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Abstract: This paper introduces a procedure for autonomous landing of a quadrotor on an unmanned
surface vehicle in a marine environment. The relative pose and velocity of the vehicle with respect
to the quadrotor are estimated using a combination of data coming from a vision system, which
recognizes a set of AprilTags located on the vehicle itself, and an ultrasonic sensor, to achieve further
robustness during the final landing phase. The considered software and hardware architecture is
provided, and the details about the landing procedure are presented. Software-in-the-loop tests
were performed as a validation step for the proposed algorithms; to recreate realistic conditions,
the movements of the landing platform have been replicated from data of a test in a real marine
environment. In order to provide further proof of the reliability of the vision system, a video sequence
from a manual landing of a quadrotor on the surface vehicle in a real marine environment has been
processed, and the results are presented.

Keywords: UAV; ASV; splashproof quadrotor; vision system; state machine; autonomous landing;
marine robotics; aerial robotics

1. Introduction

During the last years, unmanned aerial vehicles (UAVs) have been used in a wide vari-
ety of applications, such as in agriculture [1], civil protection [2], infrastructure, inspection
and maintenance [3], and light shows [4]. Their uses are not limited to the Earth’s surface,
but extend to space environments as well, where they could be used for ad hoc missions [5].
When considering applications in a marine environment, different types of robots can
be involved. Generally, a set of underwater and surface vehicles allow the execution of
complex tasks, such as monitoring wide areas or cooperative collaboration for a mutual
goal. For instance, in [6], an autonomous robotic team composed of underwater and surface
vehicles was considered for geotechnical survey purposes. By considering aerial agents
also, a wider variety of missions can be designed, such as the protection and security of
marine areas, or humanitarian search and rescue activities [7]. The landing of aerial agents
requires ad hoc procedures [8], and when working in complex conditions, this is often
performed by a human operator. In fact, in marine applications, the sea conditions could
alter the pose of the landing target, and could determine the success or the failure of the
landing procedure itself. Therefore, in fully autonomous missions, the landing maneuvers
of an aerial agent must be robust to difficulties and reliable.

On the basis of the previous works [9,10], we aimed to provide an efficient, reliable, and
modular solution to autonomously land a quadrotor on a catamaran in a marine environment.

1.1. Related Work

Performing an autonomous landing procedure on a platform is a complex task that
requires several steps to be achieved. In outdoor scenarios, global navigation satellite
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system (GNSS) receivers usually provide the positions of the quadrotor and the catamaran.
Still, the data coming from GNSS are not sufficient to perform an autonomous landing,
due to their inaccuracy. Even if properly filtered [11], the accuracy and precision are not
enough for such complex and precise maneuvers. Additionally, the catamaran is subjected
to unpredictable oscillatory dynamics caused by sea behavior and weather conditions to
which the quadrotor must be able to react. For these reasons, alternative approaches have
to be taken into consideration. For instance, a video system would allow increasing the
reliability and the performance of the landing procedure. The GNSS data are used by
the quadrotor to move close to the position of the catamaran, and from there, a vision
system gives the quadrotor the relative pose of the platform on the catamaran. Computer
vision algorithms are extremely useful to close the loop when the landing platform is
in an uncertain position or it is moving [12], since they allow directly estimating the
horizontal and vertical tracking errors with respect to the target point, instead of providing
its coordinates in an absolute frame. An interesting and efficient solution was proposed
in [13], where an extended Kalman filter was developed to combine data coming from
different sensors (inertial navigation, GNSS receiver, and visual sensor) to build a navigation
system and perform a landing procedure. In [14], a solution composed of several LEDs and
an “H” sign placed on the landing platform was proposed: the LEDs give the possibility
to the unmanned aerial vehicle (UAV) of recognizing the platform from high altitudes
by using an infrared camera, and the “H” sign helps the estimation of the center of the
platform itself when the quadrotor is closer. Instead, in [15], helipads composed of different
geometric shapes (a cross, a circle, and a square) were proposed, to test the designed vision-
based autonomous landing algorithm. Experimental results have been achieved outside of
the marine environment, with a mobile robot carrying a landing platform moving on the
ground. Another solution for the estimation of the relative pose between the quadrotor
and the landing platform is the one proposed in [16], where a specific marker composed of
a series of concentric circles would allow the detection of the platform from close by.

A similar methodology is the one presented in [17], where a landing platform com-
posed of several AprilTags [18,19] with different dimensions is introduced: the larger tags
permit the detection from higher altitudes, and the smaller ones from lower altitudes. This
allows the quadrotor to constantly track the landing platform while decreasing its altitude
during the landing procedure. The choice of using AprilTags is mainly related to their
versatility and robustness [20].

