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Abstract: The adoption of artificial intelligence in post-earthquake inspections and reconnaissance 

has received considerable attention in recent years, owing to its exponential increase in computa-

tion capabilities and inherent potential in addressing disadvantages associated with manual in-

spections. Herein, we present the effectiveness of automated deep learning in enhancing the as-

sessment of damage caused by the 2017 Pohang earthquake. Six classical pre-trained convolutional 

neural network (CNN) models are implemented through transfer learning (TL) on a small dataset, 

comprising 1780 manually labeled images of structural damage. Feature extraction and fine-tuning 

TL methods are trained on the image datasets. The performances of various CNN models are 

compared on a testing image dataset. Results confirm that the MobileNet fine-tuned model offers 

the best performance. Therefore, the model is further developed as a web-based application for 

classifying earthquake damage. The severity of damage is quantified by assigning damage as-

sessment values, derived using the CNN model and gradient-weighted class activation mapping. 

The web-based application can effectively and automatically classify structural damage resulting 

from earthquakes, rendering it suitable for decision making, such as in resource allocation, policy 

development, and emergency response. 

Keywords: transfer learning; convolutional neural network; earthquake, image classification; 

damage detection 

 

1. Introduction 

Classification of the magnitude of damage to buildings and infrastructure attributed 

to seismic events is essential for enhancing post-earthquake reconnaissance and ensuring 

safe and effective recovery efforts. Conventionally, property damage attributed to 

earthquakes is documented manually using labor-intensive methods [1–5]. Manual 

damage inspections may be time consuming and involve arbitrary judgment by a novice 

inspector who may not be adequately trained. These disadvantages can be addressed by 

performing fully automated inspections using computer-vision technologies [6]. The 

automated deep learning (DL) method may be critical for enabling the rapid real-time 

detection and classification of structural damage (SD) attributed to earthquakes. 

DL algorithms for image classification may be applicable for assessing SDs [6–11]. 

Gao and Mosalam [6] created an image database known as “Structural ImageNet,” which 

implements a visual geometry group (VGG) convolutional neural network (CNN) model 

through transfer learning (TL) to classify SD caused by earthquakes. They curated the 

Pacific Earthquake Engineering Research (PEER) Hub ImageNet [12] dataset, which 
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serves as a benchmark for similar computer-vision-based classification and detection 

tasks [13]. Nahata et al. [7] employed the VGG16 TL model to classify post-earthquake 

building damage into four categories. After training the model with more than 1,200 

images, they obtained training and validation accuracies of 97.85% and 89.38%, respec-

tively. In addition, DL methods have been exploited for damage-detection tasks, in which 

bounding boxes are used to identify and localize SD [14,15].  

Decision makers can allocate the appropriate resources to retrofit, repair, and re-

cover facilities by locating and quantifying SDs. A numerical scale that quantifies the 

magnitude of SD to facilitate such efforts has been established. Li et al. [16] identified a 

mismatch in the damage detected using conventional approaches. They proposed a novel 

approach to quantify the severity of SD, using a smooth image heat map based on gra-

dient-weighted class activation mapping (Grad-CAM). In fact, this approach has been 

employed in several applications, such as post-disaster damage assessments [10] and 

steel frame damage investigations [17], and demonstrated performances superior to or 

comparable with other state-of-the-art methods, while requiring low computation time. 

We employed the approach to quantify and locate SD caused by the 2017 Pohang earth-

quake using CNN based on TL strategies. Through TL, CNN models can learn complex 

patterns from data without needing a large amount of training data. Additionally, they 

can generalize well to new datasets, which is important when dealing with SD that may 

vary in appearance from one instance to another. Therefore, the performance of Feature 

Extraction (FE) and Fine Tuning (FT) TL methods on SD image datasets were compared, 

in order to explore the possibility of applying the knowledge from a pre-trained model 

(source domain) to another (target domain), by tuning some of the model parameters. 

