

Sensors 2022, 22, 3579. https://doi.org/10.3390/s22093579 www.mdpi.com/journal/sensors

Article

Efficient Path Planning for Mobile Robot Based on Deep
Deterministic Policy Gradient
Hui Gong 1, Peng Wang 1,2,*, Cui Ni 1 and Nuo Cheng 1

1 Information Science and Electrical Engineering, Shandong Jiao Tong University, Jinan 250357, China;
gh960120@163.com (H.G.); 205034@sdjtu.edu.cn (C.N.); cn17861403204@163.com (N.C.)

2 Institute of Automation, Shandong Academy of Sciences, Jinan 250013, China
* Correspondence: 205049@sdjtu.edu.cn

Abstract: When a traditional Deep Deterministic Policy Gradient (DDPG) algorithm is used in mo-
bile robot path planning, due to the limited observable environment of mobile robots, the training
efficiency of the path planning model is low, and the convergence speed is slow. In this paper, Long
Short-Term Memory (LSTM) is introduced into the DDPG network, the former and current states
of the mobile robot are combined to determine the actions of the robot, and a Batch Norm layer is
added after each layer of the Actor network. At the same time, the reward function is optimized to
guide the mobile robot to move faster towards the target point. In order to improve the learning
efficiency, different normalization methods are used to normalize the distance and angle between
the mobile robot and the target point, which are used as the input of the DDPG network model.
When the model outputs the next action of the mobile robot, mixed noise composed of Gaussian
noise and Ornstein–Uhlenbeck (OU) noise is added. Finally, the simulation environment built by a
ROS system and a Gazebo platform is used for experiments. The results show that the proposed
algorithm can accelerate the convergence speed of DDPG, improve the generalization ability of the
path planning model and improve the efficiency and success rate of mobile robot path planning.

Keywords: path planning; DDPG; LSTM; reward function; mixed noise

1. Introduction
With the rise and continuous development of robot technology, mobile robots are

becoming more and more widely used and are playing an important role in more and
more fields. Mobile robots can perform tasks in various scenarios, such as package pick-
up and delivery in warehouses and guiding patients in hospitals [1–3]. As one of the key
technologies of mobile robot applications, path planning has become an indispensable
part of mobile robots moving towards artificial intelligence. Its purpose is to find an opti-
mal or suboptimal collision-free path from the starting point of the mobile robot’s move-
ment to the target point in the application scenario so as to ensure the rapid and safe
movement of the robot and improve the work efficiency. Ideal path planning can greatly
save the movement time of mobile robots on the road, help mobile robots complete tasks
efficiently and accurately, and provide favorable guarantees for the applications of mobile
robots in various industries.

Algorithm design is the core of mobile robot path planning, according to the different
application environment and the degree of intelligence, and the current path planning
algorithms can be divided into traditional methods and intelligent methods [4–6]. The
traditional methods mainly include the Dijkstra algorithm, A* algorithm, Artificial Poten-
tial Field and Genetic algorithm and so on [7]. The Dijkstra algorithm is a path planning
algorithm that was proposed very early. The algorithm takes the starting point as the cen-
ter origin and spreads layers outward until the shortest paths to all nodes are found [8].
However, the Dijkstra algorithm uses the path length as the weight factor to search for the

Citation: Gong, H.; Wang, P.; Ni, C.;

Cheng, N. Efficient Path Planning

for Mobile Robot Based on Deep

Deterministic Policy Gradient.

Sensors 2022, 22, 3579. https://

doi.org/10.3390/s22093579

Academic Editor: Gregor Klancar

Received: 11 April 2022

Accepted: 5 May 2022

Published: 8 May 2022

Publisher’s Note: MDPI stays

neutral with regard to jurisdictional

claims in published maps and

institutional affiliations.

Copyright: © 2022 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://cre-

ativecommons.org/licenses/by/4.0/).

Sensors 2022, 22, 3579 2 of 21

shortest path, which increases the movement time of the mobile robot and reduces the
work efficiency [9]. The A* algorithm is improved on the basis of the Dijkstra algorithm
with the addition of heuristic function, which is one of the direct search methods to find
the shortest path in a static environment [10]. However, when the A* algorithm is solving
the shortest path, it is easily affected by the estimated value of generation, and the algo-
rithm easily falls into the local optimal and has poor stability [11]. In 1994, Khatib and
Andrews et al. proposed a virtual force method—the Artificial Potential Field Method—
which regarded the movement space of the mobile robot as the potential field in physics.
Obstacles generate repulsive force on mobile robots, while target points generate gravita-
tional force on them, and the resultant force of the two is the final movement direction.
The algorithm has good real-time performance, a small calculation amount and fast con-
vergence speed, but it is not suitable for complex environments [12,13]. The genetic algo-
rithm was first proposed by John Holland in the 1970s. The algorithm was proposed by
simulating the biological evolutionary law in nature and had the characteristics of strong
global search ability and good robustness. However, the algorithm takes a long time to
encode, and the convergence speed is slow, so it cannot guarantee real-time performance
in complex environments [14,15]. Based on the above algorithms, many optimized algo-
rithms have been proposed successively, such as the convex optimization method, Bezier
curve method and the optimal-control-theory-based method [16–18]. However, most of
the traditional path planning methods have problems such as relying on maps and low
real-time performance. As the environment in which the mobile robot is located becomes
more and more complex, the traditional path planning methods have been unable to adapt
to the actual task requirements [19,20].

In recent years, with the rise of artificial intelligence, path planning methods based
on deep reinforcement learning have appeared [21,22]. Deep reinforcement learning com-
bines the perception ability of deep learning with the decision-making ability of reinforce-
ment learning. In the process of continuous interaction and trial and error between the
mobile robot and the environment, the action strategy is optimized by accumulating re-
wards. It realizes the learning method from the environment state to behavior mapping,
and the computing efficiency is high [23,24]. Q-Learning is a typical reinforcement learn-
ing algorithm used for path planning. It uses Q value tables to store and update state-
action values and updates the Q tables according to the empirical knowledge learned by
mobile robots. After convergence, the optimal path is obtained according to Q value [25].
However, when the environment is complex, there are too many state actions in Q tables,
which leads to a sharp increase in memory consumption and dimension disaster [26]. In
2013, Google DeepMind combined deep learning with Q-learning, used a neural network
to approximate the value function, and proposed deep Q-Learning (DQN) for the first
time, which realized an end-to-end revolutionary algorithm from perception to action,
and solved the dimension disaster problem in Q-Learning [27]. However, DQN is only
applicable to discrete action space, but not to continuous action space [28]. Google Deep-
Mind incorporated DQN into the Actor-Critic framework in 2015 and proposed the Deep
Deterministic Policy Gradient (DDPG) to solve the problem of continuous action space.
When using DDPG for mobile robot path planning, it can output continuous actions [29].
However, when the environment is complex, the DDPG algorithm easily falls into the
local optimum, and there are problems such as a low success rate and slow learning speed
[30]. Tai L et al. [31] propose a learning-based mapless motion planner that takes a sparse
10-dimensional range and the position of the target relative to the mobile robot coordinate
system as input and continuous steering commands as output, extending DDPG to the
asynchronous version to improve sampling efficiency. The results show that the planner
can navigate the mobile robot to the desired target location without colliding with any
obstacles. However, this method has neither the memory of previous observations nor the
ability of long-term prediction, so the planned path is tortuous and not optimal. Jesus J C
et al. [32] propose a deep reinforcement learning method that applies DDPG to mobile
robot navigation. This method takes the mobile robot to reach the target position in

