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Abstract: From 2018 to 2021, the Sussex-Huawei Locomotion-Transportation Recognition Challenge
presented different scenarios in which participants were tasked with recognizing eight different
modes of locomotion and transportation using sensor data from smartphones. In 2019, the main
challenge was using sensor data from one location to recognize activities with sensors in another
location, while in the following year, the main challenge was using the sensor data of one person to
recognize the activities of other persons. We use these two challenge scenarios as a framework in
which to analyze the effectiveness of different components of a machine-learning pipeline for activity
recognition. We show that: (i) selecting an appropriate (location-specific) portion of the available
data for training can improve the F1 score by up to 10 percentage points (p. p.) compared to a more
naive approach, (ii) separate models for human locomotion and for transportation in vehicles can
yield an increase of roughly 1 p. p., (iii) using semi-supervised learning can, again, yield an increase
of roughly 1 p. p., and (iv) temporal smoothing of predictions with Hidden Markov models, when
applicable, can bring an improvement of almost 10 p. p. Our experiments also indicate that the
usefulness of advanced feature selection techniques and clustering to create person-specific models is
inconclusive and should be explored separately in each use-case.

Keywords: activity recognition; machine learning; competition; smartphone; semi-supervised
learning; Hidden Markov models

1. Introduction

The ubiquity of smartphones, smartwatches and other wearables drives the
development of the methods employed to analyze the sensor data that are continuously
collected by these devices. Inertial sensors are the most common type, and are well-suited
to detecting their users’ activities. However, since many public and proprietary activity-
recognition datasets exist, comparing different methods is not easy. This is why the
University of Sussex and Huawei prepared a large dataset of locomotion and transportation
activities [1], and an activity-recognition competition—the Sussex-Huawei Locomotion-
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Transportation Recognition Challenge (SHL Challenge)—has been organized annually from
2018 to 2021, and may continue in the future. Its objective is to recognize locomotion and
transportation activities: walking, running, cycling, and travelling by car, bus, train and
the underground.

The 2018 SHL Challenge [2]—the first one—presented a straightforward activity-
recognition problem suitable for classical activity-recognition approaches. The competition
was linked with the Human Activity Sensing Corpus and Applications (HASCA) workshop
at the UbiComp conference, which is one of the larger workshops at the leading conference
on ubiquitous computing. This is where the competitors” approaches were presented and
the winners were announced. To keep the SHL Challenge interesting, the 2019 and 2020
editions introduced several additions. In 2019 [3], the training data were obtained from
phones placed in the pocket and backpack, while the test data were collected from phones
in the hand, and there was only a small validation set that included hand data. In 2020 [4],
the training data were obtained from one person, while the test data were collected from
two other persons, and the small validation set included these two persons. In addition,
the location of the phone in the test data was unknown. This encouraged the exploration
of new approaches involving transfer learning and domain adaptation. The 2021 edition
moved away from inertial sensors and focused on location and radio data. Our team won
the 2018 and 2019 SHL Challenges, and placed third in the 2020 Challenge. The solution for
the 2018 competition is described in our previous paper [5], whereas this paper describes
our 2019 and 2020 solutions.

This paper first explores the question of how to utilize a large training set that is
somewhat different from the test set, and a validation set that is smaller but more similar to
the test set. This problem is also known as a domain shift (or distributional shift) [6]. While
domain shifts are common in practical applications of machine learning, conventional
machine-learning models often fail. The paper also investigates whether all classes should
be recognized by the same model, or whether separate models should be used to recognize
human locomotion and transportation in vehicles. Furthermore, for the 2020 dataset, the
unknown test phone location is recognized before an attempt is made to distinguish the
users in the validation and test data. Finally, we employ two methods that are generally
useful in activity recognition: smoothing with a Hidden Markov Model (HMM) and
semi-supervised learning. The paper shows the extent to which the recognition accuracy
benefits from each of these steps for both the 2019 and 2020 datasets.

The rest of the paper is organized as follows. Section 2 briefly presents related work
on activity recognition, particularly related to the domain shift. Section 3 describes the
2019 and 2020 SHL Challenge datasets. Section 4 explains the data pre-processing and
feature extraction. Section 5 describes the core of the used methods. Section 6 provides
the experimental results. Finally, Section 7 concludes the paper with a summary, lessons
learned and avenues for further research.

2. Related Work

Today’s smartphones are powerful devices equipped with a wide variety of sensors,
which allow for researchers and developers to infer much about the user’s context, such as
the location or the activity in which they are engaged. The usefulness of such information
has made activity recognition with wearable sensors a thriving research area in the past
decade. Much of the work regarding activity recognition has focused on healthcare
applications, such as care for the elderly [7], and chronic disease management [8], although
the user’s activity can be exploited in quite diverse ways (e.g., for music selection [9]). Our
paper addresses the methodology in general and does not focus on any particular use-case.
The activities that are to be recognized can also be diverse, ranging from broad ones such
as walking [10], which is the type addressed in our paper, to more specific ones, such as
walking up- and downstairs and on slopes (e.g., [11]).

One area of activity recognition that has not enjoyed significant attention until recent
years is the detection of transportation modes [12,13]. However, with the introduction
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of the SHL Dataset [1] and SHL challenges, many new approaches to locomotion and
transportation mode recognition have been proposed. In terms of machine learning
algorithms, following the example of earlier work [14-16], these approaches have leaned
toward the use of deep learning. Some of the best results posted during the challenges
were achieved using the MultiResNet architecture [5], IndRNN architecture [17] and the
DenseNetX architecture [18]. Nevertheless, these challenges have also shown that, alhough
classical machine learning pipelines require domain knowledge for meaningful feature
extraction, selection and tuning [19], they are still very competitive and sometimes produce
better results than the aforementioned deep learning methods. An additional advantage
is that they can be more easily understood and adapted to the specifics of new activity
recognition scenarios, which is why they are the chosen approach in this paper.

Regardless of the choice to use deep or classical machine learning, activity recognition
pipelines are prone to difficulties when performing on data that slightly differ to those used in
the training process [20], and the SHL challenges have tried to focus the research community’s
attention on that problem. This is why, based on our work in the aforementioned challenges,
in this paper, we explore the effectiveness of different classic machine learning pipeline
components in combating the problem of domain shift.

Methods to address the domain shift have existed for a long time [21] and have many
applications [22-28]. The primary objective of these methods is to find ways to apply a
model trained in one or more “source domains” to a different (but related) “target domain”.
The source and target domains all have the same feature space, but different distributions.
For example, data from sensors placed on the chest and the leg differ significantly from
each other. Additionally, significant differences can be found in the data of two people
(each person has a specific way of walking, running, etc.). In deep learning, a widely used
method to address the domain shift is to train a deep neural network on the source dataset,
and to fine-tune it on the target dataset [29]. In classical machine learning, addressing the
domain shift is less straightforward. This can be carried out by transforming the feature
spaces so that the source and target distributions better fit, either by changing the feature
representation according to some explicit distribution distance metric [30] or by weighting
the features [31]. An alternative approach is to weight the instances according to their
relevance to the target domain [32].

As mentioned previously, in the 2019 SHL Challenge, the focus was on the use of data
from different sensor locations to build a model for another location. This can be regarded
as a domain shift problem, where the source and target domains differ in the sensor
location. A simple way of addressing this in the related work was to train a general activity
recognition model using sensor data from different body locations [33]. Khan et al. [34]
used both the location of the smartphone and the activity category as separate class labels,
and thus forced the model to consider the location of the smartphone when classifying the
activity. Shi et al. [35] proposed a framework that first extracts location features and detects
the smartphone location, and then performs location-specific activity recognition. In our
work, we also detected the smartphone location, and we experimented with general and
location-specific activity recognition models, and with the selection of transferable features
(which is an extreme form of feature-weighting).

The 2020 SHL Challenge presented a domain shift problem where the source domain
was one person and the target domain was two other persons. Hachiya et al. [36] proposed
a cross-person activity recognition model, where they solved the domain shift problem
by weighting the samples from the source dataset. Venkatesan et al. [37] also used a
sample weighting approach, and, in addition, proposed a new cost-sensitive boosting
algorithm that they used to weight the training samples. In our work, simply combining
the source and target data proved to be adequate, but we did experiment with the selection
of transferable features.

Another potential solution to both of these domain shift problems is semi-supervised
learning [38]. The idea of semi-supervised learning is that unlabelled data from the
target domain, which are often plentiful, are used to improve machine-learning models.
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There are several pieces of related work that highlight the benefits of semi-supervised
learning with classic ML algorithms when labeled (target) datasets are small [39-41].
Although Guan et al. [39] presented an interesting take on the co-training approach, which
circumvents the need for two disjoint feature sets that this approach otherwise requires, in
our work we decided to focus on the more fundamental self-training approach. We aimed to
reduce the number of models that play a role in the learning process, since semi-supervised
learning was another step in an already complex pipeline, and because the performance of
co-training and self-training were shown to be similar when using acceleration data [41].

