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Abstract: In this paper, we propose a new compression method using underwater acoustic sensor
signals for underwater surveillance. Generally, sonar applications that are used for surveillance or
ocean monitoring are composed of many underwater acoustic sensors to detect significant sources
of sound. It is necessary to apply compression methods to the acquired sensor signals due to
data processing and storage resource limitations. In addition, depending on the purposes of the
operation and the characteristics of the operating environment, it may also be necessary to apply
compression methods of low complexity. Accordingly, in this research, a low-complexity and nearly
lossless compression method for underwater acoustic sensor signals is proposed. In the design of
the proposed method, we adopt the concepts of quadrature mirror filter (QMF)-based sub-band
splitting and linear predictive coding, and we attempt to analyze an entropy coding technique
suitable for underwater sensor signals. The experiments show that the proposed method achieves
better performance in terms of compression ratio and processing time than popular or standardized
lossless compression techniques. It is also shown that the compression ratio of the proposed method
is almost the same as that of SHORTEN with a 10-bit maximum mode, and both methods achieve a
similar peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) index on average.

Keywords: underwater acoustic sensor; data compression; sensor signal compression; underwater
surveillance

1. Introduction

Research on sonar technology for underwater surveillance has been ongoing since
World War II. In recent years, sonar technology for military purposes, as well as commercial
and scientific research, has been actively developed using underwater sensors. Sonar can
be classified into the following two basic types: active and passive sonar. Both types use
underwater acoustic sensors called projectors and hydrophones for underwater sources
and receivers, respectively. In most active sonar systems, the same transducers can be
used as both projectors and hydrophones. On the other hand, passive sonar systems for
search, surveillance, or various noise monitoring purposes use only hydrophones. The
hydrophones detect the pressure variations in the acoustic signals and noise in the water
and produce an output voltage proportional to the pressure [1]. Thus, in this paper, we
focus on the acoustic signal obtained through the hydrophones for the passive sonar system
mentioned above, and we refer to a sensor as a hydrophone.

To date, various sensors for underwater surveillance have been reported [1,2] and are
commonly classified into the following several categories: piezoelectric sensors [1], which
use piezoelectric effects; magnetostrictive sensors [1], which use the magnetostriction of
the Earth’s magnetic quality due to the target’s magnetic properties; fiber-optic sensors,
which use optical fibers as the sensing element. In a real application, piezoelectric sensors
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are generally used as underwater acoustic detection sensors due to their low cost and high
efficiency for transduction [1]. Consequently, in this study, we deal with the applications of
piezoelectric sensor-based systems.

The goal of sonar systems for underwater surveillance is reliable, long-range detection.
Figure 1 shows the general structure of an underwater surveillance system based on
acoustic sonars. The main function required of a sonar system is to effectively eliminate
interference and ambient noise. The underwater acoustic sensors are assembled as arrays
to improve the response of the array, thereby increasing the signal-to-noise ratio (SNR)
and allowing the determination of the direction of a signal source [3,4]. The most common
sonars today comprise an array of hydrophones combined with appropriate time delays
to form beams in the desired direction or multiple directions. In particular, passive sonar
systems rely very much on the ability of their sensors to capture the sound arriving from
different directions. Typically, hydrophones are arranged in arrays for detection from all
directions. The hydrophone array may be linear, planar, circular, or cylindrical.
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The number and arrangement of the acoustic sensors constituting the sensor array are
designed according to the frequency band to be detected, and the array gain performance
to be achieved [4,5] through array signal processing. Since the sensor array consists of tens
to hundreds of sensors to obtain high array gains [1], the amount of sensor data acquired
every second is enormous, and the amount of operating power consumed by constant
monitoring is large. Therefore, on a fixed platform on which power and communication
lines are connected to the land, or on a mobile platform such as a surface ship or submarine
with sufficient power supply, the power and communication resources for sensor operation
and signal transmission should be sufficiently supplied.

However, a low-power design with a low computational load is essential for un-
manned platforms such as autonomous underwater vehicles (AUV), unmanned under-
water vehicles (UUV), and offshore buoys or underwater wireless sensor networks with
limited power and communication resources [6]. It is also necessary to reduce the amount
of data required to communicate the acquired signal information through wireless commu-
nication or satellite because these communication devices also consume electrical power for
transmission [6,7]. In addition, an underwater acoustic network having a narrow acoustic
transmission bandwidth uses an acoustic sensor for data transmission in order to reduce
the amount of data required for the transmission [8]. Large sensor networks need a lot of
power to transmit data. Therefore, data compression is unavoidable to reduce the power
consumption and amount of information [9]. In addition, it is necessary to reduce the
amount of data in terms of the cost of securing hardware resources to acquire and store
acoustic data in a system that operates without interruption for a long period. Therefore, a
low-complexity source compression technique should be applied to the sensor signals for
real-time operation in an environment with limited power and bandwidth.