Sensors 2022, 22, 3579 3 of 21

different simulated environments of the task and creates a good reward function. How-
ever, the training effect is not very ideal. Peng Li et al. [33] proposed a new DDPG algo-
rithm, which used Rectified Adam (RAdam) to replace the neural network optimizer in
DDPG and combined this with curiosity algorithm to improve the training effect, but the
convergence speed was not ideal.

Compared with traditional path planning methods, the path planning methods
based on deep reinforcement learning do not need to build the whole environment model
and can realize self-learning from the environment state to action mapping, which has
high flexibility. Through the continuous interaction between the mobile robot and the en-
vironment, the deep reinforcement learning uses the corresponding action strategy to de-
termine the next action of the mobile robot according to the state of the robot and com-
bines the reward function to continuously optimize the action strategy. As one of the typ-
ical algorithms of deep reinforcement learning applied to path planning, DDPG can train
the model in self-constructed simulation environment and be directly applied to the actual
environment, with strong generalization ability. However, due to the adoption of deter-
ministic policy, when the robot is in the same state, the actions given are also the same.
This will lead to a single action of mobile robots that cannot fully explore the environment
and may not be able to reach the target point with the optimal path. Especially in complex
environments, due to the limited observable range of mobile robots and the lack of previ-
ous “memory” of DDPG, it is unable to collect enough state information to train the algo-
rithm, resulting in low efficiency, slow convergence speed and low success rate in the
training of the algorithm.

This paper fully analyzes the advantages and disadvantages of DDPG. Based on ref-
erence [31], the efficiency and success rate of DDPG algorithm in path planning are further
improved by introducing LSTM, optimal design reward function and mixed noise. The
main contributions are as follows: (1) The “memory” ability of LSTM is utilized to opti-
mize the DDPG network structure, and Batch Norm layer is added after each layer of the
Actor network to improve network stability and speed up algorithm convergence. (2) By
optimizing the reward function, the mobile robot is guided to move faster towards the
target point. (3) Different normalization methods are used to normalize the distance and
angle between mobile robot and target point to improve the learning efficiency of the path
planning model. (4) A mixed noise composed of Gaussian noise and Ornstein–Uhlenbeck
(OU) noise is designed to make the learning process of mobile robot have higher random-
ness, avoid falling into local optimum, and improve the exploration efficiency of mobile
robot.

The structure of this paper is as follows, Section 2 describes and analyzes the corre-
lation algorithms. Section 3 introduces the core method of this paper in detail, namely the
efficient path planning algorithm for mobile robots based on DDPG, including the im-
provement of DDPG network structure, the optimization of reward function, the prepro-
cessing of state information and the design of mixed noise. Section 4 is the simulation
experiment and detailed comparison and analysis of the experimental results. Section 5 is
a further summary of this paper.

2. Related Works
2.1. Deep Deterministic Policy Gradient (DDPG) Algorithm

The DDPG algorithm is based on the Actor–Critic architecture and draws on the ex-
perience replay mechanism and target network idea of DQN to solve the continuous ac-
tion problem. Its network consists of the current network and target network of the Actor,
and the current network and target network of the Critic. The role of the experience replay
mechanism is to collect samples and sample them randomly in batches from the experi-
ence pool at each training session to reduce the correlation between samples [34]. The
target network will fix the parameters in the network within a certain period of time, so
as to eliminate the model oscillation caused by the same parameters between the current

Sensors 2022, 22, 3579 4 of 21

network and the target network [35]. The DDPG algorithm has strong fitting ability and
generalization ability of deep neural network, as well as the advantage of continuous ac-
tion space. Additionally, it can learn the optimal action strategy in the current state
through continuous training and adjustment of neural network parameters. The method
is applied to the path planning process of the mobile robot, so that the mobile robot has
more continuous action output and less decision error in the process of motion. In the
process of path planning, the mobile robot obtains the state S according to the surround-
ing environment information and its own state data, and the current network of Actor
outputs the action a of the mobile robot according to S . After the mobile robot per-
forms an action, it will obtain the reward r from the environment. According to S and
a , the current network of Critic outputs the Q value as the evaluation of the action, and
constantly adjusts its value function. The current network of Actor continuously improves
the action strategy according to the Q value. The target network of Actor and Critic is
mainly used for the subsequent update process. The structure of the DDPG algorithm is
shown in Figure 1.

simulation
environment

optimizer

target network

current network

optimizer

target network

current network

Actor Critic

experience
pool

S

a

Figure 1. The structure of DDPG algorithm.

1. Initialize the current network of Actor (|)S μμ θ and the current network of Critic

(, |)QQ S a θ , as well as the corresponding target networks 'μ μθ θ← , 'Q Qθ θ← and
experience pool D .

2. Input the current state tS of the mobile robot into the current network of Actor to
obtain action ta , receive the reward r by performing the action, and obtain the
next new state 1tS + of the next step.

3. Put 1, , ,t t tS a r S + in experience pool D . When the number of samples in the experi-
ence pool reaches a certain number, N samples will be randomly sampled from the
experience pool D for network training.

4. Calculate the current network loss function of Critic according to Formula (1),

2

1

1() ((, |))
N

Q i i i Q
i

L Y Q S a
N

θ θ
=

= − (1)

where 1 1'(, '(| ') | ')i i i i QY r Q S S μγ μ θ θ+ += + is the target value, γ is the discount coeffi-
cient, and i is the sample number of the sample.
5. Update the current network parameters of the Actor according to Formula (2),

Sensors 2022, 22, 3579 5 of 21

1 (, |) (|)
N

i i i Q i
i

J a Q S a S
Nμθ μ μθ θ μ θ∇ = ∇ ∇ (2)

where J∇ is the gradient.