Finally, the optimal CNN model used to implement the approach was deployed on an 

interactive webpage that automatically classifies SD caused by earthquakes. Invisible 

damage, which is beyond the scope of this study, is typically examined via anomaly de-

tection in structural members using specialized sensors and signal-processing tech-

niques. However, in the abovementioned study, damage was considered visible to either 

the human eye or computer vision. This novel approach can facilitate rapid responses 

following an earthquake. Researchers have successfully identified SD characteristics us-

ing classification [6,7], bounding box detection [8], and segmentation techniques [9]. 

However, most of those methods do not involve a tool with a post-disaster assessment 

framework that is accessible to the structural engineering community. 

Moreover, only a few studies have considered the deployment of post-earthquake 

damage classification, rendering it less useful for industrial applications and field vali-

dation. By contrast, both object localization with Grad-CAM and model deployment for 

practical applications are considered in the current study. This novel approach is relevant 

to researchers and practitioners as it fills the research gap by providing an interactive tool 

for SD assessment. 

The remainder of this paper is organized as follows: Section 2 presents a brief over-

view of related studies. Section 3 describes the data acquisition process and methodolo-

gy, and Section 4 discusses the results of the CNN model training, damage localization, 

and quantification. Section 5 presents an interactive webpage for damage classification, 

and Section 6 presents the conclusions and future research directions. The workflow of 

the research method is shown in Figure 1. 
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Figure 1. Workflow of the research method used in current study. 

2. Related Studies 

This section provides a brief overview of existing studies related to the current 

study. A comprehensive review of the applications of computer-vision-based civil infra-

structure inspection has recently been presented [18]. Pan and Yang [8] implemented an 

object detection algorithm to quantify damage to structural elements and the associated 

repair costs. Their proposed algorithm achieved average precisions of 98.2% and 84.5% 

on the training and testing image datasets, respectively. For automated post-earthquake 

inspection, Hoskere et al. [9] proposed a multiscale deep CNN, incorporating ResNet23 

and VGG19 as damage classifiers and damage segmenters, which achieved accuracies of 

88.8% and 71.4%, respectively. Liang [11] investigated an image-based approach for in-

specting bridges by considering system, component, and local damage level detection. 

The proposed DL network comprises a pre-trained VGG-16 CNN for system-level failure 

classification, a faster region-based CNN for component-level bridge column detection, 

and a fully convolutional network for damage segmentation. Bayesian optimization en-

hanced the model performance and afforded an accuracy exceeding 90% for all the 

three-level tasks considered. 
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Some disadvantages in the existing multiclass damage assessment approach men-

tioned earlier include dataset class imbalance, which results in overfitting, lack of scala-

bility and flexibility of the CNN architecture for solving various challenges, noisy train-

ing data, and a complex CNN architecture [19]. Therefore, recent applications of 

CNN-based models for SD assessments focus more on quality data preparation, the al-

gorithmic optimization of the CNN model architecture, and damage quantification. 

Techniques typically adopted for quality image data preparation include image en-

hancement approaches, such as gray-level thresholding, histogram equalization, and 

adaptive histogram equalization [20]. Moreover, the algorithmic optimization of hy-

perparameters enhances the accuracy of CNN-based models and reduces the computa-

tional power used for execution [21]. Recently, Kim et al. [22] developed an optimized 

LeNet (OLeNet) model by tuning a shallow LeNet-5 CNN architecture for concrete sur-

face crack detection. Consequently, OLeNet achieved an optimum validation accuracy of 

99.8% at 19 epochs within 220 s of model training. Meanwhile, pre-trained deep CNN 

architectures, including ResNet, VGG16, and Inception, required at least 45 epochs to 

achieve the same validation accuracy within 524 s. 

3. Methodology 

3.1. Data Acquisition, Division, and Preprocessing 

A total of 2750 images were acquired from field investigations [1–5] for different 

earthquakes. This study focuses on the Pohang earthquake. However, data obtained from 

other earthquakes were used to build a robust model to increase generalizability. A 

summary of the image datasets is presented in Table 1. Light damage indicates hairline 

cracks in structural elements, whereas moderate damage indicates wider cracks and 

spalling in concrete. By contrast, severe damage represents elemental collapse or struc-

tural failure [23].  

