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Abstract: When a traditional Deep Deterministic Policy Gradient (DDPG) algorithm is used in mo-
bile robot path planning, due to the limited observable environment of mobile robots, the training 
efficiency of the path planning model is low, and the convergence speed is slow. In this paper, Long 
Short-Term Memory (LSTM) is introduced into the DDPG network, the former and current states 
of the mobile robot are combined to determine the actions of the robot, and a Batch Norm layer is 
added after each layer of the Actor network. At the same time, the reward function is optimized to 
guide the mobile robot to move faster towards the target point. In order to improve the learning 
efficiency, different normalization methods are used to normalize the distance and angle between 
the mobile robot and the target point, which are used as the input of the DDPG network model. 
When the model outputs the next action of the mobile robot, mixed noise composed of Gaussian 
noise and Ornstein–Uhlenbeck (OU) noise is added. Finally, the simulation environment built by a 
ROS system and a Gazebo platform is used for experiments. The results show that the proposed 
algorithm can accelerate the convergence speed of DDPG, improve the generalization ability of the 
path planning model and improve the efficiency and success rate of mobile robot path planning. 
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1. Introduction 
With the rise and continuous development of robot technology, mobile robots are 

becoming more and more widely used and are playing an important role in more and 
more fields. Mobile robots can perform tasks in various scenarios, such as package pick-
up and delivery in warehouses and guiding patients in hospitals [1–3]. As one of the key 
technologies of mobile robot applications, path planning has become an indispensable 
part of mobile robots moving towards artificial intelligence. Its purpose is to find an opti-
mal or suboptimal collision-free path from the starting point of the mobile robot’s move-
ment to the target point in the application scenario so as to ensure the rapid and safe 
movement of the robot and improve the work efficiency. Ideal path planning can greatly 
save the movement time of mobile robots on the road, help mobile robots complete tasks 
efficiently and accurately, and provide favorable guarantees for the applications of mobile 
robots in various industries. 

Algorithm design is the core of mobile robot path planning, according to the different 
application environment and the degree of intelligence, and the current path planning 
algorithms can be divided into traditional methods and intelligent methods [4–6]. The 
traditional methods mainly include the Dijkstra algorithm, A* algorithm, Artificial Poten-
tial Field and Genetic algorithm and so on [7]. The Dijkstra algorithm is a path planning 
algorithm that was proposed very early. The algorithm takes the starting point as the cen-
ter origin and spreads layers outward until the shortest paths to all nodes are found [8]. 
However, the Dijkstra algorithm uses the path length as the weight factor to search for the 
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shortest path, which increases the movement time of the mobile robot and reduces the 
work efficiency [9]. The A* algorithm is improved on the basis of the Dijkstra algorithm 
with the addition of heuristic function, which is one of the direct search methods to find 
the shortest path in a static environment [10]. However, when the A* algorithm is solving 
the shortest path, it is easily affected by the estimated value of generation, and the algo-
rithm easily falls into the local optimal and has poor stability [11]. In 1994, Khatib and 
Andrews et al. proposed a virtual force method—the Artificial Potential Field Method—
which regarded the movement space of the mobile robot as the potential field in physics. 
Obstacles generate repulsive force on mobile robots, while target points generate gravita-
tional force on them, and the resultant force of the two is the final movement direction. 
The algorithm has good real-time performance, a small calculation amount and fast con-
vergence speed, but it is not suitable for complex environments [12,13]. The genetic algo-
rithm was first proposed by John Holland in the 1970s. The algorithm was proposed by 
simulating the biological evolutionary law in nature and had the characteristics of strong 
global search ability and good robustness. However, the algorithm takes a long time to 
encode, and the convergence speed is slow, so it cannot guarantee real-time performance 
in complex environments [14,15]. Based on the above algorithms, many optimized algo-
rithms have been proposed successively, such as the convex optimization method, Bezier 
curve method and the optimal-control-theory-based method [16–18]. However, most of 
the traditional path planning methods have problems such as relying on maps and low 
real-time performance. As the environment in which the mobile robot is located becomes 
more and more complex, the traditional path planning methods have been unable to adapt 
to the actual task requirements [19,20]. 