6. According to Formula (3), the target network parameter 'μθ of Actor and the target

network parameter 'Qθ of Critic are updated using the soft update strategy,

' (1) '
' (1) '

Q Q Q

μ μ μ

θ τθ τ θ
θ τθ τ θ
 ← + −
 ← + −

 (3)

where τ is the constant coefficient, which is used to adjust the soft update factor.
7. Repeat the above steps until DDPG algorithm training is complete.

As one of the mainstream algorithms of deep reinforcement learning, the DDPG al-
gorithm is widely used in mobile robot path planning. Since the algorithm adopts contin-
uous state space and action space, it is especially suitable for the actual motion process of
mobile robots, showing great potential in complex environments.

2.2. Long Short-Term Memory
Long Short-Term Memory (LSTM) is a special kind of Recurrent Neural Network

(RNN). On the basis of fully connected neural networks, RNN adds the sequential rela-
tionship before and after and endows the network with the ability of “memory” [36]. The
output of LSTM at the current moment should take into account not only the input at the
current moment, but also the previous information. However, too much “memory” will
also increase the computing burden of the network. LSTM introduces three gating mech-
anisms on the basis of RNN, namely forget gate, input gate and output gate. Through the
gating mechanisms, the information at every moment is judged and adjusted in a timely
fashion and updated to determine the retention degree of input information [37,38], thus
reducing the burden of network computing. The structure of LSTM is shown in Figure 2.

σ tanhσ σ
tanh

Figure 2. The structure of LSTM.

LSTM can make full use of previous information and is suitable for processing and
predicting applications with long time sequences. Mobile robot path planning is a typical
long-sequence decision-making problem. In reference [31], when the DDPG algorithm is
used to carry out path planning for mobile robots, each layer in the network structure
adopted is a fully connected layer. It can navigate the mobile robot to the desired target
position without colliding with any obstacles. However, due to the limited range of envi-
ronments that mobile robots can observe and the lack of previous “memory”, path plan-
ning can only rely on the current state of the mobile robot, resulting in the planned path
being too tortuous, which seriously affects the efficiency of the robot. In this paper, LSTM
is introduced into the DDPG network structure proposed in reference [31], and the path

Sensors 2022, 22, 3579 6 of 21

planning is carried out by making comprehensive use of the past and current states of
mobile robots.

3. The Proposed Path Planning
In order to solve the shortcomings of traditional DDPG algorithms in path planning,

LSTM is introduced to optimize the structure of DDPG network, and the reward function
is redesigned to speed up network training. Then, the states of the mobile robot are pre-
processed by different normalization methods, such as the input of DDPG network model,
and the mixed noise composed of Gaussian noise and OU noise is added to the actions
output from the network model to improve the exploratory nature of the mobile robot.

3.1. Introduction of LSTM
When using the DDPG algorithm for path planning, the action of the mobile robot

can only be determined by the current state of the robot, which will easily lead to confu-
sion in the exploration trajectory. On the basis of reference [31], we take advantage of
LSTM’s ability to memorize past states of mobile robots and introduce it into the learning
process of mobile robots. To be specific, in the Actor network, the first fully connected
layer is replaced by the LSTM network. When the Actor network receives the input state
of the mobile robot, it is processed by the LSTM first, then processed by the two fully
connected layers, and finally outputs the actions of the robot. In the Critic network, we
replace the fully connected layer that processes the state with an LSTM network. When
the Critic network receives the input state and action of mobile robot, the state is processed
by the LSTM network, and the action is processed by the fully connected layer. The results
of the above two layers are processed by a fully connected layer, and then the Q value is
output. By comprehensively considering the current state and past state of the mobile ro-
bot, the action output by Actor network can be evaluated more accurately. In this way,
the actions of the robot are controlled not only by the current state of the robot, but also
by the previous state, so that the actions of the robot have time correlation, which can
effectively avoid the planned path being too tortuous. The LSTM-DDPG network struc-
ture designed in our paper is shown in Figure 3.

S

S

a

a

Q

Figure 3. Our designed LSTM-DDPG network structure.

In the Actor network and Critic network of DDPG, the target network has the same
structure as the current network, and both of them adopt the structure of LSTM and fully
connected layer. In the Actor network, the first layer is LSTM, the second layer is the fully

Sensors 2022, 22, 3579 7 of 21

connected layer with 400 nodes, and the third layer is the fully connected layer with 300
nodes. ReLU is used as the activation function of the fully connected layer, and Batch
Norm layer is added after each layer to ensure the stability of the algorithm. In the Critic
network, states are input to the LSTM layer, actions are input to the fully connected layer
with 400 nodes, and then both of them are processed through the fully connected layer
with 300 nodes. ReLU is also used as the activation function of the fully connected layer.

3.2. Design of the Reward Function
The reward function is a benchmark to evaluate the action taken by the mobile robot

and plays a guiding role in the whole learning process. The design of the reward function
should not only consider that the mobile robot can reach the target point through the op-
timal path, but also consider the safety of the mobile robot. After the current network of
Actor outputs the action according to the robot state, the state should be updated accord-
ing to the execution result of the action, and the reward value is calculated. If the mobile
robot reaches the target point, the maximum positive reward will be given. If the mobile
robot encounters an obstacle during its movement, it should be punished. If the mobile
robot neither encounters the obstacle nor reaches the target point, the reward value should
be calculated according to the distance between the mobile robot and the starting point
and the target point, so that the mobile robot can keep approaching the target point. In
other words, every action of the mobile robot should receive timely feedback, so as to
speed up the convergence of algorithm. To achieve this goal, the reward function designed
in this paper is shown in Formula (4),

1

2

 Reach target point
reward Hit an obstacle

_ _ Other

C
C

rel dis ori dis


= 
 − +

, (4)

where 1C is a positive constant, 2C is a negative constant, _rel dis is the distance from
the mobile robot to the target point, and _ori dis is the distance from the mobile robot
to the starting point. In this paper, 1C and 2C are set to 150 and −100, respectively.

3.3. State Normalization of Mobile Robot
The state space is the feedback of the whole environment of the mobile robot and is

the basis for the mobile robot to select actions. The mobile robot mentioned in this paper
interacts with the environment through the laser sensor. The detection range of the laser
sensor is from −90 degrees to 90 degrees straight ahead, and the detection distance is at
least 0.2 m. If the distance between the mobile robot and the obstacle is less than 0.2 m, it
is considered to have collided with the obstacle. The data detected by the laser sensor
contain 10 dimensions, as shown in Formula (5). The detection range of the laser sensor is
shown in Figure 4.