In addition to the domain shift, another difficulty in the 2020 SHL Challenge was that
we did not know which sample from the test data belonged to which person. However,
from related work [20], we know that activity recognition models usually work better when
personalized. Thus, to improve the performance of our pipeline, we clustered the sensor
data into two clusters, which were intended to correspond to the two test persons. There
are few related works on this topic, and we relied on a similar clustering to that proposed
by Vo et al. [42]. A similar approach was proposed by Kose et al. [43], where k-nearest
neighbors was used to create smaller training sets for each activity, and classification was
performed based on these reduced sets. We came up with a way of selecing the clustering
features that were tailored to the 2020 SHL Challenge.

In addition to all of this, we also explored the effectiveness of post-processing the
pipeline predictions with Hidden Markov Models. This approach was successfully used in
related work (e.g., [44]). However, we could exploit its interaction with semi-supervised
learning as having two predictions—regular and smoothed—which provides interesting
opportunities to decide what labels to include in which training data. We are not aware of
related work addressing this issue.

This paper is based on the workshop submissions that accompanied our SHL Challenge
entries in 2019 [45] and 2020 [46]. However, the methodology is significantly refined and
harmonized across the datasets of both years to the degree this is feasible, and the results
are more extensively analyzed.

3. SHL Challenge Datasets

Both the 2019 and 2020 SHL challenges were centered on the SHL Dataset [1,47], one
of the largest publicly available datasets for activity recognition. Although there are several
popular publicly available datasets for activity recognition, such as MHEALTH [48,49],
UCI-HAR [50], OPPORTUNITY [51], PAMAP2 [52] and Skoda [53], very few of them
include as rich a combination of sensor modalities, sensor placements and high sampling
frequency as the SHL Dataset [1,47]. Most of the aforementioned datasets only provide
data that were gathered by Inertial Measurement Units (IMUs), while the subset of the SHL
Dataset used in the challenges and this study also provides orientation and air pressure
data. Additionally, most of the popular activity recognition datasets fix their IMUs in
place, at locations such as the chest, ankle or at various positions on the arms. While
these placements are certainly good choices when analyzing the motion of different body
parts, the SHL Dataset allows us to analyze data from the locations (hips, torso, bag,
and hand) that are arguably the most realistic smartphone placements during day-to-day
activities. Furthermore, in the SHL Dataset, the position of the smartphone at each of those
locations is not fixed and can assume any orientation, which makes for a more accurate
representation of real-life scenarios. Finally, the SHL dataset also allows us to explore an
aspect of activity recognition that is not very common, i.e., the recognition of different
modes of transportation. As was previously mentioned, the goal of the dataset, as well as
the 2019 and the 2020 SHL Challenges, is to allow for the recognition of eight modes of
locomotion and transportation (car, bus, train, subway, walking, running, biking, or being
stationary).

The SHL dataset was originally recorded using four smartphones worn at different
on-body locations (hand, hips, torso, bag). The smartphone model that was used in the data
collection procedure is the Huawei Mate 9 Android phone. For the actual recording and
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annotation of data, the authors used their own Android data logging application (Available
online: https:/ /github.com/sussexwearlab/Datal.ogger accessed on 1 May 2022) and an
in-house annotation tool [54]. From each smartphone, the authors recorded data from 15
different sensor modalities [47].

In total, three different users participated in the data collection procedure; however,
information such as their age and gender was not made public. In terms of how the data
collection was performed, the users were encouraged to go about their daily activities as if
the data collection process was not happening. However, they were given a weekly goal of
how many hours of data they had to collect per activity.

Even though the original dataset contains 2812 h of data, only a subset was released
for the purpose of the activity recognition challenges. This subset contained data sampled
at a frequency of 100 Hz and, instead of all 15 available sensor modalities, included the
following subset of sensors: triaxial acceleration, triaxial gravity, triaxial gyroscope, triaxial
linear acceleration, triaxial magnetic field, orientation as quaternions, and air pressure.
GPS, WiFi, and other sensor data that could be used to identify the location of the user were
omitted. The data were segmented by the organizers using five-second windows, while
labels were provided for each sample. The distribution of the activities in the SHL-Train
and SHL-Validation data was quite uniform, except for the running activity, which was
understandably under-represented.

In both years, the provided data came in three sets: train, validation, test. We used the
SHL prefix to distinguish the original datasets from the datasets used in the experiments.
The need for such prefixes arose from the fact that the training dataset in an experiment
could be, for example, a combination of all instances from the SHL-Train and three-quarters
of the instances from the SHL-Validation set.

Details about how these data were split in the 2019 and 2020 SHL Challenges, with
respect to sensor modalities, sensor locations and users, is provided in the following
subsections.

3.1. 2019 Dataset

The SHL-Train set contained the sensor data streams from three phone locations
(bag, hips, and torso). This set was the largest and consisted of 59 days of data. In the
SHL-Validation set, data were provided from all four locations, including the hand phone
location, for a period of only three days. Last, the SHL-Test set contained only the hand
location and was unlabeled; labeling it correctly was the competition’s goal. This set
contained 20 days of data summarized in the upper part of Table 1. All three sets of data,
the SHL-Train, SHL-Validation, and SHL-Test set, contained data collected by a single user.

Table 1. Summary of the datasets provided for 2019 and 2020. “X” denotes whether data from that
location were present in the subset and whether the subset was labeled.

2019
Bag Torso Hips Hand Labels Days
SHL-Train X X X X 59
SHL-Validation X X X X X 3
SHL-Test X 20
2020
User 1 Users 2 & 3 Locations Labels Days
SHL-Train X 4 X 59
SHL-Validation X 4 X 6
SHL-Test X 1 (unknown) 40

3.2. 2020 Dataset

The SHL-Train set was the largest and was composed of data from one user (User 1)
and all four phone locations. The SHL-Validation set was relatively much smaller and


https://github.com/sussexwearlab/DataLogger

Sensors 2022, 22,3613

6 of 32

contained mixed data from the other two users (User 2 and User 3) for all four locations.
Finally, the SHL-Test set contained data from User 2 and 3 and one unknown phone location.
This set was unlabeled, and correctly labeling it was the competition’s objective. Overall,
the challenge data comprised 4 x 59 days of SHL-Train data (59 days of data for each of
the four locations), 4 x 6 days of SHL-Validation data, and 40 days of SHL-Test data, as
summarized in the lower part of Table 1.

3.3. Reconstruction of the Order of the Data

The SHL-Test data from 2019, as provided by the organizers, was split into five-second
segments, which were then randomly shuffled. To be able to incorporate the temporal
information as a post-processing step, however, we needed to provide data in the correct
order. Thus, we performed steps to algorithmically re-order the dataset.

The key insight for doing this was that the end of one data segment best matches
the beginning of another segment—presumably the one that followed it in the original
ordering. This gives rise to the following algorithm: (1) Choose a random segment x, and
(2) find the five-second segment that has the minimal distance from its first sensor readings
to the last sensor readings of x. The distance used is the Euclidean distance, with different
sensors weighted using empirically determined weights. (3) If the minimal distance is
below a threshold value, join the segments and then repeat this process, using the newly
created segment instead of the random one. If it is not, choose a new random segment to
repeat the process (this would only happen if there are omissions or missing data in the
original dataset). This procedure is summarized in Algorithms 1 and 2.

The output of this algorithm consists of long strings of joined five-second segments
that are locally ordered, but the ordering of these strings is unknown. This partial and local
ordering, however, is sufficient for our purposes.

When trying to apply the same algorithm to the Test data from 2020, we obtained
strings composed of only one segment. These results implied that the algorithm did not
find any segments that sequentially followed each other. Presumably, this is because, in
2020, when providing the data, the organizers excluded some of the data between two
sequential window frames.

To re-order the data, we tried to train machine-learning models that show whether
two segments are sequential, although there are some missing data between them. Since
we did not have any segments that were longer than five seconds from the 2020 challenge,
we used the obtained segments from 2019 as training data. For features, we used two
sensor readings. If the time between the two sensor readings was less than five seconds,
we labelled the sample as sequential; otherwise, we labelled it as non-sequential. For the
machine-learning model, we used Random Forest. However, the model showed poor
classification accuracy; therefore, we abandoned the idea of re-ordering the data in the 2020
challenge.
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Algorithm 1 REORDER-DATA
Input: windows, threshold

allOrderedSequences <— @
index < 0
while length(windows) # 0 do
create array orderedSequence
distance <— 0
current < random( windows)
while distance < threshold do
orderedSequence < windows|index]
windows + windows\{current}
current, distance < CLOSEST-WINDOW (current, window)
end while
insert orderedSequence into allOrderedSequences
end while

Output: allOrderedSequences

Algorithm 2 CLOSEST-WINDOW
Input: currentWindow, windows

lastRecording < currentWindow[length(currentWindow))
closestWindow <« windows|[1]
distance < oo
i+ 2
while i < length(windows) do
if EuclideanDistance(lastRecording, windowsli][1]) < distance then
distance <— EuclideanDistance(lastRecording, windows|i][1])
closestWindow < windows|i]
end if
end while

Output: closestWindow, distance

4. Pre-Processing and Features

In this paper, we opted to use classical machine learning, as it yielded better results
than our internal deep learning experiments. To employ this method, we first needed to
pre-process the data and calculate a large body of features which would describe these data.