In recent years, with the rise of artificial intelligence, path planning methods based 
on deep reinforcement learning have appeared [21,22]. Deep reinforcement learning com-
bines the perception ability of deep learning with the decision-making ability of reinforce-
ment learning. In the process of continuous interaction and trial and error between the 
mobile robot and the environment, the action strategy is optimized by accumulating re-
wards. It realizes the learning method from the environment state to behavior mapping, 
and the computing efficiency is high [23,24]. Q-Learning is a typical reinforcement learn-
ing algorithm used for path planning. It uses Q value tables to store and update state-
action values and updates the Q tables according to the empirical knowledge learned by 
mobile robots. After convergence, the optimal path is obtained according to Q value [25]. 
However, when the environment is complex, there are too many state actions in Q tables, 
which leads to a sharp increase in memory consumption and dimension disaster [26]. In 
2013, Google DeepMind combined deep learning with Q-learning, used a neural network 
to approximate the value function, and proposed deep Q-Learning (DQN) for the first 
time, which realized an end-to-end revolutionary algorithm from perception to action, 
and solved the dimension disaster problem in Q-Learning [27]. However, DQN is only 
applicable to discrete action space, but not to continuous action space [28]. Google Deep-
Mind incorporated DQN into the Actor-Critic framework in 2015 and proposed the Deep 
Deterministic Policy Gradient (DDPG) to solve the problem of continuous action space. 
When using DDPG for mobile robot path planning, it can output continuous actions [29]. 
However, when the environment is complex, the DDPG algorithm easily falls into the 
local optimum, and there are problems such as a low success rate and slow learning speed 
[30]. Tai L et al. [31] propose a learning-based mapless motion planner that takes a sparse 
10-dimensional range and the position of the target relative to the mobile robot coordinate 
system as input and continuous steering commands as output, extending DDPG to the 
asynchronous version to improve sampling efficiency. The results show that the planner 
can navigate the mobile robot to the desired target location without colliding with any 
obstacles. However, this method has neither the memory of previous observations nor the 
ability of long-term prediction, so the planned path is tortuous and not optimal. Jesus J C 
et al. [32] propose a deep reinforcement learning method that applies DDPG to mobile 
robot navigation. This method takes the mobile robot to reach the target position in 
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different simulated environments of the task and creates a good reward function. How-
ever, the training effect is not very ideal. Peng Li et al. [33] proposed a new DDPG algo-
rithm, which used Rectified Adam (RAdam) to replace the neural network optimizer in 
DDPG and combined this with curiosity algorithm to improve the training effect, but the 
convergence speed was not ideal. 

Compared with traditional path planning methods, the path planning methods 
based on deep reinforcement learning do not need to build the whole environment model 
and can realize self-learning from the environment state to action mapping, which has 
high flexibility. Through the continuous interaction between the mobile robot and the en-
vironment, the deep reinforcement learning uses the corresponding action strategy to de-
termine the next action of the mobile robot according to the state of the robot and com-
bines the reward function to continuously optimize the action strategy. As one of the typ-
ical algorithms of deep reinforcement learning applied to path planning, DDPG can train 
the model in self-constructed simulation environment and be directly applied to the actual 
environment, with strong generalization ability. However, due to the adoption of deter-
ministic policy, when the robot is in the same state, the actions given are also the same. 
This will lead to a single action of mobile robots that cannot fully explore the environment 
and may not be able to reach the target point with the optimal path. Especially in complex 
environments, due to the limited observable range of mobile robots and the lack of previ-
ous “memory” of DDPG, it is unable to collect enough state information to train the algo-
rithm, resulting in low efficiency, slow convergence speed and low success rate in the 
training of the algorithm. 

This paper fully analyzes the advantages and disadvantages of DDPG. Based on ref-
erence [31], the efficiency and success rate of DDPG algorithm in path planning are further 
improved by introducing LSTM, optimal design reward function and mixed noise. The 
main contributions are as follows: (1) The “memory” ability of LSTM is utilized to opti-
mize the DDPG network structure, and Batch Norm layer is added after each layer of the 
Actor network to improve network stability and speed up algorithm convergence. (2) By 
optimizing the reward function, the mobile robot is guided to move faster towards the 
target point. (3) Different normalization methods are used to normalize the distance and 
angle between mobile robot and target point to improve the learning efficiency of the path 
planning model. (4) A mixed noise composed of Gaussian noise and Ornstein–Uhlenbeck 
(OU) noise is designed to make the learning process of mobile robot have higher random-
ness, avoid falling into local optimum, and improve the exploration efficiency of mobile 
robot. 

The structure of this paper is as follows, Section 2 describes and analyzes the corre-
lation algorithms. Section 3 introduces the core method of this paper in detail, namely the 
efficient path planning algorithm for mobile robots based on DDPG, including the im-
provement of DDPG network structure, the optimization of reward function, the prepro-
cessing of state information and the design of mixed noise. Section 4 is the simulation 
experiment and detailed comparison and analysis of the experimental results. Section 5 is 
a further summary of this paper. 

2. Related Works 
2.1. Deep Deterministic Policy Gradient (DDPG) Algorithm 

The DDPG algorithm is based on the Actor–Critic architecture and draws on the ex-
perience replay mechanism and target network idea of DQN to solve the continuous ac-
tion problem. Its network consists of the current network and target network of the Actor, 
and the current network and target network of the Critic. The role of the experience replay 
mechanism is to collect samples and sample them randomly in batches from the experi-
ence pool at each training session to reduce the correlation between samples [34]. The 
target network will fix the parameters in the network within a certain period of time, so 
as to eliminate the model oscillation caused by the same parameters between the current 
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network and the target network [35]. The DDPG algorithm has strong fitting ability and 
generalization ability of deep neural network, as well as the advantage of continuous ac-
tion space. Additionally, it can learn the optimal action strategy in the current state 
through continuous training and adjustment of neural network parameters. The method 
is applied to the path planning process of the mobile robot, so that the mobile robot has 
more continuous action output and less decision error in the process of motion. In the 
process of path planning, the mobile robot obtains the state S  according to the surround-
ing environment information and its own state data, and the current network of Actor 
outputs the action a  of the mobile robot according to S . After the mobile robot per-
forms an action, it will obtain the reward r  from the environment. According to S  and 
a , the current network of Critic outputs the Q value as the evaluation of the action, and 
constantly adjusts its value function. The current network of Actor continuously improves 
the action strategy according to the Q value. The target network of Actor and Critic is 
mainly used for the subsequent update process. The structure of the DDPG algorithm is 
shown in Figure 1. 

simulation 
environment

optimizer

target network

current network

optimizer

target network

current network

Actor Critic

experience 
pool

S

a

 
Figure 1. The structure of DDPG algorithm. 