Table 1. Categorized summary of the image dataset. 

Image Source No damage 
Light 

damage 

Moderate dam-

age 

Severe 

damage 

Pohang (2017) [4] 49 294 187 551 

Haiti (2010) [1] 52 55 174 127 

Nepal (2015) [3] 152 153 123 255 

Taiwan (2016) [2] 3 99 27 34 

Ecuador (2016) [5] 4 108 115 188 

Total 260 709 626 1155 

The methodology involves a supervised learning image classification problem. 

Therefore, the labeled image dataset was split into two to train and evaluate the model’s 

performance after each epoch. The ratio of the training and validation sets was empiri-

cally set at 4:1. In addition, the validation datasets were used to test the training perfor-

mance of the models after each epoch. A total of 1780 images were selected from the da-

tabase, of which 1600 were used for training and validation (Table 2). To address the data 

imbalance during model training, each damage class was penalized by assigning class 

weights of 1.0, 1.5, 1.5 and 2.4 to the severe, light, moderate, and no damage classes, re-

spectively. A total of 180 images were obtained exclusively from the damage database of 

the Pohang earthquake and these were used to evaluate the generalizability of the trained 

model. Figure 2 shows a sample of 1600 images selected to train the CNN model. 
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Table 2. Categorized summary of images in training, validation, and testing datasets. 

Image  No damage 
Light  

damage 

Moderate dam-

age 
Severe damage 

Training 160 320 320 480 

Validation 40 80 80 120 

Testing 45 45 45 45 

Total 245 445 445 645 

 

 
   

(a) No damage 

    

(b) Light damage 

    

(c) Moderate damage 
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(d) Severe damage 

Figure 2. Samples used for training images for each damage class: (a) no, (b) light, (c) moderate, 

and (d) severe damage. 

3.2. TL Using Pre-trained CNN Models 

Six pre-trained classical CNN setups were implemented via TL. TL is an efficient 

approach used for training a small dataset, whereby a neural network pre-trained on a 

large dataset in the source domain is applied to the target domain. The underlying hy-

pothesis of TL is that common features learned from a sufficiently large dataset are 

transferred to different datasets [24]. For practical applications, two strategies are used 

while conducting TL in deep CNNs: feature extraction (FE) and FT. We used FE and FT 

TL methods to train the models on the datasets. In the FE method, the fully connected 

layers are removed from a network that has been pre-trained on the ImageNet dataset, 

while maintaining the convolutional base as a feature extractor. The pre-trained network 

serves as an arbitrary feature extractor that performs convolutional operations once on 

the input image during forward propagation, stops at the pre-specified layer, and uses 

the outputs of that layer as bottleneck features. In summary, the pre-trained CNN models 

serve as the backbone for FE, in which all the parameters in the convolution layers are 

frozen, whereas the fully connected layers are updated during backpropagation [25]. 

However, the FT method requires the unfreezing and retraining of the pre-trained 

convolutional base through backpropagation. During retraining, the convolutional layers 

learn mid- to high-order features, such as edges, which are more specific to the dataset in 

the target domain than the more generic features from the dataset in the source domain. 

Because the parameters in the last convolutional layer are unfrozen and updated during 

backpropagation, FT typically requires more computational time than FE. The proce-

dures for TL using FE and FT are shown in Figure 3. Similar studies using the TL ap-

proach for SD assessment include real-time crack detection using unmanned aerial vehi-

cles [24], building defect detection [26], concrete bridge surface damage detection [27], 

and crack segmentation on masonry surfaces [28]. 

