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Abstract: Pedestrian detection is a challenging task, mainly owing to the numerous appearances
of human bodies. Modern detectors extract representative features via the deep neural network;
however, they usually require a large training set and high-performance GPUs. For these cases,
we propose a novel human detection approach that integrates a pretrained face detector based on
multitask cascaded convolutional neural networks and a traditional pedestrian detector based on
aggregate channel features via a score combination module. The proposed detector is a promising
approach that can be used to handle pedestrian detection with limited datasets and computational
resources. The proposed detector is investigated comprehensively in terms of parameter choices to
optimize its performance. The robustness of the proposed detector in terms of the training set, test
set, and threshold is observed via tests and cross dataset validations on various pedestrian datasets,
including the INRIA, part of the ETHZ, and the Caltech and Citypersons datasets. Experiments have
proved that this integrated detector yields a significant increase in recall and a decrease in the log
average miss rate compared with sole use of the traditional pedestrian detector. At the same time, the
proposed method achieves a comparable performance to FRCNN on the INRIA test set compared
with sole use of the Aggregated Channel Features detector.

Keywords: pedestrian detection; combination of detectors; aggregate channel features; multitask
cascaded convolutional networks

1. Introduction

Pedestrian detection, a fundamental task in computer vision, can assist in self-driving,
the monitoring of crowded environments, and other activities by automatically detecting
and localizing human bodies from images. This type of task is challenging, mainly because
human bodies are depicted in numerous ways, hindering the overall description of their
features. Firstly, human bodies distinguish themselves from each other in appearance,
for example, the color of the skin, clothes, hairstyle, body structure, and pose. Secondly,
human bodies often suffer from occlusion in crowded environments, such as train stations,
shopping malls, and others. Occlusion reduces the area of a body exposed to smaller
irregular-shaped areas. Lastly, images are sensitive to the image acquisition setup, such
as the varying illumination conditions, view angles, and resolution. For instance, poor
illumination or overexposure result in low-contrast images, which blur the human bodies.
Furthermore, the human body shape appears different from various viewing angles, for
example, from frontal and profile views. Finally, low-resolution human bodies cannot be
easily identified, even by the human eye. To handle the diversity of human bodies, it is
imperative to describe their appearances effectively using a robust and rich feature set that
allows human bodies to be discriminated effectively from the background.
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Feature extractors based on deep learning have drawn extensive attention in recent
years due to their outstanding performance in extracting high-level semantic information
and its large number of features, which has improved the detection performance dramati-
cally. Those methods require training on extremely large datasets to learn representative
and robust features; otherwise, the extracted features may be not generalized enough.
Because of this, advanced deep learning methods often require massive volumes of anno-
tated data and computational resources such as high-performance computers with GPU
facilities. Considering this dilemma, many researchers have focused on the improvement of
widely used traditional handcrafted features or the combination of Convolutional Neural
Networks (CNNs) with manually extracted features for various computer vision tasks,
including pedestrian detection [1–6].

One of the earliest popular families of handcrafted features for describing object sil-
houettes is the histogram of edge orientations, which was initially used for hand gesture
recognition [7]. These features are signals that represent occurrences of gradient orien-
tations in localized portions of an image. Another popular contour-based model is the
so-called Shape Context [8], designed for measuring shape similarity for the purpose of
shape matching. It is defined as a histogram of the relative coordinates of a reference point
to a predefined set of neighboring points. This feature is suitable for matching objects
whose contours (edges) are corrupted by weak noise or are noiseless and are placed on
simple or ideally uniform backgrounds. Considering the complexity of real-life crowded
environments, this feature is not recommended for use in human detection. In contrast
to those two features, Haar-like features have been used for human detection [9,10] since
the early stages. An image is filtered by several Haar wavelets with different predesigned
patterns to extract edge features, line features, and center-surround contrast features. The
Haar-like feature method is more suitable for objects with simple structures, for example, fa-
cial features, which have relatively simple structures. Otherwise, highly textured structures,
like grass and trees, which challenge the sufficient representation of predesigned limited
Haar wavelets can cause false positives [10]. Another of the most well-known features is the
Scale-Invariant Feature Transform (SIFT) model, which consists of the position, scale, and
orientations at selected key points, which are “interesting” points of the image signal, for
example, contour corners [11]. An advanced version of SIFT is the Principal Components
Analysis SIFT (PCA-SIFT) which uses PCA to represent the normalized gradient key point
patches, proposed by Ke and Sukthakar in [12]. The authors of this work demonstrated
that this method considerably improves both the accuracy and speed compared with the
standard SIFT.

In [13], Dalal and Triggs compared the PCA-SIFT, wavelets, and shape context features
with the Histogram of Oriented Gradients (HOG) for pedestrian detection and demon-
strated that the HOG features greatly outperform the other features on both the MIT and
INRIA pedestrian datasets. Owing to [13], HOG has become one of the most widely used
features to extract silhouette information for human and other types of object detection.
The HOG calculates occurrences (histograms) of gradient orientation in localized portions
of an image. Gradient magnitudes serve as weights (votes) to strengthen or weaken the
contributions of orientations. This technique differs from the methods mentioned above in
that it is computed on a dense grid of uniformly spaced cells and uses overlapping local
contrast normalization for improved accuracy. The HOG feature is the concatenation of
histograms in overlapping blocks.

To further improve the detection results produced by HOG, some research has fo-
cused on enriching the HOG feature sets by combining them with additional cues. The
celebrated Aggregated Channel Features (ACF) [14], variants of the Integral Channel Fea-
tures (ICF) [15], were proposed. The ACF detector begins with the computation of a color
channel, such as RGB, LUV or HSV, the magnitude channel, and the HOG channel. These
channels are aggregated and vectorized into an enhanced feature vector before being sent
to the classifier. As mentioned previously, the ACF detector is characterized by taking
both the color feature and the silhouette feature into consideration. Such rich features
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outperform the HOG feature in the detection of human bodies with various appearances.
However, the ACF detector still misses some partly occluded human bodies due to the loss
of feature-related information.

