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Abstract: Concomitant with the recent advances in deep learning, automatic speech recognition
and visual speech recognition (VSR) have received considerable attention. However, although VSR
systems must identify speech from both frontal and profile faces in real-world scenarios, most VSR
studies have focused solely on frontal face pictures. To address this issue, we propose an end-to-
end sentence-level multi-view VSR architecture for faces captured from four different perspectives
(frontal, 30◦, 45◦, and 60◦). The encoder uses multiple convolutional neural networks with a spatial
attention module to detect minor changes in the mouth patterns of similarly pronounced words,
and the decoder uses cascaded local self-attention connectionist temporal classification to collect
the details of local contextual information in the immediate vicinity, which results in a substantial
performance boost and speedy convergence. To compare the performance of the proposed model for
experiments on the OuluVS2 dataset, the dataset was divided into four different perspectives, and
the obtained performance improvement was 3.31% (0◦), 4.79% (30◦), 5.51% (45◦), 6.18% (60◦), and
4.95% (mean), respectively, compared with the existing state-of-the-art performance, and the average
performance improved by 9.1% compared with the baseline. Thus, the suggested design enhances
the performance of multi-view VSR and boosts its usefulness in real-world applications.

Keywords: lipreading; visual speech recognition; multi-view VSR; deep learning; attention mech-
anism; spatial attention module; convolutional neural network; local self-attention; connectionist
temporal classification

1. Introduction

Hearing and vision, sometimes known as verbal and visual signals, are widely em-
ployed in communication. Because audio signals typically include more information than
visual signals, various experiments on automatic speech recognition (ASR) have been
performed. Consequently, ASR has attained a very high recognition rate without causing
significant signal deterioration. Moreover, it has been used in numerous applications. In
contrast, visual speech recognition (VSR) recognizes speech content based on the speaker’s
lip-movement features in the absence of speech signals, that is, the speech information
is inferred from the movement of the lips. In particular, the visual channel receives two-
dimensional visual information, which typically contains more redundant information
than that contained in the one-dimensional spoken information received via the auditory
channel. Overcoming these VSR limitations is challenging.

People with hearing loss frequently communicate using sign language or by reading
the movement of the person’s lips. However, sign language has limitations, such as learning
and comprehension difficulties, as well as insufficient expression skills. In this regard,
VSR can help people with hearing loss interact effectively with others [1,2]. In noisy
environments, interference from ambient noise can reduce audio recognition rates. By
contrast, the visual information required for VSR does not change; consequently, VSR can
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increase speech-recognition performance in noisy contexts [3,4]. In particular, owing to
the dominance of facial recognition technology in the field of security, including the use
of photographs, video playback, and 3D modeling, VSR technology has been subjected
to a large number of attacks. In this approach, including lip movement into a security
system might improve its reliability [5]. Additionally, conventional speech synthesis can
only generate a single voice in the primary domain of visual synthesis, whereas lipreading
technology may generate high-resolution speeches of several characters in a video [6].
Furthermore, lip gestures can be employed to increase sign-language identification accuracy
or comprehension [7,8].

Recent research has predominantly focused on lipreading from a frontal perspective [9–15].
This approach contradicts previous findings in the literature showing that human lipreaders
prefer non-frontal views [16,17], owing to noticeable lip protrusion and lip rounding at
these angles. Therefore, it might be practical to improve frontal-view lipreading abilities
using non-frontal lip view information. This information can also be helpful when a frontal
view of the mouth, which is the region of interest (ROI), is unavailable. This is true in
real-life situations in which the subject’s face is not visible [11,18,19]. In other words, in an
audio VSR or VSR system, the speaker is not continually facing the smart device, kiosk,
or camera.

Recently, several VSR systems have been proposed [20–26]. However, most VSR
studies focus on frontal facial images because of the shortage of published datasets that
include facial images from different angles. These investigations include lipreading studies,
in which the emphasis is on frontal, diagonal, and profile images. The OuluVS2 [27] dataset,
a publicly accessible multi-view VSR dataset, is typically used as a research corpus for
evaluating novel approaches.

Estellers and Thiranin [28] trained a system using both frontal (0◦) and profile (90◦)
faces and performed exploratory research on multi-view lipreading. Their study demon-
strated that the frontal perspective exhibited a lower word error rate (WER) than the profile
view. Isobe et al. [29] examined the frontal (0◦), left profile (90◦), and right profile (90◦)
viewpoints using a multi-angle approach. When the frontal perspective was used instead
of the other perspectives, the system performance improved. As a breakthrough sequence-
picture encoding approach, Saitoh et al. [21] proposed concatenated frame image encoding
(CFI). They developed a framework for a convolutional neural network (CNN) based on
CFI and compared two data augmentation methodologies for CFI.

Bauman et al. [16] observed that AI lipreaders perform better when human faces are
slightly inclined because of lip protrusion and rounding. They used the active appearance
model (AAM) to extract features from five distinct angles. Using a regression technique in
feature space to assess lipreading on both view-dependent and view-independent systems,
they reported that the view-dependent system outperformed benchmark models in all tests,
receiving a perfect score of 30. Aiming at blending diverse views, Zimmermann et al. [22]
coupled principal component analysis-based convolutional networks with long short-term
memory (LSTM), a deep learning model, a conventional voice recognition model, hidden
Markov models, and Gaussian mixture models. They found that a 30◦ face inclination pro-
duced the best effects. Anina et al. [27] recorded the best accuracy at 60◦. Lipreading with
a profile view produces lower WERs than lipreading with a frontal viewpoint, according
to Kumar et al. [20].

Deep learning has also been used to blend multiple view angles and edit photographs.
In particular, Komai et al. [30] implemented AAMs to transform frontal faces viewed from
various angles. Their results suggested that identification accuracy increased even when
the face orientation was rotated roughly 30◦ from the frontal perspective. The “View2View”
system developed by Koumparoulis and Potamianos [23] relies on a CNN-based encoder–
decoder paradigm. The technique converts non-frontal mouth photographs into frontal
mouth images. Their view-mapping method for VSR and audio-visual speech recognition
(AVSR) was reported to be successful.
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By synthesizing virtual frontal views from non-frontal images, Estellers et al. [28]
devised a position normalization technique and accomplished multi-view speech recog-
nition. Petridis et al. [24] proposed a multi-view bidirectional LSTM-based lipreading
model. The proposed approach considers data directly from pixels while simultaneously
performing VSR from various perspectives. They discovered that combining the frontal
and profile images boosted the accuracy when compared to using only the frontal view.
Zimmermann et al. [25] implemented a PCA-based CNN, LSTM network, and GMM–HMM
model to extract features in a decision fusion-based lipreading model. They reported that
the decision fusion was effective because Viterbi pathways were included. In addition, to
perform multi-angle lipreading, Sahrawat et al. [26] employed view-temporal attention
to expand a hybrid attention-based connectionist temporal classification (CTC) system.
Finally, Lee et al. [31] trained a CNN–LSTM model from beginning to end.

