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Abstract: As the major nutrient affecting crop growth, accurate assessing of nitrogen (N) is crucial
to precise agricultural management. Although improvements based on ground and satellite data
nitrogen in monitoring crops have been made, the application of these technologies is limited by
expensive costs, covering small spatial scales and low spatiotemporal resolution. This study strived
to explore an effective approach for inversing and mapping the distributions of the canopy nitrogen
concentration (CNC) based on Unmanned Aerial Vehicle (UAV) hyperspectral image data in a typical
apple orchard area of China. A Cubert UHD185 imaging spectrometer mounted on a UAV was
used to obtain the hyperspectral images of the apple canopy. The range of the apple canopy was
determined by the threshold method to eliminate the effect of the background spectrum from bare
soil and shadow. We analyzed and screened out the spectral parameters sensitive to CNC, including
vegetation indices (VIs), random two-band spectral indices, and red-edge parameters. The partial
least squares regression (PLSR) and backpropagation neural network (BPNN) were constructed to
inverse CNC based on a single spectral parameter or a combination of multiple spectral parameters.
The results show that when the thresholds of normalized difference vegetation index (NDVI) and
normalized difference canopy shadow index (NDCSI) were set to 0.65 and 0.45, respectively, the
canopy’s CNC range could be effectively identified and extracted, which was more refined than
random forest classifier (RFC); the correlation between random two-band spectral indices and
nitrogen concentration was stronger than that of other spectral parameters; and the BPNN model
based on the combination of random two-band spectral indices and red-edge parameters was the
optimal model for accurately retrieving CNC. Its modeling determination coefficient (R2) and root
mean square error (RMSE) were 0.77 and 0.16, respectively; and the validation R2 and residual
predictive deviation (RPD) were 0.75 and 1.92. The findings of this study can provide a theoretical
basis and technical support for the large-scale, rapid, and non-destructive monitoring of apple
nutritional status.

Keywords: nitrogen inversion; canopy extraction; UAV; hyperspectral image data; backpropagation
neural network; remote sensing

1. Introduction

Nitrogen is a key element in the growth and development of fruit trees, and it is
an important indicator for evaluating the nutritional status of fruit trees [1]. The lack of
nitrogen will reduce the concentration of chlorophyll and weaken photosynthesis, which
will affect the growth, yield, and quality of fruit trees [2]. How to scientifically monitor
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fruit trees’ nitrogen status, which clarifies the spatial and temporal distribution, is of great
significance to agricultural production [3]. The canopy nitrogen content and nutritional
status of apples have traditionally relied on on-ground measurements, which are complex
and labor-intensive. Moreover, this method cannot carry out large-scale monitoring. On the
other hand, the continuous development of remote sensing (RS) technology provides a fast,
non-destructive, and effective method for estimating biophysical and biochemical factors.
Therefore, RS-based, non-destructive, and rapid monitoring of nitrogen concentration had
become an important topic of current precision agriculture research [4].

Recently, the agriculture application of nitrogen concentration monitoring based
on multispectral and hyperspectral RS has considerably increased. However, spectral
resolution plays a key role in RS applications [5]. Multispectral RS has discontinuous
spectra in the visible and near-infrared bands, which leads to limitations in identifying
changes in vegetation spectral characteristics caused by different biochemical parameters
or structural characteristics [6]. Hyperspectral RS has a higher spectral resolution than
multispectral RS, and it can distinguish the differences in crop spectral characteristics
more finely and provides support for the quantitative analysis of physical and chemical
parameters such as vegetation nitrogen and chlorophyll [7]. At present, the monitoring
of crop physical and chemical parameters based on hyperspectral remote sensing data
mainly focused on field crops such as winter wheat, rice, and corn [8,9]. Compared with
field crops, the tree is high and discontinuous, and it is more complex in structure, which
puzzles the collection and extraction of canopy spectral information. With the development
of RS technology, the use of multiple platforms to monitor the biochemical parameters such
as chlorophyll and nitrogen concentration of economic forests and fruit trees from the leaf,
canopy, and regional levels has also made significant progress [10,11]. Wang et al. [12] used
airplanes equipped with HySpex sensors to obtain mixed forest canopy data and evaluated
the ability of three VIs to estimate canopy nitrogen concentration (CNC). Poonsak et al. [13]
processed the Hyperion data obtained by EO-1 by first-order differentiation and estimated
the spatial variability of the nitrogen concentration in the sugarcane canopy. Yang et al. [14]
used the FieldSpec® Pro FR spectrometer to collect the hyperspectral data of apple leaves at
different growth stages and found that the red region centered at 660 nm and the red border
area near 720 nm were more sensitive to changes in nitrogen concentration, and they could
monitor changes in crop growth, nutrient stress, chlorophyll, and nitrogen concentration.