Well-established versions of VGGNet are VGG16 (16 layers) and VGG19 (19 layers), 

which contain 138 and 144 million parameters, respectively. The VGGNet architecture 

comprises five convolutional blocks, with each block containing two or more convolu-

tional layers and a max-pooling layer. ReLU activation functions are provided in all 

hidden layers, and the output comprises three fully connected layers with softmax func-

tions. Applications of pre-trained VGGNets through TL include crack detection [29], 

bolt-loosening detection [30], steel damage condition assessment [31], building defect 

detection [26], and post-earthquake SD assessment [6,7]. 

The inception network is engineered significantly for performance improvement 

and has a relatively lower error rate compared with VGGNet. Different versions of the 

inception modules that have evolved include V1, V2, V3, and V4. Within the inception 

block, parallel filter operations are applied to the input from the previous layer, followed 

by depth-wise concatenation of the filter outputs. Previous applications of inception 

networks in image classification include crack detection [32] and tunnel rock structure 

identification [33]. 

Xception is an extension of inceptionV3, where the convolutional layers are replaced 

with depth-wise separable convolutions. It comprises blocks of convolution and separa-

ble convolution followed by batch normalization and max-pooling layers. Use cases of 

Xception include aerial visual geolocalization [34] and construction site safety [35]. 



Sensors 2022, 22, 3471 7 of 21 
 

Figure 3. Procedure for TL using (a) FE and (b) FT. 

ResNet is a deep neural network that is based on residual learning. ResNet50 com-

prises 50 main layers and 177 layers, whereas ResNet101 comprises 101 main layers and a 

total of 347 layers. ResNet has been successfully applied to bridge component extraction 

[36] and road crack detection [37]. 

MobileNet comprises a class of efficient models based on depth-wise separable 

convolutions, which are widely used for mobile applications. The MobileNet block typ-

ically comprises batch normalization, 3 × 3 depth-wise convolution, 1 × 1 convolution 

layers, and ReLU activation. Because MobileNets have fewer parameters and a higher 

classification accuracy, they are typically adopted to build lightweight deep neural net-

works. MobileNet is used for road damage detection [38] and post-hurricane aerial 

damage assessment [39]. The pseudocode of the algorithm for the CNN model is pre-

sented in Algorithm 1. 

Each model was trained with an SGD optimizer on a high-performance computer 

with an Intel (R) Core i7-8700 CPU @ 3.20 GHz, 32 GB RAM, and an NVIDIA RTX 

Quadro 5000 GPU in a Keras/TensorFlow environment. A preliminary experiment was 

performed on the dataset based on a learning rate of 0.0001, a momentum set of 0.9, and a 

batch size of 32 images. The number of training epochs was set to 60 for all the experi-

ments, and the images were resized to 224 × 224 × 3 before training. The validation set 

was used to tune the hyperparameters and optimize the weights of the CNN model. 

During FT, only the final convolutional block of the pre-trained model was retrained. In 

addition, a dropout rate of 0.5 was used between fully connected dense layers to reduce 

overfitting. To avoid overfitting problems, data augmentation techniques such as image 
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cropping, standardization, random shifts, and horizontal image flips were implemented 

during model training. The properties of the pre-trained CNN models considered in this 

study are listed in Table 3. 

Algorithm 1 CNN model algorithm pseudocode 

Programming language used for implementation: Python.  

Libraries for CNN model building: Tensorflow and Keras.  

Libraries used for image augmentation: OpenCV and computer vision library.  

Libraries used for visualizations: Matplotlib and 2D graph tool.  

1. Let X be the input image of the batch and y be the label for the image X.  

2. Extract features from the image using a CNN algorithm.  

a. Freeze all the pretrained convolutional blocks to serve as a feature extractor or fine tune by 

unfreezing the last convolutional blocks. 

b. Obtain feature maps of the first layer a0 after passing the image into the convolution layer 

with 7 × 7 filters and apply batch normalization function along with ReLU function. 

c. Apply the global average pooling function to the output tensor a0.  

d. Flatten the output to obtain a feature vector. 