1. Initialize the current network of Actor ( | )S μμ θ  and the current network of Critic 

( , | )QQ S a θ , as well as the corresponding target networks 'μ μθ θ← , 'Q Qθ θ←  and 
experience pool D . 

2. Input the current state tS  of the mobile robot into the current network of Actor to 
obtain action ta , receive the reward r  by performing the action, and obtain the 
next new state 1tS +  of the next step. 

3. Put 1, , ,t t tS a r S +  in experience pool D . When the number of samples in the experi-
ence pool reaches a certain number, N samples will be randomly sampled from the 
experience pool D  for network training. 

4. Calculate the current network loss function of Critic according to Formula (1), 

2

1

1( ) ( ( , | ))
N

Q i i i Q
i

L Y Q S a
N

θ θ
=

= −  (1)

where 1 1'( , '( | ') | ')i i i i QY r Q S S μγ μ θ θ+ += +  is the target value, γ  is the discount coeffi-
cient, and i  is the sample number of the sample. 
5. Update the current network parameters of the Actor according to Formula (2), 
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1 ( , | ) ( | )
N

i i i Q i
i

J a Q S a S
Nμθ μ μθ θ μ θ∇ = ∇ ∇  (2)

where J∇  is the gradient. 

6. According to Formula (3), the target network parameter 'μθ  of Actor and the target 

network parameter 'Qθ  of Critic are updated using the soft update strategy, 

' (1 ) '
' (1 ) '

Q Q Q

μ μ μ

θ τθ τ θ
θ τθ τ θ
 ← + −
 ← + −

 (3)

where τ  is the constant coefficient, which is used to adjust the soft update factor. 
7. Repeat the above steps until DDPG algorithm training is complete. 

As one of the mainstream algorithms of deep reinforcement learning, the DDPG al-
gorithm is widely used in mobile robot path planning. Since the algorithm adopts contin-
uous state space and action space, it is especially suitable for the actual motion process of 
mobile robots, showing great potential in complex environments. 

2.2. Long Short-Term Memory 
Long Short-Term Memory (LSTM) is a special kind of Recurrent Neural Network 

(RNN). On the basis of fully connected neural networks, RNN adds the sequential rela-
tionship before and after and endows the network with the ability of “memory” [36]. The 
output of LSTM at the current moment should take into account not only the input at the 
current moment, but also the previous information. However, too much “memory” will 
also increase the computing burden of the network. LSTM introduces three gating mech-
anisms on the basis of RNN, namely forget gate, input gate and output gate. Through the 
gating mechanisms, the information at every moment is judged and adjusted in a timely 
fashion and updated to determine the retention degree of input information [37,38], thus 
reducing the burden of network computing. The structure of LSTM is shown in Figure 2. 

σ tanhσ σ
tanh

 
Figure 2. The structure of LSTM. 

LSTM can make full use of previous information and is suitable for processing and 
predicting applications with long time sequences. Mobile robot path planning is a typical 
long-sequence decision-making problem. In reference [31], when the DDPG algorithm is 
used to carry out path planning for mobile robots, each layer in the network structure 
adopted is a fully connected layer. It can navigate the mobile robot to the desired target 
position without colliding with any obstacles. However, due to the limited range of envi-
ronments that mobile robots can observe and the lack of previous “memory”, path plan-
ning can only rely on the current state of the mobile robot, resulting in the planned path 
being too tortuous, which seriously affects the efficiency of the robot. In this paper, LSTM 
is introduced into the DDPG network structure proposed in reference [31], and the path 
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planning is carried out by making comprehensive use of the past and current states of 
mobile robots. 

3. The Proposed Path Planning 
In order to solve the shortcomings of traditional DDPG algorithms in path planning, 

LSTM is introduced to optimize the structure of DDPG network, and the reward function 
is redesigned to speed up network training. Then, the states of the mobile robot are pre-
processed by different normalization methods, such as the input of DDPG network model, 
and the mixed noise composed of Gaussian noise and OU noise is added to the actions 
output from the network model to improve the exploratory nature of the mobile robot. 

3.1. Introduction of LSTM 
When using the DDPG algorithm for path planning, the action of the mobile robot 

can only be determined by the current state of the robot, which will easily lead to confu-
sion in the exploration trajectory. On the basis of reference [31], we take advantage of 
LSTM’s ability to memorize past states of mobile robots and introduce it into the learning 
process of mobile robots. To be specific, in the Actor network, the first fully connected 
layer is replaced by the LSTM network. When the Actor network receives the input state 
of the mobile robot, it is processed by the LSTM first, then processed by the two fully 
connected layers, and finally outputs the actions of the robot. In the Critic network, we 
replace the fully connected layer that processes the state with an LSTM network. When 
the Critic network receives the input state and action of mobile robot, the state is processed 
by the LSTM network, and the action is processed by the fully connected layer. The results 
of the above two layers are processed by a fully connected layer, and then the Q value is 
output. By comprehensively considering the current state and past state of the mobile ro-
bot, the action output by Actor network can be evaluated more accurately. In this way, 
the actions of the robot are controlled not only by the current state of the robot, but also 
by the previous state, so that the actions of the robot have time correlation, which can 
effectively avoid the planned path being too tortuous. The LSTM-DDPG network struc-
ture designed in our paper is shown in Figure 3. 