Evidently, numerous studies have been conducted based on deep learning. How-
ever, fewer studies have been conducted on multi-view lipreading than existing speech
recognition and front lipreading studies.

Therefore, considering the above-mentioned limitations, we propose a multi-view
VSR architecture that supports VSR when both frontal and non-frontal lip pictures are
identified. In particular, for non-frontal views, we developed an end-to-end sentence-level
multi-view lipreading neural-network architecture that outperforms traditional and current
deep learning VSR systems. Convolutional, recurrent, and transcriptional layers were
sequentially applied to develop the multi-view VSR architecture.

The remainder of this paper is structured as follows: Section 2 delves into the details
on the proposed architecture, Section 3 discusses the experiments, and Section 4 discusses
the results. Finally, Section 5 provides the concluding remarks of this study.

2. Proposed Architecture

In this section, we propose a novel feature-extraction approach. In particular, the
proposed architecture is divided into three layers (convolutional layer, recurrent layer,
transcription layer) based on an end-to-end neural network with four different perspective
inputs, as shown in Figure 1. The three layers are compared against various modules for
their performance evaluation. In the convolutional layer, based on the visual extraction
module proposed in a previous study [32], the model was modified to improve the feature
extraction performance and convergence speed. To compare the modules of the proposed
architecture, three current equivalent designs were implemented: multi-scale 3D CNN,
spatial attention module (SAM), and integrated multi-scale 3D CNN (Figure 1a). In addition,
the recurrent layer was compared as a sequence-processing module with other modules,
such as residual neural network (RNN), LSTM, gated recurrent unit (GRU), Bi-LSTM, and
Bi-GRU (Figure 1b). The transcription layer was compared as a process for decoding the
output features with other components, such as standard CTC, global self-attention-CTC,
and local self-attention-CTC (Figure 1c).
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Figure 1. Block diagram of the proposed multi-view lipreading architecture; (a) convolutional layer;
(b) recurrent layer; and (c) transcription layer.

2.1. Convolutional Layer

To encode visual information from the extracted lips, all input-image sequences
were loaded into a spatiotemporal CNN. We extracted spatiotemporal information from
an input image composed of numerous continuous frames using a three-dimensional
convolutional layer with 64 kernels; 3× 5× 5, (1, 2, 2), and (1, 2, 2) are the sizes, strides, and
pads, respectively. To minimize the transformation of internal variables, we used a batch
normalization (BN) layer and a rectified linear unit (ReLU) layer to accelerate the training
process. Subsequently, a max-pooling 3D layer was used to decrease the spatial size of the
3D feature maps. Thus, the output form was observed utilizing 40 × 50 × 25 × 64 tensors
with an input sequence of 40 × 100 × 50 × 3 frames.

A densely linked connection contains several connections. In this regard, CNN con-
nects numerous layers of a connection, allowing for efficient feature usage, decreased
gradient disappearance, and increased network depth. The input-feature volumes are
reduced by the bottleneck layer, which comes before the convolutional layer. The mul-
tichannel feature volumes are merged using the bottleneck layer approach. The second
layer is applied to only a fraction of the volume of the previous features because the
prior features remain visible. Additionally, transition layers are utilized to increase the
model’s compactness, with the hyperparameter theta controlling the degree of compression.
A bottleneck layer, transition layer, and slower growth rate are used to create a tight net-
work. This strategy saves computing power while minimizing model parameters and
preventing overfitting.

Dense connection CNN is an architecture that focuses on making deep learning
networks go even deeper, while simultaneously making them more efficient to train by
using shorter connections between the layers (Figure 2). Figure 2a displays a CNN, where
each layer is connected to all of the other layers that are deeper in the network, and it
consists of two important blocks other than the basic convolutional and pooling layers, that
is, the dense blocks and the transition layers. Dense block (1) was built using the following
layers in order: BN, ReLU, 3D convolutional, BN, ReLU, and 3D convolutional layers (see
Figure 2b). Dense blocks (2), (3), and (4) have the same structure as dense block (1). The
transition layer is depicted in Figure 2c, which comprises a BN layer, ReLU layer, three 3D
convolutional layers, and two 2D pooling layers.
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Different CNN models have yielded outstanding results in picture classification tasks.
One such example is feature aggregation using numerous CNNs, which allows the ex-
traction of diverse spatial and temporal information by creating separate structures and
depths [33]. Several convolutional layers with varying degrees of abstraction can be ex-
tracted during the multi-scale 3D CNN training phase. This training technique can also
produce a range of features with various depths and filter sizes. Some of the essential
characteristics lost in the layered design can be selected using this strategy, resulting in
a more feature-rich final product.

The attention mechanism can boost the feature representation strength of our interests
by telling us “what” and “where” to focus our attention. Attention weighting is used
in computer vision to boost the feature representation capacity by emphasizing relevant
characteristics and limiting inconsequential characteristics. Moreover, attention can be
regarded as a strategy for allocating a finite computational force to more informative
areas [34–36]. Hu et al. [37] proposed the “Squeeze-and-Excitation” module to describe
the channel-wise correlation of convolutional features without considering the spatial
information. The convolutional block attention module [38] empirically demonstrated that
both max-pooling and average-pooling operations contribute to the attention mechanism.
Additionally, the inter-spatial interactions feature may be utilized to produce a map of
spatial attention. Spatial attention, in contrast to channel attention, focuses on the locations
of informative sections and serves as a supplement to channel attention. As a result, the
weights associated with attention are distributed over two separate dimensions in this
model: channel and space.