The pre-processing started by lowering the sampling frequency of the sensors to 50 Hz
to lessen the computational load, mainly because our previous work [5] showed that such
a decision does not have any negative performance impacts on a classic ML pipeline. We
then filtered the data to remove noise and emphasize the parts of the signal in which the
activities performed by the user might be most visible. In the next step, virtual sensor
streams were created to derive the information that is part of the sensor signals but might
not be visible at first glance. Finally, the data were segmented into windows to prepare for
feature extraction.

In terms of feature extraction, our approach was to include a large body of features
that have proven to be helpful in our past and related work and then let automatic feature
selection select only those most suitable for the problem at hand. We chose this approach
to not rely on human feature selection, which is often difficult to justify and requires
significant domain expertise.

4.1. Filtering

Raw sensor data were iltered using low-pass and band-pass filters. The sensor data
were filtered using a low pass infinite-impulse-response (IIR) filter and a band-pass filter,
which was a combination of high- and low-pass IIR filters. The smoothing factors for IIRs
were determined experimentally.
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4.2. Virtual Data Streams

From these original sensor streams, it is possible to derive additional sensor streams
that are useful for activity recognition. All subsequent steps treat these derived sensor
streams in the same manner as the original ones.

The first derived sensor stream is the magnitude of the data. This was calculated for
all the data from the triaxial sensors (acceleration, linear acceleration, gravity, magnetic
field, and angular velocity). The additional derived sensor streams were Euler angles,
which were calculated from the quarternion data. Although using quaternions is better
for avoiding a “gimbal-lock”, Euler angles are more suitable as features, as each one is
informative on its own. In contrast, quaternions need to be analyzed as a set of values.

4.3. Windowing

To extract features from sensor data, data streams need to be segmented into windows.
Our previous work [5] on the 2018 SHL Challenge found that using longer windows yields
better results—presumably due to the infrequent activity transitions. In the 2019 and 2020
challenges, organizers provided data in five-second segments (see Section 3.3), which was
already much shorter than the one minute segments used in 2018. Therefore, we used these
five-second segments directly as windows for feature extraction.

4.4, Features

To use classical machine learning, we calculated the features of each five-second
window of data. Labels were determined for each window as the most frequent per-sample
label in a given window. The calculated features can be roughly categorized into the
frequency domain and the time domain. The following two subsections describe each
category. The exact implementation of each feature is available in our open-source feature
extraction library [55]. Altogether, 1124 features were calculated.

4.4.1. Frequency Domain Features

These features were calculated using the power spectral density (PSD) of the signal,
based on the fast Fourier transform (FFT). PSD characterizes the frequency content of
a given signal and can be estimated using several techniques. Two of the most widely
used and commonly considered are a simple periodogram, which is obtained by taking
the squared-magnitude of the FFT components, and Welch’s method, which is a bit more
complex but superior to periodogram.

In our work, we used the Welch’s method to obtain the PSD. We implemented the
same frequency-domain features as in the previous competitions [45,56]—the three largest
magnitudes of the FFT components, entropy of the the normalized FFT components and
their energy.

4.4.2. Time-Domain Features

We used time-domain features that were proven to be successful in [57] and previously
won competitions [45,56]. These features were designed for accelerometer data, and most
of them were calculated based only on the acceleration (and its derived) data streams. Some
of the features were also calculated based on the gyroscope data streams; however, some
features, such as linear velocity, were left out as they have no semantic interpretation when
calculated based on non-acceleration data.

We also extracted a subset of time-domain features from the tsfresh library that were
not included in the previous set of expert features. These features were: the signal minimum,
maximum, standard deviation, the number of times the signal is above /below its mean,
the signal’s mean change/absolute change, and its different autocorrelations (correlations
of the signal with a delayed version of itself, for three different delays).
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5. Methods for Activity Recognition

This section describes the methods that we developed for the 2019 and the 2020 SHL
Challenges. The methods used for both these years include vehicle-specific models, feature
selection, and semi-supervised learning. We consider these joint components to be more
general for activity recognition, as they proved to be useful in both years. In addition
to the joint components, the 2019 pipeline also included temporal prediction smoothing
using HMMs, while the 2020 pipeline included the recognition of unknown locations
and person clustering. The details of each component, and how they were combined in
specific machine learning (ML) pipelines in 2019 and 2020, are presented in the following
subsections.

5.1. Recognition of Unknown Location (2020)

We investigated whether it is possible to build a classification model to detect the
phone’s location, which can be used to explore the benefits of location-dependent activity
recognition models.

The placement of the sensors on the body has a significant impact on the sensor signals
acquired while a person is performing dynamic activities, such as walking and running.
This is mostly due to the fact that different body parts have varied degrees of freedom and,
consequently, different movement patterns. Further, the signals recorded while a person
is using one of the several considered modes of transportation (car, subway, bus, or train)
are extremely similar regardless of the placement of the sensors on the body, as the body
itself is usually not in motion. With this consideration, we carried out the phone location
detection in two steps: (i) detection of dynamic activities, i.e., walking and running; and
(ii) detection of phone location based on the identified instances of dynamic activities.

In the first step, sensor data from all eight activities, recorded for all four locations
(torso, hips, hand, and bag), were used to train a classification model that can identify
the instances belonging to dynamic activities, i.e., walking and running. The task was
formulated as a binary classification task. In the second step, only instances referring to
the walking and running activity were used to train a classification model that can identify
where the phone is placed on the body. The full pipeline for recognizing the Test set’s
unknown location is illustrated in Figure 1.

Train data Test data

l

Clqssifier fqr » Predict
walking/running

Select walking/running
instances based on
predictions

v
Select walking/running Classifier for
instances based on location
labels

Figure 1. Pipeline for recognizing the unknown phone location of the Test set.

The same feature set was utilized to train both classification models (for walking /running
detection and phone location detection), and contained all the extracted features (see
Section 4.2). Both walking/running detection and phone location detection employed the
Random Forest algorithm.
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5.2. Vehicle-Specific Models (2019 and 2020)

Having separate models for different transportation modes allows for them to be
tailored to the specific modes and, thus, perform better. The reasoning for this is based
on the level of human activity associated with the specific transportation modes, namely
dynamic activities (running, walking, and biking) and static activities (travelling by bus, car,
subway, or train or being stationary). Furthermore, having separate models provides the
opportunity to obtain different sets of training data for each model, which can be especially
useful for vehicle-specific classes.

Motivated by the assumption that different locations (2019) or persons (2020) matter
less in vehicles-specific classes, we explored whether combining the data from the SHL-Train
and SHL-Validation sets for training might improve the models. The reasoning behind why
different locations or persons might matter less in vehicles is explained for each year
separately.

The data collected from devices placed on different body part are similar when a
vehicle-specific activity is performed (travelling by car, bus, train, or subway). This is
primarily true because, when resting in a vehicle, all the body locations are subject to
similar vehicle vibrations regardless of where the phone is placed.

The same is true for different participants. For the vehicle-specific transportation
modes, the data for different participants are similar. This can be explained by the fact that,
when using these transportation modes, the user is mostly static. Therefore, the main factor
that affects the sensors’ signals is the vehicle vibrations, which are not dependent on the
specific user.

For the non-vehicle activities, the reasoning is the opposite. This is mainly true because
these activities depend on human movement, which can vary greatly between different
persons. Additionally, the human movement affects the data from each device location
differently. As a result, we explored if using only the SHL-Validation set for training,
which has same characteristics as the SHL-Test set (same device location for 2019 and same
participant for 2020), can improve the performance.

5.3. Person Clustering (2020)

We explored the possibility of using clustering to divide the SHL-Validation and
SHL-Test sets into two subsets each, such that each subset would contain data from only
one user. This would allow for us to build user-specific models and, hopefully, increase the
performance of our model.

By using the K-means algorithm, the SHL-Validation data were first clustered. We
completed this with all the features and with the features that were expected to best
distinguish between the users. To select these features, we used models trained to distinguish
25% of the SHL-Train set (which included User 1) and the entire SHL-Validation (which
included User 2 and 3). When training the models, we compared different feature selection
algorithms—recursive feature elimination (RFE), the wrapper method, and the first 50
most important features for each location according to Random Forest’s internal feature
importance measure.

Next, the clusters were modified so that all the consecutive samples belonged to the
same cluster, using the algorithm for reconstructing the order of the data described in
Section 3.3. Using the smoothed labels, we built a classification model that could be used
on the unlabeled SHL-Test set.