However, the platform on which the sensor is mounted limits the application of
hyperspectral RS. Ground hyperspectral RS is a discrete point measurement, which cannot
achieve continuous observation on a large scale. Hyperspectral satellite remote sensing is
easily limited by indicators such as spatial resolution, temporal resolution, and atmospheric
conditions, and it is difficult to estimate crop biochemical parameters in a timely and
accurate manner [15]. However, UAV platforms have recently been widely used in crop
remote sensing monitoring due to their flexibility and convenience [16]. Using UAVs with
hyperspectral sensors, remote sensing data with high spatial and spectral resolution can
be obtained. These data can effectively ensure the estimation accuracy of biochemical
parameters such as nitrogen concentration [17]. It has made UAV platforms increasingly
popular in agricultural research and applications. The empirical statistical model, which is
based on hyperspectral image data to extract VIs and parameters of spectral characteristic
position, is one of the important methods [18,19]. These indices and parameters have a good
statistical relationship with some biochemical parameters such as N, and the calculation is
simple and easy to obtain [20]. These characteristics make it widely used in the inversion
of parameters such as nitrogen concentration [21–23]. Researchers [24,25] had tried to use
the combination of VIs and feature parameters related to the red edge to invert field crop
biochemical parameters. They found that the combination of the two types of spectral
parameters significantly improved the accuracy of the inversion model. However, the
estimation ability of multi-parameter combination based on hyperspectral image data for
apple CNC had yet to be verified. Although hyperspectral images had many advantages,
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some non-vegetation features in the images affected the expression of spectral information
due to factors such as tree planting characteristics and lighting angles.

To address these issues, this study classifies UAV hyperspectral image to effectively
extract canopy spectral information, calculates and analyzes spectral parameters, and fur-
ther optimizes various parameter combinations to explore an effective approach for the
inversion and mapping of canopy nitrogen concentration distributions based on hyperspec-
tral image data. An efficient method to identify apple canopy on hyperspectral images is
tested, and the spectral reflectance of the apple canopy is extracted. We evaluated the CNC
inversion ability of different models based on the VIs, random two-band spectral indices,
red-edge parameters, and their combination.

2. Materials and Methods
2.1. Study Area

Experiments were conducted at apple orchards of the Boshida Group in Guanli
town (37◦12′50” N, 120◦45′22” S, Qixia City, Shandong Province in June 2019 (Figure 1).
It is located in the middle of the Jiaodong Peninsula and has a warm temperate monsoon
climate with an average annual temperature of 11.5 ◦C. In Qixia, the temperature varies
greatly between day and night, the annual sunshine hours are 2660 h, the terrain is domi-
nated by hills, and the soil is mostly brown earth. The dominant apple-producing area in
the Bohai Rim, Qixia has concentrated and contiguous apple planting areas, which is ideal
for this study. The ‘Red Fuji’ apple tree (Malusdomestica Borkh. cv. ‘Fuji’) was used as the
experimental material because it is the main apple cultivar in this region.
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2.2. Data Acquisition
2.2.1. Field Sampling

Ninety-two apple trees were randomly selected from two ‘Red Fuji’ apple orchards.
The growth of these apple trees varied to ensure that the selected samples were represen-
tative. We evenly selected 4 vegetative branches around the middle of the apple canopy
and collected 3 leaves on each vegetative branch. A total of 12 leaves were collected from
each fruit tree, which were healthy and undamaged [15,26]. We took 12 leaves as a whole
to represent the nitrogen content of the sample. Moreover, the geographical coordinates
of the sampled trees were collected using a Qianxun positioning SR2 satellite-based RTK
(Qianxun Spatial Intelligence Inc., Huzhou, China). The sampled leaves were brought back
to the laboratory in a cool box. In the laboratory, we first blanched the sample at 105 ◦C,
dried it to constant weight at 80 ◦C, and then ground it into a powder. Finally, the nitrogen
concentration of the leaves was determined by the Kjeldahl method.