The model initially executes average-pooling and max-pooling operations along the
channel axis before concatenating them to build an efficient feature descriptor to compute
spatial attention. To construct a spatial attention map Ms(F) ∈ RH×W, a convolutional
layer is applied to the concatenated feature descriptor. Subsequently, two pooling processes
are used to aggregate the channel information of a feature map, resulting in two 3D maps:
Fs

avg ∈ RH×W and Fs
max ∈ RH×W, each representing the average- and max-pooled features

over the channel. A 3D spatial attention map is created by concatenating and convolving
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them with a conventional convolutional layer. In brief, spatial attention is calculated using
the following formula:

Ms(F) = σ(f7×7([AvgPool(F); MaxPool(F)])), (1)

Ms(F) = σ(f7×7(
[

Fs
avg; Fs

max

]
)), (2)

where σ denotes the sigmoid function, and f7×7 represents a convolution operation with
a filter size of 7 × 7 (Figure 3b).
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Because several existing studies implement learning approaches based on sentence
front-view datasets [32,39–41], it is difficult to expect high accuracy using the same model
for multiple viewpoints. Therefore, we propose an SAM-integrated-MLFF 3D CNN, which
is a network module focusing on spatial attention with different neighborhoods in the
feature maps (Figure 3a). The first module (Figure 3c) comprises a 3D convolutional layer
on a 3D dense connection convolutional layer output feature with 32 kernels, followed by
a BN layer and a ReLU layer. The second module (Figure 3d) is structured similarly to the
benchmark dataset, with a 3D convolutional layer with 64 kernels, followed by a dropout
layer to prevent overfitting. By inhibiting the formation of highly correlated activations,
the dropout layer enhances and generalizes the performance by avoiding overtraining
and overfitting [42].

The third module, which contains a 3D convolutional layer with 96 kernels, is similar
to the second module, except for the absence of a dropout layer (Figure 3e). In particular,
this method drops the entire feature map. Moreover, in contrast to the traditional dropout
method, which removes pixels at random, this method employs CNN models with substan-
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tial spatial correlation to improve image classification [43]. Consequently, we employed
a spatial dropout layer to extract lips, teeth, and tongue morphologies, which have strong
spatial connectivity and contain few movements. Each SAM multi-scale 3D CNN module
consists of 3D average-pooling, 3D max-pooling, and 3D convolutional layers, with 32,
64, and 96 3D kernel operations, respectively, along the channel axis and a concatenated
BN layer (Figure 3b). Therefore, the output of each multi-scale 3D CNN and SAM is
merged and concatenated. As a result, SAM exploits the inter-spatial interaction of the
characteristics to better select and focus on the most identifiable and helpful portions of
an tinput picture [38].

2.2. Recurrent Layer

Traditional recurrent neural networks (RNNs), LSTM, and GRU are examples of
previously implemented RNN algorithms. Owing to the gradient vanishing issue, a typical
RNN has difficulties in learning long-range dependent input and output data, owing to the
backpropagation technique’s inability to perform adequately with an increase in input data.
To overcome this issue, Hochreiter and Schmidhuber [44] created the LSTM network, which
is currently widely used in time-series-data processing [45–47]. By efficiently overcoming
the gradient vanishing issue through effective learning, LSTM and GRU achieve higher
levels of validation and prediction accuracy than traditional RNNs, particularly for long-
range dependent input and output data [45,47].

A GRU is an RNN that, through multiple stages, learns to manage and transmit
information flow [48]. GRUs are constructed using LSTM units that can decide which data
to retain and discard. While the 3D CNN only gathers data at the viseme level, GRUs
can differentiate across greater temporal contexts, which is crucial for resolving ambiguity.
GRU, which consists of an update gate and a reset gate, can also be used to address the
gradient vanishing issue.

A two-layer bidirectional GRU is implemented in the proposed architecture, providing
a faster convergence speed than a sequence processing module. The two-layer bidirectional
GRU is used to transfer information both ways to two distinct neural network topologies
coupled to the same output layer, enabling both networks to acquire substantial knowledge
of the input. The SAM-integrated-multi-scale 3D CNN provides the input to the two-layer
bidirectional GRU layer. For instance, to obtain an output containing 40 × 512 tensors, we
submitted a bidirectional GRU 40 × 3 × 1 × 384 frame sequence into the merging layer.

2.3. Transcription Layer

Assael et al. [18] used “LipNet” (their neural network, which had outperformed experi-
enced human lip readers) to train a network of end-to-end deep neurons on a benchmark
dataset, using the effective CTC loss function [49] for acoustic-based speech recognition. The
CTC loss function parameterizes the distribution of the label token sequence without having
to align the input sequence; it is conditionally independent of the surrounding distribution
generated at each time step. Therefore, the CTC model is a decoding method that uses
a beam search technique to detect the temporal dependence of labels.

It is worth noting that the CTC loss function assumes conditional independence of
independent labels (i.e., individual character symbols). Each output unit corresponds to
the probability of seeing one label at a time. As a result, although CTC is built on RNNs, it
is primarily concerned with local data (nearby frames) [50]. While this strategy is effective
for forecasting acoustic phonemes, it is not effective for predicting visemes, which require
additional background information to discern tiny variations.

Figure 4 illustrates that the self-attention mechanism [36,51] is a technique to better
encode the word at the target location by looking at the word at another location and taking
hints from each word in the input full-sequence sentence. Figure 4a depicts the processing
process of the self-attention mechanism, with the global area enclosed by a blue-line square
and the local area by a red dotted line. Furthermore, Figure 4b shows an example of the
mechanism processing process presented in Figure 4a for the sentence “Nice to meet you”.
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The multi-head self-attention modules that transformers are known for constitute their
distinguishing feature [36]. Given an input X ∈ RT×n, where T is the number of time steps
and n is the hidden state dimension, a set comprising query, key, and value matrices is
generated using the weight matrices WQ

h , WK
h , and WV

h ∈ Rn×dk , respectively, where dk
is the dimension of the heads of the attention module. There is one embedding per head,
denoted by the subscript h.

Qh = XWQ
h , (3)

Kh = XWK
h , (4)

Vh = XWV
h . (5)
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Figure 4. (a) Details regarding the global and local self-attention process: the blue line square encloses
the global area, and red dotted line square encloses the local area; and (b) self-attention mechanism
processing process presented for the sentence “Nice to meet you”. (* for dot product).

The keys and queries are multiplied to obtain a T × T attention matrix A. This matrix
encodes the relative relevance of each time step, that is, how much attention each time
step receives, by assigning a scalar to each pair of time steps. A SoftMax function with
temperature

√
dk is applied to convert this into a normalized distribution. The value matrix

is subsequently multiplied by the normalized attention matrix. Consequently, each time
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step has a linear combination of value embeddings, with the most significant embedding
receiving the largest weights as follows:

Atth = Softmax

(
QhKT

h√
dk

)
Vh. (6)

The heads are then concatenated and transformed back to the original dimension n
using the weight matrix Wout ∈ Rdk·nh×n, where nh is the number of heads. Moreover,
a residual connection connecting the output to the input is added as follows:

Xout = Concath(Atth)W
out + X. (7)

Subsequently, each time step is standardized via layer normalization. For time step
t, the overall mean of the feature dimension is subtracted from the input, which is then
divided by the standard deviation. This is rescaled and shifted by the learnable parameters
α and β as follows:

Xnorm
t =

Xout
t − µt
σt

·α+ β, (8)

where
µt =

1
n ∑

i
Xout

ti , (9)

σt =

√
1
n
(
Xout

ti − µt
)2. (10)

Next, a feedforward neural network is applied in a time-step-wise manner. This
part typically consists of two fully connected layers parameterized by weight matrices
W1 ∈ Rn×φn, W2 ∈ Rφn×n; bias vectors b1 ∈ Rφn, b2 ∈ Rn; and a residual connection
as follows:

f(Xnrom
t W1 + b1)W2 + b2 + Xnrom

t , (11)

where f (·) is an element-wise activation function, such as a ReLU or Gaussian error linear
unit. Here, φ is a scaling factor for the inner dimensions of the feedforward module. Finally,
another layer normalization is applied.