3. Execute the feature classification network on the feature vector.  

a. Initialize the weight w and bias b arrays of the linear network comprising 256 neural 

nodes. Add 50% dropout to serve as a regularizer and reduce overfitting. 

b. Perform z = w. afeature + b.  

c. Perform ReLU activation function al = max (z, 0).  

d. Initialize weight w and bias b arrays of linear network with four neural nodes. 

e. Perform z = w. al + b.  

f. Perform ReLU activation function al = max (z, 0).  

g. Apply softmax function on al to obtain the probability distribution of the four classes: no, 

light, moderate, and severe damage. 

Table 3. Comparison of proposed pre-trained CNN models. 

Model No. of parameters Depth of layers Size (MB) 

VGG16 138.4 M 16 528 

VGG19 143.7 M 19 549 

Inception 23.9 M 189 92 

Xception 22.9 M 81 88 

ResNet 25.6 M 107 98 

MobileNet 4.3 M 55 16 

4. Results and Discussion 

Several experiments were performed to establish the performance of the 12 CNN 

models on image datasets. The potential of both FE and FT TL methods for structural 

image classification is analyzed in this section. 

4.1. FE with Bottleneck Features 

Figure 4a,b show the FE results of FE using the six pre-trained models. The 

pre-trained MobileNet CNN model exhibited training and validation accuracies of ap-

proximately 59% and 58.4%, respectively. Thus, it outperformed all the other models. 
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Figure 4. Plots of accuracy for models trained using FE TL: (a) training and (b) validation. 

Notably, the ResNet50 model demonstrated categorically unsatisfactory perfor-

mance compared with the other models, indicating that the architecture of the ResNet50 

model was deeper and more difficult to train than those of the other models. Similarly, 

the VGG16 and VGG19 models demonstrated unsatisfactory performance, which might 

be due to their shallow architectures. However, the superior accuracy of MobileNet 

suggests that it is the best model for mobile application development. 

4.2. FT 

The FT results for the six pre-trained models are shown in Figure 5a,b. Similarly, the 

pre-trained MobileNet CNN model outperformed the other models in terms of its train-

ing and validation accuracies of approximately 73.4% and 71.8%, respectively. 

  

Figure 5. Plots of accuracy for models trained using FT TL: (a) training and (b) validation. 

4.3. Comparison between FE and FT 

The FT method performed better than the FE method for all models and datasets 

considered in this study. However, the FT method is computationally expensive because 

it involves retraining one convolutional block. Figure 6 shows the training and validation 

accuracies for each model implemented through TL. 
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(a) VGG16 (b) VGG19 

  

(c) Inception (d) MobileNet 

  

(e) Resnet50 (f) Xception 
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Figure 6. Training and validation accuracies of various CNN models implemented through TL: (a) 

VGG16, (b) VGG19, (c) Inception, (d) MobileNet, (e) ResNet50, and (f) Xception models. 

The results of the testing accuracy analyses for all the models are presented as bar 

charts in Figure 7. 

  

(a) FT (b) FE 

Figure 7. Bar charts showing testing accuracies for (a) FT and (b) FE of CNN models. 

4.4. Comparative Study: Effect of Dataset Size on Fine-Tuned Model 

Because DL models are generally data intensive, the effect of data size on the per-

formance of the fine-tuned MobileNet model was examined by gradually increasing the 

amount of training image data (Figure 8). 

 

Figure 8. Summary of training and validation datasets for comparative study. 

An increase in the number of training images considerably affected the performance 

of the model (Figure 9). For example, the testing accuracies of the fine-tuned MobileNet 

model for datasets A, B, and C were 88.3%, 90.6%, and 95.6%, respectively. Thus, we infer 

that adding more training data to the model can improve its validation accuracy. More-
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over, this is consistent with the findings of [6], which suggests that increasing the data 

and fine-tuning the convolutional blocks can improve the model performance. 

 

Figure 9. Bar charts showing testing accuracies for datasets A, B, and C using fine-tuned MobileNet 

CNN model. 

The fine-tuned MobileNet CNN model, which exhibited optimal performance with a 

testing accuracy of 88.3%, was selected for deployment in a web-based application for 

earthquake-damage classification. Figure 10 shows plots of the confusion matrix used to 

evaluate the model performance of the testing images. 