Compared to the ACF detector, the subsequent Deformable Part Models (DPM) de-
tector [16] aims to create more sophisticated models based on geometric deformations of
a canonical configuration of object parts. It employs a star-structured graph model that
can represent body parts and their geometric relations and consists of multiple part filters.
Each filter mainly adopts the HOG feature and matches one part or the whole shape of the
human body. The transformed responses of filters are output as the combined score of the
root location, which defines a detection window approximately covering the entire object.

Inspired by the DPM detector, we adopt the approach of combining multiple detectors.
The main advantage of this idea is that even an occluded human body can have a relatively
high confidence score as long as the remaining visible body parts are detected and classified.
Detecting human bodies by parts is, however, not a novel idea [9,16]. A novel contribution
of our work is to incorporate the face detector rather than the commonly used body part
detectors. This is because facial features, if available, are more discriminative than other
body parts, such as the limbs and the head. Furthermore, the face detector can assist in the
detection of human bodies when only the face is visible, a scenario which is quite realistic
in crowded environments. In this work, we opt to combine the ACF detector with a face
detector. The reasons behind selecting the ACF instead of the DPM are twofold. Firstly, we
anticipate, based on preliminary investigations, that the joint use of the DPM and the face
detector will yield a higher false positive rate. Furthermore, we wish to take advantage of
the superior computational speed of ACF in comparison with that of DPM.

We aim to improve the performance of pedestrian detectors with only small datasets
and limited computational resources available through the guidance of faces. To achieve
this goal, we adaptively fuse the Multi-Task Cascaded convolutional Neural Networks
(MTCNN) detector proposed in [17] with the ACF detector via the proposed score com-
bination module. This module matches the most appropriate face for each human body
and gives a comprehensive score for the two. The proposed integrated detector not only
has enriched features but is also capable of identifying visible faces. Additionally, the
pretrained MTCNN can be directly applied to small datasets without retraining. Therefore,
the proposed detector benefits from deep models while avoiding the problems introduced
by training on small datasets at the same time. The integrated detector is constructed by
scaling and accumulating the face scores to the body scores to yield a final overall score
which stands for an overall decision that arises from both detectors. The scaled face scores
are higher when faces are located closer to the position at which a face is most likely to
appear. Finally, the integrated detector outputs body bounding boxes and their scores
taking account of the color, silhouette, and effective face features. In comparison to the
sole use of the pretrained ACF detector provided by Piotr’s toolbox, the proposed detector
successfully increases the precision level from 92.19% to 93.21% with the average miss
rate decreasing from 16.85% to 14.29% on the INRIA pedestrian test dataset, even lower
than that of YOLOv3 [18] (14.75%) and comparable to that of FRCNN [19] (14%). It also
performs better on the ETHZ, Caltech, and Citypersons datasets.

Our main contributions are summarized as follows:

• A novel pedestrian detector integrating the multitask cascaded CNN and ACF is
proposed;

• Improved detection performance for significantly occluded pedestrians and beyond is
achieved;

• Robustness of the proposed detector in terms of datasets and beyond is achieved.

The paper is organized as follows: Section 2 presents the methodology used to con-
struct the integrated detector, including the technical procedures involved and detailed
explanations regarding the function and design principles of each module in the proposed
detector. In Section 3, we investigate the choices of parameters and test the proposed
detector on various datasets. The discussion is presented in Section 4.
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2. Materials and Methods
2.1. The Proposed Detector

Traditionally, the ACF human body detector takes the features of a sliding window(
bx, by, bw, bh

)
as the input. The two-dimensional vector (bx, by) contains the x and y

Cartesian coordinates of the top left corner of the sliding window, which has a width of bw
and a height of bh, as denoted in Figure 1. Our integrated detector differs from the ACF
human body detector, mainly by introducing a face detector module and score combination,
the output of which is then fed into the ACF detector together with the features, as shown
in Figure 2.
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Figure 1. The depiction of the sliding window (green solid box), the face bounding boxes (yellow
solid boxes A to E), and the parameters used for the score combination. The edge of the blue-shaded
circle marks out the zero-scaled score positions. The scaled scores are positive when face centers are
inside this circle and negative when the centers are outside.
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Figure 2. The workflow of the proposed human body detector.

The proposed integrated detector starts with feeding an image into a face detector
which outputs N predicted face bounding boxes

(
f n
x , f n

y , f n
w, f n

h

)
with centers located at

( f n
x + f n

w/2, f n
y + f n

h /2) and corresponding face scores of sn, n = 1, 2, . . . N. The vector
( f n

x , f n
y ) stands for the x and y coordinates of the top left corner of the n-th face bounding

box with a width of f n
w and a height of f n

h , as shown in Figure 1. Considering that the
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MTCNN face detector outputs an array of face probabilities as face scores, these face scores
are transformed to weights according to

sn
f =

1
2

ln
(

sn

1− sn

)
(1)

to keep consistent with the ACF scores as the first step of the score combination.
Secondly, face bounding boxes are filtered following two rules. One rule is to eliminate

face bounding boxes that are beyond the enlarged sliding window area shown as the dotted
box in Figure 1. The height and the width of the enlarged sliding window are increased
by 2× o f f set compared with those of the original sliding window. The other rule is to
eliminate relatively large face bounding boxes determined by the sliding window and two
predesigned parameters, namely rw and rh. The remaining M face bounding boxes meet
the following conditions:

f m
x ≥ bx − o f f set (2)

f m
y ≥ by − o f f set (3)

f m
x + f m

w ≤ bx + bw + o f f set (4)

f m
y + f m

h ≤ by + bh + o f f set (5)

bw/ f m
w ≥ rw (6)

bh/ f m
h ≥ rh (7)