The encoder, decoder, and feedforward contexts were employed to accelerate transla-
tion and offer the most current translation findings, sentiment analysis, and other additional
operations. The success of self-attention in these tasks motivated the first study on self-
attention in speech recognition [52]. As a result, an attention-based encoder–decoder
paradigm was devised. Although self-attention was first employed for machine translation,
its versatility enabled it to be utilized for voice recognition as well [53–56]. Attention-based
encoder–decoder models rapidly learn the mapping between the auditory frame and the
letter sequence. These models generate a label at each output time step based on the
input and target label histories. Despite not requiring an external language model, the
attention model has a lower character error rate (CER) than CTC. However, the model
performs poorly in real-world conditions for various voice recognition tasks, owing to
the ease with which noise and other variables may impair the expected alignment in the
attention mechanism. Additionally, learning the model from start is difficult, owing to the
misalignment of extended input sequences [57,58].

This study used cascaded local self-attention CTC training criteria to improve perfor-
mance and accelerate learning for the above-mentioned difficulties. When scaling to larger
sequences, transformers scale quadratically in the input length. This problem is solved
using a unique speech enhancement transformer model based on local attention [59,60].
Local attention is especially well suited for speech augmentation because the predictions do
not require long-range correlations, as in natural language processing. Moreover, sufficient
information is frequently stored within a few seconds of the target period. Local attention
is naturally interwoven with this demand.
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The above approach results in huge advances in speech augmentation, where typical
sample lengths can involve up to hundreds of thousands of tokens or hours of speech.
This small focus incurs only a fraction of the processing and memory overhead associated
with attention throughout the entire feature. The windowed technique also allows a more
compact packing of padded features in mini-batches, thereby saving costs. Consequently,
this module acquires detailed local contextual information from the surrounding area. As
the foundational model, we employed cascaded local self-attention with a context size of 12.

3. Experimental Evaluation
3.1. Dataset

In this study, the proposed architecture was evaluated on the OuluVS2 [27] dataset.
This dataset comprises 52 speakers making three types of utterances (Digits, Phrases,
and TIMIT), three times each (except TIMIT), simultaneously recorded from five distinct
viewpoints (0◦, 30◦, 45◦, 60◦, and 90◦) for a total of 780 samples per utterance. There are ten
classes in total: “Please excuse me”, “Goodbye”, “Hello”, “How are you”, “Nice to meet
you”, “See you”, “I am sorry”, “Thank you”, “Have a nice time”, and “You are welcome”.
The impact of various mouth ROIs was evaluated by processing the lips from scratch rather
than from existing data, and the 90◦ data were omitted from the experiment because the
lips could not be recognized during the extraction process. For the recognition task, we
used the Phrase dataset in this investigation. In particular, we utilized the same data split
as in other previous studies [21,22,31], to provide a fair comparison. Twelve speakers were
used for testing (s06, s08, s09, s15, s26, s30, s34, s43, s44, s49, s51, and s52; 10 men and
2 women) and 40 for training from the database (s06, s08, s09, s15, s26, s30, s34, s43, s44,
s49, and s51). Note that s29 is not included in the list.

3.2. Data Preprocessing and Augmentation

A DLib face detector [61] was used in the data-preparation step to recognize the
targeted face and mouth. A HoG feature-based linear classifier [33] was used in the detector.
The diagonal edges’ (x, y) coordinates were obtained and used to build a bounding box
around the mouth. As a result, the iBug program was used to forecast facial landmarks [62],
considering 68 landmarks and an online Kalman filter. This method is widely used to
extract the lip points that match with those in the training dataset by reading lip motions.
These algorithms were utilized to extract a mouth region from each frame, and to perform
an affine transformation to equalize the RGB channels throughout the training set, resulting
in a mean and variance of zero. Moreover, we employed a data augmentation approach
for training data to avoid overfitting [18]. The training process considered both standard
and horizontally mirrored picture sequences. The degradation rate for these occurrences
was 0.925. Finally, to avoid variance, we identified the movement speed and repeated each
frame with a probability of 0.05. All models were trained and evaluated on the OuluVS2
dataset, using identical preprocessing and augmentation methods.

3.3. Implementation

To evaluate the performance of the CTC decoder, all models used Keras, based on
TensorFlow backend on Linux Ubuntu; the computer had an Intel® Core™ i7-7700K pro-
cessor, along with 64GB RAM and an NVIDIA GeForce RTX 2080-Ti GPU. The hyperpa-
rameters specified in Table 1 are the values for each layer of the proposed model. The
network parameters—other than the initialized GRU matrix and hyperparameters—were
initialized for all models. To perform the optimization of models, adaptive moment es-
timation (Adam) [63], stochastic gradient descent (SGD) [64], RMSprop [65], AdaMax,
and Nadam [64] optimizers were used in mini-batches of sizes 8 and 0.0001, trained at
the learning rate. The proposed model was trained in a multi-scale 3D CNN with SAM;
channel-wise dropped pixels and spatial dropout for the dropped channel were used,
and the proposed model contained the baseline model, trained on the dataset until it was
overfitted. The moving average strategy was used to smooth it down for better viewing.
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Regarding the accuracy of the proposed model, the genuine value was represented by the
shadow part of the image, while the curve represented the smoothed value. We selected a
smaller batch size of 75 images owing to the computer’s restricted capabilities, causing the
real value fluctuation to be uneven. Smoothing was performed to alleviate this problem
and to make the curves comprehensible.

Table 1. Hyperparameters of the proposed architecture.