1.2. Contributions

The innovation of this paper with respect to the state of art is mainly the develop-
ment of a set of software packages able to perform an autonomous landing procedure
in a sea environment, where the catamaran is subject to wave-induced oscillations. The
landing procedure is tackled by implementing a set of strategies, such as a preliminary
positioning of the drone, platform searching, horizontal tracking to keep it aligned, and
vertical compensation with respect to the landing platform. The behavior of the quadrotor
during the whole landing procedure is handled by a finite state machine: a set of states
and conditions that describe the actions the quadrotor has to perform, depending on the
data coming from different sensors. An improved landing platform composed of more tags
with respect to the past solution [9] has been designed. Simulations of autonomous land-
ing have been performed in an environment composed by several tools, such as Gazebo
(more info at: http://gazebosim.org/ last access: 30 March 2022), ROS2 (more info at:
https://docs.ros.org/en/foxy/index.html, last access: 30 March 2022), and PX4 (more
info at: https://px4.io/, last access: 30 March 2022), where the pose of the catamaran was
replicated from data coming from sea tests involving only the catamaran itself so that the
motion of the landing platform was realistic.

The proposed software architecture allows both the validation of the considered
methodology via software-in-the-loop simulations and the integration of most of those
components in the real hardware, as a preparation for tests in a real environment. To

http://gazebosim.org/
https://docs.ros.org/en/foxy/index.html
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further validate the reliability and robustness of the onboard vision system, an onboard
video captured from a manual flight landing of the quadrotor on the catamaran has been
processed offline using the adopted vision system.

Therefore, with respect to the previous works [9,10], the contributions of the present
manuscript are:

1. A new software architecture powered by the ROS2 middleware and designed specifically
to be modular for both simulation tests and outdoor tests in a real marine environment;

2. Design and implementation of an improved landing state machine, with the addition
of a new state and the introduction of a new procedure to synchronize the position of
the quadrotor with the catamaran before the landing approach;

3. Simulations in a software-in-the-loop environment of a safe landing on a landing
platform, whose movements were replicated from the telemetry of the catamaran
recorded during outdoor tests in a marine environment;

4. Realization and integration on the catamaran of a new landing platform, with more
tags to gain better robustness during the landing procedure;

5. Validation of the vision system using the recordings of a manual landing on the
catamaran in a marine environment.

This paper is organized as follows: In Section 2, an overview of the whole system is
proposed. In Section 3, the methodology of the proposed landing procedure is detailed,
and in Section 4 the developed software/firmware architecture is presented. In Section 5,
the main results obtained in flight emulation tests are shown. Finally, some conclusions are
given in Section 6.

2. System Overview

The considered experimental system is composed mainly of two different agents, each
one with unique characteristics and features.

2.1. Catamaran

The ULISSE autonomous surface vehicle (ASV), developed by the interuniversity re-
search center for Integrated Systems for Marine Environment (ISME, University of Genova
node), is a 3 m long and 1.8 m wide catamaran, constructed in fiberglass (see Figure 1).
It was designed as a modular vehicle for various applications. When used for marine
geotechnical surveys [21] or acting as an intelligent buoy for underwater vehicles, it carries
a deck with an underwater mast with acoustic sensors. When used as a means to extend
the action range of the aerial drones, the catamaran is equipped with a dedicated landing
platform (as in Figure 1). In each hull of the catamaran, a compartment hosts batteries
(around 3.2 kWh of energy each), the hardware architecture where the control software
runs the ROS2 middleware, and a wide range of sensors (GNSS receiver, gyroscopes, ac-
celerometers, and a compass sensor) to collect ego-motion measurements. The catamaran
is provided with a roll-bar where the GNSS antenna is located, along with a 5 GHz one
for Wi-Fi communication. The catamaran is propelled by two Torqeedo Cruise 2R electric
thrusters, with electrical power of 2 kW each, which offer high maneuverability of the
vessel even at low speeds, making it very agile in cluttered areas.
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Figure 1. The ULISSE catamaran, equipped with the landing platform and the splash-proof quadrotor,
deployed in one of the tests at sea.