2.2.2. Acquisition and Preprocessing of UAV Hyperspectral Image

The UAV platform was a DJI Matrice 600 PRO UAV (loaded mass: 5.5 kg; flying
time: 1080 s) (SZ DJI Technology Co., Ltd. Shenzhen, Guangdong Province, China),
which was equipped with a Cubert UHD 185-Firefly (UHD185) (Cubert GmbH, Ulm,
Baden-Würtemberg, Germany) to collect the hyperspectral image data of apple canopy.
This sensor acquired hyperspectral images with wavelengths from 450 to 950 nm and a
sampling interval of 4 nm, and it could also obtain a panchromatic image at the same time.
To ensure the positional accuracy of the hyperspectral image, nine pieces of 60 cm × 60 cm
white reference plates were evenly placed around and in the center of the sample orchard as
control points, and their geographical coordinates were recorded for geometric correction.
A total of two flights were conducted in 2019 to collect hyperspectral image data under
sunny and windless weather. The flight time was 10:00–14:00, and flight missions covering
the experimental orchards area were performed with a height of 50 m above the ground, a
cruising speed of 5 m/s, a forward overlap of 80%, and a lateral overlap of 60%. Due to the
low flying height of the UAV and the uniform and sufficient light during the flight, there
was no need for atmospheric correction.

The acquisition procedures of original images are as follows. First, the Cubert Cube-
Pilot software version 1.4 (Cubert GmbH) was used to fuse each collected hyperspectral
image with the corresponding panchromatic image. Then, the fused single image was
stitched by Agisoft PhotoScan (Agisoft LLC, St. Petersburg, Russia). Finally, geometric
correction and radiometric calibration were carried out in the processing software ENVI
5.3. We used the reference plate as a control point to correct the geometric distortion of the
image and convert the digital number (DN) of the image to the surface reflectance.

2.2.3. Canopy Extraction

When apples were planted, to facilitate field management and receive sufficient light,
there are intervals between trees. These factors prevented the apple tree canopy from
closing completely. When the sensor and the direct light angle were inconsistent, it also
caused shadows to exist on the RS image. The ground between rows (mostly bare soil) and
shadows in the image affect the extraction of the information of the canopy, and then, it
limits the improvement of the accuracy of the CNC inversion model [27]. Therefore, we
needed to distinguish the canopy, bare soil, and shadows clearly in hyperspectral images
and extracted only the canopy reflectance to reduce the influence of non-canopy spectral
information.

First, the apple canopy hyperspectral image was obtained by setting thresholds for
the separately constructed VIs and shadow index to sequentially mask the bare soil and
shadows; then, in ENVI5.3, we enter the geographical coordinates of each sample to find
the location of its canopy in the hyperspectral image. Finally, the region of interest (ROI)
was constructed to extract the reflectance of the canopy of each sample tree, and the average
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value of all the canopy pixels within a single ROI was taken as the spectral reflectance of a
single apple canopy.

2.3. Establishment and Verification of CNC Inversion Model
2.3.1. Selection of Spectral Parameters

The spectral response characteristics of vegetation canopy were in the visible, red edge,
and near-infrared, and they were closely related to vegetation biochemical parameters.
This study selected 16 VIs and red-edge parameters related to vegetation nitrogen to
establish the model. The typical VIs included a modified simple ratio (mSR705), modified
normalized difference (mND705), red-edge chlorophyll index (CIred-edge), green chlorophyll
index (CIgreen), and double-peak canopy nitrogen index (DCNI). The normalized difference
spectral index (NDSI), ratio spectral index (RSI), and difference spectral index (DSI) were
the main type of random two-band spectral indices. The red-edge position (REP), red-edge
amplitude (Dr), minimum red-edge amplitude (Drmin), normalized red-edge amplitude
(NDDr), ratio of the red-edge amplitude and the minimum red-edge amplitude (RDr),
ratio of the red-edge amplitude and the minimum red-edge amplitude (RDr), ratio of the
red-edge amplitude and the minimum red-edge amplitude (DDr), and red edge area (SDr)
were selected as red-edge parameters in this study. The definition is shown in Table 1.