S

S

a

a

Q

 
Figure 3. Our designed LSTM-DDPG network structure. 

In the Actor network and Critic network of DDPG, the target network has the same 
structure as the current network, and both of them adopt the structure of LSTM and fully 
connected layer. In the Actor network, the first layer is LSTM, the second layer is the fully 
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connected layer with 400 nodes, and the third layer is the fully connected layer with 300 
nodes. ReLU is used as the activation function of the fully connected layer, and Batch 
Norm layer is added after each layer to ensure the stability of the algorithm. In the Critic 
network, states are input to the LSTM layer, actions are input to the fully connected layer 
with 400 nodes, and then both of them are processed through the fully connected layer 
with 300 nodes. ReLU is also used as the activation function of the fully connected layer. 

3.2. Design of the Reward Function 
The reward function is a benchmark to evaluate the action taken by the mobile robot 

and plays a guiding role in the whole learning process. The design of the reward function 
should not only consider that the mobile robot can reach the target point through the op-
timal path, but also consider the safety of the mobile robot. After the current network of 
Actor outputs the action according to the robot state, the state should be updated accord-
ing to the execution result of the action, and the reward value is calculated. If the mobile 
robot reaches the target point, the maximum positive reward will be given. If the mobile 
robot encounters an obstacle during its movement, it should be punished. If the mobile 
robot neither encounters the obstacle nor reaches the target point, the reward value should 
be calculated according to the distance between the mobile robot and the starting point 
and the target point, so that the mobile robot can keep approaching the target point. In 
other words, every action of the mobile robot should receive timely feedback, so as to 
speed up the convergence of algorithm. To achieve this goal, the reward function designed 
in this paper is shown in Formula (4), 

 
1

2

        Reach target point
reward              Hit an obstacle

_ _ Other

C
C

rel dis ori dis


= 
 − +

, (4)

where 1C  is a positive constant, 2C  is a negative constant, _rel dis  is the distance from 
the mobile robot to the target point, and _ori dis  is the distance from the mobile robot 
to the starting point. In this paper, 1C  and 2C  are set to 150 and −100, respectively. 

3.3. State Normalization of Mobile Robot 
The state space is the feedback of the whole environment of the mobile robot and is 

the basis for the mobile robot to select actions. The mobile robot mentioned in this paper 
interacts with the environment through the laser sensor. The detection range of the laser 
sensor is from −90 degrees to 90 degrees straight ahead, and the detection distance is at 
least 0.2 m. If the distance between the mobile robot and the obstacle is less than 0.2 m, it 
is considered to have collided with the obstacle. The data detected by the laser sensor 
contain 10 dimensions, as shown in Formula (5). The detection range of the laser sensor is 
shown in Figure 4. 

=_ [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]scan range scan scan scan scan scan scan scan scan scan scan , (5)

where _scan range  is the detection range of the laser sensor installed on the mobile ro-
bot, and scani  is the data detected in the ith orientation. 
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Figure 4. The detection range of laser sensor on mobile robot. 

In order to complete the path planning of the mobile robot, it is necessary to know 
whether the mobile robot will encounter obstacles, and also other states of the mobile ro-
bot, such as the action of the mobile robot at the previous time step (including linear ve-
locity and angular velocity), the relative distance and angle between the mobile robot and 
the target point, the yaw angle, and the difference angle between the mobile robot and the 
target point, etc. Among them, the difference angle is shown in Formula (6). In order to 
improve the learning efficiency of the mobile robot, the states of the robot are prepro-
cessed in different normalization methods, as shown in Formulas (7)–(10), respectively. 

_ | _ |diff angle rel eheta yaw= − , (6)

where _diff angle  is the difference angle between the mobile robot and the target point, 
_rel eheta is the relative angle between the mobile robot and the target point, and yaw  

is the yaw angle of the mobile robot. 
_ _ / _rel dis rel dis diagonal dis= , (7) 

where _rel dis  is the relative distance between the mobile robot and the target point, and 
_diagonal dis  is the diagonal length of the simulation map. 

_ _ / 360rel theta rel theta= , (8) 

where _rel eheta  is the relative angle between the mobile robot and the target point. 

/ 360yaw yaw= , (9) 

where yaw  is the yaw angle of the mobile robot. 

_ _ / 180diff angle diff angle= , (10)

where _diff angle  is the difference angle between the mobile robot and the target point. 
To sum up, in the DDPG algorithm, the state space of the mobile robot is set as 16-

dimensional data and defined as the input of the neural network. The normalized state 
tS  can be defined as: 

-1 , _ , _ , , _ , _t tS a rel dis rel theta yaw diff angle scan range=    . (11)

Considering the motion smoothness of mobile robot and the continuity of output ac-
tions, the output of the DDPG network model proposed in this paper is continuous linear 
velocity and angular velocity to guide the movement of the mobile robot. Since the limits 
of angular velocity and linear velocity should not be too large in the simulation environ-
ment, the maximum angular velocity is set to 0.5 rad/s and the maximum linear velocity 
is set to 0.25 m/s. The output action of the model is shown as Formula (12), 
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[ , ]t t ta v ϕ= , (12)

where ta  is the action of mobile robot at time t , while tv  and tϕ  are linear velocity 
and angular velocity, respectively. 