To include the person clustering in our pipeline, we attempted to combine this with
the vehicle-specific procedure described in Section 6.4. However, this resulted in the further
subdivision of the limited SHL-Validation set into vehicle- and user-specific sets. As a result,
each of these sets contained insufficient data to train a robust model. Hence, we only
proceeded with the vehicle-specific procedure in our final pipeline and tested the person
clustering separately.
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5.4. Feature Selection (2019 and 2020)

Since a large number of features was computed, the most relevant ones were selected
using a three-step procedure. In the first step, the mutual information between each feature
and the label was estimated, where a greater amount of mutual information implies a
higher dependency between the feature and the label. In the second step, the Pearson
correlation coefficient was computed for pairs of features. If the correlation was higher
than the defined threshold, the feature with the lower mutual information with the label
was discarded. In the final step, features were selected using a greedy-wrapper approach.
A Random Forest classifier was first trained using only the best-scoring feature in the
training set. The trained model was used to predict labels for the validation set and the
prediction accuracy was calculated. Then, the second-best feature was added and the
model was trained again. If the accuracy in the validation set was higher than that obtained
without using this feature, said feature was retained. This procedure was repeated for
all the remaining features. The reason for the first two steps is that the greedy-wrapper
has a tendency to overfit to data when the number of features is large and the removal of
correlated features reduces their number without this danger.

Feature selection is typically used to select the overall good features; however, in our
case, we also used it to adapt the features to a particular phone location in 2019 and to
particular users in 2020. The dataset that we adapted was used as the validation set during
the feature selection procedure, with the intention that the process would select the features
that transfer well form the training to validation set.

For 2019, we adapted the features to the SHL-Validation set, which only contains data
from the hand location. The objective was to determine whether the features from different
phone locations can be selected and adapted to the test location, which is not present
in the training data. For this purpose, we explored three different adaptation schemes
using different combinations of the training and validation data. In all four cases, the
SHL-Validation set was split into quarters. The primary reason for creating quarters was
to obtain a proper evaluation, i.e., one quarter was always left aside for testing, while
the remaining three quarters were used for training and/or adaptation depending on the
combination employed. The same adaptation procedure was performed for each quarter,
and the final feature set was obtained as an intersection of all four selected feature sets.

For 2020, we adapted the features to the SHL-Validation set, which contains the
data for User 2 and 3. For this purpose, we tested three different combinations of the
training and validation data. Similar to the procedure used in 2019, in all three cases, the
SHL-Validation set was divided into quarters. The same adaptation procedure was carried
out for each quarter, and the final feature set was obtained as an intersection of all four
selected feature sets.

We also selected features specific for the two clusters obtained through person clustering,
to represent two different persons: Users 2 and 3. The SHL-Validation set was split into two
clusters/users, as described in the previous section. Next, feature selection was carried out
in the same manner as for User 2 and 3 combined: The two procedures were used on each
cluster/user, and their union was taken as the final feature set for that user.

5.5. Temporal Smoothing Using an HMM (2019)

The SHL Challenge datasets are usually comprised of long-lasting activities, and
fast transitions between different activities rarely occur. This means that, for example,
situations in which the subway activity occurs once or twice within a longer sequence
of cycling predictions are extremely unlikely, to the point where it is safe to say that the
subway predictions are misclassifications. Further, it stands to reason that certain activity
transitions are more likely to occur than others, which can contribute to the identification
of missing activity predictions. One example of such a missing activity is when the user
changes their mode of transportation without any detected walking activity in between.

One way of modeling and correcting such misclassifications is through the use of
HMMs. HMMs learn rules (probabilities) from the labels of the data and the predictions that
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a classifier makes for these data. These rules can then be used to correct future predictions
made by the same classifier.

When using HMMs, we use them in two slightly different capacities. The first, more
straightforward application involves using them to smooth the predictions of a classifier in
the time domain. The other involves providing alternative labels (knowledge) during the
semi-supervised learning stage of the pipeline (described in Section 5.6). One of the uses of
these alternative labels is to, for example, select an instance from the unlabeled data based
on whether the classifier and HMM agree on what the label should be.

However, the use of an HMM is constrained by data that are temporally ordered. This
condition was met after reordering the data from the 2019 SHL challenge but could not be
met when using the data from the 2020 SHL Challenge. Thus, HMMs were excluded from
the 2020 pipeline.

In the 2019 pipeline, when using HMM s to correct the predictions of a classifier for
the test set, we used the SHL-Train set and the predictions (i.e. confusion matrix of an
analogous classifier) to estimate the internal parameters of the HMMSs. More specifically, we
used the SHL-Train set to estimate the transition_probabilities, while we used the confusion
matrix of the analogous classifier to estimate the emission_probabilities.

The analogous classifier is a classifier that is at the “same level/position” in a parallel
pipeline that has all the same elements, except that instead of the SHL-Train set, SHL-Validation
set, and SHL-Test set, it uses a four fold cross-validation schema for the SHL-Train and
SHL-Validation sets to construct the training and test data. We assume that one can use its
predictions to understand how to correct the main classifier’s predictions for the SHL-Test
set.

5.6. Semi-Supervised Learning (2019 and 2020)

Both the 2019 and the 2020 SHL Challenge datasets used instances in the test set that
were otherwise under-represented in the labeled data. In 2019, when constructing the
SHL-Test set, the organizers used the data collected from the hand location: a category
with extremely less representation in the labeled set that was released to the participants.
In the 2020 SHL-Test set, they used data from two users who were only present in the
SHL-Validation set, making this a significantly smaller labeled set than the SHL-Train set.

To extract knowledge about these under-represented categories of instances from the
SHL-Test set, semi-supervised learning was applied. Generally, semi-supervised learning
is performed by (i) training a classifier on a set of labeled data; (ii) using the classifier to
predict the labels of an unlabeled set of data; (iii) selecting instances from the unlabeled set
with which to extend the labeled set using the labels generated in step (ii) and (iv) using
the extended set of labeled data to train a new classifier. A diagram of the complete process
can be seen in Figure 2.
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Figure 2. Diagrams for the general semi-supervised learning approach used in the 2020 pipeline (left)
and the semi-supervised learning approach that combines HMM predictions in the selection strategy
(right). The second approach was used in the 2019 pipeline.

A wide variety of procedures can be used to select instances from the unlabeled data
in step (iii). For the 2020 pipeline, we formulated the following selection strategy: use
the instances for which the classifier gives a prediction probability that is above a certain
threshold. We then investigated the effects of setting different threshold values between
0.1 and 1.0. The labels that were used for these instances after being selected were those
assigned to them by the classifier.

In the case of the 2019 pipeline, choosing a suitable selection strategy was slightly
more complicated. In this pipeline, aside from the classifier predictions, we could also
consider the version of the predictions that was post-processed using an HMM. Hence, we
formulated several possible selection strategies: (i) use the instances for which the classifier
provides a prediction probability that is above a certain threshold; (ii) use the instances for
which the classifier provides a prediction probability that is above a certain threshold and
for which the classifier and HMM agree with regard to the label; (iii) use the instances for
which the classifier provides a prediction probability that is above a certain threshold and
for which the classifier and HMM disagree with respect to the label; (iv) use the instances
for which the classifier provides a prediction probability that is below a certain threshold
and for which the classifier and HMM disagree with regard to the label; (v) use both the
instances for which the classifier provides a prediction probability that is above a certain
threshold and for which the classifier and HMM agree with regard to the label and those
for which the classifier provides a prediction probability that is below a certain threshold
and for which the classifier and HMM disagree with respect to the label. Furthermore,
for each of these selection strategies, we investigated which labels should be used for the
selected instances: the ones from the classifier or those from the HMM. Finally, for each
combination of a selection strategy and label source, we tested several different threshold
values.

The results of these experiments are given in Section 6.6.

5.7. Proposed Pipelines

Although the classification tasks presented in the 2019 and the 2020 SHL Challenges
are fairly different, to address them, we propose two pipelines that share a large number of
common characteristics. An overview of the general structure of both pipelines is shown
in Figure 3. As is visible in Figure 3, up to the model training and testing stage, both
pipelines follow a structure that is frequently used in the HAR domain. The input to each
pipeline is the data provided by the organizers of that year’s challenge and consists of
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three subsets of data that have been segmented into five-second windows, as described in
Sections 3 and 4.3.

...........................

Input .
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Figure 3. The general structure of the 2019 and 2020 pipelines.

The next stage of both pipelines is the reprocessing stage. This stage consists of four
different steps, of which one is optional and exists only in the 2019 pipeline. The first of
these steps is data selection. As discussed in Section 6.2, training the classifiers using data
from different sensor locations or different subjects yields very different performances;
therefore, selecting the right combination of data is crucial.

The next step is unshuffling the SHL-Validation and SHL-Test sets to their original
temporal order. This step is only applied to the data from the 2019 SHL Challenge and
allows for the use of HMMs in the later stages of the classification pipeline. The unshuffling
is carried out using the procedure described in Section 3.3. There is no need to perform this
procedure on the SHL-Train set because its contents were not shuffled in the first place.

The final two steps in the preprocessing stage are filtering and extracting virtual sensor
streams. Both steps are employed in both pipelines and are performed as described in
Sections 4.1 and 4.2.

The data representation stage of the pipelines is tasked with changing the way data
are presented in later stages, i.e., it is tasked with extracting information from the raw
data. This is conducted by performing feature extraction and, optionally, feature selection.
During the feature extraction step, we calculated the extensive set of features described in
Section 4.4. The feature selection step, on the other hand, exists only in the 2020 pipeline
and was performed using the procedure described in Section 5.4.