=_ [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]scan range scan scan scan scan scan scan scan scan scan scan , (5)

where _scan range is the detection range of the laser sensor installed on the mobile ro-
bot, and scani is the data detected in the ith orientation.

Sensors 2022, 22, 3579 8 of 21

1scan

2scan

3scan

4scan
5scan

6scan

7scan

8scan

9scan

10scan

Figure 4. The detection range of laser sensor on mobile robot.

In order to complete the path planning of the mobile robot, it is necessary to know
whether the mobile robot will encounter obstacles, and also other states of the mobile ro-
bot, such as the action of the mobile robot at the previous time step (including linear ve-
locity and angular velocity), the relative distance and angle between the mobile robot and
the target point, the yaw angle, and the difference angle between the mobile robot and the
target point, etc. Among them, the difference angle is shown in Formula (6). In order to
improve the learning efficiency of the mobile robot, the states of the robot are prepro-
cessed in different normalization methods, as shown in Formulas (7)–(10), respectively.

_ | _ |diff angle rel eheta yaw= − , (6)

where _diff angle is the difference angle between the mobile robot and the target point,
_rel eheta is the relative angle between the mobile robot and the target point, and yaw

is the yaw angle of the mobile robot.
_ _ / _rel dis rel dis diagonal dis= , (7)

where _rel dis is the relative distance between the mobile robot and the target point, and
_diagonal dis is the diagonal length of the simulation map.

_ _ / 360rel theta rel theta= , (8)

where _rel eheta is the relative angle between the mobile robot and the target point.

/ 360yaw yaw= , (9)

where yaw is the yaw angle of the mobile robot.

_ _ / 180diff angle diff angle= , (10)

where _diff angle is the difference angle between the mobile robot and the target point.
To sum up, in the DDPG algorithm, the state space of the mobile robot is set as 16-

dimensional data and defined as the input of the neural network. The normalized state
tS can be defined as:

-1 , _ , _ , , _ , _t tS a rel dis rel theta yaw diff angle scan range=    . (11)

Considering the motion smoothness of mobile robot and the continuity of output ac-
tions, the output of the DDPG network model proposed in this paper is continuous linear
velocity and angular velocity to guide the movement of the mobile robot. Since the limits
of angular velocity and linear velocity should not be too large in the simulation environ-
ment, the maximum angular velocity is set to 0.5 rad/s and the maximum linear velocity
is set to 0.25 m/s. The output action of the model is shown as Formula (12),

Sensors 2022, 22, 3579 9 of 21

[,]t t ta v ϕ= , (12)

where ta is the action of mobile robot at time t , while tv and tϕ are linear velocity
and angular velocity, respectively.

3.4. Mixed Noise Design
DDPG adopts deterministic policy with poor exploration of the environment. In or-

der to increase the randomness of the learning process, DDPG will add a certain amount
of noise to the output actions to improve the exploration ability of the mobile robot. At
present, Gaussian noise and OU noise are commonly used in DDPG. Gaussian noise pro-
duces irrelevant exploration in a time sequence; that is, the selection of the front and rear
actions are independent. The OU noise is a random process, and its calculation formula is
shown in Formula (13). It can produce time-sequence-related exploration; that is, the ac-
tion of the next step will be affected by the action of the previous step. Different from
Gaussian noise, OU noise does not make the actions of two adjacent steps of the mobile
robot very different, but makes the mobile robot explore near the mean of action sampling.
Although this allows the mobile robot to continuously explore in one direction, it will
increase the movement time of the robot when the action taken is not optimal in the cur-
rent view.

OU () ()
ta t tN d a a dt dWθ δ= − + , (13)

where θ is the learning rate of the random process, ta is the action at time t , a is the
average value of the action sampling data, δ is the random weight of OU, and tW is the
Wiener process.

In order to optimize the DDPG exploration policy and improve the exploration effi-
ciency of the robot, we combine Gaussian noise and OU noise to form mixed noise. The
Actor network output action ta based on the mixed noise is shown in Formula (14),

Gaussian OU~ ((),var)
tt t aa N a N d+ , (14)

where var is the Gaussian variance to ensure that the mobile robot has uniform and sta-
ble detection ability in each episode. At the same time, with the progress of the training
process, the mobile robot begins to adapt to the task scene, which requires the exploration
rate to be gradually reduced, as shown in Formula (15),

var var 0.9999= × . (15)

This paper proposes a path planning algorithm for a mobile robot based on improved
DDPG, which can solve the problems of a long training time and slow convergence of
traditional path planning model. The algorithm flow is shown in Figure 5.

Sensors 2022, 22, 3579 10 of 21

Figure 5. Flow chart of the proposed path planning algorithm.

4. Experimental Results and Analysis
4.1. Environment Construction of Simulation Experiment

ROS is selected as the simulation experimental platform in this paper, Python and
TensorFlow frameworks are used to realize the proposed algorithm, and Gazebo7 is used
to establish the simulation environment, as shown in Figure 6. The black dot is the mobile
robot, the blue part is the detection range of the laser sensor, and the gray part is the ob-
stacle. Figure 6a shows the established square-shaped simulation environment without
obstacles, which is mainly used to train mobile robots to realize path planning in a limited
space. Figure 6b adds large obstacles to the environment of Figure 6a to train the mobile
robot to realize path planning in an environment with obstacles. Figure 6c adds random
small obstacles to the environment of Figure 6a, which is mainly used to test the training
effect of the mobile robot in the above two environments.

(a) (b) (c)

Figure 6. Schematic diagram of the simulation environment established by Gazebo7. (a) There are
no obstacles in the environment; (b) there are large obstacles in the environment; (c) there are ran-
domly generated small obstacles in the environment.

Sensors 2022, 22, 3579 11 of 21

We test the proposed path planning algorithm from three aspects of convergence
speed, training time and success rate and analyze the experimental results in detail. The
convergence speed and training time are used as evaluation criteria of the training effi-
ciency of the algorithm, and the success rate is used to verify the effectiveness of the algo-
rithm. In the training process of the algorithm, the convergence speed and training time
can reflect how many episodes are needed to obtain the optimal solution. The faster the
convergence speed is, the shorter the training time is, which means the higher the training
efficiency is. The success rate refers to the percentage of mobile robots that can success-
fully reach the target point from the starting point according to the path planning algo-
rithm adopted. The higher the success rate is, the better the performance of the algorithm.