Table 1. Spectral parameters and definitions.

Types Spectral Parameters Definition

Vegetation indices

mSR705 (R750 − R445)/(R705 − R445)
mND705 (R750 − R705)/(R750 + R705 − 2R445)
CIred-edge (R840 − R870)/(R720 − R730)− 1

CIgreen (R840 − R870)/R550 − 1
DCNI (R722 − R702)/(R702 − R670)/(R722 − R670 + 0.03)

Random two-band
spectral indices

NDSI
(
Ri − Rj

)
/
(
Ri + Rj

)
RSI Ri/Rj
DSI Ri − Rj

Red-edge
parameters

REP The wavelength of the maximum first derivative
of the spectrum in the range of 680–750 nm

Dr The first derivative of the red-edge position

Drmin
The wavelength of the minimum first derivative

of the spectrum in the range of 680–750 nm
NDDr (Dr−Drmin)/(Dr + Drmin)
RDr Dr/Drmin
DDr Dr−Drmin

SDr The sum of the first derivative of the spectrum of
the red-edge region

Note: R is spectral reflectance; D is the first-order differential.

2.3.2. Analytical Method

We sorted the nitrogen concentration of the samples from small to large and sampled
equidistantly at a ratio of 2:1, of which 69 were the modeling set and 23 were the verification set.

This study used two modeling methods: the partial least squares regression (PLSR) and
backpropagation neural network (BPNN). PLSR is the result of multiple linear regression,
canonical correlation analysis, and principal component analysis [28]. Compared with the
traditional regression model, this method uses the sum of squares of minimized errors to
construct the optimal model, eliminating the collinearity between variables and improving
the accuracy and stability of the model. The BPNN is a feedforward neural network that
includes an input layer, an output layer, and multiple hidden layers. Its main feature is
that the signal propagates forward and the error propagates back. The returned error is
used to continuously adjust the weight of each neuron to obtain the best fit result. BPNN
can effectively deal with the nonlinear relationship between data and is widely used in
quantitative RS research in the agricultural field [29]. In this work, BPNN has a hidden
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layer with 4 neurons using the Levenberg–Marquardt (trainlm) algorithm. The activation
functions of the hidden layer and output layer are tansig and purelin, respectively. We
normalized the data, set the number of iterations to 1000, the learning rate to 0.001, the
training target error to 0.0001, and saved the net based on the validation performance. In
this work, PLSR and BPNN were performed using the Matlab 2018b software (Math Works,
Natick, MA, USA) for estimating the CNC of the apples.

2.3.3. Precision Evaluation

The coefficient of determination (R2), root mean square error (RMSE), and relative
error (RPD) were used to evaluate the accuracy of the inversion model. Among them, R2

can characterize the degree of fit of the model, and RMSE is used to measure the deviation
between the predicted value and the measured value. The larger the R2, the smaller the
RMSE, indicating that the better the prediction effect, the higher the accuracy of the model.
RPD is an effective indicator for judging the predictive ability of a model. The prediction
performance of this model is poor and cannot be used for prediction analysis when the
RPD is less than 1.4. The model has superior predictive power when the RPD is greater
than 2.0. The calculation formulas for the values of R2, RMSE, and RPD are as follows:

R2 =
∑N

i=1(ŷi − y )2√
∑N

i=1(yi − y )2
(1)

RMSE =

√
1
N ∑N

i=1(yi − ŷi)
2 (2)

SD =

√
∑N

i=1(yi − y )2

N− 1
(3)

RPD =
SD

RMSE
(4)

where N is the sample size, yi is the measured leaf nitrogen concentration, y is the average
measured leaf nitrogen concentration, and ŷi is the leaf nitrogen concentration predicted by
the model.