In the last step of the score combination, the scores (sm
f , m = 1, 2, . . . M) of the remain-

ing face bounding boxes are scaled to sm
sc according to

sm
sc = fss · sm

f ·
(

1− dm

d0

)
(8)

where fss is the face score scale, and dm is the Euclidian distance from the center of the
m-th face bounding box to the anchor, which is located at

(
bx + fwr · bw, by + fhr · bh

)
. The

parameter d0 is d0 = dhr · bh, where dhr is the ratio of the Euclidian distance of the zero-
scaled score to bh. Furthermore, fss, fwr, fhr, and dhr are predesigned parameters, which
are illustrated in Figure 1. The maximum scaled score, if it exists, is assigned to the initial
overall score sall = max( sm

sc); otherwise, the initial overall score is assigned as 0. The initial
overall score is fed into the ACF detector module to produce the final overall score, which
is sent to the threshold module. In this module, the final overall score is considered in
two cases according to its initial score. The first case is that, if the initial overall score is
assigned by the scaled face score, the sliding window with sall > sthr will be the output as
a nominal body bounding box. Otherwise, the sliding window with sall > −1 will be the
output. Note that −1 is the default threshold of the ACF detector, and sthr is a predesigned
parameter that should be larger than −1.

2.2. Modules of the Proposed Integrated Detector

In this part, the functionality and design principles of each module shown in Figure 2
are explained in detail.

2.2.1. Sliding Window

This module (Figure 3) outputs the location, size, and ACF features of a cropped area,
namely the sliding window, of the image. As explained previously, the location and size
are expressed as

(
bx, by, bw, bh

)
on the original scale. This means that if the sliding window

is in a subsampled layer in a feature pyramid, its size and location must be expanded
according to the specific subsampling rate. The ACF features consist of a feature vector,
which is the concatenation of the LUV color channel, the gradient magnitude channel, and
the HOG channel.
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2.2.2. Face Detector

This module (Figure 4) takes an image as the input and outputs the detected face
bounding boxes jointly with the face scores. Face detection plays a significant role in the
overall integrated detection, because the larger the face score, the more likely it is for the
corresponding human body to be detected. To correctly identify human bodies, the face
detector should have high precision and yield a small number of false positives.
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We tested the pretrained Viola Jones (VJ) face detector [20], the fast face detector [21],
and the MTCNN detector [22] on the INRIA pedestrian test dataset [13]. According to the
results shown in the left column of Figure 5, the VJ detector tends to miss faces that are not
presented in the frontal view and those that are occluded. False positives appear when the
background is relatively complicated or when there are structures that resemble human
faces, such as wheels. The fast face detector was designed based on the work of [23]. This
new modified version of the detector extends the ACF used in [23] by adding an integral
image channel, in which every pixel is the summation of all of the pixels above and to the
left of it. As shown in the middle column of Figure 5, some multiview faces are identified
at the expense of a dramatically increasing number of false positives. Compared with these
two face detectors, the MTCNN detector gives more accurate detection results with lower
false positives rates. As shown in the right column of Figure 5, no false positives occur
in these four sample images, and only faces that are largely occluded or presented from
mainly the back view are missed, which is expected. This level of performance is due to
the collaboration of three convolutional neural networks: the Propose-Network (P-Net),
Refine-Network (R-Net), and Output-Network (O-Net). An image is first fed into the fully
convolutional neural network P-Net to quickly yield a large number of candidate detections,
which are subsequently refined by the R-Net by further correction of the regression vector
of the face candidate frame and nonmaximum suppression. The final face regression boxes
and facial landmarks (contour key points) are output after correcting and filtering the
detections produced earlier with the landmarks, corrections, and probabilities output by
the O-Net. The MTCNN detector finally outputs the adjusted face bounding boxes, the
facial landmarks, and face scores in the range [0, 1]. Note that more faces are detected by
the MTCNN detector without the use of the O-Net, as shown in Figure 6. However, as
expected, this structure also results in more false faces, as shown in Figure 7. To achieve the
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best and most robust face detection, the overall MTCNN detector, therefore, was chosen as
our integrated detector.
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are detected (b,d) when the O-Net is removed.

Sensors 2022, 22, x FOR PEER REVIEW 8 of 23 
 

 

    

(a) (b) (c) (d) 

Figure 6. Compare to the results obtained with the complete MTCNN detector (a,c), more true faces 

are detected (b,d) when the O-Net is removed. 

  

  
(a) (b) 

Figure 7. The O-Net assists with the correction of face bounding boxes by the estimation of facial 

landmarks. We observe that the MTCNN detector produces fewer false faces (a), although some 

faces with occluded facial features are missed. In contrast, a large number of false faces appear in 

the complex backgrounds (b) when the O-Net is removed from the MTCNN detector. We observed 

that these are associated with particular structures, for example, car wheels. 

2.2.3. Score Combination 

The score combination consists of three modules, namely the face score transfor-

mation module, the face bounding box filtering module, and the score scaling and assign-

ing module. 

2.2.4. Face Score Transformation 

This module takes the face scores generated by the MTCNN detector as inputs and 

outputs the corresponding weights, which are the transformed face scores according to 

Equation (1). This is to remain consistent with the weights produced by the cascading 

decision trees in the ACF detector. After the transformation, the face detector can be re-

garded as a single decision tree. The transformed face scores are used in the score scaling 

and assigning module. 