Recently, various techniques for compressing high-quality multi-channel audio have
been studied, and the standardization of compression techniques has also progressed [10,11].
However, until now, there have been relatively fewer studies on underwater sensor signal
compression than on audio compression, and most of them were conducted on applica-
tions for marine noise monitoring [9,12]. In addition, most of the existing approaches for
compressing underwater sound convert sound into their corresponding two-dimensional
acoustic images, such as passive sonar gram or active sonar B-scan image, and then apply
an image compression technique [13]. Only a few studies have focused on the raw sensor
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signal [14–16]. Furthermore, despite the increasing necessity of collecting and processing
large amounts of underwater acoustic sensor data for data learning in artificial intelligence
algorithms, there have been few attempts to deal with collecting and storing data [17,18].

Generally, audio compression can be categorized into lossy and lossless techniques
depending on whether the original signal can be completely recovered or not [10,16]. Lossy
compression techniques utilize human auditory perception to achieve a higher compres-
sion rate with some acceptable distortion than lossless compression techniques. In another
category, near-lossless compression techniques increase the compression ratio by applying
transformations of coding parameters with near-perfect reconstructions to maintain per-
ceptual transparency [11,19]. While most audio compression technology utilizes human
auditory perception to reduce bit rate [11], it is inefficient to directly apply audio compres-
sion technology to applications for underwater sensor signals due to differences in the
sampling rates and the statistical characteristics of signals. The quantizer of lossy audio
codecs employs the so-called psychoacoustic model to determine how many bits are allo-
cated. However, since the discrete samples generated by a hydrophone also have natural
temporal and spatial correlations, just like audio signals, these digital data are expected to
be redundant [15]. For this reason, some studies have used predictive coding-based audio
compression technology to compress underwater acoustic sensor signals [12,15,16].

The systems in active sonar applications, e.g., transducers and signal processing
units, usually operate and detect acoustic ping signals over tens of kHz. However, the
systems in passive sonar applications, e.g., hydrophones and signal processing units, detect
the self-radiated noises from a ship’s or submarine’s machinery distributed in the lower
frequency band within 2 kHz [4]. In particular, noise in the form of discrete tones, which
is radiated from submarines, is weak compared with other noise components, such as
unidirectional or directional broadband noise. These discrete tones are important for
identifying ship information, and it is also important to compress this information without
distortion. Therefore, a lossless or near-lossless encoding technique is required for the
compression of sensor signals to minimize the deterioration of detection performance due
to the loss of information.

Consequently, the aim of this paper is to provide an alternative compression method
for underwater acoustic sensor signals. With the aid of recent research in audio compres-
sion, this paper proposes an efficient compression method for underwater acoustic sensor
signals. The proposed compression method is based on a lossless compression scheme that
minimizes the loss in the frequency band of interest in a low-complexity structure in order
to minimize power consumption based on the scientific and engineering analysis of the
characteristics of the underwater acoustic sensor signal.

The remainder of this paper is organized as follows: Section 2 briefly describes the
characteristics of underwater sound. Section 3 presents the proposed sensor signal com-
pression method. After that, Section 4 evaluates the performance of the proposed method
using real sensor signals acquired from several different sensor arrays deployed in a real
underwater environment by measuring the compression ratio and processing time. Finally,
Section 5 concludes this paper.

2. Underwater Sound

This section explores the characteristics of underwater sound. The key question to
ask, from our perspective, is which coding scheme is the best for an underwater acoustic
sensor signal. To answer this, it is necessary to understand the characteristics of the
underwater acoustic signal. We need to consider the relationship between noise sources
and the frequency bands, in which the noise is generated. It is highly probable to apply a
method of using different coding schemes for important and non-critical frequency bands.

The underwater acoustic sensor receives noise signals from various sources along
with the noise signals from the target of interest. The potential sources of this noise are
turbulence, shipping, wave action, thermal agitation, seismic events, rainfall, and marine
animals [4]. The main sources of such noise are the following: earthquakes, marine life,
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ships, waves, or wind, and each of these factors has a different dominant band [3,4]. The
characteristics of underwater noise were first studied by Knudsen et al. [20] during World
War II and also studied by Wenz [21] and Urick [22].