 

Figure 10. Confusion matrix for the fine-tuned MobileNet CNN model. 

To assess the performance of the fine-tuned MobileNet CNN model, the testing ac-

curacy was compared with those of various CNN architectures used for similar SD clas-

sification tasks. A comparison of the different models with the optimal model is pre-

sented in Table 4. Accuracy can be expressed as the ratio of the true predictions to the 

total predicted cases in the dataset. The precision metric measures the classifier’s ability 

to correctly identify positive classes. The recall metric is the ratio of positive instances 

that are correctly detected by the classifier to the total number of positive instances. The 

mathematical expressions for accuracy, precision, recall, and F1 score are shown in 

Equations 1(a–d), respectively.  

42 2 0 1 93% 92%light
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𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
     1(a) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+ 𝐹𝑃
     1(b) 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+ 𝐹𝑁
      1(c) 

𝐹1  = 2 ×  
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
=  

𝑇𝑃

𝑇𝑃 + 
𝐹𝑁+𝐹𝑃

2

     1(d) 

where TP = number of true positives, TN = number of true negatives, FP = number of false 

positives, and FN = number of false negatives. 

The proposed model was trained on datasets containing images of all structural 

members similar to those used by Gao and Mosalam [6], which involve extremely noisy 

backgrounds. However, the dataset considered by Pan and Yang [8] contained only im-

ages of reinforced concrete structural columns with less background noise; hence, their 

approach afforded higher accuracy. 

Table 4. CNN-based SD classification models compared with current study. 

Task description Algorithm Accuracy (%) *Precision (%) *Recall (%) References 

Classification of 

damage in all struc-

tural members 

VGG16 68.8 - - [6] 

Classification of 

damage in columns 

only 

ResNet50 87.47 - - [8] 

Classification of 

damage in all struc-

tural members 

MobileNet 88.3 89 88.2 Current work 

* Values are not provided in the referenced study. 

A sample of the testing images with predictions obtained from the fine-tuned Mo-

bileNet model is shown in Figure 11. Despite the varying inclination of the camera view 

and light intensity of the images, the model successfully predicted the SD classes, with 

extremely few instances of incorrect predictions. For example, it predicted light damage 

in two cases, as shown in Figure 9b, instead of the ground truth, which indicates moder-

ate damage. This misclassification can be attributed to the overlapping of hairline cracks 

(light damage) and wide cracks (moderate damage) in the images. Similarly, moderate 

damage was occasionally misclassified as severe damage, which might be attributed to 

background noise, such as the presence of iron bars and large window voids in the im-

ages. Hence, a more robust bounding box object-detection technique or other forms of 

damage localization in the model should be considered to overcome this deficiency. 

The accuracy of computer-vision-based SD assessment is mainly affected by the 

complexity of the structure and damage. The damage assessment results can be affected 

by the varying lighting conditions, occlusion, and insufficient known reference points on 

a damaged structure that can be used for comparison with pre-damage images to accu-

rately assess damage levels. Moreover, SD caused by debris and rubble can often be dif-

ficult or impossible to detect using computer-vision algorithms alone. 
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 No damage (79.1%) Light damage (75.1%) Moderate damage (92.3%) Severe damage (99.9%) 

 (a) Correct predictions 

 

 

   
Ground Truth: Moderate damage Moderate damage Moderate damage Moderate damage 

Prediction: Light damage (53.3%) Light damage (47.5%) Severe damage (72.9%) Severe damage (47.5%) 

 (b) Incorrect predictions 

Figure 11. Sample testing images of structural damage with predicted probability for cases of (a) 

correct and (b) incorrect predictions. 

4.5. Visualization and Localization of Damage Using Grad-CAM 

Grad-CAM is a visualization technique that visualizes and clarifies predictions from 

large classes of CNNs to render them more transparent. Initially published by Selvaraju 

et al. [40], Grad-CAM uses the gradient of the target concept in the last convolution layer 

to create an approximate localization map that highlights the areas of interest to predict 

the concept. 