2.2. Quadrotor

The chosen quadrotor model is the SwellPro Splash Drone 3 (more info at:
https://swellpro.com/, last access: 30 March 2022), a drone that provides an external wa-
terproof structure specifically designed for marine applications, along with various internal
hardware components that allow performing manual flights. For the purpose of the realiza-
tion of the proposed strategy, these components were substituted to robotize the agent itself.
In particular, a Raspberry Pi Model B+ (more info at: https://www.raspberrypi.com/, last
access: 30 March 2022) was embedded, along with a Raspicam v2, to allow onboard com-
putations, and a Pixracer (more info at: https://docs.px4.io/master/en/flight_controller/
pixracer.html, last access: 30 March 2022) autopilot system containing several embedded
sensors, such as an accelerometer, a magnetometer, a gyroscope, and a barometer. The
autopilot receives the setpoints computed by the algorithm running on the Raspberry Pi,
and translates them into pulse width modulation (PWM) signals for the single motors of
the quadrotor. The quadrotor is also endowed with a GNSS receiver. An ultrasonic sensor
was included, as it is essential during the landing procedure, and so was a payload release
mechanism actuated by a servo motor, to enable the quadrotor to carry out delivery tasks
in a marine environment.

3. Methodology

The proposed landing solution is composed of different modules. Each one is de-
tailed hereafter.

3.1. Perception and Pose Estimation

The relative pose of the quadrotor with respect to the landing platform is estimated by
an onboard vision system that processes the video stream coming from the Raspicam. The
platform is equipped with a set of visually distinguishable tags, each one being different
from the others and characterized by a unique ID. The adopted vision system, named
AprilTag, is an open-source, robust, and well documented tool [18,19] that allows 3D
position and orientation computation of the considered tags with respect to the camera [20].
The use of a single tag does not guarantee its identification during the whole landing
procedure; hence, the landing platform was equipped with 13 unique AprilTags, following
a similar configuration as [17].

The tags, as shown in Figure 2, were placed in such a way as to guarantee visibility
from different distances and robustness in the landing phase. The AprilTag markers on the
outer edges are large, and thus easily recognizable at higher altitudes. The smaller internal

https://swellpro.com/
https://www.raspberrypi.com/
https://docs.px4.io/master/en/flight_controller/pixracer.html
https://docs.px4.io/master/en/flight_controller/pixracer.html
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ones play a crucial role in the final instants of the landing maneuver when the quadrotor is
closer to the platform, improving safety and reliability.

Figure 2. The set Sl of AprilTags of different sizes as printed on the landing platform.

The list of the detectable tags is represented by the set Sl = {1, . . . , 13}. At each
iteration of the vision system, the detected tags ID are stored in a subset Sd ⊆ Sl . For
each detected tag ID i ∈ Sd, the vision system computes a transformation matrix c

i T that
describes the position in the scene of the identified tag i with respect to the camera frame
c. In order to compute the pose of the platform center with respect to the camera for
each tag i ∈ Sl , a set of transformation matrices i

pT—i ∈ Sl describing the position of
each tag with respect to the platform center—is calibrated and computed offline. Thus, a
post-multiplication gives the needed transformation matrix:

c
pTi =

c
i T i

pT . (1)

Theoretically, each detected tag gives equally correct information. However, to im-
prove the quality of the estimation, these measures are merged and weighted by the areas
(ai) of each detected tag in the camera frame: i ∈ Sd. Thus, the weighted transforma-
tion matrix between the center of the platform and the camera on the quadrotor c

pT is
obtained by:

c
pT =

1
w ∑i∈Sd

c
pTiai , (2)

where w is the normalization term defined as:

w = ∑i∈Sd
ai . (3)

The reference error is then transformed in the inertial frame, taking into account the
quadrotor’s attitude (see Figure 3), and sent to the guidance controller, which generates the
desired commands for the autopilot.

Still, depending on sea conditions, the vertical velocity of the landing platform could
vary a lot, and the estimated vertical error using the vision system alone does not provide
a reliable measure in the final instants of the landing phase. To increase robustness, an
ultrasonic sensor pointing downward was installed on the quadrotor, providing distance
information at a limited range. More precisely, the camera provides information at 20 fps
(frames per second). The ultrasonic sensor provides information at 30 Hz, and at distances
less than 0.75 m, provides more precise and reliable data. The distance data coming
from the ultrasonic sensor are used to estimate the platform’s vertical velocity via a basic
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Kalman filter [9]. This information is merged with the estimated vertical error, as shown
in Section 3.3.

Figure 3. A representation of the different transformation matrices involved in the relative pose
estimation between the UAV and the landing platform’s center.