According to [21,22], the frequency band in which shipping noise is dominant is
from approximately 10 Hz to 1 kHz. The frequency band less than 10 Hz is the band
affected by turbulence. For this reason, low-frequency acoustic sensors for detecting the
self-noise of ships are generally designed and manufactured to receive acoustic signals
within 2 kHz. Thermal, wave, and rain noise generate continuous frequency bands with
Gaussian statistics. Shipping noise, however, contains both continuous noise from propeller
cavitation and discrete noise from machinery and blade rate components [4]. Radiated noise
types are divided into the following two general categories: broadband and narrowband
noise [4]. The noise from ships is mainly composed of engine and propeller noise. In
particular, the noise generated by the engine shows discrete tone noise characteristics in
the frequency domain, and the noise generated by the propeller shows broadband noise
characteristics. Unlike broadband noise, narrowband noise in the form of a discrete tone is
an important factor in the detection and classification of ship targets. Some narrowband
noises are hard to detect because the amplitude of background noise is much higher than
that of narrowband noise and the directivity index (DI) of the array is lower at the lower
frequency band [4]. In addition, the amplitude of a sinusoidal signal from a distant source
fluctuates when the signal arrives at the receiver due to several propagation effects [22].
Furthermore, the broadband noise dominated by screw and flow noise tends to increase
in proportion to the maneuvering speed of the vessel, and it is difficult to observe the
narrowband noise due to the masking effect of the broadband noise generated at high
speed. Therefore, it is important to apply a compression technique to minimize distortion
and the loss of information about weak narrowband noise components.

In the case of a system for detecting submarines and submersible targets in the water,
broadband noise from propellers may not occur when the target is submerged, and only
narrowband noise caused by engines or air conditioners is generated. The frequency of
this weak narrowband noise is distributed over less than 1 kHz. In addition, in the case
of frequency bands less than 100 Hz, the broadband noise, harmonic components of the
strong narrowband noise components (e.g., narrowband components corresponding to
blade rate (BR), propeller shaft rate (PSR), and diesel firing rate) and electrical (60 Hz funda-
mental) noise components radiating from large ships are mainly distributed. Therefore, this
frequency band is not a band of interest for the purpose of monitoring underwater targets.

In connection with this characteristic, we propose a method based on the sub-band
splitting approach in the next section. Figure 2 shows the preamp gain of the acoustic
sensor designed by applying such underwater sound characteristics, and Figure 3 shows
the output of sensors represented in the time domain and frequency domain.
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3. Proposed Method

This section describes the encoder and decoder structures of the proposed method
that is based on a sub-band splitting and scalable structure to increase the coding efficiency.
By independently encoding the separated sub-bands, the encoder prioritizes and transmits
the low-frequency band in an environment where network bandwidth is limited, and
the decoder can restore the received low-frequency band without loss. Thus, a scalable
encoding function is provided.

3.1. Encoder

Figure 4 shows the proposed encoder structure for the compression of acoustic sensor
signals. As discussed in Section 2, passive sonar systems for underwater surveillance
can detect frequency components up to 2 kHz, where ship noise is mainly distributed.
Therefore, the sampling rate is usually set at 4096 Hz in an underwater surveillance system.
As shown in the figure, the input signal is decomposed into two sub-bands by a filter
bank, as in Moving Picture Experts Group (MPEG) audio. The two-band QMF analysis
filterbank decomposes the input into high-frequency and low-frequency sub-bands, where
each sub-band has half the bandwidth of the input [11,23]. In this paper, we design a
two-band QMF analysis and synthesis filter with a finite-duration impulse response (FIR)
filter with an order of 127. Figure 5 shows the magnitude responses of two-band QMF
analysis and synthesis filters, respectively. Each low-band or high-band filter is applied to
the input signal, and then the filtered signal is down-sampled by a factor of two. After that,
each sub-band signal is quantized according to a suitable bit allocation rule using the fast
Fourier transform (FFT) of the input signal and the psychoacoustic model [24]. However,
in the proposed method, a sub-band analysis technique is performed for scalable coding,
and the two-band quadrature mirror filter (QMF) analysis filter decomposes a signal into
high- and low-frequency sub-bands. This analysis QMF filter achieves an almost perfect
reconstruction [11].
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The critical point of the proposed method is that it performs linear prediction-based
lossless compression similar to an audio codec, except that the signal is split into two sub-
bands in advance; thus, scalability is obtained through independent coding. In addition, the
proposed method tries to find parameter values, such as coefficients for linear predictors
and parameters for entropy encoders, that are suitable for underwater acoustic signals
when performing compression for each sub-band.