Finally, the model training and testing stage consists of two major components: a
general classifier and a so-called “vehicle” classifier. The role of the general classifier
is to provide a label for all instances of the SHL-Test set, whereas that of the vehicle
classifier is to reclassify the instances of the SHL-Test set that were not assigned a run,
walk, or bike label by the general classifier. However, the implementation of this stage and,
more specifically, the implementation of these high-level classifiers is where the proposed
pipelines start to differ significantly. Thus, their inner workings will be explained separately
in Sections 5.7.1 and 5.7.2.
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5.7.1. Proposed Pipeline 2019

The model training and testing stage of the 2019 proposed pipeline can be further
divided into two parallel branches. The main part consists of the general and vehicle-specific
classifiers and is concerned with predicting the labels of the instances in the SHL-Test set,
while the other is a parallel pipeline that aims to generate relevant HMMSs by performing
four-fold cross-validation on the SHL-Train and SHL-Validation sets. The two parts intersect
each time we use an HMM to post-process the predictions made by a certain classifier.
Diagrams of both the main and the secondary pipeline can be seen in Figures 4 and 5,
respectively. It is important to note that the “preprocessing + data representation” block,
shown in the figure, refers to the stages presented in Figure 3.

The main pipeline begins by training a classifier using the semi-supervised learning
method (with an HMM), as described in Section 5.6. The semi-supervised learning step
uses the data from the SHL-Train and SHL-Validation sets as the labeled data and those
from the preprocessed SHL-Test set as the unlabeled data. This semi-supervised learning
step also utilizes an HMM (general classifier HMM), whose parameters are obtained in
the secondary pipeline (shown in Figure 5). To determine the parameters of the HMM
(general classifier HMM), in the secondary pipeline, we train a classifier and predict the
labels for the instances of the test data four times: once during each iteration of the four-fold
cross-validation depicted in Figure 6. We then combine the predictions made across the
different iterations of the cross-validation schema and use them and the labels from the
SHL-Train set to extract the parameters of an HMM (general classifier HMM), as described in
Section 5.5.

After extracting the HMM parameters (general classifier HMM), for both the main
and secondary pipelines, we start the process of semi-supervised learning. The selection
strategy used in all the semi-supervised learning steps in this pipeline is explained in
Section 6.6.

After the semi-supervised learning (SSL) procedure, we post-processed the predictions
of the classifier again using an HMM (general SSL HMM). The parameters of this HMM
were obtained in the same way as before, except that, this time, the predictions for the
four test folds were generated using the (last) classifier trained during the semi-supervised
learning step in the secondary pipeline. This step marks the end of the general classifier in
both the main and secondary branches.

The function of the vehicle classifier is to re-predict the labels of those SHL-Test set
instances that were not classified in the walk, run, or bike categories by the general classifier.
This subset of instances was named the “vehicle” instances. To perform the reclassification,
we divided the SHL-Test set into instances that need to be re-classified and those that do
not based on the labels provided by the general classifier. From this point onward, the
test set refers to the instances that require re-classification, i.e., the ones classified into a
“vehicle” based activity. This notation, i.e., train and validation, extends to the SHL-Train
and SHL-Validation sets, with the only difference being that, to divide the SHL-Train and
SHL-Validation sets into “vehicle” and “non-vehicle” instances, we do not need to use the
labels assigned by a classifier, as we can use the ground-truth labels. This selection of
instances also occurs in the secondary branch, and everything described here applies to
that as well.
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Figure 4. A diagram of the main classification pipeline used for the data from 2019.

Secondary pipeline

Tri

et

FTrain

General
classifier
HM

jata | Testdata Traindata Testdata

mmmmmmmm

2\
ombine

Flrain
{terations

=

Vehicle
ssL

HN

Figure 5. A diagram of the secondary (parallel) pipeline that provides the relevant HMM parameters.



Sensors 2022, 22,3613

17 of 32

4-fold cross validation data division Fl/al
. R
lteration #1 || FTrain | [ s1 ][ s2 ][ s3 || Test]
lteration #2 || FTrain | [ s1 ][ s2 ||| Test|| s4 |
lteration #3 || FTrain | [ s1 | [Test][ s3 ][ s4 |
lteration #4 || FTrain | [Test ]|[ s2 | [ s3 || s4 |

Figure 6. A four-fold cross-validation schema used for the internal testing of different pipelines using
the 2019 or 2020 data.

Once we select only the “vehicle” instances from the SHL-Train , SHL-Validation , and
SHL-Test sets, the steps to create a working vehicle classifier are exactly the same as those
followed in the general classifier section of the pipeline. The vehicle classifier also uses
semi-supervised learning (with an HMM) to train a classifier. This classifier is trained
using the train data as the labeled set and the test data as the unlabeled set. Additionally,
the HMM that is used to create this classifier is called the vehicle classifier HMM. The
final step, as before, is to post-process the predictions of the classifier that were created
during the semi-supervised learning procedure with a second HMM (vehicle SSL HMM).
The parameters of the HMMs are extracted from the secondary pipeline in an analogous
manner as before.

Once the vehicle classifier produces predictions, the final step of the pipeline is to
combine the predictions of the general classifier with those from the vehicle classifier.

5.7.2. Proposed Pipeline 2020

While the implementation of the model training and testing stage in the 2020 pipeline
shares similarities with the 2019 one, it is made slightly simpler because the original
temporal order of the instances in the 2020 SHL-Test set was not recoverable, which
disallowed the use of HMMs. The exclusion of HMMs from this stage eliminated the
need to extract the appropriate parameters for them and simplified the selection strategy
of the semi-supervised learning method. However, it also made the method slightly less
effective. The implementation of the general classifier and the vehicle classifier in the 2020
pipeline is shown in Figure 7.

It is important to note that although feature selection is performed in this pipeline,
only the general classifier uses the output of the feature selection step, while the vehicle
classifier does not, and instead uses the full feature set. This is emphasized in Figure 7 by
adding the “with feature selection” text to the preprocessing and data representation block
(which refers to the stages shown in Figure 3).

The general classifier in this pipeline serves the same function as the one in the 2019
pipeline. However, this general classifier is less complex, as it was trained using the
semi-supervised learning procedure that does not include the use of an HMM (presented
in Section 5.6).

After the general classifier, the data in the SHL-Test set are split into two subsets: a
“vehicle” subset and a “non-vehicle” subset. These subsets retain the same meaning as those
mentioned in Section 5.7.1. We then continue to re-classify the instances of the “vehicle”
subset using a classifier that was trained using the semi-supervised learning methodology.
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Figure 7. A diagram of the classification pipeline used for the data from 2020.

6. Experimental Results
6.1. Recognition of Unknown Location (2020)

To evaluate the performance of the phone location detection, a four-fold cross-validation
technique was utilized. Each fold represented exactly one quarter of the provided SHL-
Validation set. Although the validation set contains a few data samples, it provides more
relevant information about the phone position in the test set, as it is comprises data recorded
from the same user as the test user.

The first step toward the detection of the phone location involved the recognition of
the dynamic activities, i.e., walking or running (see Section 5.1). The walking/running
recognition showed an F1 score of 0.93. However, the overall score achieved during this
step was not a primary concern for the purpose of phone location detection. Instead, we
were more interested in the percentage of false positives (i.e., the percentage of instances
that were incorrectly classified as walking/running) because they could have a large impact
on the performance of the phone location classifier. Nevertheless, only 2% of all instances
from the validation set were incorrectly classified as walking/running activity, and given
that 88% of the instances labeled as walking /running activity were true positives, no further
improvements were needed. The results from the walking/running activity recognition for
the validation set are presented in Table 2.

In the second step, the phone location was identified based solely on the instances
that were classified as walking/running in the previous step. This implies that the true
positives and the false positives were included here. In this experiment, the highest F1
score was noted for the forso location (0.86). The F1 scores for the remaining locations were
as follows: 0.84 for the bag, 0.81 for the hand, and 0.80 for the hips. The results from the
phone location detection in the validation set are presented in Table 3.

These results are probably adequate for ensuring that high classification accuracy is
attainable using phone detection. Therefore, the phone location detection for the SHL-Test
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set was carried out in the next step. The entire SHL-Validation set was used to train a final
model for the detection of walking/running activity, which was then used to classify the
instances from the SHL-Test set. A total of 15,464 instances from the SHL-Test set were
classified as walking/running activity. Subsequently, 83.4% were classified as hips location,
15.7% were classified as hand location, while fewer than 1% were classified as either bag
or torso location. Based on these results, we concluded that the test set’s unknown phone
location is hips. The results for the test set related to location detection are presented in
Table 4.

Table 2. Activity recognition confusion matrix.

Predicted
Walking/Running Other
True
Walking /Running 20,391 2729
Other 2532 92,233

Table 3. Location detection confusion matrix.

Predicted Bag Hand Hips Torso
True
Bag 4050 378 558 334
Hand 24 5207 19 48
Hips 9 1529 5240 280
Torso 222 387 218 4420

Table 4. The number of instances from each phone location in the test set, as predicted by our location
detection model.