2.2.5. Face Bounding Box Filtering 

This filtering module (Figure 8) takes (𝑓𝑥
𝑛, 𝑓𝑦

𝑛, 𝑓𝑤
𝑛, 𝑓ℎ

𝑛) and (𝑏𝑥, 𝑏𝑦, 𝑏𝑤 , 𝑏ℎ), i.e., the 

sizes and locations of the face bounding boxes and the sliding windows respectively as 

inputs and decides which face bounding boxes should be sent to the score scaling and 

assigning module by checking whether they are potential faces of this sliding window 

according to the two rules explained below. 

Figure 7. The O-Net assists with the correction of face bounding boxes by the estimation of facial
landmarks. We observe that the MTCNN detector produces fewer false faces (a), although some
faces with occluded facial features are missed. In contrast, a large number of false faces appear in the
complex backgrounds (b) when the O-Net is removed from the MTCNN detector. We observed that
these are associated with particular structures, for example, car wheels.

2.2.3. Score Combination

The score combination consists of three modules, namely the face score transformation
module, the face bounding box filtering module, and the score scaling and assigning module.

2.2.4. Face Score Transformation

This module takes the face scores generated by the MTCNN detector as inputs and
outputs the corresponding weights, which are the transformed face scores according to
Equation (1). This is to remain consistent with the weights produced by the cascading
decision trees in the ACF detector. After the transformation, the face detector can be
regarded as a single decision tree. The transformed face scores are used in the score scaling
and assigning module.

2.2.5. Face Bounding Box Filtering

This filtering module (Figure 8) takes
(

f n
x , f n

y , f n
w, f n

h

)
and

(
bx, by, bw, bh

)
, i.e., the sizes

and locations of the face bounding boxes and the sliding windows respectively as inputs
and decides which face bounding boxes should be sent to the score scaling and assigning
module by checking whether they are potential faces of this sliding window according to
the two rules explained below.



Sensors 2022, 22, 3568 9 of 23Sensors 2022, 22, x FOR PEER REVIEW 9 of 23 
 

 

 

Figure 8. Diagram of the face bounding box filtering module. 

The first rule is that the true face must be within the potential body bounding box, so 

the potential faces should be inside the sliding window. There are also face bounding 

boxes that are only partly inside the sliding box, for example, face bounding box D in 

Figure 1. To leave some flexibility for such bounding boxes, the four window edges are 

enlarged by a predesigned 𝑜𝑓𝑓𝑠𝑒𝑡, shown as the dotted box in Figure 1. This rule is math-

ematically expressed as (2)–(5). Figure 9 shows an example from the INRIA pedestrian 

dataset. The overall scores of the ACF detector (a) and the integrated detector (b) are both 

57.6. This is because the face (d) should have contributed to the overall score but is filtered 

out, as it is located at the edge of the sliding window (b). By setting the 𝑜𝑓𝑓𝑠𝑒𝑡as5 pixels, 

the true positive (c) has a higher score of 62.55, as the face score is successfully included. 

    

(a) (b) (c) (d) 

Figure 9. Detection results of the ACF detector (a), the integrated detector with 𝑜𝑓𝑓𝑠𝑒𝑡 = 0 

(b)and𝑜𝑓𝑓𝑠𝑒𝑡 = 5 (c), and the MTCNN detector (d). 

The second rule is that the face bounding box should not be too large compared with 

the sliding window. According to the ground truth of the INRIA pedestrian test dataset, 

only the bounding boxes that contain most parts of a body where the person’s height is 

larger than 100 pixels are labelled as true positives. Therefore, only the largest bounding 

boxes shown in Figure 10a–c are true positives, while other smaller bounding boxes are 

false positives, even though some of them do contain human body parts, such as those 

shown in Figure 10a. This phenomenon is exacerbated by the incorporation of the face 

detector in the system, as shown in Figure 10b. This is because the new face scores are 

large enough to alter the detection results of the ACF detector by introducing false posi-

tives when the sliding window is too small to contain sufficient features. To eliminate such 

false positives, the second rule is adopted by setting the minimum width ratio 𝑟𝑤 and 

height ratio 𝑟ℎ. The width ratio is the ratio of the width of the sliding window to that of 

the face bounding box, and the height ratio is the ratio of the height of the sliding window 

to that of the face bounding box. Face bounding boxes with any ratio larger than 𝑟𝑤 or 𝑟ℎ 

are filtered out, as expressed in (6) and (7). For example, setting 𝑟𝑤 = 3 and 𝑟ℎ = 8 elim-

inates 1 false positive in Figure 10c in comparison with Figure 10b. 

Figure 8. Diagram of the face bounding box filtering module.

The first rule is that the true face must be within the potential body bounding box, so
the potential faces should be inside the sliding window. There are also face bounding boxes
that are only partly inside the sliding box, for example, face bounding box D in Figure 1.
To leave some flexibility for such bounding boxes, the four window edges are enlarged
by a predesigned o f f set, shown as the dotted box in Figure 1. This rule is mathematically
expressed as (2)–(5). Figure 9 shows an example from the INRIA pedestrian dataset. The
overall scores of the ACF detector (a) and the integrated detector (b) are both 57.6. This is
because the face (d) should have contributed to the overall score but is filtered out, as it
is located at the edge of the sliding window (b). By setting the o f f set as 5 pixels, the true
positive (c) has a higher score of 62.55, as the face score is successfully included.
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Figure 9. Detection results of the ACF detector (a), the integrated detector with o f f set = 0
(b) and o f f set = 5 (c), and the MTCNN detector (d).