3.4. Mixed Noise Design 
DDPG adopts deterministic policy with poor exploration of the environment. In or-

der to increase the randomness of the learning process, DDPG will add a certain amount 
of noise to the output actions to improve the exploration ability of the mobile robot. At 
present, Gaussian noise and OU noise are commonly used in DDPG. Gaussian noise pro-
duces irrelevant exploration in a time sequence; that is, the selection of the front and rear 
actions are independent. The OU noise is a random process, and its calculation formula is 
shown in Formula (13). It can produce time-sequence-related exploration; that is, the ac-
tion of the next step will be affected by the action of the previous step. Different from 
Gaussian noise, OU noise does not make the actions of two adjacent steps of the mobile 
robot very different, but makes the mobile robot explore near the mean of action sampling. 
Although this allows the mobile robot to continuously explore in one direction, it will 
increase the movement time of the robot when the action taken is not optimal in the cur-
rent view.  

OU ( ) ( )
ta t tN d a a dt dWθ δ= − + , (13)

where θ  is the learning rate of the random process, ta  is the action at time t , a  is the 
average value of the action sampling data, δ  is the random weight of OU, and tW  is the 
Wiener process. 

In order to optimize the DDPG exploration policy and improve the exploration effi-
ciency of the robot, we combine Gaussian noise and OU noise to form mixed noise. The 
Actor network output action ta  based on the mixed noise is shown in Formula (14), 

Gaussian OU~ ( ( ),var)
tt t aa N a N d+ , (14)

where var  is the Gaussian variance to ensure that the mobile robot has uniform and sta-
ble detection ability in each episode. At the same time, with the progress of the training 
process, the mobile robot begins to adapt to the task scene, which requires the exploration 
rate to be gradually reduced, as shown in Formula (15), 

var var 0.9999= × . (15)

This paper proposes a path planning algorithm for a mobile robot based on improved 
DDPG, which can solve the problems of a long training time and slow convergence of 
traditional path planning model. The algorithm flow is shown in Figure 5. 
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Figure 5. Flow chart of the proposed path planning algorithm. 

4. Experimental Results and Analysis 
4.1. Environment Construction of Simulation Experiment 

ROS is selected as the simulation experimental platform in this paper, Python and 
TensorFlow frameworks are used to realize the proposed algorithm, and Gazebo7 is used 
to establish the simulation environment, as shown in Figure 6. The black dot is the mobile 
robot, the blue part is the detection range of the laser sensor, and the gray part is the ob-
stacle. Figure 6a shows the established square-shaped simulation environment without 
obstacles, which is mainly used to train mobile robots to realize path planning in a limited 
space. Figure 6b adds large obstacles to the environment of Figure 6a to train the mobile 
robot to realize path planning in an environment with obstacles. Figure 6c adds random 
small obstacles to the environment of Figure 6a, which is mainly used to test the training 
effect of the mobile robot in the above two environments. 

   
(a) (b) (c) 

Figure 6. Schematic diagram of the simulation environment established by Gazebo7. (a) There are 
no obstacles in the environment; (b) there are large obstacles in the environment; (c) there are ran-
domly generated small obstacles in the environment. 
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We test the proposed path planning algorithm from three aspects of convergence 
speed, training time and success rate and analyze the experimental results in detail. The 
convergence speed and training time are used as evaluation criteria of the training effi-
ciency of the algorithm, and the success rate is used to verify the effectiveness of the algo-
rithm. In the training process of the algorithm, the convergence speed and training time 
can reflect how many episodes are needed to obtain the optimal solution. The faster the 
convergence speed is, the shorter the training time is, which means the higher the training 
efficiency is. The success rate refers to the percentage of mobile robots that can success-
fully reach the target point from the starting point according to the path planning algo-
rithm adopted. The higher the success rate is, the better the performance of the algorithm. 

4.2. Effect Analysis of Our Algorithm 
In order to verify the performance of our algorithm, the DDPG algorithm proposed 

in reference [31], our algorithm with an improved network structure (LSTM-DDPG) and 
our algorithm after adding mixed noise further (MN-LSTM-DDPG) are all trained in the 
simulation environment, respectively. 

Firstly, 2000 episodes of training are conducted in the simulation Figure 6a, and the 
reward value of the mobile robot is recorded after each episode of training, as shown in 
Figure 7. The results in Figure 7a show that in an environment without obstacles, the re-
ward value of the algorithm proposed in [31] gradually tends to be stable with the increase 
in training episodes, but it still fails to converge after 2000 episodes of training. Moreover, 
the reward value fluctuates greatly in the first 800 episodes and is mostly negative, indi-
cating that the mobile robot is learning how to approach the target point but fails many 
times. After 800 episodes, the reward value gradually tends to be positive, indicating that 
the mobile robot can reach the target point through training, but it still collides with ob-
stacles. Figure 7b is the training result after LSTM is introduced into the network of the 
algorithm proposed in [31]. As can be seen, with the increase in training time, the reward 
value obtained by the mobile robot gradually increases from a negative value to a positive 
value, and finally tends to be stable, but the convergence rate is slow. After LSTM is in-
troduced into the algorithm, the mixed noise composed of Gaussian noise and OU noise 
is further introduced into the output results of the network, and the reward function is 
optimized. Figure 7c shows the training result of the algorithm. As can be seen, with the 
increase in training time, the reward value obtained by the mobile robot gradually in-
creases and finally tends to be stable. Compared with Figure 7b, the convergence speed is 
significantly faster. 