4.2. Effect Analysis of Our Algorithm
In order to verify the performance of our algorithm, the DDPG algorithm proposed

in reference [31], our algorithm with an improved network structure (LSTM-DDPG) and
our algorithm after adding mixed noise further (MN-LSTM-DDPG) are all trained in the
simulation environment, respectively.

Firstly, 2000 episodes of training are conducted in the simulation Figure 6a, and the
reward value of the mobile robot is recorded after each episode of training, as shown in
Figure 7. The results in Figure 7a show that in an environment without obstacles, the re-
ward value of the algorithm proposed in [31] gradually tends to be stable with the increase
in training episodes, but it still fails to converge after 2000 episodes of training. Moreover,
the reward value fluctuates greatly in the first 800 episodes and is mostly negative, indi-
cating that the mobile robot is learning how to approach the target point but fails many
times. After 800 episodes, the reward value gradually tends to be positive, indicating that
the mobile robot can reach the target point through training, but it still collides with ob-
stacles. Figure 7b is the training result after LSTM is introduced into the network of the
algorithm proposed in [31]. As can be seen, with the increase in training time, the reward
value obtained by the mobile robot gradually increases from a negative value to a positive
value, and finally tends to be stable, but the convergence rate is slow. After LSTM is in-
troduced into the algorithm, the mixed noise composed of Gaussian noise and OU noise
is further introduced into the output results of the network, and the reward function is
optimized. Figure 7c shows the training result of the algorithm. As can be seen, with the
increase in training time, the reward value obtained by the mobile robot gradually in-
creases and finally tends to be stable. Compared with Figure 7b, the convergence speed is
significantly faster.

(a) (b) (c)

Figure 7. Changes in reward value of the improved algorithms. (a) Changes in reward value of the
algorithm proposed in [31]; (b) changes in reward value of LSTM-DDPG, (c) changes in reward
value of MN-LSTM-DDPG.

Figure 8 shows the average rewards returned every 10,000 steps by the algorithm
proposed in reference [31] and LSTM-DDPG and MN-LSTM-DDPG proposed in this pa-
per in the path planning training in simulation Figure 6a. The blue line represents the

Sensors 2022, 22, 3579 12 of 21

algorithm proposed in [31], the green line represents the LSTM-DDPG algorithm, and the
red line represents the MN-LSTM-DDPG algorithm. As can be seen, MN-LSTM-DDPG
has the fastest convergence speed in the path planning of mobile robots, requiring only
120,000 steps, while the algorithm proposed in [31] requires 200,000 steps to converge, and
the convergence is not stable.

Figure 8. The average rewards returned by reference [31] and the improved algorithm every 10,000
steps during training in simulation Figure 6a.

Table 1 compares the training time and the number of training steps of the three al-
gorithms mentioned above. As can be seen from the table, the training time of the path
planning of the algorithm proposed in [31] is 28.03 h, while the training time of MN-
LSTM-DDPG is only 22.75 h, which is 18.8% shorter. In terms of the number of training
steps, the number of training steps of the algorithm proposed in [31] is 484,231, while the
number of training steps of MN-LSTM-DDPG is only 417,701, which significantly im-
proves the convergence speed.

Table 1. Comparison of training time and steps of the improved algorithm in simulation Figure
6a.

Algorithm Training Time (h) Training Steps (Step)
Algorithm in [31] 28.03 484,231

LSTM-DDPG 23.68 427,956
MN-LSTM-DDPG 22.75 417,701

In order to verify the success rate and generalization ability of the model trained in
simulation Figure 6a, 200 tests are performed on the three algorithms in simulation Figure
6a and simulation Figure 6c, respectively. Figures 9 and 10 show the movement process
of the mobile robot in these two environments when MN-LSTM-DDPG is used for path
planning. The black dot is the mobile robot, the blue part is the detection range of the laser
sensor, the gray part is the obstacle, and the green circle is the final target point. As can be
seen, the mobile robot can avoid obstacles from the starting point and reach the target
point accurately with the optimal path.

Sensors 2022, 22, 3579 13 of 21

Figure 9. The movement process of mobile robot in simulation Figure 6a.

Figure 10. The movement process of mobile robot in simulation Figure 6c.

Tables 2 and 3 record the test results in simulation Figure 6a and simulation Figure
6c, respectively. It can be seen from Table 2 that the path planning success rate of the
algorithm proposed in [31] is only 86%, while the success rate of the MN-LSTM-DDPG
algorithm proposed in this paper can reach 100%. In terms of time, compared with the
algorithm proposed in [31], the path planning time of the MN-LSTM-DDPG algorithm
proposed in this paper is shortened by 21.48%. However, when the model trained in sim-
ulation Figure 6a is applied to simulation Figure 6c, the testing effect of each algorithm is
not ideal, as shown in Table 3. Therefore, it is necessary to train the algorithm in an envi-
ronment with obstacles.

Sensors 2022, 22, 3579 14 of 21

Table 2. Comparison of test results of the improved algorithm in simulation Figure 6a.

Algorithm Success Rate (100%) Testing Time (h)
Algorithm in [31] 172/200 = 0.86 1.35

LSTM-DDPG 194/200 = 0.97 1.21
MN-LSTM-DDPG 200/200 = 1 1.06

Table 3. Comparison of test results of the improved algorithm in simulation Figure 6c.

Algorithm Success Rate (100%) Testing Time (h)
Algorithm in [31] 108/200 = 0.54 1.88

LSTM-DDPG 133/200 = 0.665 1.71
MN-LSTM-DDPG 146/200 = 0.73 1.69

In order to verify the effect of the proposed algorithm in an obstacle environment,
the algorithm proposed in [31], the LSTM-DDPG algorithm and the MN-LSTM-DDPG
algorithm proposed in this paper were respectively trained for 2000 episodes in simula-
tion Figure 6b, and the average reward returned by the mobile robot every 10,000 steps
was recorded, as shown in Figure 11. As can be seen from the figure, the improved MN-
LSTM-DDPG algorithm in this paper can achieve convergence after 110,000 steps of train-
ing in the path planning of mobile robots in the simulation Figure 6b However, the algo-
rithm proposed in [31] needs 200,000 training steps to converge, and the convergence is
unstable; the convergence speed is significantly slower than the algorithm proposed in
this paper. Additionally, from the training results in Table 4, it can be seen that the path
planning training time of the algorithm proposed in the [31] is 21.73 h, while the path
planning training time of the improved MN-LSTM-DDPG algorithm in this paper is only
19.70 h, and the training speed shows a significant improvement. In terms of the number
of training steps, the number of training steps of the algorithm proposed in [31] is 374,316,
while the number of training steps of the improved MN-LSTM-DDPG algorithm in this
paper is only 346,667, which significantly improves the convergence speed of the algo-
rithm.