3.2. Horizontal Platform Tracking

One of the tasks the quadrotor has to perform during the landing procedure is hori-
zontal tracking of the platform, reducing the estimated horizontal error provided by the
camera. By defining the horizontal positions of the quadrotor and the platform as pq,xy and
pl,xy, respectively, the horizontal position error is ep,xy = pl,xy − pq,xy. A measure of this
error is taken from the onboard vision system. Thus, a PI regulator is designed to produce
position setpoints p∗q,xy:

p∗q,xy = pq,xy + KP ep,xy + KI

∫
ep,xy dt , (4)

where KP and KI are the proportional and integral gains of the controller, respectively.

3.3. Vertical Platform Compensation

Once the quadrotor is at a certain distance from the landing platform, it needs to take
care of the heave motions of the landing pad, induced by the waves. In this delicate phase,
the altitude setpoints are generated to keep the relative velocity between quadrotor and
catamaran to a specific value vdes

r,z . More in detail, a vertical target absolute velocity can be
defined as:

vdes
q,z = vdes

r,z + vl,z , (5)

where vl,z is obtained by:
vl,z = vq,z − vr,z , (6)

and vr,z is the estimation of the relative vertical velocity obtained by the above mentioned
Kalman filter. The vertical error velocity is defined as:

ev,z = vdes
q,z − vq,z . (7)

Thus, the desired vertical velocity is a proportional scale of (7) by a gain K1:

v∗q,z = vq,z + K1 ev,z . (8)
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Finally, the altitude setpoints are generated as:

p∗q,z = pq,z + K2 v∗q,z , (9)

where pq,z is the current altitude of the quadrotor, and K2 is a scale gain. Vision system data
are not used at this stage, since the ultrasonic sensor gives information at a higher frequency.

3.4. Finite State Machine

The landing phase is described by a series of connected states, whose transitions are
handled by a finite state machine. The behavior of the quadrotor is described by eight
states: initialization, searching, tracking, hovering, descending, ascending, compensation,
and landing; Figure 4 describes how the states are linked. The transitions among them are
triggered by boolean algebra operations.

Search

Init

Track

Comp

Land

Asce

DescHover

Platform Visible

Platform not Visible

Platform not Visible Aligned with Platform

Platform Tracked

Platform Lost

Vision Data not Valid

Vision Data not Valid

Vision Data back Valid

Vision Data not Valid
After a Timeout

Not Centered
OR

Platform not
Visible

Platform Tracked
AND

Centered
AND

Comp Ready

Platform Tracked
AND

Centered
AND

Ready To Land

Figure 4. The diagram of the proposed finite state machine for the autonomous landing.

Initially, the quadrotor performs the rendezvous with the catamaran. The latter sends
a stream of its GNSS position to the former, which flies to reach it. The catamaran’s
GNSS position is exploited only in the initial phase, as it can be imprecise, and would
not guarantee a robust and reliable landing, especially in cases of signal loss. When the
quadrotor reaches the area described by the received GNSS coordinates, the finite state
machine starts, whose states are detailed in the following subsections.

3.4.1. Initialization

This is the entry point of the procedure. In this state, the quadrotor reaches the starting
altitude and starts to look for the landing platform. If the landing pad is not detected, the
finite state machine changes the state to searching. Otherwise, the quadrotor places itself
in a specific position and orientation with respect to the catamaran. The basic idea is to
prevent landing from a position where the quadrotor could hit the roll-bar located on the
stern side of the catamaran (see Figure 1).
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For this purpose, as seen in Figure 5, the quadrotor is placed in front of the landing
platform, at a certain distance from the center. In detail, the desired positions p∗q,x and p∗q,y
are computed directly by:

p∗q,x = pq,x + ep,x + R sin(ψl) (10)

p∗q,y = pq,y + ep,y + R cos(ψl) , (11)

where ep,x and ep,y are the estimated horizontal error components (see Section 3.2), R
is the desired fixed distance the quadrotor has to keep from the platform, and ψl is the
catamaran’s yaw angle. To prevent further complications in the quadrotor’s movements,
its yaw is kept constant for the whole landing phase.

Figure 5. The generation of the initial relative position p∗q during the initialization phase. The
quadrotor needs to place itself in front of the catamaran, and it does that by moving around the
platform and placing at a certain distance from it.