The second rule is that the face bounding box should not be too large compared with
the sliding window. According to the ground truth of the INRIA pedestrian test dataset,
only the bounding boxes that contain most parts of a body where the person’s height is
larger than 100 pixels are labelled as true positives. Therefore, only the largest bounding
boxes shown in Figure 10a–c are true positives, while other smaller bounding boxes are
false positives, even though some of them do contain human body parts, such as those
shown in Figure 10a. This phenomenon is exacerbated by the incorporation of the face
detector in the system, as shown in Figure 10b. This is because the new face scores are large
enough to alter the detection results of the ACF detector by introducing false positives
when the sliding window is too small to contain sufficient features. To eliminate such false
positives, the second rule is adopted by setting the minimum width ratio rw and height
ratio rh. The width ratio is the ratio of the width of the sliding window to that of the face
bounding box, and the height ratio is the ratio of the height of the sliding window to that of
the face bounding box. Face bounding boxes with any ratio larger than rw or rh are filtered
out, as expressed in (6) and (7). For example, setting rw = 3 and rh = 8 eliminates 1 false
positive in Figure 10c in comparison with Figure 10b.
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Figure 10. Detection results of the ACF detector (a), the integrated detector with rw = rh = 0 (b) or
rw = 3, rh = 8 (c) and the MTCNN detector (d). In (b), there are 2 more false positives than in (a),
while (c) only has one more false positive.

2.2.6. Score Scaling and Assigning

This last module (Figure 11) of the score combination takes the filtered face scores
sm

f and the locations and sizes
(

f m
x , f m

y , f m
w , f m

h

)
as inputs . They are used to compute the

scaled score, which is assigned to the initial overall score and fed into the subsequent ACF
detection module.
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Figure 11. Diagram of the score projection and assigning module. Note that the filtered face
information is fed into this module. The output initial overall score is assigned to the corresponding
input sliding window.

The basic rule of score scaling is that the nearer the face bounding box is to the anchor
of a sliding window, the higher the initial overall score is. The anchor is located at the most
likely position that a face of an upright human body will appear at. According to this rule,
the scaled score is computed by (8), as illustrated in Figure 12 below. The highest scaled
score appears at dm = 0, which means that the face bounding box is located exactly at the
anchor, and the sliding window is temporarily considered to be the most likely to contain a
human body. The scaled score decreases as the face bounding box moves away from the
anchor and reaches 0 when dm = d0. The parameter d0 is the zero-scaled score distance, as
marked in Figure 1. d0 should be linearly related to the size of the sliding window to adapt
to the changes in the size of the area in which the faces are likely to appear, as introduced
by the varying sliding window sizes, so we set d0 = dhr · bh. The scaled score becomes
negative when dm > d0 and reaches its minimum value at the maximum value of dm before
the face bounding box is filtered out. Such negative scores can help to eliminate false
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human body bounding boxes. According to (8), the scaled scores of the five face bounding
boxes shown in Figure 1 are ranked as A > B > C = 0 > E > D.
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(a) (b) 

Figure 13. The human body is missed by the ACF detector (a), but it is detected by the integrated 

detector with 𝑓𝑠𝑠 = 1 (b). 

   
(a) (b) (c) 

Figure 12. The scaled score divided by fss versus the distance from the m -th face center to the anchor
is drawn according to (8). The higher the scaled score is, the more likely the sliding window is to
contain a human body.

To increase the weight of the MTCNN detector, the predesigned face score scale fss
is introduced in (8), so that the scaled score sm

sc of the MTCNN detector is equivalent
to the sum score of fss decision trees. The larger fss is, the greater the face detector’s
influence on the result of the integrated human body detector is. In Figure 13, an example
is illustrated, where the human body is missed by the ACF detector (left) but is detected
by the integrated detector with fss = 1 (right). In another example illustrated in the top
sequence of Figure 14, multiple human bodies are missed, although their faces are correctly
detected. This is because the face score is overly small compared with the summed score of
up to 2048 decision trees in the ACF body detector. As a result, even with the face score
included, the overall score of a bounding box associated with a missed body is still too
small to reach the threshold. However, we observe in Figure 15 that when fss is increased
to 5, 8, or 10, the previously missed human body is now detected. This means that as the
weight of the MTCNN detector increases, the accuracy of a body bounding box increases.
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Figure 13. The human body is missed by the ACF detector (a), but it is detected by the integrated
detector with fss = 1 (b).
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After score scaling, the maximum scaled score max(sm
sc) is assigned to the overall score

of the sliding window for initialization. Sliding windows with positive initial scores are
more likely to survive the ACF detector, while those with negative initial scores are more
likely to be eliminated.

2.2.7. ACF Detector

The ACF detector (Figure 16) that is employed to detect the human body in the
proposed framework is mainly based on the pretrained cascading decision trees [24]. It
takes the aggregated color channel, the gradient magnitude channel, and the HOG channel
of the sliding window as the input feature vector and outputs the final overall score and the
location of the sliding window as the nominal human body bounding box. Note that the
final overall score is obtained through the addition of the scaled face score, considered the
initial overall score, and the body score. One modification is that the initial overall score of
the ACF detector is set as max(sm

sc), as mentioned in the score scaling and assigning module.
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The other modification is that the face threshold sthr is set to filter out the additional
false positive sliding windows that contain faces. To show some examples of such false
positives and explain their appearances, we compared the ACF detector and the integrated
detector with fss = 8 and sthr = −1 on the INRIA pedestrian test dataset. The number of
true positives rose from 543 to 550; however, the number of false positives also rose from
328 to 359. Some samples of additional false positives are shown in the top set of images of
Figure 17. The human bodies in these samples have already been correctly marked by the
bounding boxes with high body scores, as shown in the bottom set of images in Figure 17,
and the bounding boxes may still have relatively high body scores if they are misplaced
by only a short distance. After including the scaled face scores, these misplaced boxes are
easily identified as false positives. This also explains why each false positive shown in
Figure 17 contains a human face. Though the final overall scores of such false positives are
higher than the default threshold, they are much lower than those of the true positives, as
shown in Figure 17. Considering this phenomenon, a face threshold sthr, higher than the
default threshold and lower than the final overall scores of the true positives, is set to filter
out false positives containing faces. This face threshold must be higher than the default
threshold, because the final overall scores are increased by the scaled face scores, whereas
the default threshold is designed without considering face scores. The face threshold sthr
helps with the elimination of false positives introduced by the incorporation of face scores
and the implementation of fss. Note that the default threshold is used if the sliding window
does not contain any faces.
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Both detectors utilize the default threshold.