In an environment where the communication bandwidth is extremely limited, a
scalable structure is often used so that only important low sub-band signals are transmitted
to the receiver. This is because shipping noise is relatively insignificant above 1 kHz, and
noise below 1 kHz is likely to be dominated by discrete tones [3]. The high sub-band
in which the signal corresponds to 1–2 kHz is a frequency component where singing or
cavitation noise is generated by propellers, fluid noise caused by the maneuvering of a ship,
etc., is present. Unlike in the low sub-band, it is necessary to analyze the broadband noise
energy rather than the narrowband frequency value. The reason for preserving the high
sub-band by performing compression without completely blocking the high-frequency
band is that it preserves the broadband noise component in the low sea state [4]. In addition
to cavitation and resonance noise (i.e., singing noise), a broadband noise component is
often required for the separation of surface and underwater targets. Furthermore, this is
a frequency band where modulation noise for the PSR and BR components can occur as
discrete lines because these are used for the analysis of a target’s propulsion systems, such
as propellers and shafts. Depending on the monitoring purpose, the high sub-band is not
transmitted as mentioned above, or lossy compression is also applicable.

After the encoder finishes compression for each frame of each band, the prediction
coefficients used for linear prediction, the information in the compressed frequency band,
and the parameter values used for entropy coding are transmitted to the decoder as
side information.



Sensors 2022, 22, 3415 7 of 17

3.2. Decoder

As mentioned in Section 3.1, the encoder proposed in this paper transmits an acoustic
signal separated into two sub-bands for each band independently, so that the decoder can
independently decode only one sub-band. That is, the proposed encoder and decoder
can perform scalable encoding and decoding, respectively. When the bandwidth of the
transmission channel is extremely limited, the decoder of the receiver restores only the
transmitted band independently and can be applied to target detection.

Figure 6 shows the decoder structure of the proposed method. As shown in the
figure, the decoder checks whether a high-frequency sub-band is included in the encoded
bitstream according to the current mode information. For each sub-band, entropy decoding
is first performed on the linear prediction coefficients and residuals. Then, linear prediction
is performed, and lossless restoration is finally carried out by adding the residuals. The
entire band signal is reconstructed using the synthesis filter bank on the time domain signal
reconstructed for each sub-band.
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3.3. Linear Prediction

As mentioned above, low- and high-frequency sub-band signals are separately com-
pressed losslessly by linear prediction with an entropy coder. Linear prediction coding
(LPC) is commonly used for encoding speech and audio to predict the current sample
using a linear combination of K immediate predecessors [15], and in recent years, it has
emerged as a common and practical technique for lossless audio compression [25]. A finite
impulse response linear predictor of the K-th order predicts the current audio sample, x(n),
as follows:

x̂(n) = ∑K
k=1 akx(n− k) (1)

where ak is the kth prediction coefficient. The prediction coefficients are estimated by
using the autocorrelation method, as in MPEG4-audio lossless (ALS) [26]. Since the predic-
tion coefficients are very sensitive to even small quantization errors [10], we first convert
the prediction coefficients into partial correlation (PARCOR) coefficients by using the
Levinson–Durbin algorithm. Then, PARCOR coefficients are quantized and multiplexed
into the bitstream. The quantized PARCOR coefficients are converted back to the predic-
tion coefficients to obtain the reconstructed signal, x̂(n), and the residual signal, e(n), is
computed as follows:

e(n) = x(n)− x̂(n) (2)

In low-bit-rate speech coding, an all-pole filter-type predictor is used, which is mostly
implemented as a 10th order predictor [11]. In this paper, to find an appropriate LPC
order for each sub-band signal, we measured and compared a compression ratio and the
processing time of encoding by changing the LPC order from 1 to 30. The compression
ratio is defined as follows [10]:

CR =
Compressed f ile size

Original f ile size
× 100 (%) (3)

and the processing time is calculated as follows:

Tproc = Tend − Tstart (4)
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where Tend and Tstart denote the times measured at the start and end points of encoding,
respectively.