3.4.2. Searching

If the quadrotor has no visual information about the position of the landing platform, it
enters a state where it searches for it. To this end, the quadrotor reaches a predefined altitude
and flies in circles increasing large in radius. In particular, by taking as the center point the
quadrotor’s position at the initialization time of the searching phase pq,x(t0), pq,y(t0), the
desired position of the quadrotor is defined by:

p∗q,x(t) = pq,x(t0) + R cos
(vs

R
(t− t0)

)
(12)

p∗q,y(t) = pq,y(t0) + R sin
(vs

R
(t− t0)

)
, (13)

where R is the desired radius of the first circle and vs is the desired linear velocity to be
tracked during this phase. The searching continues until the following condition is verified:

(t− t0) <
2πR

vs
. (14)

When this condition is no longer true, the parameters are updated: R is increased by
0.5 m so that the quadrotor inspects a new area while overlapping a part of the previous
one, t0 is set to the current value of t (t0 = t). By doing that, the condition returns true, and
at the next iteration, the quadrotor starts a new circle, but with an increased radius. The
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structure of the second term of (14) makes sure the quadrotor starts a new circle in the exact
instant when it finishes the first one.

Once the quadrotor detects the platform, the landing procedure begins, and the
quadrotor goes back to the initialization state. This process guarantees the success of the
action even if only the approximate position of the platform is known. If the quadrotor
loses the platform when already landing, the searching state takes also into account the last
computed vision error, so that the quadrotor centers itself in the last known position of the
catamaran to restart the search.

3.4.3. Tracking

When the quadrotor is correctly positioned with respect to the catamaran, the tracking
state is triggered, handling the reduction of the vertical and horizontal error between
the two agents. The descent of the quadrotor toward the catamaran becomes slanted; in
particular, at the time instant th indicating the moment this state starts, a slope between
its current altitude and an altitude point zmax (ideally, the maximum distance from the
platform that allows the horizontal tracking of the smaller tags) is chosen. The z reference
is computed using:

z(th) = m(th)ep,x(th) , (15)

where

m(th) = −
pq,z(th)− zmax

R sin(ψl(th))
. (16)

3.4.4. Hovering

This state handles the case when the vision data coming from the camera have not been
updated for more than a second. In that case, the quadrotor is asked to keep its position
for a certain period until the vision system is back online, sending again the required data.
Then, once the feedback is restored, the quadrotor will resume its mission.

3.4.5. Descending

This state gets triggered if the quadrotor is tracking the landing platform under a
certain threshold and for a number of consecutive frames, but its current altitude is over
the ideal horizontal maximum tracking altitude. The altitude waypoints are autonomously
adjusted by being decreased by 0.1 m at each iteration.

3.4.6. Ascending

This state gets triggered if the quadrotor has no visual contact with the landing
platform for a number of consecutive frames, and its current altitude is below the ideal
horizontal minimum tracking altitude. The altitude waypoints are autonomously adjusted
by being increased by 0.1 m at each iteration.

3.4.7. Compensation

When the quadrotor is under a certain vertical distance from the landing platform
and it is centered with respect to it, the horizontal tracking (Section 3.2) and the vertical
compensation (Section 3.3) tasks generate the position setpoints. In this state, to compensate
for the catamaran’s oscillations, the vertical position setpoints are generated using the
estimations coming from the Kalman filter and the equations reported in Section 3.3. The
measures coming from the ultrasonic sensor are the only ones used, due to their higher-
frequency updating.

3.4.8. Landing

When the quadrotor is sufficiently close to the platform and the relative velocity
between the two agents is under a certain threshold, the finite state machine enters the
landing state, where the motors of the quadrotors are shut down, allowing it to land on the
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catamaran. Due to the criticality of this decision, the altitude and velocity thresholds have
been set to very low values, to prevent crashes or mishaps.

4. Software Architecture

To process information coming from the various sensors and generate the setpoints
necessary to fulfill the assigned tasks, the quadrotor needs to be equipped with a set of
software tools communicating with each other, which were chosen strictly due to the
hardware components that were installed on the quadrotor itself, presented in Section 2.2.
An overview of the considered software architecture is presented in Figure 6.

ROS2
Workspace

PX4

Guidance
Controller

Gazebo
QGround-
Control

LCM

RTPS

TCP

MAVLink

+ camera
+ ultrasonic sensor

+ sensors

Figure 6. The main blocks composing the software architecture in the ROS2 simulation environment.

4.1. Gazebo

Gazebo is software that makes it possible to simulate accurately and efficiently the dy-
namic behavior of populations of robots in complex environments. It offers an environment
where the dynamics of the quarotor are approximately simulated. This was a necessary
tool to test the developed algorithms, as an intermediate preparation for outdoor tests on
real hardware.