The procedure of the proposed integrated detector is summarized in Algorithm 1.
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Algorithm 1: Procedure used by the integrated detector

Input
A sliding window

(
bx, by, bw, bh

)
, face bounding boxes

(
f n
x , f n

y , f n
w, f n

h

)
, face

scores sn, n = 1, 2, . . . N.
Settings sall = 0, m = 0, set o f f set, rw, rh, fss, dhr, fwr, fhr and sthr.
Output Qualified

(
bx, by, bw, bh

)
, sall .

Step 1

For each n:
If Equations (2)–(7) are fulfilled:

m = m + 1
sm

sc = fss · 1
2 ln

(
sn

1−sn

)
·
(

1− dn

dhr ·bh

)
sall = max{ sm

sc}, m = 1, 2, . . . M
Step 2 Send sall to the cascading decision trees.

Step 3

If sall = max{sm
sc} is implemented:

If sall > sthr:
Output

(
bx, by, bw, bh

)
;

else if sall > sde f ault (default threshold):
Output

(
bx, by, bw, bh

)
.

3. Experiments Analysis and Results

In this section, we first investigate the influences of eight predesigned parameters on
the performance of the proposed detector to obtain the optimal parameters. Afterwards, the
tuned detector is compared with state-of-the-art methods, and its robustness in is evaluated
on various datasets.

In the following experiments, the INRIA pedestrian dataset, Caltech pedestrian dataset,
Citypersons dataset, and the ETHZ dataset were used.

• INRIA pedestrian dataset [13]: The test dataset contains 288 positive color images
with 589 labeled human bodies. These images were shot at around eye-level. Most of
these human bodies have an upright orientation with some extent of occlusion.

• Caltech pedestrian dataset [25]: This dataset consists of approximately 250,000 frames,
640 × 480 in size, and a total of 350,000 annotated bounding boxes. The standard test
set with 4024 images and corresponding new annotations [26] were used in subsequent
experiments. Each image contains about 1.4 persons.

• Citypersons dataset [27]: The validation set contains 500 high-resolution images,
1024 × 2048 in size, and a total of 3938 persons. Each validation image contains about
7.9 persons.

• ETHZ dataset [28]: This dataset is a collection of 8 video sequences from busy inner-city
locations with annotated human bodies. We assessed two representative sequences
from this dataset, namely the BAHNHOF sequence and the Sunny Day sequence.
As the pretrained ACF detector cannot classify human bodies with very small sizes,
ground truths with widths and heights smaller than 32 and 80 pixels, respectively,
were filtered out from the image sequences. After this, the BAHNHOF sequence had
999 images with 3341 ground truths and the Sunny Day sequence had 354 images with
1560 ground truths.

For Caltech and Citypersons, pedestrians were allocated to the reasonable subset,
heavily occluded subset, and all subset. The reasonable subset is a collection of pedes-
trians with heights greater than 50 pixels and visibility levels greater than 0.65. For the
heavily occluded subset, the visibility lies in the range [0.2, 0.65]. The all subset consists of
pedestrians with heights greater than 20 pixels and a visibility level greater than 0.2.

The MTCNN detector utilized in the experiments is based on the convolutional neural
network, which not only detects human faces but also locates facial landmarks. It is
available online and is well-trained, and therefore, it was directly applied to our detector.
Note that, facial landmark locations were discarded, as only the face bounding boxes and
probabilities were used in our detector.
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The ACF detector is available in the Piotr’s MATLAB toolbox version 3.40. It is
an Adaboost classifier based on cascading binary decision trees. The ACF detector was
pretrained on both the INRIA and Caltech pedestrian datasets, respectively.

3.1. Parameter Design

The integrated detector has eight predesigned parameters, namely o f f set, rw, rh in the
face bounding boxes filtering module, fwr, fhr, dhr, fss in the score scaling and assigning
module, and sthr in the ACF detector. To fully exploit the power of the integrated detector,
we investigated the influences of these parameters on the detection results via control
variates in the following experiments. The MTCNN face detector available at [22] and the
pretrained ACF detector provided by [24] were utilized, and the pre-designed parameters
were initially set as o f f set = 0, rw = 3, rh = 7, fwr = 1/2, fhr = 1/8, dhr = 1/4, fss = 8,
sthr = 25. The integrated detector was tested on the INRIA pedestrian test dataset, which
has 589 ground truths. The results were evaluated quantitively by calculating the recall and
the log-average miss rate. The recall was calculated as the number of true positives divided
by the number of groundtruths. The log-average miss rate refers to the average miss rate
over the False Positives Per Image (FPPI) in the range

[
10−2, 100], which can be calculated

automatically using Piotr’s MATLAB toolbox. The miss rate is defined as (1− Recall).
Tables 1–6 list the detection results from the integrated detector for various choices

of parameters. Their corresponding Receiver Operating Characteristic (ROC) curves are
shown in Figure 18. Considering that sthr and fss are correlated parameters because the
face threshold should adapt to the final overall score, their 3D histograms are drawn in
Figure 19, instead of using 2D curves and tables. Note that some abbreviations are used in
these figures and tables, namely TP (the number of True Positives), FP (the number of False
Positives), R (Recall), and AMR (the Average Miss Rate).