Figure 11. Average reward returned by reference [31] and the improved algorithm every 10,000
steps during training in simulation Figure 6b.

Sensors 2022, 22, 3579 15 of 21

Table 4. Comparison of training time and steps of the improved algorithm in simulation Figure
6b.

Algorithm Training Time (h) Training Steps (Step)
Algorithm in [31] 21.73 374,316

LSTM-DDPG 21.20 365,164
MN-LSTM-DDPG 19.70 346,667

After training the model in an environment with obstacles, 200 tests were performed
in simulation Figure 6b and simulation Figure 6c, respectively, to verify the generalization
ability of the model. The test process is shown in Figures 12 and 13. The two figures re-
spectively show the process of mobile robot avoiding obstacles from the starting point to
reach the target range.

Figure 12. The motion process of the mobile robot in simulation Figure 6b.

Sensors 2022, 22, 3579 16 of 21

Figure 13. The motion process of the mobile robot in simulation Figure 6c.

Tables 5 and 6 record the test results in simulation Figure 6b and simulation Figure
6c, respectively. As can be seen from Table 5, in terms of success rate, the success rate of
the algorithm proposed in [31] is 76%, while the success rate of the MN-LSTM-DDPG al-
gorithm proposed in this paper can reach 87%, which is significantly higher than that in
reference [31]. In terms of time, the test time of the algorithm in this paper is also 17.96%
faster than the algorithm in [31]. It can be seen from Table 6 that the test effect of each
algorithm in simulation Figure 6c is better than that in simulation Figure 6b. This is be-
cause when the obstacle is too large, the number of steps that the mobile robot needs to
move increases. Since the maximum number of steps of the mobile robot is limited in the
simulation environment, when the maximum number of steps has not reached the target
point, it is regarded as a failure.

Table 5. Comparison of test results of the improved algorithm in simulation Figure 6b.

Algorithm Success Rate (100%) Testing Time (h)
Algorithm in [31] 152/200 = 0.76 2.06

LSTM-DDPG 165/200 = 0.825 1.55
MN-LSTM-DDPG 174/200 = 0.87 1.69

Table 6. Comparison of test results of the improved algorithm in simulation Figure 6c.

Algorithm Success Rate (100%) Testing Time (h)
Algorithm in [31] 168/200 = 0.84 1.53

LSTM-DDPG 172/200 = 0.86 1.32
MN-LSTM-DDPG 181/200 = 0.905 1.29

4.3. Comparison and Analysis with other Algorithms
In order to fully evaluate the performance of the proposed algorithm, experiments

are conducted to compare the proposed algorithm with those in references [32,33]. In the
simulation Figure 6a, each algorithm is trained for 2000 episodes, and the average reward
returned by the mobile robot every 10,000 steps is recorded. The results are shown in Fig-
ure 14. As can be seen from the figure, in the barrier-free environment, when the algorithm
proposed in [32] carries out path planning training, it tends to converge at about 110,000
steps, but the reward value after convergence still shows a downward trend, and the train-
ing effect is not good. The algorithm proposed in [33] tends to stabilize after 210,000 steps
of training. However, the algorithm proposed in this paper can converge and become sta-
ble after 120,000 steps of training, and the training effect is the best. Table 7 records the
comparison of training time and the number of steps of each algorithm. As can be seen
from the table, in terms of training time, the training time of the algorithm proposed in
[32] is 39.63 h. The training time of the algorithm proposed in [33] is 24.67 h. However, the
training time of the algorithm proposed in this paper is only 22.75 h, which is significantly
faster than the algorithm proposed in [32] and better than the algorithm proposed in [33].
In terms of the number of training steps, the training steps of the algorithm proposed in
references [32,33] are 395,344 and 446,596, respectively, while the training steps of the al-
gorithm proposed in this paper are 417,701. The algorithm proposed in [32] will fall into
local optimum during training, which leads to the mobile robot turning in place, and in
this paper, the proposed algorithm can effectively avoid the phenomenon. Compared
with reference [32], this paper proposed that although the algorithm steps of training in-
creased, the training time is significantly reduced, and the training speed is still faster than
the algorithm in [32]. However, the algorithm proposed in this paper can effectively avoid
this phenomenon. Compared with the algorithm proposed in [32], although the number
of training steps is increased, the training time is significantly reduced, and the training

Sensors 2022, 22, 3579 17 of 21

speed is still faster than the algorithm proposed in [32]. This indicates that the training
effect of the algorithm proposed in this paper is better than the algorithm proposed in the
references [32,33] in a barrier-free environment.

Figure 14. Average reward returned by reference [32,33] and our proposed algorithm every 10,000
steps during training in simulation Figure 6a.

Table 7. Comparison of training time and steps of each algorithm in simulation Figure 6a.

Algorithm Training Time (h) Training Steps (Step)
Algorithm in [32] 39.63 395,344
Algorithm in [33] 24.67 446,596

Our proposed 22.75 417,701

To verify the success rate and generalization ability of the model trained in simula-
tion Figure 6a, 200 tests were conducted each in simulation Figure 6a and simulation Fig-
ure 6c, and the results are shown in Tables 8 and 9. It can be seen from Table 8 that the
path planning success rate of the algorithm proposed in [32] is 87.5%, and that of the al-
gorithm proposed in [33] is 90%. However, the path planning success rate of the algorithm
proposed in this paper can reach 100%, which is significantly higher than that in refer-
ences [32,33]. In terms of time, the algorithm proposed in this paper takes the same time
as the algorithm proposed in [33], which is significantly shorter than that in [32]. However,
it can be seen from the test results in Table 9 that the model trained by each algorithm in
a barrier-free environment is not ideal when tested in an obstacle environment, but the
algorithm proposed in this paper still performs better than the other two algorithms.

Table 8. Comparison of test results of each algorithm in simulation Figure 6a.

Algorithm Success Rate (100%) Testing Time (h)
Algorithm in [32] 175/200 = 0.875 1.06
Algorithm in [33] 180/200 = 0.90 1.87

Our proposed 200/200 = 1 1.06

Table 9. Comparison of test results of each algorithm in simulation Figure 6c.