3. Results
3.1. Statistical Results of Nitrogen Concentration

The statistical indicators of nitrogen concentration in the apple canopy, including
maximum (Max), minimum (Min), average (Avg), standard deviation (SD), and coefficient
of variation (CV), are shown in Table 2. The maximum value of nitrogen concentration
in the collected samples was 3.119, the minimum value was 2.121, the average value was
2.622, and the coefficient of variation was 7.360%. These results indicate that nitrogen
concentration differs in different apple canopies.

Table 2. Statistical indices of nitrogen concentration.

Dataset Samples Max/% Min/% Avg/% SD CV

Total 92 3.119 2.121 2.622 0.193 7.361%
Modeling Set 69 3.119 2.121 2.624 0.194 7.393%
Validation Set 23 2.935 2.155 2.616 0.197 7.531%

Max, Min, Avg, SD, and CV indicate the maximum, minimum, average, standard deviation, and coefficient of
variation of the apple fruit yield, respectively.

3.2. Canopy Extraction and Accuracy Verification

The RS image of a single apple tree (Figure 2a) can be divided into three parts: apple
canopy, bare soil, and shadow. If we did not distinguish, then the non-canopy features
in the ROI would interfere with the extraction of canopy spectrum information. The VIs
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threshold method is an effective method to distinguish vegetation and non-vegetation
pixels [30]. In this study, the vegetation was separated from bare soil by using the most
popular NDVI whose band calculation was performed in ENVI to obtain the NDVI map
(Figure 2b). However, since NDVI was easy to saturate, the inner shadow of the canopy
could not be eliminated. NDCSI [31] used the correlation between the red-edge slope and
NDVI to distinguish vegetation and shadows. Histogram thresholding counted the number
of pixels at each value of the two ground objects and determined the intersection of the
two curves as the threshold according to their distribution. It was a classic method for
determining the optimal threshold. As shown in Figure 3, when the NDVI threshold was
set to 0.65, the boundary between vegetation and bare soil areas was clear, and the range of
the vegetation could be extracted. When the NDCSI threshold was set to 0.45, the effect
of removing the inner shadow of the canopy was better, and the purpose of accurately
extracting the apple canopy was achieved.
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Random forest classifier (RFC) is widely used in RS image classification and infor-
mation extraction due to its high accuracy, strong stability, and fast calculation speed [32].
We used the RFC tool with the number of trees (Ntree) parameter set to 500 to classify the
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hyperspectral image into three categories: canopy, bare soil, and shadow. After processing,
the classification result was shown in Figure 2d. Combining the two methods to extract the
canopy range for overlay analysis, we found that the threshold method is smaller but more
refined than the canopy extracted by RFC. After overlaying the canopy identified by the
two methods, we found that the overlap accounts for 96.24% of the threshold method and
86.69% of the RFC. We selected 150 sample points in each of the two orchards to test the ac-
curacy of the two methods. It was verified that in orchard 1, the overall accuracy (OA) and
kappa coefficient using the threshold method were 99.65% and 0.9945, respectively. Using
RFC, it was 99.44% and 0.9912, respectively. In orchard 2, the OA and kappa coefficient
using the threshold method was 99.77% and 0.9952, respectively. Using RFC, it was 99.62%
and 0.9923, respectively. The results show that the segmentation accuracy of the threshold
method for hyperspectral images is slightly higher than that of RFC. Compared with RFC,
the threshold method can improve the classification accuracy by continuously adjusting
the threshold size, but its processing process was more complicated. To ensure the accuracy
of extracting the average reflectance of the canopy, we finally chose the threshold method
to identify the range of the apple canopy in the two orchards.

3.3. Relationship between Spectral Parameters and CNC
3.3.1. Correlation Analysis of VIs and CNC

Apple CNC was significantly correlated with spectral parameters (mSR705, mND705,
CIrededge, CIgreen, and DCNI), as shown in Table 3. Among them, the correlation coefficients
of CIrededge and DCNI were 0.65 and 0.63, respectively, which were significantly higher
than other VIs.

Table 3. Correlation between spectral parameters and CNC.