To this end, raw signals for one hour were acquired from three different sensors
operating at the same time and in the same coastal area, and they were uniformly quantized
with 16 bits, where the sampling rate was also set to 4096 Hz. Note here that the three
sensors were located about 1.6 km apart from each other. Figure 7 illustrates the signal
low-frequency analysis recording (LOFAR)-gram for each case. The LOFAR-gram is a
popular tool for analyzing narrowband signals in a passive sonar-based surveillance system
by displaying the outputs from a selected sensor or beamformer in a frequency versus
time format [3]. Therefore, a LOFAR-gram contains information for the classification and
analysis of contact motion [3]. As shown in the figure, one vessel (vessel #1) passed near
sensor #2 and sensor #3, and the other (vessel #2) passed near sensor #1. Vessel #1 radiated
strong tonal noise at between 650 and 850 Hz, and vessel #2 also radiated strong tonal noise
at 1.2 kHz. In addition, when the ship approached the closest point of approach (CPA) to
the sensor, it could be observed that strong broadband noise was detected over the entire
band along with the tonal component.
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Figure 8 shows the measured result for the compression factor and processing time
of the proposed method. It could be observed from the figure that the LPC analysis order
for both low and high sub-band signals converged at a specific LPC order in view of the
compression ratio. However, as expected, the processing time increased proportionally as
the LPC order increased. Through this analysis, it was possible to specify the appropriate
LPC order for the two sub-bands of the underwater acoustic signal. Consequently, we set
the LPC order between 20 and 5 for the low and high sub-bands, respectively.

Sensors 2022, 22, x FOR PEER REVIEW 10 of 18 
 

 

 
Figure 8. Comparison of the compression ratio and processing time according to different LPC or-
ders: (a) sensor #1 (low sub-band), (b) sensor #1 (high sub-band), (c) sensor #2 (low sub-band), (d) 
sensor #2 (high sub-band), (e) sensor #3 (low sub-band), and (f) sensor #3 (high sub-band). 

3.4. Entropy Coding 
We employed Rice codes when coding the residual because Rice coding can be effi-

ciently implemented in central processing units (CPUs) using bit shift and bit masking 
without the need for floating-point operations, which allows for extremely simple and fast 
encoding. Rice coding is used in lossless audio encoders such as SHORTEN [25], free loss-
less audio codec (FLAC) [10], and MPEG4-ALS [26]. It is known that Rice coding can pro-
vide short codes close in length to Huffman codes [27]. Robinson [25] observed that the 
distribution of the residual signal in LPC-based audio encoders could be closely modeled 
by a Laplacian or two-sided geometric distribution. However, the compression perfor-
mance of the Rice encoding technique is most affected by the Rice parameter value, and 
thus many studies have been conducted to find the optimal Rice parameter for encoding 

Figure 8. Comparison of the compression ratio and processing time according to different LPC
orders: (a) sensor #1 (low sub-band), (b) sensor #1 (high sub-band), (c) sensor #2 (low sub-band),
(d) sensor #2 (high sub-band), (e) sensor #3 (low sub-band), and (f) sensor #3 (high sub-band).
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3.4. Entropy Coding

We employed Rice codes when coding the residual because Rice coding can be effi-
ciently implemented in central processing units (CPUs) using bit shift and bit masking
without the need for floating-point operations, which allows for extremely simple and
fast encoding. Rice coding is used in lossless audio encoders such as SHORTEN [25], free
lossless audio codec (FLAC) [10], and MPEG4-ALS [26]. It is known that Rice coding can
provide short codes close in length to Huffman codes [27]. Robinson [25] observed that the
distribution of the residual signal in LPC-based audio encoders could be closely modeled by
a Laplacian or two-sided geometric distribution. However, the compression performance
of the Rice encoding technique is most affected by the Rice parameter value, and thus many
studies have been conducted to find the optimal Rice parameter for encoding an audio
signal [27–29]. Robinson also proposed an optimal Rice parameter for a data sequence that
follows a Laplacian distribution.

Figure 9 shows the observed distribution of a residual computed from sensor #1 as
a histogram. As shown in the figure, the distribution of the residual signal from LPC for
underwater acoustic sensor signals can also be modeled by a Laplacian distribution. This
implies that Rice coding is applicable to encoding underwater acoustic sensor signals. For
this reason, in this study, we utilize an estimator for the optimal rice parameter that has
already been used in MPEG-4 ALS and SHORTEN as follows:

s = log2µn + C (5)

where µn is the absolute mean of residuals (µn = 1
N ∑n

i=1|ri|), and C (= 0.97) is a constant.
The Rice parameter, s, is estimated for each sub-block and transmitted along with the
encoded residuals [30]. This is the same as in the existing MPEG-4 ALS method.
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4. Performance Evaluation

To evaluate the performance of the proposed method, we measured the compression
ratio of the proposed method using Equation (3), the processing time of compression, and
the distortion of the sensor signal due to compression. To this end, sensor signals were
acquired from five different actual underwater sensors operating in coastal areas. These
sensor signals were acquired at the same time from the different sensors operating in the
same coastal area as the sensors (sensors #1, #2, and #3) used for the analysis in Section 3.3.
In other words, we used different sensors for performance evaluation from those used in
the analysis. These five sensors were located 800 m apart from each other. Each sensor
signal was recorded for one hour at a sampling rate of 4096 Hz, and they were uniformly
quantized with 16-bit resolution. Table 1 summarizes the specifications of the acoustic
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sensor signals used for performance evaluation. Note here that the prediction orders for
the proposed method were set between 20 and 5, respectively, for the low sub-band and
high sub-band. In addition, a Rice parameter was estimated using Equation (5).