Bag Hand Hips Torso
No. of instances 95 2430 12,901 38

6.2. Impact of Training Data and Feature Selection for 2019 and 2020

Since the 2019 and 2020 SHL datasets consist of a large training set that is somewhat
different from the test set, and a validation set that is smaller but more similar to the test
set, this section focuses on the best ways of combining these sets for training. Additionally,
for each training data combination, we explored whether feature selection can help adapt
the models to the particular test location (2019) or person (2020).

For both 2019 and 2020, a four-fold cross-validation was performed on the SHL-Validation
set, where each step was one-fourth of the validation set. All the results for 2019 were
obtained using instances from the hand location, as it was the only one provided in the
SHL-Test set. Similarly, for 2020, the results were obtained using instances from the hips
phone.

For 2019, the aim of the experiment was to determine whether one should use the
SHL-Train set for training because it does not include any instances from the phone location
present in the test data (hand). Furthermore, this experiment was also conducted to
determine whether a combination of the SHL-Train and SHL-Validation (where we have
some hand data) sets could yield higher classification accuracy. For 2019, we tested four
combinations. The first used only the SHL-Train set for training, while the second used the
SHL-Train set and three-fourths of the SHL-Validation set. For the third combination, we
used the SHL-Train set, and the data for only the hand location from the SHL-Validation set.
The last combination was used only for the SHL-Validation set.

The results obtained for 2019 are shown in Table 5. The columns of this table show
which phone location was used for training. All refers to all phone locations except hand.
The first combination shows that the best results were obtained when the model was
trained using the data from all phone locations present in the SHL-Train set (bag, hips,



Sensors 2022, 22,3613

20 of 32

torso). Additionally, it can be seen that when the features are adjusted to the hand location
using feature selection, the results are significantly improved for all training locations. The
same behaviour was observed for the second combination regardless of the additional data
included in the validation. This was expected because only another three days of data were
added to the training dataset. However, for the third combination, where we used hand
data from the SHL-Validation set together with the other locations from the SHL-Train set,
a significant improvement is shown. Unlike the previous two combinations, the feature
adaptations using the feature selection procedure did not produce any improvement. This
could be expected because the training data comprised instances from multiple phone
locations and because the feature selection procedure cannot select the appropriate features
that work for multiple locations concurrently. The results demonstrated that the SHL-Train
data from the hips location, in combination with the SHL-Validation data from the hand
location produced the best performance. Finally, the last combination, where data from
only the SHL-Validation set were used, illustrated the performance of a location-specific
model. This model achieved an F1 score of 0.71 when trained on approximately three days
of data. However, our experiment demonstrated that it could be beneficial to combine
data from multiple locations when insufficient data from the target location are available.
Furthermore, the improvement introduced using the hips location in combination with hand
location can be expected because, in most of the activities, the leg is performing the same
repetitive movement as the hand.

Table 5. Comparison of the F1 scores obtained using different combinations of training data for 2019.
For each training combination, we tested whether the adaptation of the features to the hand location
improves the results. All the results listed in this table were obtained using only instances from the
hand location when testing. For the last combination, where data only from the SHL-Validation set
were used, * denotes that no instances from hand location were used for training.

FS All Bag Hips Torso Hand

Train: SHL-Train, 0.53 0.51 0.36 0.48 X
Valid: SHL-Validation v 0.67 0.59 05 0.61 X
Train: SHL-Train + 3/4 SHL-Validation, 0.53 0.515 0.36 0.475 X
Valid: 1/4 SHL-Validation v 0.62 0.58 043 056 X
Train: SHL-Train + 3/4 SHL-Validation (hand), 0.755 0.754 0.765 0.735 X
Valid: SHL-Validation v 0.74 0.724 0.73 0.68 X

Train: 3/4 SHL-Validation, 0.41* 0.27 0.25 0.39 0.71

Valid: 1/4 SHL-Validation v 0.5 * 0.29 0.25 0.46 0.69

For 2020, once the phone location of the test data was determined, we explored
whether a location-dependent model would yield a better performance than a general
location-independent model. Moreover, the main idea behind testing different combinations
of data from the SHL-Train and SHL-Validation sets was to verify whether using data
(SHL-Train) from a subject who is not present in the SHL-Validation and SHL-Test sets could
be beneficial.

Three different combinations of training data were tested. The first used only the
SHL-Train set for training, while the second used the SHL-Train set and three-fourths of the
SHL-Validation set. The last combination used only the SHL-Validation set. Unlike the 2019
data, here, the target location (hips) appears in both the SHL-Train and SHL-Validation sets.

The results obtained for 2020 are shown in Table 6. The columns of this table indicate
which phone location was used for training. Here, All refers to the data from all phone
locations, namely bag, torso, hand and hips. The combinations that included the hips variable
were not tested with the rest of the locations separately, as the 2019 results showed that
when sulfficient training data of the target location are available, it is best to train the model
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using either the target location alone or using all training locations. The first combination
demonstrated that training a location-specific model results in a higher F1 score. However,
the F1 score is relatively low, which suggests that there is a big difference between the data
of User 1 from the SHL-Train set and those of User 2 and 3 from the SHL-Validation set.
Therefore, the features extracted with data from User 1 were also adjusted to User 2 and
3, which provided significant improvements. In addition, the results indicate that using
the data from all phone locations in combination with the feature selection step yields a
small improvement compared to a location-specific model. The second combination, where
the data from the SHL-Train and the SHL-Validation sets are combined, resulted in another
large improvement compared to the previous combination. This confirms the assumption
that User 1’s data are considerably different from those of User 2 and 3, and indicates that
the best solutions are often domain dependent. The second combination also provides a
small improvement over the location-specific model when feature selection is used. Finally,
the results of the last combination, where only User 2’s and 3’s data were considered, are
worse than those of the second combination. Based on these findings, we can conclude that
when only a small portion of data from the target user are available, better results can be
achieved by utilizing data from different users and training a more robust model.

Table 6. Comparison of the F1 scores obtained using different combinations of training data for 2020.
For each training combination, we tested whether the adaptation of the features to the hips location
improves the results. The columns All and hips indicate which data were used for training. The All
column includes bag, torso, hand and hips. All the results presented in this table were obtained using
only the instances from the hips location when testing.

All Hips

Trained on SHL-Train, Without FS 0.56 0.6

validated on SHL-Validation With S 071 0.7
Trained on SHL-Train + 3/4 SHL-Validation, Without FS 0.81 0.81
validated on 1/4 SHL-Validation With FS 081 0.82
Trained on 3/4 SHL-Validation, Without FS 0.79 0.78
validated on 1/4 SHL-Validation With FS 0.76 0.72

6.3. Selection of the Machine-Learning Algorithm for 2019 and 2020

After choosing the best combination of training data and selecting the appropriate
feature set for each year, different ML algorithms were tested. Along with the F1 scores, the
training time of the algorithms was also noted. The results obtained from this experiment
for both 2019 and 2020 are shown in Table 7. All models were trained with the default
scikit-learn hyperparameters. The results shown in the table were obtained using the
SHL-Validation set.

For 2019, it can be seen that all models, except a decision tree, perform similarly. The
highest F1 score of 0.71 was obtained using Support Vector Classification (SVC). However,
when also considering the training time for each model, the performance of SVC is the
second worst. Therefore, we opted for the Random Forest algorithm, mainly because it
provides stable results and has the shortest training time. Additionally, it does not require
much parameter tuning.

The behavior of the 2020 trained models was similar. Again, the results obtained using
a decision tree were the worst, although the difference is smaller. Further the best results
were obtained with a Random Forest model. The same F1 score of 0.82 was also obtained
with an AdaBoost classifier that used Random Forest as the base classifier. However, since
it did not offer any improvement over Random Forest, the latter remained the primary
choice.
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Table 7. Comparison of the F1 scores and training times obtained for different classical ML methods
for 2019 and 2020.

2019 2020
Method F1 Score Training Time (s) F1 Score Training Time (s)
XGBoost 0.69 2644 0.78 2923
Decision tree 0.57 427 0.71 612
Random forest 0.70 1390 0.82 1566
Gradient boosting 0.70 20,341 0.79 22,415
Bagging 0.66 7468 0.78 8153
SvC 0.71 17,688 0.77 19,353
AdaBoost with RF 0.70 1827 0.82 1964

6.4. Vehicle Models 2019 and 2020

To evaluate the performance of the vehicle- and non-vehicle-specific models, we
used the experimental setup described in Section 6.2. Once again, for both vehicle and
non-vehicle models, we tested which combination of data from the SHL-Train and SHL-
Validation sets results in the most accurate recognition of activities. Furthermore, various
combinations of data from different phone locations were also tested.

First, we assumed that there an adequate binary classifier exists, which can distinguish
between vehicle-specific transportation modes (being stationary, car, bus, train, and subway)
and non-vehicle transportation modes (walking, running, and biking). Next, vehicle- and
non-vehicle-specific models were trained for each combination of training data. Finally,
predictions were generated for the validation data. The data utilized for this were divided
into vehicle- and non-vehicle-specific transportation modes based on the ground truth. This
entails that the obtained results provide information about the performance of the models if
information regarding which instance belongs to the vehicle or non-vehicle transportation
modes is available. Since this is not the case in practice, and we do not know whether
a specific activity is vehicle or non-vehicle related, these results should be considered a
comparison between the combinations.

