doi.org/10.3390/s100302027
http://www.ncbi.nlm.nih.gov/pubmed/22294912
http://doi.org/10.1364/AO.58.000744
http://www.ncbi.nlm.nih.gov/pubmed/30874115
http://doi.org/10.1016/j.amc.2006.05.210
http://doi.org/10.3390/app8112118
http://doi.org/10.1023/A:1007963824710
http://doi.org/10.1016/j.patrec.2011.06.001
http://doi.org/10.1016/0031-3203(81)90009-1
http://doi.org/10.1109/TPAMI.2008.300
http://www.ncbi.nlm.nih.gov/pubmed/20224126
www.vision.caltech.edu/bouguetj

	Introduction
	Chessboard Corner Detection Based on EDLines
	Introduction to the EDlines Algorithm
	Corner-Extraction Algorithm Based on EDLines
	Straight-Line Detection and Screening
	Corner Initial Coordinate Acquisition
	Subpixel-Coordinate Optimization of Corners
	Corner Sorting

	Experiment Analysis
	Experimental Results
	Robustness Experiment
	Robustness Verification for Overexposure and Underexposure
	Robustness Verification in Complex Backgrounds

	Convenience Comparison
	Accuracy verification

	Conclusions
	References