Table 1. Detailed information of acoustic sensor signals for performance evaluation.

Acquisition Sensor Data Length Sampling Rate Resolution Data Size

Sensor #4

1 h
(3600 frames) 4096 Hz 16 bits 28.1 MB

Sensor #5

Sensor #6

Sensor #7

Sensor #8

4.1. Compression Efficiency

In this evaluation, the compression ratio of the bitstream encoded by the proposed
compression method was compared with that of the compression methods employed in
MPEG-4 ALS [10,31], FLAC [10], and WavPack [10]. Table 2 shows a list of the compression
methods compared in this study. In other words, MPEG-4 ALS was implemented with
three different compression modes according to different LPC orders and entropy coding
schemes, as shown in the first three rows of the table. In addition, FLAC and WavPack
were each implemented with the following different modes: fast and high-quality mode.

Table 2. List of candidate codecs and their compression mode.

Notation Codec Compression Mode

A-1 MPEG-4 ALS (Fixed) LPC order: 20 (Fixed), Rice encoding

A-2 MPEG-4 ALS (Adaptive) LPC order: Adaptive, Rice encoding

A-3 MPEG-4 ALS (BGMC) LPC order: 20 (Fixed), BGMC encoding

B-1 FLAC (Fast) Fast mode (Fixed LPC Order)

B-2 FLAC (Best) High-quality mode (maximum compression)

C-1 WavPack (Fast) Fast mode

C-2 WavPack (HQ) High-quality mode

Table 3 compares the compression ratios of the proposed compression method with
those of seven different compression methods described in Table 2. As shown in the table,
the proposed method provided the smallest compression ratios for all the test sensors, and
the average compression ratio of the proposed method was also 3% lower than that of
MPEG-4 ALS in fixed mode.

Table 3. Comparison of the compression ratios (%) between the proposed method and other standard
compression methods.

Sensor Proposed MPEG-4 ALS
(Fixed)

MPEG-4 ALS
(Adaptive)

MPEG-4 ALS
(BGMC)

FLAC
(Fast)

FLAC
(Best)

WavPack
(Fast)

WavPack
(HQ)

#4 57.0 60.4 60.5 59.8 63.9 61.0 61.6 60.7

#5 59.7 63.1 63.1 62.5 66.5 63.6 64.4 63.3

#6 66.1 69.5 69.6 68.9 72.6 70.1 70.9 69.8

#7 68.4 71.7 71.8 71.2 75.3 72.3 73.4 72.0

#8 63.4 66.5 66.6 65.9 71.3 67.1 68.0 66.7

Avg. 62.9 66.2 66.3 65.7 69.9 66.8 67.7 66.5
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4.2. Processing Time

To compare the processing time of the proposed methods with those of other standard
codecs with different modes, as described in Table 2, the encoding time of each compression
method was measured by conducting the encoding process on a 3.2 GHz i5-4460 CPU with
8 GB of memory.

Table 4 summarizes the experimental results. As shown in the table, FLAC in fast
mode showed the lowest encoding processing time, followed by WavPack in fast mode,
MPEG-4 ALS with adaptive LPC order, and the proposed method. In order to investigate
why the processing time of the proposed method was greater than that of the other codec,
as shown in Table 4, we decomposed the encoding processing time for each processing
block of the proposed method. In other words, the encoder of the proposed method was
split into QMF analysis, LPC analysis for each sub-band, and entropy coding for each sub-
band. Table 5 shows the processing time of each block according to different sensors. As
shown in this table, the processing time for QMF analysis of the proposed method occupied
approximately 56% of all the processing time. Thus, the sum of the processing times
for LPC analysis and entropy coding was in between those of MPEG-4 ALS (Fixed) and
MPEG-4 (Adaptive) since they did not have any QMF analysis. In addition, by comparing
the processing times of LPC analysis in the low and high sub-bands, it was shown that the
encoding processing time was increased according to the LPC order. This implied that it
was necessary to adjust the LPC order for each sub-band by trading off the compression
ratio and the processing time.