4.2. PX4

PX4 is open-source flight control software for quadrotors and other unmanned vehicles.
In this project, it is mainly used as a means to translate the pose setpoints coming from
ROS2 nodes into PWM signals that are directly injected into the motors.

4.3. ROS2

ROS2 is a real-time version of the more common ROS (Robot Operating System), a
set of open-access software libraries and tools for building robot applications. Its tools
allow structuring the software in different modules interacting with each other through
well defined message-based interfaces. In our study, ROS2 was used to create a workspace
composed by a set of different modules, each one implementing a different feature: from
packages collecting and processing the data coming from the camera and the ultrasonic
sensor, to the ones handling the information transfer between the PX4 and the guidance
controller. When performing a simulation, the sensors were replaced by their software
counterparts implemented in Gazebo, and ROS2 nodes retrieved the data via RTPS (real-
time publish–subscribe; see Section 4.6). Other software packages included the Kalman filter
and the vision system described in Section 3.1. The vision system node is asynchronous
and processes the compressed images coming from the camera whenever they are available
(20 fps), requiring an average computational time of ∼7.0 ms. The measured maximum
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computational time was 29.86 ms, and the minimum was 1.56 ms; it depends on the number
of visible markers. The node implementing the Kalman filter instead is synchronous with
the ultrasonic sensor’s refresh rate of 30 ms, processing the coming data in an average of
∼3.0 ms; 4.7 ms maximally and 2.0 ms minimally.

4.4. Guidance Controller

The guidance controller is a software package that implements autonomous flight
actions for the quadrotor. It is a modular open-source architecture written in C++, composed
of several modules that communicate internally and externally via a communication
protocol middleware named Lightweight Communications and Marshalling (LCM) [22].
The proposed architecture includes several macrotasks the quadrotor can perform—some
of them simple, such as take-off from a point, navigation to point, and landing on a specific
point; and others more complicated, designed for marine missions. The latter include
searching and rescuing a shipwrecked person, landing on a platform, and criticality and
failure handling. However, this paper mainly focuses on the autonomous landing on the
catamaran.

4.5. QGroundControl

QGC (QGroundControl, more info at: http://qgroundcontrol.com/, last access: 30
March 2022) is software providing a graphical interface useful for monitoring a quadrotor’s
status, full flight control, mission planning, and tuning of an autopilot system’s parameters.

4.6. RTPS

PX4-Fast RTPS Bridge (or more commonly RTPS, more info at: https://dev.px4.io/
v1.11_noredirect/en/middleware/micrortps.html , last access: 30 March 2022) is a com-
munication protocol that adds a real-time publish–subscribe (RTPS) interface to the PX4
Autopilot system, enabling the exchange messages between the various internal PX4 Au-
topilot components and ROS2 applications in real-time.

5. Emulation Results
5.1. Software-in-the-Loop Simulation

This section describes the results obtained with software-in-the-loop (SITL) tests
performed with the help of the experimental architecture introduced in Section 4. To
test the proposed methodology under realistic conditions, particularly as concerns the
motion of the landing pad, we proceeded as follows. We first recorded to a log file of the
telemetry (GNSS position and attitude) of the ULISSE catamaran executing a rendezvous
with the quadrotor. The catamaran was directed toward a point and then instructed to
hold its position. To do so, the catamaran positioned itself against the estimated direction
of the current. However, note that the effects of waves and the fact that the catamaran is
nonholonomic still induced a small lateral drift.

Then, we replicated the movement of the catamaran from the log file within the Gazebo
environment and carried out several simulations of the quadrotor landing on it. Notice that,
as the heave motion is not measurable in the real ULISSE ASV, we generated simulated
motions using the Pierson–Moskowitz spectrum. Three different log files replicating the
behavior of the catamaran were used. Over than 30 simulations have been performed; due
to the similarity of the data among the logs, the catamaran’s behavior was replicated from
the same log file for the majority of the tests. In a few of them, it happened that the quadrotor
lost visual contact with the tags on the platform; in these cases, the quadrotor restarted
the algorithm by resetting the state machine and approaching the landing pad again.
Despite these setbacks, the quadrotor was able to land successfully on the platform in each
simulation. For the sake of brevity, only the results of one simulations are reported hereafter.