Types Spectral Parameters Sensitive
Wavelength (nm) Correlation

Vegetation indices

mSR705 R445, R750 0.59 **
mND705 R445, R705, R750 0.52 **
CIrededge R720,R730,R840,R870 0.65 **
CIgreen R550, R840, R870 0.60 **
DCNI R670, R702, R722 0.63 **

Random two-band
spectral indices

NDSI R662, R782 0.70 **
RSI R466, R542 0.72 **
DSI R650, R662 0.68 **

Red-edge parameters

REP R722 0.49 **
Dr D722 0.62 **

Drmin D670 −0.60 **
NDDr D722, D670 0.69 **
RDr D722, D670 −0.67 **
DDr D722, D670 0.55 **
SDr - −0.65 **

Significance levels: ** 0.01.

Any two bands in the 450–950nm range were combined to construct NDSI, RSI, and
DSI, respectively. Then, we performed correlation analysis with CNC for the calculated
three parameters. The above calculation was implemented in Matlab 2018b. Random
two-band spectral indices with a correlation coefficient greater than 0.45 and the bands that
made up it were mostly in the four regions of green, red, red-edge, and near-infrared. The
band combined with the largest correlation coefficient was selected for the modeling and
verification inversing CNC. The largest correlation coefficient (0.72) was RSI (466,542), which
was followed by NDSI (662,782) and DSI (650,662), the correlation coefficients were 0.70 and
0.68, respectively. To screen variables and ensure the accuracy of the model, we selected
four spectral indices (RSI, NDSI, DSI, and CIrededge) with correlation coefficients greater
than or equal to 0.65 to construct a CNC inversion model.
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3.3.2. Correlation Analysis of Red-Edge Parameters and CNC

In Table 3, the results showed that the seven red-edge parameters were significantly cor-
related with the canopy concentration. The highest correlation was NDDr, with a correlation
coefficient of 0.69. The correlation level of NDDr and RDr was slightly higher than the typical
vegetation indices but lower than random two-band spectral indices. The correlations of other
red-edge parameters except for REP are roughly the same as the typical vegetation index.
The correlation coefficient between REP and the nitrogen concentration was 0.49, which was
the lowest among the selected spectral parameters. However, its reflectivity was the original
spectrum. It was reasonable that the correlation coefficient was lower than the processed or
calculated spectral parameters. Finally, three red-edge parameters (NDDr, RDr, and SDr) were
used as variables to construct the CNC inversion model.

3.4. Inversion Model of CNC
3.4.1. Estimation of CNC Based on Single Spectral Parameter

As described above, a unary regression analysis was used for the inversion of CNC for
a single spectral parameter. As shown in Table 4, the model based on SDr is linear, while
the others are non-linear models. In the modeling dataset, the coefficient of determination
of the NDSI-based model was the largest, R2 = 0.56, followed by RSI, R2 = 0.55, NDDr, and
R2 = 0.52. The worst model accuracy was the N-CIrededge model, with R2 of only 0.35 and
RMSE of 0.24. Among the seven models constructed based on a single spectral parameter,
although the NDSI-based model modeling set R2 was the largest, its verification accuracy
is lower, and the RPD was less than 1.4, indicating that the model was not stable and could
not estimate the sample. On the contrary, the modeling set and verification set R2 of the
RSI-based model and the NDDr-based model were relatively similar, indicating that they
could estimate samples roughly. In the same way, the remaining four models did not have
estimation capabilities, either. The above results show that the model constructed based on
a single spectral parameter cannot estimate the CNC.

Table 4. Estimation model of CNC based on the single spectral parameter.

Spectral
Parameter

Regression Equations
Modeling Set Verification Set

R2 RMSE R2 RMSE

CIrededge y = 2.4096e−0.113x 0.38 0.24 0.30 0.26
NDSI y = −625.3x3+498.6x2 − 132.4x + 14.4 0.56 0.18 0.50 0.25
RSI y = −9.495x3+49.69x2 − 86.77x + 53.23 0.55 0.17 0.54 0.18
DSI y = 2.8882e−47.339x 0.40 0.20 0.35 0.20

NDDr y = 0.253/
(
x2 − 1.933x + 1.028

)
0.52 0.19 0.53 0.18

RDr y = −0.204lnx + 1.6965 0.45 0.20 0.40 0.22
SDr y = 449x + 2.646 0.44 0.25 0.43 0.30