Table 4. Comparison of the encoding processing time(s) of the proposed method with other codecs.

Sensor Proposed MPEG-4 ALS
(Fixed)

MPEG-4 ALS
(Adaptive)

MPEG-4 ALS
(BGMC)

FLAC
(Fast)

FLAC
(Best)

WavPack
(Fast)

WavPack
(HQ)

#4 3.80 1.92 1.15 2.61 0.66 0.75 0.70 1.00

#5 3.68 1.92 1.17 2.61 0.55 0.66 0.74 1.05

#6 3.80 1.91 1.14 2.62 0.57 0.67 0.74 1.02

#7 3.70 1.92 1.15 2.64 0.54 0.66 0.73 1.04

#8 3.26 1.93 1.16 2.64 0.56 0.68 0.78 1.01

Avg. 3.65 1.92 1.15 2.62 0.58 0.68 0.74 1.02

Table 5. Encoding processing time(s) of each processing block of the proposed method.

Sensor
QMF

Analysis

Low Sub-Band Encoding High Sub-Band Encoding
SUMLPC

Analysis
Entropy
Coding Etc. LPC

Analysis
Entropy
Coding Etc.

#4 2.20 0.66 0.17 0.11 0.38 0.17 0.11 3.80

#5 2.00 0.69 0.18 0.14 0.33 0.22 0.12 3.68

#6 2.17 0.67 0.17 0.13 0.33 0.20 0.13 3.80

#7 2.06 0.66 0.17 0.15 0.34 0.20 0.12 3.70

#8 1.91 0.36 0.19 0.13 0.35 0.17 0.15 3.26

Avg. 2.07 0.61 0.18 0.13 0.35 0.19 0.13 3.65

4.3. Analysis of Distortion

To examine how much the sensor signal was distorted due to compression, we mea-
sured the distortion between the original signal and the reconstructed signal. Generally,
the operator of a surveillance system manually observes the presence of acoustic signa-
tures, such as tonal signals radiated from targets, on the LOFAR-gram to confirm the
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presence or absence of a target [32]. In particular, the surveillance system detects a fre-
quency energy peak that exceeds a detection threshold on the LOFAR-gram. Since the
LOFAR-gram visualizes acoustic sensor signals as a two-dimensional acoustic image, we
decided to use the peak signal-to-noise ratio (PSNR) as a distortion measure. The PSNR
was defined as follows [10]:

PSNR = 20 log10

max
i
|Pi|

RMSE
, 1 ≤ i ≤ N (dB) (6)

where N is the total number of pixels, Pi is the ith pixel value of the original data, and the

root mean square error (RMSE) is defined as
√

1
N ∑N

i=1(Pi −Qi)
2 when Qi is the ith pixel

value of the reconstructed data. While the PSNR has no absolute meaning, it is known
that a PSNR of 25 dB is sufficient for photos [10]. However, the PSNR value should exceed
30 dB for the side-scan sonar image used in an underwater surveillance system [33,34].

In addition to PSNR, the structural similarity (SSIM) index [35] is also measured. This
is because different types of degradation applied to the same image result in the same
RMSE [36,37], while PSNR is sometimes known to be bad for distinguishing the structural
content of an image.

Table 6 shows the compression ratio, PSNR, and SSIM of the proposed method accord-
ing to different sensors, where the PSNR and SSIM values were calculated by composing
LOFAR-gram data of 1600 × 1800 pixels with values ranging from 0 to 1. As shown in
the first column of the table, the proposed method provided a PSNR of 62.94 dB on aver-
age. This implies that the proposed method could reconstruct the compressed signal with
negligible distortion. Next, the PSNR of the proposed method was compared with that
of a simple compression method, referred to as the bit-depth reduction (from 16 to 8 bits)
technique [9]. Consequently, it was shown that the bit-depth reduction method distorted
signals at around 25 dB; thus, the proposed method achieved higher PSNRs than the
bit-depth reduction method for all the sensors. Finally, the PSNRs of SHORTEN [25], which
is a well-known near-lossless waveform compression method, were measured according
to different lossy mode settings of SHORTEN. The maximum number of bits per sample
in SHORTEN was set to 9 or 10 bits. From the table, it can be seen that the compression
ratio of the proposed method was almost the same as that of SHORTEN in 10-bit maximum
mode, and both methods also achieved similar PSNR and SSIM on average.

Table 6. Comparison of the compression ratio, peak signal-to-noise ratios (PSNR), and struc-
tural similarity (SSIM) index between the original and processed acoustic sensor signals for the
proposed method.