Algorithm Success Rate (100%) Testing Time (h)
Algorithm in [32] 123/200 = 0.615 1.66
Algorithm in [33] 135/200 = 0.675 1.23

Our proposed 146/200 = 0.73 1.69

Sensors 2022, 22, 3579 18 of 21

In order to verify the advantages of the algorithm in this paper in an environment
with obstacles, the algorithm in this paper and the algorithm proposed in references [32]
and [33] were trained for 2000 episodes in simulation Figure 6b. The average rewards re-
turned by the mobile robot every 10,000 steps were recorded, and the results are shown
in Figure 15. As can be seen from the figure, when the algorithm proposed in [32] performs
path planning in simulation Figure 6b, it needs 240,000 steps of training to converge. The
algorithm proposed in [33] needs 140,000 training steps to become stable, while the algo-
rithm proposed in this paper can achieve convergence after 110,000 training steps, and the
convergence effect is obviously better than that in references [32,33]. It can also be seen
from Table 10 that the training time and number of training steps taken by the algorithm
proposed in this paper are significantly less than those in references [32] and [33].

Figure 15. Average reward returned by references [32,33] and our proposed algorithm every 10,000
steps during training in simulation Figure 6b.

Table 10. Comparison of training time and steps of each algorithm in simulation Figure 6b.

Algorithm Training Time (h) Training Steps (Step)
Algorithm in [32] 21.03 365,978
Algorithm in [33] 21.67 379,379

Our proposed 19.70 346,667

In order to verify the success rate of the trained model in the obstacle environment,
each algorithm was tested 200 times each in simulation Figure 6b and simulation Figure
6c, and the results are shown in Tables 11 and 12. As can be seen from the test results in
Table 11, in terms of success rate, the algorithm proposed in [32] is 82.5%, the algorithm
proposed in [33] is 81%, and the algorithm proposed in this paper can reach 87%, which
is significantly higher than the algorithm proposed in references [32,33]. In terms of test
time, the test time of the algorithm proposed in this paper is longer than that proposed in
[33]. In the testing process, since the starting and ending points of the mobile robot are
randomly selected, their relative positions will have a certain influence on the testing time.
It can be seen from Table 12, in simulation Figure 6c, the success rate of the algorithm
proposed in this paper can reach 90.5%, higher than the algorithm proposed in references
[32,33], which indicates that the algorithm proposed in this paper has obvious advantages
in path planning in an environment with obstacles.

Sensors 2022, 22, 3579 19 of 21

Table 11. Comparison of test results of each algorithm in simulation Figure 6b.

Algorithm Success Rate (100%) Testing Time (h)
Algorithm in [32] 165/200 = 0.825 1.71
Algorithm in [33] 162/200 = 0.81 1.35

Our proposed 174/200 = 0.87 1.69

Table 12. Comparison of test results of each algorithm in simulation Figure 6c.

Algorithm Success Rate (100%) Testing Time (h)
Algorithm in [32] 167/200 = 0.835 1.31
Algorithm in [33] 166/200 = 0.83 1.29

Our proposed 181/200 = 0.905 1.29

5. Conclusions
Since LSTM has the ability of “memory”, this paper uses LSTM to optimize the DDPG

network structure. By designing mixed noise and more reasonable reward function, mo-
bile robot path planning models can be rapidly trained. This effectively improves the ex-
ploration efficiency of a mobile robot in a complex environment and ensures that the mo-
bile robot can reach the target point in a shorter time and by a better path. However, the
algorithm in this paper only considers static obstacles in the environment, and dynamic
obstacles are also important factors to be considered in many application scenarios. How
to effectively avoid the impact of dynamic obstacles on path planning is important re-
search content for the future.

Author Contributions: Conceptualization, H.G. and P.W.; methodology, H.G. and P.W.; software,
H.G. and N.C.; validation, H.G., P.W. and C.N.; formal analysis, H.G., P.W. and N.C.; investigation,
H.G. and P.W.; resources, H.G. and P.W.; data curation, H.G. and P.W.; writing—original draft
preparation, H.G. and P.W.; writing—review and editing, H.G., P.W. and N.C.; visualization, H.G.;
supervision, H.G., P.W. and C.N.; project administration, H.G. and P.W.; funding acquisition, H.G.,
P.W. and C.N. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the China Postdoctoral Science Foundation (Grant No.
2021M702030) and Science and Technology Project of Shandong Provincial Department of Trans-
portation (Grant No. 2021B120).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations
The following abbreviations are used in this manuscript:

DDPG Deep Deterministic Policy Gradient
LSTM Long Short-Term Memory
OU Ornstein–Uhlenbeck
DQN Deep Q-Learning
RAdam Rectified Adam
RNN Recurrent Neural Network
MN Mixed Noise

Sensors 2022, 22, 3579 20 of 21

References
1. Bai, X.; Yan, W.; Ge, S.S. Distributed Task Assignment for Multiple Robots Under Limited Communication Range. IEEE Trans.

Syst. Man Cybern. Syst. 2021, 1–13.
2. Chen, Z.; Alonso-Mora, J.; Bai, X.; Harabor, D.D.; Stuckey, P.J. Integrated task assignment and path planning for capacitated

multi-agent pickup and delivery. IEEE Robot. Autom. Lett. 2021, 6, 5816–5823.
3. Bai, X.; Yan, W.; Cao, M.; Xue, D. Distributed multi-vehicle task assignment in a time-invariant drift field with obstacles. IET

Control. Theory Appl. 2019, 13, 2886–2893.
4. Chen, X.; Zhao, M.; Yin, L. Dynamic Path Planning of the UAV Avoiding Static and Moving Obstacles. J. Intell. Robot Syst. 2020,

99, 909–931.
5. Gao, J.; Ye, W.; Guo, J.; Li, Z. Deep reinforcement learning for indoor mobile robot path planning. Sensors 2020, 20, 5493.
6. Zhang, L.; Chen, Z.; Cui, W.; Li, B.; Chen, C.; Cao, Z.; Gao, K. Wifi-based indoor robot positioning using deep fuzzy forests.