Layer Output Shape Size/Stride/Pad Dimension Order

Input Layer 40 × 100 × 50 × 3 -

T × C × H ×W

Convolution 3D Layer 40 × 50 × 25 × 64
[3 × 5 × 5]/(1, 2, 2)/(1, 2, 2)

[1 × 2 × 2] max pool/(1 × 2 × 2)

3D Dense Block (1) 40 × 25 × 13 × 96
[3 × 1 × 1] 3D Conv

(×6)
[3 × 3 × 3] 3D Conv

3D Transition Block (1) 40 × 12 × 6 × 6
[3 × 1 × 1] 3D Conv

[1 × 2 × 2] average pool/(1 × 2 × 2)

3D Dense Block (2) 40 × 12 × 6 × 38
[3 × 1 × 1] 3D Conv

(×12)
[3 × 3 × 3] 3D Conv

3D Transition Block (2) 40 × 6 × 3 × 3
[3 × 1 × 1] 3D Conv

[1 × 2 × 2] average pool/(1 × 2 × 2)

3D Dense Block (3) 40 × 6 × 3 × 35
[3 × 1 × 1] 3D Conv

(×24)
[3 × 3 × 3] 3D Conv

3D Transition Block (3) 40 × 3 × 1 × 1
[3 × 1 × 1] 3D Conv

[1 × 2 × 2] average pool/(1 × 2 × 2)

3D Dense Block (4) 40 × 3 × 1 × 33
[3 × 1 × 1] 3D Conv

(×16)
[3 × 3 × 3] 3D Conv

Multi-scale 3D CNN (1) 40 × 3 × 1 × 32 [3 × 5 × 5]/(1, 2, 2)/(1, 2, 2)

Multi-scale 3D CNN (2) 40 × 3 × 1 × 64 [3 × 5 × 5]/(1, 2, 2)/(1, 2, 2)

Multi-scale 3D CNN (3) 40 × 3 × 1 × 192 [3 × 5 × 5]/(1, 2, 2)/(1, 2, 2)

Spatial Attention (1) 40 × 3 × 1 × 32

[1 × 2 × 2] max pool/(1 × 2 × 2)

[1 × 2 × 2] average pool/(1 × 2 × 2)

[3 × 7 × 7]/(1, 2, 2)/(1, 2, 2)

Spatial Attention (2) 40 × 3 × 1 × 64

[1 × 2 × 2] max pool/(1 × 2 × 2)

[1 × 2 × 2] average pool/(1 × 2 × 2)

[3 × 7 × 7]/(1, 2, 2)/(1, 2, 2)

Spatial Attention (3) 40 × 3 × 1 × 96

[1 × 2 × 2] max pool/(1 × 2 × 2)

[1 × 2 × 2] average pool/(1 × 2 × 2)

[3 × 7 × 7]/(1, 2, 2)/(1, 2, 2)

Bidirectional GRU Layer 40 × 512 256 T × F

Bidirectional GRU Layer 40 × 512 256 T × F

Local Self-Attention Layer 40 × 512 15 T × F

Dense Layer 40 × 28 27 + blank T × F

SoftMax Layer 40 × 28 T × V
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3.4. Performance Evaluation Metrics

We used standard automated speech-recognition assessment criteria as the evaluation
metrics. The learning loss of each model was calculated to determine its learning status
during the training operation. Furthermore, we compared each model’s performance and
computational efficiency by examining its parameters, epoch period, and CER.

For the misclassification analysis, it is necessary to compare the original text and the
predicted text. The five variables used in the equation are the characters (C), the total
number of ground truth characters (N), the false predicted characters (S), the non-selected
characters (I), and the number of deleted characters (D). CTC beam search is performed for
maximum probability prediction, and the CER equation is as follows:

CER (%) =

(
CS + CD + CI

CN

)
× 100, (12)

We compared the CER for parameter count and computational efficiency during the
study period. The results are presented using a confusion matrix.

4. Results
4.1. Learning Loss and Convergence Rate

Figures 5–7 compare the learning loss and convergence speed rates for the convolu-
tional, recurrent, and transcription layers, respectively. Figure 5 shows the learning loss
(training and validation) on the OuluVS2 dataset for the convergence rates of the three
types of CNNs in the convolutional layer. The three models have different visual feature
extraction modules at the front end, and the same recurrent and transcription layers at
the back end. Model A consists of a densely connected 3D CNN, Model B combines the
multi-scale 3D structure following Model A, and Model C is configured by combining
a SAM with Model B. In addition, Figure 5 shows that the training and validation losses of
all three models are similar from all four angles. However, the gap between the training
and validation losses was the highest in Model A, and its degree of overfitting was higher
than those of the other models. Furthermore, although Model C increased the number
of parameters by 30 M compared to Model A, it exhibited lower overfitting results (the
smallest among all models) (Figure 5). This is because Model A comprised a model with
outstanding performance based on the DenseNet-121 [66] structure, thereby minimizing
the number of model parameters, successfully suppressing overfitting, and saving com-
putation. However, the combination of multi-scale 3D CNN (Model B) and SAM (Model
C) yielded improved results because this combination identified better by focusing on the
most distinguishable and beneficial areas of the input image. Therefore, the learning and
convergence speeds of Model C were high, and the gap was small. These findings indicate
that the proposed model had the smallest difference between the training and validation
losses, preventing overfitting on the OuluVS2 dataset.

Figure 6 shows the learning loss (training and validation) on the OuluVS2 dataset for
the convergence rates of the four types of RNN in the recurrent layer. The convolutional
and transcription layers had the same structure, and only the configuration of the recurrent
layers differed. The Bi-GRU exhibited the fastest learning convergence speed and best
prediction accuracy, as shown in Figure 6 and Figure 9e–f. In particular, all four RNN
unit types outperformed the RNN. The experimental results and prediction accuracy are
similar to the findings reported in Section 5 of [44], where LSTM and GRU displayed
improved validation accuracy and prediction accuracy compared to traditional RNNs
(Table 2), owing to their resistance to the vanishing gradient problem. Compared with
LSTM and Bi-LSTM, both GRU and Bi-GRU demonstrated faster convergence and lower
losses. The bidirectional models outperformed the unidirectional models on the training
set for both GRU and LSTM; they also outperformed their unidirectional counterparts on
the validation dataset. Consequently, Bi-GRU exhibited the best overall performance.
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Table 2. Performance of the proposed model compared to various models on the OuluVS2 dataset.