   
(a) (b) (c) 

Figure 7. Changes in reward value of the improved algorithms. (a) Changes in reward value of the 
algorithm proposed in [31]; (b) changes in reward value of LSTM-DDPG, (c) changes in reward 
value of MN-LSTM-DDPG. 

Figure 8 shows the average rewards returned every 10,000 steps by the algorithm 
proposed in reference [31] and LSTM-DDPG and MN-LSTM-DDPG proposed in this pa-
per in the path planning training in simulation Figure 6a. The blue line represents the 
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algorithm proposed in [31], the green line represents the LSTM-DDPG algorithm, and the 
red line represents the MN-LSTM-DDPG algorithm. As can be seen, MN-LSTM-DDPG 
has the fastest convergence speed in the path planning of mobile robots, requiring only 
120,000 steps, while the algorithm proposed in [31] requires 200,000 steps to converge, and 
the convergence is not stable. 

 
Figure 8. The average rewards returned by reference [31] and the improved algorithm every 10,000 
steps during training in simulation Figure 6a. 

Table 1 compares the training time and the number of training steps of the three al-
gorithms mentioned above. As can be seen from the table, the training time of the path 
planning of the algorithm proposed in [31] is 28.03 h, while the training time of MN-
LSTM-DDPG is only 22.75 h, which is 18.8% shorter. In terms of the number of training 
steps, the number of training steps of the algorithm proposed in [31] is 484,231, while the 
number of training steps of MN-LSTM-DDPG is only 417,701, which significantly im-
proves the convergence speed. 

Table 1. Comparison of training time and steps of the improved algorithm in simulation Figure 
6a. 

Algorithm Training Time (h) Training Steps (Step) 
Algorithm in [31] 28.03 484,231 

LSTM-DDPG 23.68 427,956 
MN-LSTM-DDPG 22.75 417,701 

In order to verify the success rate and generalization ability of the model trained in 
simulation Figure 6a, 200 tests are performed on the three algorithms in simulation Figure 
6a and simulation Figure 6c, respectively. Figures 9 and 10 show the movement process 
of the mobile robot in these two environments when MN-LSTM-DDPG is used for path 
planning. The black dot is the mobile robot, the blue part is the detection range of the laser 
sensor, the gray part is the obstacle, and the green circle is the final target point. As can be 
seen, the mobile robot can avoid obstacles from the starting point and reach the target 
point accurately with the optimal path. 
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Figure 9. The movement process of mobile robot in simulation Figure 6a. 

   

   

Figure 10. The movement process of mobile robot in simulation Figure 6c. 

Tables 2 and 3 record the test results in simulation Figure 6a and simulation Figure 
6c, respectively. It can be seen from Table 2 that the path planning success rate of the 
algorithm proposed in [31] is only 86%, while the success rate of the MN-LSTM-DDPG 
algorithm proposed in this paper can reach 100%. In terms of time, compared with the 
algorithm proposed in [31], the path planning time of the MN-LSTM-DDPG algorithm 
proposed in this paper is shortened by 21.48%. However, when the model trained in sim-
ulation Figure 6a is applied to simulation Figure 6c, the testing effect of each algorithm is 
not ideal, as shown in Table 3. Therefore, it is necessary to train the algorithm in an envi-
ronment with obstacles. 
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Table 2. Comparison of test results of the improved algorithm in simulation Figure 6a. 

Algorithm Success Rate (100%) Testing Time (h) 
Algorithm in [31] 172/200 = 0.86 1.35 

LSTM-DDPG 194/200 = 0.97 1.21 
MN-LSTM-DDPG 200/200 = 1 1.06 

Table 3. Comparison of test results of the improved algorithm in simulation Figure 6c. 

Algorithm Success Rate (100%) Testing Time (h) 
Algorithm in [31] 108/200 = 0.54 1.88 

LSTM-DDPG 133/200 = 0.665 1.71 
MN-LSTM-DDPG 146/200 = 0.73 1.69 

In order to verify the effect of the proposed algorithm in an obstacle environment, 
the algorithm proposed in [31], the LSTM-DDPG algorithm and the MN-LSTM-DDPG 
algorithm proposed in this paper were respectively trained for 2000 episodes in simula-
tion Figure 6b, and the average reward returned by the mobile robot every 10,000 steps 
was recorded, as shown in Figure 11. As can be seen from the figure, the improved MN-
LSTM-DDPG algorithm in this paper can achieve convergence after 110,000 steps of train-
ing in the path planning of mobile robots in the simulation Figure 6b However, the algo-
rithm proposed in [31] needs 200,000 training steps to converge, and the convergence is 
unstable; the convergence speed is significantly slower than the algorithm proposed in 
this paper. Additionally, from the training results in Table 4, it can be seen that the path 
planning training time of the algorithm proposed in the [31] is 21.73 h, while the path 
planning training time of the improved MN-LSTM-DDPG algorithm in this paper is only 
19.70 h, and the training speed shows a significant improvement. In terms of the number 
of training steps, the number of training steps of the algorithm proposed in [31] is 374,316, 
while the number of training steps of the improved MN-LSTM-DDPG algorithm in this 
paper is only 346,667, which significantly improves the convergence speed of the algo-
rithm. 