3.4.2. Estimation of CNC Based on Multiple Spectral Parameters

To test the ability of PLSR and BPNN to estimate CNC, six spectral parameters, NDSI,
RSI, DSI, NDDr, RDr, and SDr, were divided into random two-band spectral indices, red-
edge parameters, and their combined three categories (Table 5) as variables. Compared
with a single spectral parameter, the overall accuracy was significantly higher in the model
constructed based on multiple spectral parameters, with R2 ranging from 0.54 to 0.77 and
RMSE from 0.15 to 0.17. Among them, the BPNN model constructed by using a combination
of random two-band spectral indices and red-edge parameters had the best accuracy, with
R2 values equal to 0.77 and RMSE equal to 0.16. Secondly, the BPNN model based on
random two-band spectral indices and the PLSR model based on the vegetation index
has R2 values of 0.70 and 0.68, respectively. The overall accuracy of the CNC inversion
constructed based on BPNN was higher than that of PLSR, indicating that BPNN’s ability
to extract information from a variety of spectral parameters and to fit CNC was better than
that of PLSR.
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Table 5. Estimation model of CNC based on the combination of multiple spectral parameters.

Types of Variable
PLSR BPNN

R2 RMSE R2 RMSE

Random two-band spectral indices 0.68 0.15 0.70 0.17
Red-edge parameters 0.54 0.17 0.66 0.17

Combination of random two-band spectral
indices and red-edge parameters 0.64 0.16 0.77 0.16

We used an independent validation dataset (n = 23) to verify the reliability of the PLSR
and BPNN estimation models. In those models, the BPNN model constructed by using a
combination of random two-band spectral indices and red-edge parameters had the best
accuracy, RPD = 1.92, and the BPNN model based on random two-band spectral indices is
second (RPD was equal to 1.82), indicating that these models have better inversion effects.
The RPD of the BPNN model based on the red-edge parameters and the PLSR model based
on random two-band spectral indices were 1.63 and 1.58, respectively, indicating that those
could estimate samples roughly. The remaining models did not have the ability of inversion.
As shown in Figure 4, the closer the drawn point was to the 1:1 line, the better the estimation
effect of the model. It could be seen from Figure 4b that the BPNN model constructed by
using a combination of random two-band spectral indices and red-edge parameters had a
small degree of dispersion. That R2 is equal to 0.75, and the slope of the scattered trend line
was 0.62. It was the best model constructed in this study. After comparing the accuracy
of different spectral parameter combinations and different modeling methods to estimate
CNC, we found that the inversion ability based on the combination of multiple spectral
parameters was stronger: especially the combination of random two-band spectral indices
and red-edge parameters. Moreover, the BPNN that fit the non-linear relationship between
multiple spectral parameters and CNC well had adequate inversion accuracy.
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3.5. Construction of Spatial Distribution Map of CNC

As shown in Figure 5, we used the optimal model to perform a spatial inversion on
Apple CNC in orchard 2 of the Boshida Plantation Base to verify its feasibility. It can be seen
that the CNC in the south of the apple orchard is slightly higher than in the north in terms
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of spatial distribution. There were differences in the distribution of apple CNC between
rows, but the difference in the same row was not obvious. At the level of individual apples,
the distribution of CNC was roughly higher at the top and lower at the bottom. The
main reason is that different positions receive different light intensities during the growth
and development of the canopy The top of the canopy has high light intensity and high
chlorophyll concentration, and the photosynthetic rate was more substantial than that at
the bottom [33].
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4. Discussion