Model Method
Top 10 Accuracy (%)

0◦ 30◦ 45◦ 60◦ Mean

A * 3D dense connection CNN + Bi-GRU + CTC 90.44 88.73 86.93 87.72 88.45

B * 3D dense connection CNN + Multi-scale 3D
CNN + Bi-GRU + CTC 92.72 91.02 88.02 88.09 89.62

C * 3D dense connection CNN + Multi-scale 3D
CNN + SAM + Bi-GRU + CTC 94.14 92.86 91.34 89.97 92.08

D * 3D dense connection CNN + Multi-scale 3D
CNN + SAM + RNN + CTC 88.51 85.74 83.93 83.04 85.31

E * 3D dense connection CNN + Multi-scale 3D
CNN + SAM + LSTM + CTC 89.42 87.42 86.01 85.71 87.14

F * 3D dense connection CNN + Multi-scale 3D
CNN + SAM + Bi-LSTM + CTC 89.78 88.84 87.26 86.18 88.02

G * 3D dense connection CNN + Multi-scale 3D
CNN + SAM + GRU + CTC 92.85 91.23 90.91 89.67 91.14

H *
3D dense connection CNN + Multi-scale 3D

CNN + SAM + Bi-GRU + Global
self-attention + CTC

95.08 93.29 92.81 90.93 93.03

Our *
3D dense connection CNN + Multi-scale 3D

CNN + SAM + Bi-GRU + Local
self-attention + CTC

98.31 97.89 97.21 96.78 97.55

* Model trained with data augmentation.

The learning loss (training and validation) on the OuluVS2 dataset is shown in Figure 7
for the convergence rates of the proposed model’s three types of CTC loss functions in the
transcription layer. The convergence rate for learning was slower than that in the other two
situations, when only the basic CTC loss function was used. In particular, as the angle of
the detected lip changed, the convergence rate further decreased, while the two cases of
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cascaded self-attention exhibited similar convergence rate tendencies for all of the angles.
The two self-attention modules learned with similar convergence rate tendencies. However,
in all of the four results shown in Figure 7, the local self-attention module exhibited a faster
convergence rate than the global self-attention modules. First, the principle of the CTC
loss function assumes conditional independence for each label, and, since each output
unit denotes the probability of seeing a single label at a given moment, it provides a high
premium to the nearby local information [50]. Thus, ineffectiveness in predicting visemes
is a possible reason for the difference in convergence rates.

The cascaded self-attention CTC module (which generates an output sequence with
long-term temporal correlation) increases the speed of convergence, as compared to the CTC
decoder (which assumes the input is conditionally independent). The attention approach is
used in the CTC decoder’s pre-alignment stage to remove unnecessary paths. The CTC
decoder is then used to align the video frames and text labels, thereby allowing the attention
mechanism to focus on the video–text pairs in the correct order. As a result, fewer irrelevant
samples are created, resulting in the observed speedup. Second, the local self-attention
module’s windowed method results in more compact packaging of the padded features in
mini-batches, and, hence, further cost reductions. Consequently, this local self-attention
requires only a fraction of the computing and memory costs of attention over the entire
feature, while providing rich local contextual information in the small region.

4.2. Optimization

The update rules of the optimization algorithms are usually defined by the hyperpa-
rameters that influence their behavior (e.g., the learning rate). The optimizer’s responsibility
is to update the weight parameters prior to reducing the error or loss function, which is the
difference between the actual and predicted values. This requires several iterations with
varying weights. However, choosing an optimizer for network training can be tricky. Deep
learning employs iterative rules to modify or evaluate the data, utilizing numerous aspects
and techniques. Therefore, training models as quickly as possible is vital to complete the
iterative cycle and, as a result, enhance the prediction accuracy and speed. Consequently,
in this part, we study the following optimizers used to train deep learning neural networks:
SGD, RMSprop, Adam, Nesterov-accelerated Adam (Nadam), and AdaMax. After vali-
dating that AdaDelta and AdaGrad diverged without learning throughout the learning
process, we omitted them from the experiments.

SGD realizes one update at a time to avoid duplication, making it significantly faster
and easier to learn than other deep learning neural networks [67]. These frequent updates
of the method with high variance introduce significant fluctuation in the objective function.
This variation allows the parameters to move into new, possibly better, local minima.
However, as SGD continues to overshoot, converging to the precise minimum is challenging.
The parameters of AdaDelta have varying learning speeds, and the learning process comes
to a halt after a certain point. This problem was addressed using the RMSprop method [65].
For each sample in each iteration, RMSprop uses a variable learning rate that is changed
according to the results. RMSprop calculates the average of the first-order moments of the
gradients and accelerates convergence by ignoring distant previous locations. Moreover,
the squares of gradients and the average of the second-order moments are considered by
AdaDelta and RMSprop. In the Adam optimizer, the adaptive optimization method is
applied. Based on the parameters to be used, this optimizer dynamically modifies the
learning rate for each sample in the dataset. Adam is a fast thinker with a limited memory
span. Therefore, SGD, AdaDelta, and RMSprop [65] were used to create this algorithm.

Nadam combines Adam and Nesterov momentum. This method was developed
similarly to Adam, with the exception that the flat momentum is replaced with the Nesterov
momentum. The substitution causes a more considerable increase in performance than
that in momentum. [63,68]. Alternatively, AdaMax, an extension of the Adam optimizer,
was developed [63]. To update the weight parameters in AdaMax, the infinity norm of the
moment is used, instead of the second-order moment estimate. Therefore, the size of the
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parameter update in AdaMax has a simpler constraint structure than in Adam, and the
weight-updating rules are stable.

We used the Bi-GRU classifier to compare the training results and determine the most
successful optimizer. Figure 8 depicts the loss curves of the optimizers. In particular, Adam
performed better among the optimizers at all of the four angles. The Adam optimizer’s
loss converged at the quickest pace, implying that it trained the Bi-GRU classifier more suc-
cessfully than the other algorithms. The results show that Adam was the best optimizer for
training the Bi-GRU architecture’s lip-based classification model. Therefore, this approach
was employed in further trials in this study to train the Bi-GRU classifier.
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4.3. Performance and Accuracy

The results presented in this section correspond to the OuluVS2 dataset phrases.
Tables 2 and 3 show that the proposed model outperformed existing deep learning models
by attaining state-of-the-art (SOTA) results: 3.31% (0◦), 4.79% (30◦), 5.51% (45◦), 6.18% (60◦),
and 4.95% (mean). These results show an improvement over the previous SOTA results in
all of the conditions. Figure 9 compares the accuracy results between the models by dividing
them into three layers: convolutional layer (Figure 9a–d), recurrent layer (Figure 9e–h), and
transcription layer (Figure 9i–l).

In the case of the convolutional layer (Figure 9a–d and Table 2), on average, the
performance improved by 3.63% for all of the four angles when MLFF 3D CNN and SAM
were combined than when only the DenseNet-121 structure was used. By combining
the SAM with MLFF 3D CNN, a 2.46% improvement was observed owing to improved
recognition among the inter-spatial relationships of features. This helped to better identify
and focus on the most distinguishable and informative areas of the input image.
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Table 3. Performance of existing models on the OuluVS2 dataset.