Table 1. Comparison of different o f f set values in the integrated detector.

offset TP FP R (%) AMR (%)

0 549 319 93.21 14.29
2 549 322 93.21 14.44
4 549 322 93.21 14.44
6 549 322 93.21 14.44

Table 2. Comparison of different rw values in the integrated detector.

rw TP FP R (%) AMR (%)

1 549 319 93.21 14.29
3 549 319 93.21 14.29
4 549 314 93.21 14.53
5 542 308 92.02 15.90

Table 3. Comparison of different rh values in the integrated detector.

rh TP FP R (%) AMR (%)

6 547 321 92.87 15.41
7 549 319 93.21 14.29
8 549 316 93.21 14.46
9 547 308 92.87 15.84
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Table 4. Comparison of different fwr values in the integrated detector.

fwr TP FP R (%) AMR (%)

0.25 545 328 92.53 15.89
0.5 549 319 93.21 14.29

0.75 547 317 92.87 15.42

Table 5. Comparison of different fhr values in the integrated detector.

fhr TP FP R (%) AMR (%)

1/10 548 321 93.04 14.62
1/8 549 319 93.21 14.29
1/6 547 316 92.87 14.93
1/3 540 327 91.68 16.99

Table 6. Comparison of different dhr values in the integrated detector.

dhr TP FP R (%) AMR (%)

1/8 547 323 92.87 14.40
1/4 549 319 93.21 14.29
3/8 548 322 93.04 15.24
1/2 548 330 93.04 15.81
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Figure 19. The choices of sthr and fss mutually influence the number of true positives (a), the number
of false positives (b), the recall (c), and the average miss rate (d).

According to Table 1 and Figure 18a, the same recall and 3 more false positives are
produced when the o f f set increases from 0 to 6. This shows that the contribution of the
o f f set is not obvious in our setup. A value of o f f set = 0 is recommended when one
wishes to minimize false positives. Tables 2 and 3 and Figure 18b,c show that rw = 1–4 and
rh = 7, 8 can produce the maximum number of true positives. Increasing rw and rh leads
to less false positives, because relatively small sliding windows are filtered out. However,
some true positives are also eliminated when rw and rh are too large. To maintain as many
true positives as possible, rw = 1 and rh = 7 are recommended. As for the score scaling
and assigning, the anchor best locates at the middle of the width ( fwr = 0.5) and 1/8th of
the height ( fhr = 1/8), as presented in Tables 4 and 5 and Figure 18d,e. This location is in
line with the face positions of the most upright adult human bodies. Table 6 and Figure 18f
show that the best dhr is 1/4. As shown in Figure 19a–c, sthr is inversely proportional to
the number of true positives, false positives, and recall, whereas fss is directly proportional
to them. This is because a higher threshold brings in fewer bounding boxes, but more are
obtained when the final overall scores are augmented by fss. To strike a balance between
these two parameters, parameters of sthr = 25, fss = 8 are suggested, which produces the
smallest average miss rate, as shown in Figure 18d.

According to these experimental results, the predesigned parameters can be allocated
into four types according to their functions. First, rw, rh, and sthr can be increased to
eliminate false positives but with the sacrifice of some true positives. In contrast, fss can be
increased to bring in both additional true and false positives. Thirdly, choosing appropriate
fwr, fhr, and dhr values can increase the true positives and decrease the false positives at
the same time. Finally, the o f f set has a negligible influence on the detection results.

3.2. Evaluation

Following an extensive experimental validation study, we can claim that, for the
dataset considered, the integrated detector is finely tuned and produces the best detection
results when we choose o f f set = 0, rw = 3, rh = 7, fwr = 0.5, fhr = 0.125, dhr = 0.25,
fss = 8, sthr = 25. Furthermore, for the dataset considered, as shown in Figure 20, the
integrated detector produces a better performance than the traditional ACF detector with
the average miss rate decreasing from 16.85% to 14.29%. By fusing the MTCNN face
detector with the body detector, the number of true positives increases from 543 to 549,
while the number of false positives decreases from 328 to 319, as shown in Table 7. Some
image samples that depict the increased true positives and the eliminated false positives
are shown in Figures 21 and 22, respectively.
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Table 7. Comparison of the detection results of the ACF detector and the integrated detector for the
INRIA pedestrian test dataset.

TP FP

ACF 543 328
Integrated detector 549 319
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detector (a–d).

3.2.1. Comparison with the State-of-the-Art Detectors

We also compared the proposed detector with state-of-the-art detectors, including
the handcrafted feature based detectors HOG + SVM [13], DPM [16], ACF [14], and
ACF + HSC [1]; learning based detectors, such as ConvNet [29]; and the deep models
YOLOv3 [18], FRCNN [19], FRCNN + BN [19], SAR R-CNN [30], and RPN-BF [31]. The
AMRs shown in Table 8 are cited from [1], except for the proposed detector, ACF, and
YOLOv3. As shown in the table, the proposed detector produced the lowest AMR of the
listed nondeep model-based detectors. It even outperformed YOLOv3 and achieved a
performance comparable to that of FRCNN for the INRIA test dataset. Other deep-model-
based detectors produced much lower AMRs by taking advantage of extracting a large
number of high-level features and training many epochs on high-end GPUs.
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Table 8. Comparison of the AMRs of state-of-the-art detectors based on handcrafted features and
deep models to the proposed detector for the INRIA test set.