 
Figure 11. Average reward returned by reference [31] and the improved algorithm every 10,000 
steps during training in simulation Figure 6b. 
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Table 4. Comparison of training time and steps of the improved algorithm in simulation Figure 
6b. 

Algorithm Training Time (h) Training Steps (Step) 
Algorithm in [31] 21.73 374,316 

LSTM-DDPG 21.20 365,164 
MN-LSTM-DDPG 19.70 346,667 

After training the model in an environment with obstacles, 200 tests were performed 
in simulation Figure 6b and simulation Figure 6c, respectively, to verify the generalization 
ability of the model. The test process is shown in Figures 12 and 13. The two figures re-
spectively show the process of mobile robot avoiding obstacles from the starting point to 
reach the target range. 

   

   

Figure 12. The motion process of the mobile robot in simulation Figure 6b. 
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Figure 13. The motion process of the mobile robot in simulation Figure 6c. 

Tables 5 and 6 record the test results in simulation Figure 6b and simulation Figure 
6c, respectively. As can be seen from Table 5, in terms of success rate, the success rate of 
the algorithm proposed in [31] is 76%, while the success rate of the MN-LSTM-DDPG al-
gorithm proposed in this paper can reach 87%, which is significantly higher than that in 
reference [31]. In terms of time, the test time of the algorithm in this paper is also 17.96% 
faster than the algorithm in [31]. It can be seen from Table 6 that the test effect of each 
algorithm in simulation Figure 6c is better than that in simulation Figure 6b. This is be-
cause when the obstacle is too large, the number of steps that the mobile robot needs to 
move increases. Since the maximum number of steps of the mobile robot is limited in the 
simulation environment, when the maximum number of steps has not reached the target 
point, it is regarded as a failure. 

Table 5. Comparison of test results of the improved algorithm in simulation Figure 6b. 

Algorithm Success Rate (100%) Testing Time (h) 
Algorithm in [31] 152/200 = 0.76 2.06 

LSTM-DDPG 165/200 = 0.825 1.55 
MN-LSTM-DDPG 174/200 = 0.87 1.69 

Table 6. Comparison of test results of the improved algorithm in simulation Figure 6c. 

Algorithm Success Rate (100%) Testing Time (h) 
Algorithm in [31] 168/200 = 0.84 1.53 

LSTM-DDPG 172/200 = 0.86 1.32 
MN-LSTM-DDPG 181/200 = 0.905 1.29 

4.3. Comparison and Analysis with other Algorithms 
In order to fully evaluate the performance of the proposed algorithm, experiments 

are conducted to compare the proposed algorithm with those in references [32,33]. In the 
simulation Figure 6a, each algorithm is trained for 2000 episodes, and the average reward 
returned by the mobile robot every 10,000 steps is recorded. The results are shown in Fig-
ure 14. As can be seen from the figure, in the barrier-free environment, when the algorithm 
proposed in [32] carries out path planning training, it tends to converge at about 110,000 
steps, but the reward value after convergence still shows a downward trend, and the train-
ing effect is not good. The algorithm proposed in [33] tends to stabilize after 210,000 steps 
of training. However, the algorithm proposed in this paper can converge and become sta-
ble after 120,000 steps of training, and the training effect is the best. Table 7 records the 
comparison of training time and the number of steps of each algorithm. As can be seen 
from the table, in terms of training time, the training time of the algorithm proposed in 
[32] is 39.63 h. The training time of the algorithm proposed in [33] is 24.67 h. However, the 
training time of the algorithm proposed in this paper is only 22.75 h, which is significantly 
faster than the algorithm proposed in [32] and better than the algorithm proposed in [33]. 
In terms of the number of training steps, the training steps of the algorithm proposed in 
references [32,33] are 395,344 and 446,596, respectively, while the training steps of the al-
gorithm proposed in this paper are 417,701. The algorithm proposed in [32] will fall into 
local optimum during training, which leads to the mobile robot turning in place, and in 
this paper, the proposed algorithm can effectively avoid the phenomenon. Compared 
with reference [32], this paper proposed that although the algorithm steps of training in-
creased, the training time is significantly reduced, and the training speed is still faster than 
the algorithm in [32]. However, the algorithm proposed in this paper can effectively avoid 
this phenomenon. Compared with the algorithm proposed in [32], although the number 
of training steps is increased, the training time is significantly reduced, and the training 
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speed is still faster than the algorithm proposed in [32]. This indicates that the training 
effect of the algorithm proposed in this paper is better than the algorithm proposed in the 
references [32,33] in a barrier-free environment. 

 
Figure 14. Average reward returned by reference [32,33] and our proposed algorithm every 10,000 
steps during training in simulation Figure 6a. 