Grad-CAM was used to extract gradients from the fine-tuned MobileNet CNN 

model in the final convolutional layer to generate localization maps that identify relevant 

regions in the test images. This visualization technique is advantageous over the con-

ventional bounding-box method, which is subjective as it requires manual annotations. 

The heat maps generated via Grad-CAM exhibit smooth boundaries, which provide in-

sight into the precise location of defects or damage in the SD images. Figure 12 shows 

representative images from different SD classes localized using the Grad-CAM and 

guided Grad-CAM methods. 

   

Original Grad-CAM Guided Grad-CAM 
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(a) Light damage 

   

Original Grad-CAM Guided Grad-CAM 

(b) Moderate damage 

   

Original Grad-CAM Guided Grad-CAM 

(c) Severe damage 

Figure 12. Representative images illustrating damage visualization and localization analyses via 

gradient-weighted class activation mapping (Grad-CAM) methods for images of (a) light, (b) 

moderate, and (c) severe damage. 

The mislocalization of the moderate damage image (in Figure 12b) is attributed to 

the lower predicted probability (88.83%) for this image compared with the light (98.13 %) 

and severe (97.29 %) damage images. 

4.6. Damage Severity Measurement 

Following the approach of Li et al. [16], damage severity was quantified by assign-

ing a damage assessment value (DAV) obtained from Grad-CAM-based damage detec-

tion map (DDM). Mathematically, for an input image x with output damage class yD of 

the VGG19 CNN model, the gradient-based weight parameter wk is the aggregate of 

gradients in y with respect to fk(i, j) for i and j, and is expressed as follows: 

𝑤𝑘 =
1

14 × 14
 ∑

𝜕𝑦𝐷

𝜕𝑓(𝑖,𝑗)
𝑘𝑖,𝑗 ,       (2) 
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where fk(i, j) is the k-th feature map in the last convolutional layer (which measures 14 × 14 × 

512 in this study), i = 1, …, 14, j = 1, …, 14, and k = 1, …, 512. 

 For feature maps fk and the corresponding weights wk, a 14 × 14 matrix S can be de-

fined as 

𝑠𝑖,𝑗 = 𝑅𝑒𝐿𝑈(∑ 𝑤𝑘𝑓(𝑖,𝑗)
𝑘 ),𝑘       (3) 

 

where ReLU() eliminates the effects of negative values and emphasizes positive values. 

In the DDM, numerical values are assigned to quantify the damage severity based 

on the pixel intensity. Higher pixel intensities reflect more severe damage and are rep-

resented by a heat map in the DDM. The average numerical values obtained from the 

heat map of an image are regarded as the overall DAV, which quantifies the damage 

severity of the image. Hence, a high DAV indicates severe damage and is defined as fol-

lows: 

DAV =
1

14 × 14
 ∑ 𝑠𝑖,𝑗𝑘 ,        (4) 

where si,j represents the elements in matrix S, and the dimensions of S are 14 × 14. 

The DAV ranges between 0 (no damage) and 1 (total collapse). 

An annotation tool, known as LabelMe [41], accessible at http://labelme.csail.mit.edu, 

is used to annotate the SD images manually. The numerical values are assigned as fol-

lows: no damage = 0, light damage = 0.25, moderate damage = 0.5, severe damage = 0.75, 

and total collapse = 1 [42]. The annotated sample images are shown in Figure 13, along 

with their corresponding severity values. 

   

Original Manual annotation 

Grad-CAM, DAV = 0.253 

 

(a) Light damage 



Sensors 2022, 22, 3471 17 of 21 
 

   

Original Manual annotation Grad-CAM, DAV = 0.511 

(b) Moderate damage 

   

Original Manual annotation Grad-CAM, DAV = 0.768 

(c) Severe damage 

Figure 13. Sample images with annotations for severity and corresponding damage assessment 

value (DAV) scores for images of (a) light damage, (b) moderate damage, and (c) severe damage. 