Method Deep-Model-Based Body Detector AMR (%)

HOG + SVM [13] No 45.18
DPM [16] No 19.96

ConvNet [29] No 17.1
ACF [14] No 16.85

YOLOv3 [18] Yes 14.75
ACF + HSC [1] No 14.38

Integrated detector
(proposed)

No
(except for face detection) 14.29

FRCNN [19] Yes 14
FRCNN + BN [19] Yes 12
SAR R-CNN [30] Yes 8.04

RPN-BF [31] Yes 6.9

3.2.2. Evaluation of Robustness

To evaluate the robustness of the integrated detector, it was tested on the ETHZ
dataset, Caltech test set, and Citypersons validation set in the following experiments. The
parameters of the integrated detector were still o f f set = 0, rw = 3, rh = 7, fwr = 0.5,
fhr = 0.125, dhr = 0.25, and fss = 8, sthr = 25. The embedded ACF detector was pretrained
on the INRIA dataset or the Caltech dataset, if specified.

The results for the two sequences of the ETHZ dataset (Tables 9 and 10) show that
the proposed integrated detector produced more true positives and fewer false positives,
leading to an increased recall and decreased AMR positives. For the Caltech test set, a
decrease in AMRs (Table 11) was also observed.

Table 9. Detection results for the BAHNHOF sequence.

TP FP R (%) AMR (%)

ACF 2736 1900 81.89 48.79
Integrated detector 2743 1867 82.10 46.04
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Table 10. Detection results for the Sunny Day sequence.

TP FP R (%) AMR (%)

ACF 1250 91 80.13 31.90
Integrated detector 1268 84 81.28 28.82

Table 11. AMRs (%) of the reasonable subset for the Caltech test set. The ACF detector was pretrained
with the Caltech training set.

Thr 1 −1 −0.5 0 0.5

ACF 24.41 24.41 27.77 89.01
Integrated detector

(ms 2 = 24) 24.39 24.14 27.77 88.89

1 The threshold of the decision forest. 2 The minimum size of faces that the MTCNN can detect.

A cross dataset evaluation on the Citypersons dataset was performed. The detectors
were first pretrained on the INRIA and Caltech datasets and were then tested on Cityper-
sons validation set. It was observed that the integrated detector significantly decreased the
AMR (Figures 23a–c and 24a–c) and increased the recall (Figures 23d–f and 24d–f) for the
reasonable, heavily occluded, and all subsets with both pretrained datasets. This, together
with the information shown in Tables 9 and 10, indicates that the proposed integrated
detector as well as the parameter design are robust when used with the training set and are
applicable for use on an unseen dataset.
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Figure 24. The AMR and recall of the reasonable subset (a,d), heavily occluded subset (b,e), and all
subset (c,f) for the Citypersons validation set. The ACF detector was pretrained on the INRIA dataset.

We also investigated the robustness of the proposed detector under different thresh-
olds. The results (Table 11, Figures 23 and 24) show that the integrated detector improved
the performance under varying thresholds, and the improvement was more significant
under higher thresholds. This means that the proposed method is not only robust to
thresholds but performs better when fewer false positives are required.

The influence of the minimum size (denoted as ms) of faces on the integrated detector
was studied. The smaller the parameter ms, the more faces MTCNN was able to detect.
According to Table 11 and Figures 23 and 24, more noticeable improvements were observed
in most cases, except for the reasonable and all subsets pretrained on INRIA when ms was
decreased to 13 pixels. This means that the performance of the face detector influences the
improvements of the whole integrated detector.

3.2.3. Detection Speed

With regard to the detection speed, the time costs of detecting 288 INRIA pedestrian
test images for different detectors via Intel(R) Core (TM) i7-8565U CPU @ 1.80GHz are
compared in Table 12. In terms of the time cost required to detect the INRIA test set,
the integrated detector requires approximately 74.32 s to detect 288 INRIA pedestrian
test images, including 51.33 s for faces. This time cost for the MTCNN detector can be
compressed to 45.24 s if the O-Net is not implemented. By removing the O-Net from the
integrated detector, 3 more true positives were detected at the expense of 25 more false
positives for the INRIA pedestrian test dataset. Two samples of increased true positives
are shown in Figure 25. To increase the true positive rate while maintaining the least false
positive rate, the complete MTCNN was utilized in our integrated detector.

Table 12. The time cost required to detect the INRIA test set.

Method Proposed Proposed 1 DPM ACF HOG + SVM YOLOv3

Time cost (s) 22.99 + 51.33 22.99 + 45.24 505.26 17.13 45.98 467.41
1 Proposed detector without O-Net.
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Figure 25. By removing the O-Net from the integrated detector, more human bodies ( fss = 20,
sthr = 16 ) were detected (b,d) than with the complete integrated detector (a,c).

4. Conclusions

In conclusion, we presented an integrated pedestrian detector, namely the MTCNN + ACF
detector, for small pedestrian datasets. It detects human bodies considering not only
color and edge information but also facial features. The integrated detector aggregates
multiple detection tasks uniformly to produce a final overall score, which is the sum of
the scaled face score and the body score. The fusion rules and parameter choices were
investigated in depth. The idea is simple and easy to implement, but the proposed detector
can effectively and robustly improve the detection performance compared to the sole use
of ACF detector on various pedestrian datasets. The proposed detector only utilizes the
CPU device and does not require any further training; however, it achieves a performance
level (14.29%) comparable to deep models such as FRCNN (14%) and YOLOv3 (14.75%)
on the small pedestrian dataset. The recall and average miss rate were observed to have a
steady increase and decrease, respectively, on the Citypersons, ETHZ, and Caltech datasets.
Therefore, the proposed detector is an effective paradigm of multitask collaboration, and
it serves as a cost-effective choice for pedestrian detection in the case of limited data and
computational resources.
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