For 2019, the results for the vehicle-specific model demonstrate that the best performance
is obtained when training on the hips location from the SHL-Train set and the hand location
from the SHL-Validation set. For the non-vehicle model, the results were the same for two
combinations: training on the hips location from the SHL-Train set and the hand location from
the SHL-Validation set and training using only the hand location from the SHL-Validation set.
The former was chosen because it is the same combination as that used for the non-vehicle
model, thus reducing the implementation complexity of the pipeline.

For 2020, the best combination for both vehicle- and non-vehicle-specific models
involves using the hips location trained with data from the SHL-Train and SHL-Validation
sets.

Finally, for both years, we tested whether the vehicle- and non-vehicle-specific models
produce any improvement over a general classifier, trained using all the classes together.
These results are displayed in Table 8. All the results associated with vehicle- and non-vehicle
specific models were obtained using instances that truly belonged to either of these two
classes. To verify whether these models yielded any improvement, we used them in
addition to our general classifier. To assess whether both the vehicle- and the non-vehicle
models are useful, we conducted a step-by-step evaluation. First we evaluated the
performance using only reclassification performed with the vehicle model. Next, we
reclassified the predictions of the general model using only the non-vehicle model, and,
finally, we used both the vehicle- and the non-vehicle model together. Based on the results
obtained for both 2019 and 2020, the same outcome was achieved. The vehicle-specific
model was relatively superior. However, the non-vehicle models did not affect the
performance of the general classifier. Furthermore, the combination of both vehicle and
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non-vehicle models demonstrated that the non-vehicle model is not useful in this particular
situation. Therefore, we decided to proceed with the combination that uses the general
classifier along with the vehicle-specific classifier.

Table 8. The F1 scores obtained when the vehicle and non-vehicle models are combined with the
general classifier. This table illustrates whether the vehicle and non-vehicle models introduce any
improvement over the general classifier.

2019 2020
F1 Score F1 Score
General classifier 0.696 0.82
General classifier + vehicle model 0.71 0.834
General classifier + non-vehicle model 0.696 0.82
General classifier + vehicle model +non-vehicle model 0.71 0.834

6.5. Person Clustering

We performed person clustering, as described in Section 5.3 and shown in Figure 8.
The classification problem of separating the SHL-Train set from the SHL-Validation set was
addressed using the Random Forest classifier. Fifty of the most important features for each
location according to Random Forest’s internal feature importance measure were selected
to cluster the SHL-Validation set. Two clusters were obtained (silhouette score 0.58). To
ensure that the clustering did not just cluster the activities, the clustering algorithms were
run on each of the activity subsets and compared with the clusters obtained when running
the clustering algorithm on the entire SHL-Validation set. It was found that the clusters
matched. For three locations (hand, hips, and bag), the clusters were very similar, as can be
seen in Figure 9. Clustering did not work as well for the torso location.

We then smoothed the clusters by ensuring that all of the consecutive samples were in
the same cluster. The smoothed clusters were used to build a Random Forest classifier that
predicted the clusters for the SHL-Test data.

Once we defined the different clusters, the next step was to train cluster-specific
models. For this purpose, both clusters were divided into quarters. For each cluster, we
trained models using the hips data from the SHL-Train set and three-fourths of the cluster
data from the SHL-Validation set. In this way, we generated predictions for all quarters
for both clusters. Finally, all the predictions were combined, and an F1 score of 0.84 was
obtained for the SHL-Validation set. We also tested the performance of the cluster-specific
approach for the SHL-Test data and obtained an F1 score of 0.785. This suggested that the
cluster-specific approach was slightly overfitted to the validation data.

Train set Validation set
(user 1) (users 2 and 3)

Classification

Selected features

Unsupervised clustering

Smoothed labels

Classification

Figure 8. Clustering pipline.
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Figure 9. Example of clustered data for all four locations (from top to bottom: hand, hips, torso, and
bag) for walking. The clustering is applied in the same manner as that for all other activities.

6.6. HMMs and Semi-Supervised Learning

After establishing that the use of vehicle-specific models was beneficial based on the
findings discussed in Section 6.4, the next step was to investigate whether using HMMs,
semi-supervised learning, or a combination of the two could improve the results.

We began by testing the usefulness of HMMs when working with the data from 2019
using a similar pipeline to the four-fold cross-validation (secondary) pipeline presented
in Section 5.7.1. Although similar, this pipeline is simpler because it does not include any
semi-supervised learning elements. The pipeline can be seen in Figure 10.

Test data

Train data

|

Classifier

instances
based on
labels

Select vehicle

FTrain ‘ instances ‘ FTrain
based on
¢ predictions ¢
General

Vehicle
Test data HMM

classifier
\ HMM /

Figure 10. The pipeline used to test the usefulness of HMMs on the data from 2019.

To reiterate, the pipeline was executed four times (concurrently), as that is the number
of folds in our cross-validation scheme. The predictions of concurrent executions are
gathered at two points in the pipeline, which is when they are used to produce an accurate
confusion matrix. These confusion matrices and the labels of the SHL-Train set were
used to estimate the internal parameters of two different HMMSs, which are depicted as
general classifier HMIM and vehicle HMM. These HMMs were then used to post-process the
predictions of the general classifier and vehicle classifier.

The results of these experiments are shown in Table 9. They demonstrate that using
HMMs distinctly enhances the performance of regular classifiers. However, using HMMs
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to post-process the predictions of both the general classifier and vehicle classifier seems to
diminish the improvements brought about by using a vehicle-specific classifier. This is
illustrated by the small difference between the F1 scores presented in the second and last
row of Table 9.

Table 9. The F1 scores obtained at different stages of a pipeline that uses a vehicle-specific model and
HMMs. The pipeline utilizes data from the 2019 SHL Challenge.

Pipeline F1 Score
General classifier 0.696
General classifier + HMM 0.83
General classifier + HMM + vehicle classifier 0.731
General classifier + HMM + vehicle classifier + HMM 0.832

After confirming the hypothesis that using HMM s is beneficial when working with
data from the 2019 Challenge, we started testing whether the inclusion of semi-supervised
learning would yield similar improvements. This led to the question of which predictions
should be used when selecting instances for the semi-supervised learning method. It could
be valid to consider not only the predictions of the classifier during the selection process but
also the post-processed predictions. Several different selection strategies were tested for the
semi-supervised learning method. More specifically, we tested one strategy that did not use
the post-processed predictions and eight strategies that used different ways of combining
those two types of predictions to select suitable instances. During these experiments, we
used the same four-fold cross-validation (secondary) pipeline presented in Section 5.7.1.
The only aspect that changed in each experiment was the selection strategy employed. The
obtained results are directly comparable in the last row of Table 9.

The findings from the aforementioned experiments are presented in Table 10. Each row
of the table presents the results of a different selection strategy. The first column displays
the conditions that constitute a specific selection strategy, while the second column indicates
which predictions we take as ground-truth labels for our selected instances. Columns 3-7
show the results for each selection strategy when using different thresholds (abbreviated
as thr in the selection strategy cells). The last column indicates the optimum results that a
selection strategy was able to achieve across all thresholds.

The first row of the table presents the results of a selection strategy that does not
consider the post-processed labels and makes its decisions based only on the predictions
from the classifier. The other rows of the table present selection strategies that account
for both the classifier and the post-processed predictions. From the presented results,
one can observe that combining both types of predictions in the selection strategy almost
always produces better results than when using only the predictions made by the classifier.
Furthermore, the best results are produced when one selects those instances of the SHL-Test
set for which the classifier is relatively unsure and whose label the classifier and HMM
disagree on. In this case, our experiments suggest that it is best to use the labels that the
classifier provides as the ground truth.

In contrast, working with the data from the 2020 SHL Challenge was less complex.
Since the SHL-Test data could not be temporally sorted,it was not possible to utilize HMMs.
Nonetheless, semi-supervised learning could be employed to train both the general classifier
and the vehicle classifier. To test the effectiveness of semi-supervised learning, we used a
pipeline that is nearly identical to the one shown in Figure 7.
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Table 10. The F1 scores produced by different semi-supervised learning selection strategies when
working on the data from the 2019 SHL Challenge.