5. Development of CNN Model as Interactive Web Application 

Access to trained DL/machine learning models in portable and interactive formats 

can facilitate real-time practical damage assessments. As shown in Figure 14, the optimal 

earthquake damage classifier model is converted to a Tensorflow.js compatible format 

and deployed as a web application with an easy-to-use graphic user interface. Tensor-

flow.js, built on the Tensorflow framework, facilitates the conversion of machine learning 

models to JavaScript formats, accessible through web browsers [43]. In addition to the 

superior accuracy of the optimal MobileNet CNN model, its lightweight size renders it 

the best model among all the trained models. An interactive web application is a useful 

tool that allows users to upload SD images and rapidly determine the class of SD with the 

corresponding confidence level of prediction. The prediction probability is computed 

based on the softmax function, as shown in Equation 5. 

𝑃(𝑦𝑖) =
𝑒𝑥𝑝(𝑦𝑖)

∑ exp(𝑦𝑗)𝑛
𝑗=1

,      (5) 
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where P(𝑦𝑖) is the prediction probability of class i, 𝑦𝑖  is the output score for class i, and n 

is the number of classes. 

 

Figure 14. Graphical user interface for web-based application that integrates optimal MobileNet 

damage classifier model. 

 The trained CNN model is accessible to web browsers at https://bit.ly/3hXRyyc. This 

allows emergency responders to rapidly assess post-earthquake damage and make in-

formed decisions regarding resource allocation. In addition, users can upload images 

captured at ground level from different sources to identify the SD and further validate 

the performance of the proposed earthquake-damage-classifier model. 

6. Conclusions and Recommendations 

Artificial intelligence for post-earthquake inspections and reconnaissance has re-

cently received significant attention, owing to its exponential increase in computational 

capabilities and the inherent potential of artificial intelligence to address the disad-

vantages associated with manual inspections, including subjectivity. In this study, we 

used data from the 2017 Pohang earthquake to demonstrate the potential of automated 

DL for rapid and accurate inspections of post-earthquake damage with insignificant 

human input. 

Our key findings are as follows: 

1. The FT method outperformed the FE method for all the CNN models evaluated. 

However, the FT method is more computationally complex than the FE method be-

cause it involves retraining one convolutional block. 

2. The MobileNet model exhibited the best performance for both the FE and FT TL 

methods, exhibiting testing accuracies of 76.1% and 88.3%, respectively. The superi-

ority of the MobileNet model in performing classification promoted its deployment 

as a web-based application for earthquake-damage classification. 

Start 

Upload image and initialize 

the CNN model 

Predict damage type and 

class probability score 

Severe Moderate Light No 
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3. The web application successfully predicted the damage class in new images of seis-

mic damage with high certainty. In addition, interactive web pages can rapidly and 

automatically classify SD from earthquakes, thereby facilitating decision making in 

response to earthquakes. 

In this study, we demonstrated the potential of automated DL to facilitate 

post-earthquake damage inspections and surveys. Despite the limitations of this study, 

including the lack of a large and sophisticated training dataset and the complexity of the 

four damage classes, future studies will be conducted that focus on establishing a large 

benchmark dataset with high-quality annotations, such as the PEER Hub ImageNet [12]. 

In addition, future experiments, involving unmanned aerial vehicles, will be performed 

to capture real-time images from SD sites that can be sent to a webpage interface for fully 

automated damage assessment. 
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Abbreviations 

The abbreviations used in this manuscript are as follows: 

CNN Convolutional neural network 

DAV Damage assessment value 

DDM Damage detection map 

DL Deep learning 

FE Feature extraction 

FT Fine-tuning 

GPU Graphic processing unit 

Grad-CAM Gradient-weighted class activation mapping 

OLeNet Optimized LeNet 

PEER Pacific Earthquake Engineering Research 

ReLU Rectified linear unit 

SD Structural damage 

TL Transfer learning 

VGG Visual geometry group 
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