As an essential indicator for monitoring vegetation growth, canopy spectrum charac-
teristics can reflect the pigment concentration, nutritional status, and canopy structure of
vegetation, providing an important basis for RS to retrieve various biochemical indicators
of vegetation [34]. However, in the actual production process, appropriate spacing should
be maintained between the rows of apples in the orchard to facilitate management and har-
vesting. At the same time, this method also improves the light and ventilation conditions of
the tree to ensure the growth of apples. Affected by the above factors, the unclosed canopy
will make the bare land appear in the image. Furthermore, the three-dimensional structure
of the canopy and changes in the direct sun angle also exacerbate this phenomenon. There-
fore, the key to extracting canopy spectrum information is accurately classifying RS images
to determine the canopy range. We chose the more common and simple vegetation index
threshold method to identify and extract the apple canopy. NDVI is currently the most
widely used vegetation index, which can be used to extract green vegetation. However,
it is easy to saturate, and the effect of removing shadows in the canopy is poor [35]. For
this reason, NDCSI was introduced to remove the shadow part of the canopy. We found
that when the DNVI and NDCSI thresholds are set to 0.65 and 0.45, respectively, the effect
of extracting the canopy range is the best, which is consistent with the results of other
studies [36]. We compared the extraction effect of the threshold method and RFC on the
canopy. Generally, the extraction range of the two canopies is relatively consistent, and
the extraction range of the threshold method is more refined. Since the types of orchard
features are relatively simple and the spectral differences of features are more obvious, the
optimal range of the canopy can be determined by adjusting the threshold size to extract
canopy spectrum information. However, it is more affected by human factors and more
complicated; thus, it is suitable for small-scale research compared with RFC.

Using RS data to construct vegetation indices is a simple, commonly used, and effective
method to qualitatively and quantitatively evaluate vegetation coverage, growth status, and
various biochemical parameters [37]. We selected five vegetation indices and constructed
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and screened three two-band spectral indices, RSI(466,542), NDSI(662,782), and DSI(650,662),
for correlation analysis with the CNC of apples. In this work, the correlation between
the vegetation index and nitrogen based on the random two-band combination and the
accuracy of the proposed model is higher than the typical vegetation index, but the sensitive
wavelength of the composition is different from other studies [15,16]. This is mainly because
of the different types of crops, which are quite different in canopy structure and growth
period, which causes the shift of the sensitive wavelength of nitrogen absorption. The
red edge is the band where the high reflectance from the low reflectance red region of the
vegetation spectrum increases sharply to the near-infrared region. REP is the most typical
feature of this region, and it is useful for the estimation of nitrogen concentration [38].
Although the estimation ability of CNC based on red-edge parameters was slightly lower
than that based on random two-band spectral indices, the combination of those as variables
significantly improved the estimation accuracy, which also obtained similar results in the
estimation of biochemical parameters of other crops [25]. In this study, there were many
bands of hyperspectral RS data, which have rich spectral information, and it can construct
an inversion model with high accuracy. We selected five vegetation indices and constructed
and screened three two-band spectral indices, RSI(466,542), NDSI(662,782), and DSI(650,662), for
correlation analysis with the CNC of apples. In this work, the correlation between the
vegetation index and CNC on the random two-band combination and the accuracy of the
construction model is higher than the typical vegetation index, but the sensitive wavelength
of the composition is different from other studies [15,16]. This is mainly because of the
different types of crops, which are quite different in canopy structure and growth period,
which causes the shift of the sensitive wavelength of nitrogen absorption. The red edge is
the band where the high reflectance from the low reflectance red region of the vegetation
spectrum increases sharply to the near-infrared region. REP is the most typical feature of
this region, and it is useful for the estimation of nitrogen concentration [38]. Although the
estimation ability of CNC based on red-edge parameters was slightly lower than that based
on random two-band spectral indices, the combination of those as variables significantly
improved the estimation accuracy, which also obtained similar results in the estimation of
biochemical parameters [25]. In this study, there are many bands of hyperspectral RS data,
which have rich spectral information, and it can construct an inversion model with high
accuracy. However, hyperspectral data are redundant and require complex processing,
which brings challenges to a larger range of CNC estimation.

5. Conclusions

In this work, UAV hyperspectral images were used to build a model of vegetation
indices, red-edge parameters, and their combinations to invert and map CNC distributions.
It was found that the threshold method based on vegetation indices was an effective
method to extract the apple canopy, which can reduce the influence of bare land and
shadows on the spectral information of the canopy. The correlation between the spectral
index of two random bands and the CNC of apples was better than the red-edge parameters
and traditional vegetation indices, and RSI based on the 466 and 542 nm was the most
sensitive indicator. Furthermore, it was found that compared with other models, the BPNN
model constructed based on the combination of random two-band spectral indices and
red-edge parameters could invert apple CNC more accurately. The apple CNC distribution
map generated by the optimal model can better reflect the spatial distribution of CNC
and provide a theoretical basis and technical support for the monitoring and precise
management of the nutrient status of apple trees.
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