Table 7. Comparison of training time and steps of each algorithm in simulation Figure 6a. 

Algorithm Training Time (h) Training Steps (Step) 
Algorithm in [32] 39.63 395,344 
Algorithm in [33] 24.67 446,596 

Our proposed 22.75 417,701 

To verify the success rate and generalization ability of the model trained in simula-
tion Figure 6a, 200 tests were conducted each in simulation Figure 6a and simulation Fig-
ure 6c, and the results are shown in Tables 8 and 9. It can be seen from Table 8 that the 
path planning success rate of the algorithm proposed in [32] is 87.5%, and that of the al-
gorithm proposed in [33] is 90%. However, the path planning success rate of the algorithm 
proposed in this paper can reach 100%, which is significantly higher than that in refer-
ences [32,33]. In terms of time, the algorithm proposed in this paper takes the same time 
as the algorithm proposed in [33], which is significantly shorter than that in [32]. However, 
it can be seen from the test results in Table 9 that the model trained by each algorithm in 
a barrier-free environment is not ideal when tested in an obstacle environment, but the 
algorithm proposed in this paper still performs better than the other two algorithms. 

Table 8. Comparison of test results of each algorithm in simulation Figure 6a. 

Algorithm Success Rate (100%) Testing Time (h) 
Algorithm in [32] 175/200 = 0.875 1.06 
Algorithm in [33] 180/200 = 0.90 1.87 

Our proposed 200/200 = 1 1.06 

Table 9. Comparison of test results of each algorithm in simulation Figure 6c. 

Algorithm Success Rate (100%) Testing Time (h) 
Algorithm in [32] 123/200 = 0.615 1.66 
Algorithm in [33] 135/200 = 0.675 1.23 

Our proposed 146/200 = 0.73 1.69 
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In order to verify the advantages of the algorithm in this paper in an environment 
with obstacles, the algorithm in this paper and the algorithm proposed in references [32] 
and [33] were trained for 2000 episodes in simulation Figure 6b. The average rewards re-
turned by the mobile robot every 10,000 steps were recorded, and the results are shown 
in Figure 15. As can be seen from the figure, when the algorithm proposed in [32] performs 
path planning in simulation Figure 6b, it needs 240,000 steps of training to converge. The 
algorithm proposed in [33] needs 140,000 training steps to become stable, while the algo-
rithm proposed in this paper can achieve convergence after 110,000 training steps, and the 
convergence effect is obviously better than that in references [32,33]. It can also be seen 
from Table 10 that the training time and number of training steps taken by the algorithm 
proposed in this paper are significantly less than those in references [32] and [33]. 

 
Figure 15. Average reward returned by references [32,33] and our proposed algorithm every 10,000 
steps during training in simulation Figure 6b. 

Table 10. Comparison of training time and steps of each algorithm in simulation Figure 6b. 

Algorithm Training Time (h) Training Steps (Step) 
Algorithm in [32] 21.03 365,978 
Algorithm in [33] 21.67 379,379 

Our proposed 19.70 346,667 

In order to verify the success rate of the trained model in the obstacle environment, 
each algorithm was tested 200 times each in simulation Figure 6b and simulation Figure 
6c, and the results are shown in Tables 11 and 12. As can be seen from the test results in 
Table 11, in terms of success rate, the algorithm proposed in [32] is 82.5%, the algorithm 
proposed in [33] is 81%, and the algorithm proposed in this paper can reach 87%, which 
is significantly higher than the algorithm proposed in references [32,33]. In terms of test 
time, the test time of the algorithm proposed in this paper is longer than that proposed in 
[33]. In the testing process, since the starting and ending points of the mobile robot are 
randomly selected, their relative positions will have a certain influence on the testing time. 
It can be seen from Table 12, in simulation Figure 6c, the success rate of the algorithm 
proposed in this paper can reach 90.5%, higher than the algorithm proposed in references 
[32,33], which indicates that the algorithm proposed in this paper has obvious advantages 
in path planning in an environment with obstacles. 
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Table 11. Comparison of test results of each algorithm in simulation Figure 6b. 

Algorithm Success Rate (100%) Testing Time (h) 
Algorithm in [32] 165/200 = 0.825 1.71 
Algorithm in [33] 162/200 = 0.81 1.35 

Our proposed 174/200 = 0.87 1.69 

Table 12. Comparison of test results of each algorithm in simulation Figure 6c. 

Algorithm Success Rate (100%) Testing Time (h) 
Algorithm in [32] 167/200 = 0.835 1.31 
Algorithm in [33] 166/200 = 0.83 1.29 

Our proposed 181/200 = 0.905 1.29 

5. Conclusions 
Since LSTM has the ability of “memory”, this paper uses LSTM to optimize the DDPG 

network structure. By designing mixed noise and more reasonable reward function, mo-
bile robot path planning models can be rapidly trained. This effectively improves the ex-
ploration efficiency of a mobile robot in a complex environment and ensures that the mo-
bile robot can reach the target point in a shorter time and by a better path. However, the 
algorithm in this paper only considers static obstacles in the environment, and dynamic 
obstacles are also important factors to be considered in many application scenarios. How 
to effectively avoid the impact of dynamic obstacles on path planning is important re-
search content for the future. 
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