Year Model 0◦ (%) 30◦ (%) 45◦ (%) 60◦ (%) Mean (%)

2014 RAW-PLVM [69] 73.00 75.00 76.00 75.00 74.75

2016

CNN * [21] 85.60 82.50 82.50 83.30 83.48
CNN + LSTM [31] 81.10 80.00 76.90 69.20 76.80

CNN + LSTM, Cross-view Training [31] 82.80 81.10 85.00 83.60 83.13
PCA Network + LSTM + GMM–HMM [22] 74.10 76.80 68.70 63.70 70.83

CNN pretrained on BBC dataset * [52] 93.20 - - - -
CNN pretrained on BBC dataset + LSTM * [70] 94.10 - - - -

2017

End-to-End Encoder + BLSTM [24] 94.70 89.70 90.60 87.50 90.63
Multi-view SyncNet + LSTM * [71] 91.10 90.80 90.00 90.00 90.48
End-to-End Encoder + BLSTM [13] 84.50 - - - 84.50
End-to-End Encoder + BLSTM [72] 91.80 87.30 88.80 86.40 88.58

2018

CNN + Bi-LSTM [73] 90.30 84.70 90.60 88.60 88.55
CNN + Bi-LSTM [73] 95.00 93.10 91.70 90.60 92.60

Maxout-CNN-BLSTM * [74] 87.60 - - - -
CNN + LSTM with view classifier * [23] - 86.11 83.33 81.94 -

CNN + LSTM without view classifier * [23] - 86.67 85.00 82.22 -
2019 VGG-M + LSTM * [75] 91.38 - - - 91.38

2020
CNN(2D + 3D) without view classifier [76] 91.02 90.56 91.20 90.00 90.70

CNN with view classifier [76] 91.02 90.74 92.04 90.00 90.95

2021
CNN without view classifier [77] 91.02 90.56 91.20 90.00 90.70
CNN with view classifier * [77] 91.02 91.38 92.21 90.09 91.18

* Model trained with data augmentation.
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In the case of the recurrent layer (Figure 9e–h and Table 2), five RNN units (RNN,
LSTM, Bi-LSTM, GRU, and Bi-GRU) were compared. For all of the four angles, LSTM
and GRU exhibited higher accuracy than the standard RNN. This is because of their
robustness against gradient disappearance, which allows them to successfully learn long-
range dependent input data. Therefore, the average accuracy of LSTM increased by 1.83%
compared to when RNN was used. Similarly, the average accuracy of GRU increased by
4.17%. However, despite its similar performance, Bi-LSTM’s accuracy increased by 2.71%
compared to RNN, and Bi-GRU’s accuracy improved by 6.77% when unidirectional models
were used, compared to bidirectional models. The bidirectional models also achieved better
results on the validation dataset than their unidirectional counterparts. Thus, the best
overall performance was achieved using the Bi-GRU.

In the case of the transcription layer (Figure 9i–l and Table 2), we compared the
performance by combining the global and local self-attention mechanisms with the basic
CTC function in the cascade method. For all of the four angles, the two CTC loss functions
exhibited higher performance than the basic CTC loss function. When using the global
self-attention method, accuracy improved by 0.95%, while the local self-attention method
improved by 5.47%. The performance of the two models is better than that of the CTC loss
function because they overcome the disadvantage of assuming a conditionally independent
input. Moreover, the performance difference between the two methods exists because
the local self-attention module led to a more compact packing of the padded features in
mini-batches, resulting in additional savings. Therefore, this local self-attention required
a fraction of the compute and memory costs associated with attention over the entire
feature and rich local contextual information in the local region. Thus, the proposed model
surpasses current models, including the experimental model, in terms of accuracy, which
can be attributed to the three layers. The training approach with three layers is illustrated
in Figure 9, using the OuluVS2 dataset.

4.4. Statistical Analysis and Model Efficiency

We performed statistical analysis using the standard t-test to compare the significance
of the combined modules. Models A and B of the convolutional layer were compared,
based on Model C (Figure 10a–d), and Models C, D, E, F, and G were compared in the
current layer (Figure 10a–d). In addition, in the transcription layer, Models C and H and
the proposed model were compared (Figure 10e–h). For all four angles in Figure 10a–d,
the proposed model showed that the modules in the convolutional layer have significant
differences. That is, the performance increased by combining the MLFF 3D CNN and
the SAM with the DenseNet-121 model. In addition, in the recurrent layer, the use of
the Bi-GRU classifier (Model C) exhibited the highest performance and significant results
compared to the four RNN-type units. However, in the case of Model G, because the
unidirectional GRU model was used, there was no significant difference compared to
Model C, which is a bidirectional model. Figure 10e–h shows the statistical analysis
of the transcription layer. The performance of the two models using the self-attention
mechanism in the cascade method was higher and significant than that for learning based
on the basic CTC loss function. Consequently, the proposed model exhibited significant
performance improvement.

In practical applications, the primary limitations of the VSR systems are their size and
computing capacity. We explored the models’ computational efficiency by examining their
accuracy over various training settings and epochs. The system’s performance as a function
of the number of parameters is shown in Figure 11a–d. Furthermore, Figure 11e–h depict
the results of the average epoch–time comparison of the nine models for 500 epochs. As
demonstrated in Table 4, each model on the OuluVS2 dataset has a unique set of parameters
and epoch time. Compared to Model D, which presented the lowest accuracy among the
compared models, the proposed model had a parameter count difference of approximately
29 M. The average accuracy was improved by 12.24%. In comparison to Model F, which
had the most parameters, the proposed approach decreased the number of parameters by
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roughly 11 M, while increasing accuracy by 9.53%. In addition, the difference in learning
time compared to Model D, with the smallest number of parameters, differed by 5.54 s
on average per epoch, which is not significant. Furthermore, the difference in learning
time compared to that of Model F, which has the most parameters, was 13.05 s. Thus, the
proposed model is capable of enhancing accuracy and decreasing learning time without
considerably increasing the number of parameters.
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Table 4. Comparison between the number of parameters and epoch times of the proposed method
and different methods.