IEEE Internet Things J. 2020, 7, 10773–10781.
7. Lu, H. Artificial Intelligence and Robotics; Springer: Cham, Switzerland, 2021.
8. Sun, Y.; Fang, M.; Su, Y. AGV Path Planning based on Improved Dijkstra Algorithm. J. Phys. Conf. Series 2021, 1746, 012052.
9. Zhu, D.D.; Sun, J.Q. A New Algorithm Based on Dijkstra for Vehicle Path Planning Considering Intersection Attribute. IEEE

Access 2021, 9, 19761–19775.
10. Chai, H.; Li, J.; Yao, M. Improved A* Algorithm for Mobile Robot Path Planning. Electron. Devices 2021, 44, 362–367.
11. Tang, G.; Tang, C.; Claramunt, C.; Hu, X.; Zhou, P. Geometric A-star Algorithm: An improved A-star Algorithm for AGV Path

Planning in a Port Environment. IEEE Access 2021, 9, 59196–59210.
12. Bounini, F.; Gingras, D.; Pollart, H.; Gruyer, D. Modified artificial potential field method for online path planning applications.

In Proceedings of the 2017 IEEE Intelligent Vehicles Symposium (IV), Los Angeles, CA, USA, 11–14 June 2017; pp. 180–185.
13. Chen, J.; Tan, C.; Mo, R.; Wang, Z.; Wu, J.; Zhao, C. Path Planning for Mobile Robot Based on Artificial Potential Field A*

Algorithm. Comput. Sci. 2021, 48, 327–333.
14. He, C.; Mao, J. AGV optimal path planning based on improved ant colony algorithm. MATEC Web Conf. 2018, 232, 3052.
15. Wang, H.; Zhao, X.; Yuan, X. Robot path planning based on improved adaptive Genetic Algorithm. Electron. Opt. Control 2014,

166, 255–260.
16. Sil, M.; Bhaumik, S.; Barai, R.K. Convex Optimization Based Path Planning Algorithm for Robot Motion in Constrained Space.

In Proceedings of the 2020 IEEE Applied Signal Processing Conference (ASPCON), Kolkata, India, 7–9 October 2020; pp. 188–
192.

17. Bai, X.; Yan, W.; Ge, S.S.; Cao, M. An integrated multi-population genetic algorithm for multi-vehicle task assignment in a drift
field. Inf. Sci. 2018, 453, 227–238.

18. Bai, X.; Yan, W.; Cao, M. Clustering-based algorithms for multivehicle task assignment in a time-invariant drift field. IEEE Robot.
Autom. Lett. 2017, 2, 2166–2173.

19. Wang, J.; Yang, Y.; Li, L. Reinforcement learning based on improved depth of mobile robot path planning. J. Electron. Meas.
Technol. 2021, 44, 19–24. https://doi.org/10.19651/j.carol carroll nki emt 2107490.

20. Chang, L.; Shan, L.; Jiang, C.; Dai, Y. Reinforcement based mobile robot path planning with improved dynamic window ap-
proach in unknown environment. Auton. Robot. 2020, 45, 51–76.

21. Lei, X.; Zhang, Z.; Dong, P. Dynamic path planning of unknown environment based on deep reinforcement learning. J. Robot.
2018, 2018, 1–10.

22. Guo, S.; Zhang, X.; Zheng, Y.; Du, Y. An autonomous path planning model for unmanned ships based on deep reinforcement
learning. Sensors 2020, 20, 426.

23. Li, B.; Wu, Y. Path planning for UAV ground target tracking via deep reinforcement learning. IEEE Access 2020, 8, 29064–29074.
24. Low, E.S.; Ong, P.; Cheah, K.C. Solving the optimal path planning of a mobile robot using improved Q-learning. Robot. Auton.

Syst. 2019, 115, 143–161.
25. Watkins, C.J.C.H.; Dayan, P. Q-learning. Mach. Learn. 1992, 8, 279–292.
26. Maoudj, A.; Hentout, A. Optimal path planning approach based on Q-learning algorithm for mobile robots. Appl. Soft Comput.

2020, 97, 106796.
27. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.; Antonoglou, I.; Wierstra, D.; Riedmiller, M. Playing atari with deep reinforce-

ment learning. arXiv 2013, arXiv:1312.5602.
28. Li, J.; Chen, Y.; Zhao, X.; Huang, J. An improved DQN path planning algorithm. J. Supercomput. 2021, 78, 616–639.
29. Lillicrap, T.P.; Hunt, J.J.; Pritzel, A.; Heess, N.; Erez, T.; Tassa, Y.; Silver, D.; Wierstra, D. Continuous control with deep rein-

forcement learning. arXiv 2015, arXiv:1509.02971.
30. Lin, G.; Zhu, L.; Li, J.; Zou, X.; Tang, Y. Collision-free path planning for a guava-harvesting robot based on recurrent deep

reinforcement learning. Comput. Electron. Agric. 2021, 188, 106350.
31. Tai, L.; Paolo, G.; Liu, M. Virtual-to-real deep reinforcement learning: Continuous control of mobile robots for mapless naviga-

tion. In Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC,
Canada, 24–28 September 2017; pp. 31–36.

32. Jesus J C, Bottega J A, Cuadros M A S L, et al. Deep deterministic policy gradient for navigation of mobile robots in simulated
environments. In Proceedings of the 2019 19th International Conference on Advanced Robotics (ICAR), Belo Horizonte, Brazil,
2–6 December 2019; pp. 362–367.

Sensors 2022, 22, 3579 21 of 21

33. Li, P.; Ding, X.; Sun, H.; Zhao, S.; Cajo, R. Research on Dynamic Path Planning of Mobile Robot Based on Improved DDPG
Algorithm. Mob. Inf. Syst. 2021, 2021, 5169460.

34. Bouhamed, O.; Ghazzai, H.; Besbes, H.; Massoud, Y. Autonomous UAV navigation: A DDPG-based deep reinforcement learn-
ing approach. In Proceedings of the 2020 IEEE International Symposium on Circuits and Systems (ISCAS), Seville, Spain, 12–14
Ocober 2020; pp. 1–5.

35. Du, Y.; Zhang, X.; Cao, Z.; Wang, S.; Liang, J.; Zhang, F.; Tang, J. An Optimized Path Planning Method for Coastal Ships Based
on Improved DDPG and DP. J. Adv. Transp. 2021, 2021, 7765130.

36. Zhao, J.; Huang, F.; Lv, J.; Duan, Y.; Qin, Z.; Li, G.; Tian, G. Do RNN and LSTM have long memory. In Proceedings of the
International Conference on Machine Learning, PMLR, Virtual, 13–18 July 2020; pp. 11365–11375.

37. Staudemeyer, R.C.; Morris, E.R. Understanding LSTM--a tutorial into long short-term memory recurrent neural networks. arXiv
2019, arXiv:1909.09586.

38. Sherstinsky, A. Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network. Phys. D Non-
linear Phenom. 2020, 404, 132306.