Let us begin by comparing the roll and pitch references and estimated values in
Figure 7a and Figure 7b, respectively. From the figures, we can notice when the biggest
adjustments in terms of position occurred from 82 to 98 s, when the procedure started with

http://qgroundcontrol.com/
https://dev.px4.io/v1.11_noredirect/en/middleware/micrortps.html
https://dev.px4.io/v1.11_noredirect/en/middleware/micrortps.html
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the searching state. Indeed, in this simulation, the UAV did not find the platform at the
rendezvous point. Thus, the “searching” state was entered and the quadrotor started to
move around in circles. From 98 to 118 s, the quadrotor placed itself in the front of the
landing platform, to prepare for the landing. After then, before the quadrotor landed, the
generated references varied slightly, because the effort needed to keep the alignment with
the landing platform was minor. At around t = 135 s, the quadrotor successfully landed on
the platform.
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Figure 7. Time-wise behavior of the desired and estimated roll (a) and pitch (b) of the UAV during
the landing procedure.

The yaw reference was kept constant during the entire simulation, as it does not have
a significant influence on the landing performance. Thus, its graph is omitted here.

The data about the positions of the quadrotor and the catamaran with respect to the
starting point are depicted in Figure 8a,b. The first figure shows a bird’s eye view on the
x and y dimensions only, and the second includes all the axes. The circular movements
generated by Equations (12) and (13) during the searching state can be seen in the inter-
val (x ∈ [24, 26] m, y ∈ [8, 10] m). The instant where the radius changed was point 1
(x = 25.9 m, y = 8.9 m). In this test, the quadrotor had to perform just one complete
circle before seeing the platform at the start of the second one. The initialization phase
came afterwards, where the quadrotor had to perform some adjustments to place itself on
the bow side of the catamaran. It can be seen how the references slightly changed in the
following period: this happened because the catamaran was sliding a bit while trying to
keep its position against the sea current. More precisely, in this test the catamaran drifted
laterally at an average velocity of ∼0.21 m/s. In order to find the maximum slide veloc-
ity the catamaran can have without compromising the landing of the quadrotor, several
landing tests were performed in simulations with increasing drift velocity. The results of
these simulations show that the quadrotor is able to successfully land at a drift velocity
of up to 0.35 m/s, approximately. In Figure 8b, it can aksi be seen how the altitude of the
catamaran had oscillating behavior in the final steps of the landing procedure. In fact, the
catamaran’s heave movement is more affected by waves when it is not moving forwards.
Still, the quadrotor managed to follow the catamaran for the entire period and accomplish
the land at point 2 (x = 33.6 m, y = 10.1 m, z = 2.0 m), showing the robustness of the
proposed solution.
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Figure 8. (a) Bird’s eye view of the trajectories of the UAV and of the ULISSE ASV during the
simulation. 1 indicates the position at which the search radius changed, and 2 indicates where the
final landing was accomplished. (b) A 3D representation.

Figure 9 shows how the x and y axis velocities are generated starting from the pose
references. In detail, during the searching phase from 82 to 98 s, the sum of the velocity
components is approximately constant, corresponding to the parameter vs in Equations (12)
and (13). This is not true when the quadrotor changes its circle’s radius, at 84 and 96 s. After
that, the quadrotor makes visual contact with the landing platform; thus, the generated
velocities are the ones needed to place the quadrotor appropriately for the landing.
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Figure 9. Time-wise behavior of the UAV’s x and y velocities and their setpoints during the whole
landing procedure.

Figure 10a shows the quadrotor’s performances on the z-axis. As the inertial frame is
a NED (north–east–down) frame, the sign of z is negative. Note the step-change reference
at around t = 118 s, stating the transition between the initialization and tracking state
(Section 3.4.3) of the landing state machine. This brings the quadrotor to a prefixed mini-
mum altitude from the landing platform, to trigger as soon as possible the switch to the
compensation state. When the quadrotor is centered with respect to the landing platform
and the Kalman filter taking data from the ultrasonic sensor gives reliable outputs, the state
is switched to the compensation one, where the quadrotor compensates for the platform’s
vertical motions (see Section 3.4.7).
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Figure 10. Time-wise behavior of the absolute z position and setpoint: (a) overall simulation; (b) a
zoom of the compensation state. Notice that at t = 134 s, a high setpoint was generated to force the
UAV to freefall on top of the landing pad.

Figure 10b shows a zoom of Figure 10a. The generated references change step by
step, allowing the quadrotor to be as reactive as possible with respect to the platform’s
oscillations. The peak at around t = 134 s in Figure 10b shows the transition from the
compensation to the landing state. At that time, the z reference is set to a value (20 m) well
below the platform height above the sea, to force the UAV to set its motors to the minimum,
making it free-fall directly onto the platform. Once the Autopilot’s firmware, PX4, has
detected the landing, it automatically shuts off the motors in a few moments.