Model Method Number of
Parameters

Epoch Time (s)

0◦ 30◦ 45◦ 60◦

A 3D dense connection CNN + Bi-GRU + CTC 2,247,537 34.57 36.07 34.43 33.97

B 3D dense connection CNN + Multi-scale 3D
CNN + Bi-GRU + CTC 3,456,369 36.48 36.58 34.93 35.43

C 3D dense connection CNN + Multi-scale 3D
CNN + SAM + Bi-GRU + CTC 5,273,457 43.37 41.44 40.01 43.03

D 3D dense connection CNN + Multi-scale 3D
CNN + SAM + RNN + CTC 2,429,362 35.27 36.78 36.15 35.86

E 3D dense connection CNN + Multi-scale 3D
CNN + SAM + LSTM + CTC 3,905,458 38.16 39.13 38.94 37.45

F 3D dense connection CNN + Multi-scale 3D
CNN + SAM + Bi-LSTM + CTC 6,421,426 54.35 53.18 53.04 57.86

G 3D dense connection CNN + Multi-scale 3D
CNN + SAM + GRU + CTC 3,413,426 34.18 32.98 33.48 33.48

H
3D dense connection CNN + Multi-scale 3D

CNN + SAM + Bi-GRU + Global
self-attention + CTC

5,306,290 40.95 42.13 41.78 43.48

Our
3D dense connection CNN + Multi-scale 3D

CNN + SAM + Bi-GRU +
Local self-attention + CTC

5,306,290 40.46 41.39 41.97 42.41

4.5. Confusion Matrix

We compared the confusion matrices of the two models that exhibited outstanding per-
formance in the three layers with that of the proposed model for the four angles. Specifically,
we evaluated Model C (Figure 12), which exhibited the highest accuracy in the convolu-
tional and recurrent layers; Model H (Figure 13), which exhibited excellent performance in
the transcription layer; and the proposed model (Figure 14). When comparing the results
shown in Figure 12, the proposed model realizes fewer incorrect predictions. In addition,
Model C had more erroneous predictions than the other two models for the four angles.
The number was particularly high for “Hello”, “Thank you”, and “See you” because they
are visually similar from the same viewpoint, furthermore, “Thank you” and “See you”
have identical viseme sequences around the beginning and end of the utterance, which
explains why these phase pairings have a higher number of false predictions. Because they
are visually comparable from the same viewpoint, the three pairs of sentences with the
highest error rate are the most demanding and confusing pairings with a high error rate, as
indicated by the confusion matrix [13,24,31].

However, when the global self-attention mechanism was combined with the tran-
scription layer, Model H exhibited better overall confusion pair results than Model C in
10 phases. Model H clearly demonstrated that confusion decreased compared to Model
C. Despite the decrease in confusion, some pairs show particularly high confusion rates
at each angle. As can be observed in Figure 13a, the predictions between “Nice to meet
you” and “How are you” were the lowest, and, as shown in Figure 13b,c, were confused
with “Nice to meet you” and “How are you” for “Thank you.” In addition, unlike the other
three angles, the 60◦ angle (Figure 13d) showed substantial confusion, wherein “Thank
you” and “How are you” exhibited the lowest predictions. Therefore, Model H, similar to
Model C, increased the number of confusions, due to the similarity of the visual view as
the angle increased. The last pronunciation, such as “you”, showed low predictions within
a similar phase.
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Unlike the two models, the proposed model yields low confusion at all of the angles
using the local self-attention mechanism. In particular, for the 60◦ angle, both Models
C (Figure 12d) and H (Figure 13d) presented high confusion numbers. In contrast, the
proposed model (Figure 14d) presented low confusion numbers, similar to other angles.
In addition, the confusion between “Hello”, “Thank you”, and “See you” observed in
the other two models was reduced, and the predicted value increased. By comparing the
confusion matrices, we can easily define which of the models performs better. Thus, we
can establish that the proposed model outperformed the others on the OuluVS2 dataset,
distinguishing all comparable pronunciations in phase.
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5. Discussion and Conclusions

Lipreading is difficult to execute because it cannot be purely performed from the
frontal perspective. Professional lip readers claim that a non-faceted approach, instead
of a front-view, provides more information than a front-view with more pronounced
lip protrusions and lip rounding. Consequently, the most significant limitation in using
lipreading technology in real-world applications is its performance when reading lips from
multiple angles. Therefore, we developed a multi-angle/multi-view VSR architecture that
performs VSR by detecting both frontal and non-frontal lip images.

This study provides an end-to-end infrastructure for recording multi-view video
surveillance. We obtained an accurate viseme prediction using SAM, multiple CNNs,
and cascaded local self-attention-CTC. This is the first time that a 3D CNN, 3D dense
connection CNN, and SAM have been combined with a multi-scale 3D CNN to extract lip
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motion characteristics as encoders. Following the decoder’s Bi-GRU, a transcription layer
based on cascaded local self-attention-CTC was used to extract exhaustive local contextual
information from the surrounding environment.

The advantages of each level of the proposed architecture can be summarized as fol-
lows. The 3D dense connection CNN helps in reducing gradient vanishing and deepening
the network (to use features) in an efficient manner. It also helps in reducing model pa-
rameters and preventing overfitting, thereby conserving computational resources. Finally,
the multi-scale 3D CNN is applied to the two dropout layers, using features at different
levels to effectively analyze the motion context in the temporal and spatial domains, with
fine motion and high spatial correlation. SAM and multi-scale 3D CNNs are combined
and concatenated to provide a single output. Consequently, SAM exploits the inter-spatial
interaction of characteristics to better select and focus on the most identifiable and practical
portions of an input picture. Moreover, cascaded local self-attention-CTC, following the de-
coder’s Bi-GRU, requires only a fraction of the computation and memory costs of attention
over the entire feature, leading to compact packaging of padded features in mini-batches
and significant savings. Hence, this module can be used to acquire detailed local contextual
information from the surrounding area.

We compared the outcomes of various deep learning models for predicting the se-
quence of phrases. The proposed architecture outperformed the others in terms of SOTA
CER (Tables 2 and 3). We also compared the convergence rate, optimization, accuracy,
statistical analysis, model efficiency, and confusion of the learning process for the three
layers (convolution, recurrent, and transcription). The proposed model exhibited a faster
convergence speed and higher accuracy compared to the other models, without a significant
difference in the number of parameters and epoch time.

The proposed model attained SOTA performance on the OuluVS2 dataset without
requiring external data or even data augmentation. The given mouth ROIs, on the other
hand, were appropriately cropped, which may not be the case when employing automated
mouth ROI identification techniques. Additionally, it would be interesting to investigate
the effect of automated mouth ROI cropping on multi-view lipreading because the accuracy
of automatic detectors is known to degrade with non-frontal views. Finally, because the
model can be readily expanded to other streams, we expect to incorporate an audio stream
to see how well it performs in audio-visual multi-view speech recognition.

Developing a multi-view VSR system that exclusively relies on visual data is crucial.
Speech recognition in loud situations, hearing impairment, and biometric identification
are some applications for which such a system will be practical. It could also be helpful
for people with speech difficulties. However, because speech involves auditory and visual
information, it is still challenging to perform ASR simply by using VSR. As a result, we plan
to widen our approach in the future to include performance optimization and identification
of potential uses for audio and visual data.
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