Selection Strategy Label 0.1 0.3 0.5 0.7 0.9 Best
clf_proba > thr CLF 83.18 82.62 81.63 83.16 83.27 83.27
clf_proba > thr HMM 83.18 83.31 82.62 83.5 83.66 83.66

clf_proba textgreater thr;

CLF & HMM agree CLF 82.23 82.76 82.73 83.27 83.1 83.27
clf_proba > thr; HMM 83.44 83.37 83.43 82.83 83.66 83.66

CLF & HMM disagree
CLF 83.79 79.67 83.11 82.68 82.97 83.79
clf proba < thr; HMM 83.49 83.44 83.53 83.22 83.18 83.53
CLF & HMM disagree
CLF 83.02 80.05 79.98 84.98 83.18 84.98
clf_proba > thr; HMM 82.23 83.17 83.39 83.37 83.65 83.65
HMM & CLF agree or
clf_proba < thr;
HMM & CLF disagree
CLF 82.23 82.29 82.35 82.48 80.29 82.48

The pipeline consists of two classifiers, a general classifier and a vehicle classifier, that
were trained using semi-supervised learning. The only difference between this pipeline and
the one displayed in Figure 7 is the fact that this one uses the SHL-Train and three-fourths
of the SHL-Validation set as the labeled data and the last quarter of the SHL-Validation set as
the unlabeled test data (splits in the data are created by a four-fold cross-validation scheme
such as the one presented in Figure 6). The results of this pipeline are shown in Table 11
and are directly comparable to those presented in Section 6.8.

Table 11. The F1 scores produced by a pipeline that uses classifiers trained with semi-supervised
learning when working on the data from the 2020 SHL Challenge.

Selection Strategy 0.1 0.3 0.5 0.7 0.9 Best
clf_proba > thr 83.60 83.75 84.64 83.82 83.58 84.64

Based on the results of our experiments, it is clear that using semi-supervised learning
is beneficial, as it improves the previous results by several percentage points when using
the data from both the 2019 and the 2020 SHL Challenge. The results also highlight the
usefulness of HMMs and how effectively they can be combined with a semi-supervised
learning methodology.

6.7. Proposed Pipeline 2019

Since the pipeline and each of its elements have been described in Section 5.7.1, we
can analyze its performance at several stages.

To estimate the performance of the proposed pipeline using only the SHL-Validation
set, we employed a four-fold cross-validation scheme and the pipeline depicted in Figure 5.
Further, when calculating the performance of the proposed pipeline for the SHL-Test set,
one could use the entirety of the SHL-Train and SHL-Validation sets to train the models and
extract the HMM parameters. The pipeline that produces results on the test set is shown in
Figure 4. A summary of the performance (of the different stages) of the proposed pipeline
for the SHL-Validation set and SHL-Test sets is provided side-by-side in Table 12.
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Table 12. A comparison of the F1 scores produced by different stages of the pipeline using
a four-fold cross-validation scheme on the SHL-Validation set and on the official SHL-Test data.
Abbreviations used in the table: GC—General classifier, HMM—Hidden Markov Model, SSL (X,
HMM)—semi-supervised learning for classifier X, which uses the labels produced by the classifier X
and an HMM tuned to that classifier to select instances for further training, VC—vehicle classifier.

Stage of the Pipeline Validation F1 Score Test F1 Score

GC 0.69656 0.7113
GC + HMM 0.83007 0.8078
SSL (GC, HMM) + HMM 0.83803 0.8037

SSL (GC, HMM) + HMM
+ 0.83146 0.7938

VC + HMM

SSL (GC, HMM) + HMM

+ 0.8498 0.809

SSL(VC, HMM) + HMM

Our pipeline slightly overfits for the SHL-Train and SHL-Validation sets, which results
in a four percentage point difference between the final results on the test set and those
obtained using four-fold cross-validation. Additionally, it seems that the performance boost
during the four-fold cross-validation evaluation, using semi-supervised learning to train
the General classifier is negligible—as observed from the almost identical SHL-Test scores in
rows two and three. Using semi-supervised learning seems to overfit the classifier, thus
producing a slightly lower score. There is, however, a 1.5 percentage point increase when
using semi-supervised learning to train the Vehicle classifier. This is indicated by the increase
in SHL-Test performance between rows four and five. Finally, the performance increase
observed when using Hidden Markov Models seems to be consistent when evaluating on
the test set.

It is important to note that our first-place result on the 2019 SHL Challenge was 0.7842,
which means that this new pipeline improved the score by about 2.5 percentage points.
This is also an estimation of the top results obtained by the existing methodology.

6.8. Proposed Pipeline 2020

The internal estimation of the performance of the pipeline was carried out using a
four-fold cross-validation scheme, such as the one depicted in Figure 6. Since the use of
HMMs is not possible for these data, the pipeline is less complicated than that proposed
for the 2019 data, although it retains most of the components. The pipeline used for the
evaluation on the SHL-Validation set is identical to that used for the SHL-Test set (shown in
Figure 7), with the exception that it uses the training and test data provided by the four-fold
cross-validation scheme as the labeled and unlabeled data, respectively.

A summary of the results can be found in Table 13. Again, the pipeline seems to slightly
overfit on the SHL-Train and SHL-Validation sets, as represented by the difference between
the final scores for these sets (0.846 and 0.8, respectively). Additionally, the usefulness of
the vehicle classifier seems to be overestimated by the cross-validation scheme, as its impact
on the results of the test set is quite small.

Finally, this pipeline also yielded an improvement in the results as compared to those
achieved in the 2020 SHL Challenge. The improvement was around 2.1 percentage points.
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Table 13. A comparison of the F1 scores produced at different stages of the 2020 pipeline using
a four-fold cross-validation scheme for the SHL-Validation set and the official SHL-Test data. The
abbreviations used in the table are: GC—General classifier, SSL (X)—classifier X trained using
semi-supervised learning, VC—vehicle classifier.

Stage of the Pipeline Validation F1 Score Test F1 Score
GC 0.794 0.783
SSL (GC) 0.798 0.791
SSL (GC) + VC 0.837 0.7953
SSL (GC) + SSL (VC) 0.846 0.8

7. Conclusions

In this paper, we use the 2019 and 2020 Sussex-Huawei Activity Recognition Challenges
as a framework to analyze the usefulness of commonly used activity recognition pipeline
components in situations with a significant domain shift. Specifically, this paper expands
on our previous competition entries (placed first and third in the 2019 and 2020 challenges,
respectively), to analyze how well different ML methods generalize across recognition
tasks and how much they actually contribute to the overall classification performance.

Following the flow of a relatively standard activity recognition pipeline, we will first
present our conclusions regarding the choice of training data, feature extraction and the
use of feature selection techniques, in that order.

In terms of selecting the appropriate training data, our experiments show that
supplementing a small training set with data that do not perfectly match the distribution of
the test set can still be very helpful. This is shown by the fact that, in both the 2019 and 2020
SHL Challenges, using a combination of the SHL-Train and SHL-Validation sets performs
better than using only data from the SHL-Validation set, even though the SHL-Train set
exhibits a significant domain shift in comparison to the SHL-Test set. However, it also
seems that extending the training data indefinitely does not always result in an increase
in the observed performance and there exists a tipping point at which the training data
becomes sufficiently large such that adding more suboptimal data results in a decrease in
performance. This can be seen by the fact, that in both the 2019 and 2020 SHL Challenges,
adding data from the SHL-Train set from sensors in locations that are not compatible with
the senor location in the SHL-Test set ends up decreasing the performance of the pipeline.

Furthermore, since our experiments showed that aligning the training and testing
data as best as possible is crucial, it is important to note the results of our experiments
aiming to detect sensor placement (location) as well as those aiming to cluster the data
into subsets that would represent different people. Namely, we found that detecting the
placement (location) of a sensor is possible, relatively straightforward and moderately
beneficial. Detecting and using the appropriate training data for the sensor location in
the SHL-Test set, brought an improvement of around 1 p. p. On the other hand, detecting
which data belong to which user was a more difficult task and appeared to be less helpful.

In terms of feature extraction and selection, we came to the conclusion that beginning
one’s analysis using a big set of relevant features, such as the ones extracted by our feature
extraction library [55], is beneficial and, in some cases, reducing the number of those
features using feature selection could also help to increase the overall performance of
the pipeline. Unfortunately, based on our results, the usefulness of feature selection is
inconclusive and should be explored on a case-by-case basis.

Continuing down the components of a standard activity recognition pipeline, we next
present our conclusions about the choice of the ML algorithm, the use of different models
for different activities and the use of the semi-supervised learning paradigm.

In terms of choosing an appropriate ML algorithm, our experiments show that
using a Random Forest Classifier is a solid choice. In fact, based on our results here
and in our previous work [5], using ensemble algorithms seems to be a good idea in
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general. Additionally, in this study, using a Support Vector Classifier also showed a good
performance, even though this is not usually the case.

When it comes to training models for specific activities (e.g., a vehicle classifier)
or users and creating a hierarchy of such models, our experiments indicate moderate
performance benefits. The same is true when using semi-supervised learning to train
classifiers.

Finally, regarding the use of HMMs to post-process the predictions of a classifier, our
experiments show that, in situations where their use is possible, they provide significant
performance benefits of up to 10 p. p. In fact, since they are not too complex to implement,
we recommend using them if the activities to be recognized are not too short and their
temporal relation has some degree of regularity.

Although we have already considered two slightly different datasets and tested the
usefulness of pipeline components in two different scenarios, confirming our conclusions
in a larger set of scenarios would be a significant contribution. This is why, in future, we
plan on extending this analysis using a greater number of diverse activity recognition
datasets. This is especially important to further explore the impacts of methods that we
could only apply to one of the challenges, such as person clustering and the combination of
semi-supervised learning and HMMs.
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