Figure 11 depicts the velocity on the z inertial axis. The generated references show
the correlation among the z position setpoints. A full video of the simulation is available
online and can be seen at: https://youtu.be/hILq4kUn9XY last access: 30 March 2022.
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Figure 11. Time-wise behavior of the UAV z velocity and its setpoint during the whole landing procedure.

5.2. Vision System Validaton

To validate the pose estimation algorithm, an experimental trial where the quadrotor
was manually controlled was conducted, and the output of the UAV’s camera was recorded
at a resolution of 480p. Then, the video was replayed offline. Each frame was sent to the
pose estimation algorithm. This experiment was not conceived to test the system under
different lightning conditions. We selected a day with clear sky, as we wanted to test the
material of the landing platform, which was selected to ensure a high level of opacity, to
prevent light reflections on the markers. Note that in poor light conditions, for instance,
during the evening, at night or on a cloudy day, the landing platform should be backlit to
ensure reliable detection of the tags.

In the following, different images taken at various altitudes are presented, showing
the detection performances of the proposed algorithm. In particular, the outputs of the

https://youtu.be/hILq4kUn9XY
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pose estimation node, i.e., the detected nodes, are shown in magenta together with the tag
identifier, on top of the same input image, to highlight the detection results.

Figure 12a depicts a situation where the distance bewtween quadrotor and catamaran
is around 6–7 m, a case similar to the initialization phase. At that distance, in the best case,
the detected tags are eight in number; the bigger tags play a fundamental role, offering
reliability and robustness in the positioning of the quadrotor. The smaller ones are instead
not recognizable yet. In Figure 12b, the quadrotor is landing on the catamaran. In a
medium-distance case like this one, the number of tags detected is higher. In fact, the
smaller ones become visible, except for the smallest one at the center, and some of the
bigger ones can be out of camera range. Tag 11, on the upper-left corner, is a little outside
of the image plane, and tag 12, in the lower-left corner, is obscured by the roll-bar’s shadow.
Finally, Figure 12c shows the instants before the landing; there, the bigger tags are almost
all not visible, whereas the smallest ones come into play to keep the quadrotor centered
with respect to landing platform.

(a) (b)

(c)

Figure 12. Detected tags at various altitudes: (a) initialization phase, high altitude; (b) tracking phase,
medium altitude; (c) compensation phase, low altitude. Each detected tag is highlighted in magenta
together with the tag identifier in blue.

These last three graphs depict additional data from the vision system. In Figure 13a,
the number of detected tags is shown, varying between 1 and 10 tags (corresponding
to Figure 12b). It can be seen that the number of detected tags was always equal to
or greater than one, assuring the continuity of the platform detection during the whole
landing procedure, confirming the performances achieved in the simulation environment.
The estimated horizontal (Figure 13b) and vertical (Figure 13c) errors with respect to
the catamaran instead are pretty consistent with the quadrotor’s flight. A video of this
emulation is available at https://youtu.be/iGNDCoQ2zaY last access: 30 March 2022. A
further comparison of the vision system’s performance in the real test and in simulations
has been performed in terms of marker detectability: it has been noticed that the smaller
markers (IDs 6, 7, 8, 9) became visible when the relative distance of quadrotor–landing
platform was approximately under 1.5 m both in simulations and in the real tests. Instead,
the bigger ones (IDs 10, 11, 12, 13) could be detected at distances up to 9.0 m in the
simulations.

https://youtu.be/iGNDCoQ2zaY
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Figure 13. Evolution during manual landing experiment of: (a) number of tags detected; (b) horizon-
tal error; (c) vertical error.

6. Conclusions

In this work, a procedure for the autonomous landing of a quadrotor on a catamaran
has been presented. The objective was to propose a specific, reliable, and robust archi-
tecture composed of different modules, adaptable to both simulations and tests in a real
environment. A vision system relying on AprilTags has been proposed to recognize the
landing platform; several tags have been placed on the platform itself to always assure
recognizability during the entire procedure.

A finite state machine handles the landing procedure. It is composed of different
states, each one describing a specific behavior the quadrotor has to engage.

The validity of the proposed methodology has been shown in a simulation environ-
ment. To test the landing procedure with realistic motions of the landing pad, the motion
of the ULISSE ASV was recorded at sea and then replayed within the Gazebo environment.
The proposed vision system was further verified using a pre-recorded video of a landing
performed under direct teleoperation of the quadrotor.
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