Sensor
Proposed Method Bit-Depth Reduction

(from 16 to 8 bits)

Compression
Ratio (%)

PSNR
(dB) SSIM Compression

Ratio (%)
PSNR
(dB) SSIM

#4 57.01 43.81 0.9995 50.00 20.33 0.0663

#5 59.74 49.73 0.9994 50.00 26.04 0.6909

#6 66.13 50.69 0.9998 50.00 20.60 0.8520

#7 68.39 69.27 0.9998 50.00 30.60 0.8950

#8 63.44 50.58 0.9996 50.00 24.11 0.7283

Avg. 62.94 58.17 0.9996 50.00 25.21 0.6465



Sensors 2022, 22, 3415 14 of 17

Table 6. Cont.

Sensor

SHORTEN
(Lossy Mode:

Max. 9 Bits per Sample)

SHORTEN
(Lossy Mode:

Max. 10 Bits per Sample)

Compression
Ratio (%)

PSNR
(dB) SSIM Compression

Ratio (%)
PSNR
(dB) SSIM

#4 56.46 58.81 0.9987 61.66 67.33 0.9997

#5 56.74 45.88 0.9987 62.92 49.84 0.9994

#6 56.67 49.51 0.9989 62.92 48.48 0.9993

#7 56.74 54.58 0.9988 62.99 58.17 0.9995

#8 56.70 52.92 0.9985 61.64 61.72 0.9994

Avg. 56.66 53.43 0.9987 62.42 59.88 0.9995

Next, the RMSE values were measured for the proposed method and lossy methods,
including a simple bit-depth reduction method and two different lossy modes of SHORTEN.
As shown in Table 7, the proposed method had a much smaller RMSE than the simple bit-
depth reduction method, and it provided similar RMSEs to the lossy modes of SHORTEN.

Table 7. Comparison of root mean square error (RMSE) between the original and processed acoustic
sensor signals for the proposed method.

Sensor Proposed Bit-Depth Reduction
(from 16 to 8 bits)

SHORTEN
(Lossy Mode: Max.
9 Bits per Sample)

SHORTEN
(Lossy Mode: Max.
10 Bits per Sample)

#4 0.0064 0.0963 0.0011 0.0004

#5 0.0033 0.0499 0.0051 0.0032

#6 0.0029 0.0934 0.0033 0.0038

#7 0.0003 0.0295 0.0019 0.0012

#8 0.0030 0.0623 0.0023 0.0008

Avg. 0.0032 0.0663 0.0027 0.0019

Figure 10 illustrates the LOFAR-grams of the original sensor signal and the recon-
structed signals by the proposed method, as well as the bit-depth reduction method.
Compared with Figure 10a,b,d,e, there was almost no difference in all the frequency bands
between the original signal and the reconstructed signal by the proposed method. However,
the signal reconstructed by the bit-depth reduction method, as shown in Figure 10c, was
distorted, especially in the low-frequency band, compared with the original signal.
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Figure 10. Illustration of LOFAR-grams of (a) an original sensor signal from sensor #6, (b) the
reconstructed sensor signal by the proposed method, (c) the reconstructed sensor signal by the bit-
depth reduction method, and (d,e) the reconstructed sensor signals by the lossy mode of SHORTEN
with the maximum number of bits per sample was set between 9 and 10 bits, respectively.
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5. Conclusions

This paper proposed a new low-complexity compression method of underwater
acoustic sensor signals for underwater surveillance systems that was nearly lossless so
that it could be customized for underwater acoustic sensor signals. The proposed method
incorporated the concept of sub-band filter bank-based sub-band splitting into a scalable
structure. In particular, both linear predictive coding and an entropy coding technique
were used to reduce complexity and increase the compression ratio.

The performance of the proposed method was evaluated in terms of the compression
ratios, processing time, and the degree of distortion by using three actual underwater
sensors operating in coastal areas. Consequently, it was shown from the experiments that
the proposed method achieved a higher compression ratio with a comparable processing
time to popular or standardized lossless compression methods such as MPEG-4 ALS, FLAC,
and WavPack. In addition, it was confirmed that the distortion of compressed acoustic
sensor signals was negligible.

In future work, a machine-learning-based technique such as a deep belief network
could be applied to find the optimal Rice parameter with the greatest influence on the
entropy coding performance. Additionally, to further increase the compression ratio, we
plan to apply a lossy compression technique to a high-frequency sub-band and more than
two sub-bands for QMF analysis and synthesis.
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