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Abstract: Recent technological advances have reduced the complexity and cost of developing sensor
networks for remote environmental monitoring. However, the challenges of acquiring, transmitting,
storing, and processing remote environmental data remain significant. The transmission of large
volumes of sensor data to a centralized location (i.e., the cloud) burdens network resources, introduces
latency and jitter, and can ultimately impact user experience. Edge computing has emerged as
a paradigm in which substantial storage and computing resources are located at the “edge” of
the network. In this paper, we present an edge storage and computing framework leveraging
commercially available components organized in a tiered architecture and arranged in a hub-and-
spoke topology. The framework includes a popular distributed database to support the acquisition,
transmission, storage, and processing of Internet-of-Things-based sensor network data in a field
setting. We present details regarding the architecture, distributed database, embedded systems, and
topology used to implement an edge-based solution. Lastly, a real-world case study (i.e., seismic) is
presented that leverages the edge storage and computing framework to acquire, transmit, store, and
process millions of samples of data per hour.

Keywords: ambient noise seismic interferometry; Apache Cassandra; datastax enterprise; edge
computing; edge storage; Internet of Things (IoT); raspberry pi; sensor networks

1. Introduction

The availability of inexpensive low power microcontrollers, sensors, and transceivers
in the late 1990s resulted in a flurry of wireless sensor network (WSN) activity in the early
2000s [1]. By the mid-2000s, WSN experts (i.e., computer and software engineers) were
collaborating with geoscientists to deploy WSNs for environmental monitoring [2–4]. The
increased spatial and temporal measurements provided by WSNs were beneficial. However,
the design, development, and deployment of WSNs continued to rely heavily on WSN
experts [5]. Commercially available WSN components required considerable modification
before they could be deployed in real-world environments [2] and they often experienced
reliability problems requiring multiple iterations of design and development before a
reliable solution could be delivered [5]. WSN development was further complicated by
interoperability problems resulting from the wide variety of available proprietary and
nonproprietary solutions (e.g., hardware, protocols, etc.) [6].

WSNs and the Internet of Things (IoT) both originated in the late 1990s. The IoT
represents a convergence of technologies allowing things (e.g., devices, objects, etc.) to
communicate via the Internet [7]. Initially, interest in WSNs outpaced the IoT. Google
Trend (https://trends.google.com/ accessed on 11 March 2022) data indicated year-to-year
(i.e., 2004 to 2012) interest in WSNs varied between 1.3 and 4.7 times greater than the IoT.
In 2013, interest in the IoT overtook WSNs and has increased year-to-year (i.e., 2013 to
2019) monotonically from 1.4 to 14.7 times greater than WSNs. Greengard [8] credits the
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2007 release of the iPhone and 2010 release of the iPad with increased interest in the IoT.
However, we believe the availability of inexpensive and easy-to-use embedded systems
with Internet connectivity (e.g., Arduino (https://www.arduino.cc/ accessed on 11 March
2022), Gumstix (https://www.gumstix.com/ accessed on 11 March 2022), etc.) in the late
2000s contributed to increased IoT development activity.

Internet protocol (IP) is the principal network layer protocol of the Internet that
provides communication among disparate networks [9]. IP was not initially considered
suitable for WSNs given the limited computational resources and constrained power
budget typical of WSN nodes [10]. Nonetheless, by 2010, researchers had demonstrated
that IP-based WSN applications were feasible [9] and had cataloged numerous examples
of IP-based WSNs within industry and the scientific community [10]. IP-based sensor
networks (i.e., wired and wireless) aligned closely with the IoT. Thus, resulting in IoT-based
sensor networks that reduced overall complexity, promoted interoperability, and increased
scalability [11–13].

Currently, WSNs are contributing greatly to the IoT by transforming agriculture,
healthcare, and industrial automation [14]. WSNs are considered a basic component
of the IoT and the primary means of communication between machines and the future
Internet [15]. The continued integration of WSNs and the IoT is expected to result in a
significant increase in the number of sensors connected to the Internet [16]. 20 to 30 billion
IoT devices are expected to be connected to the Internet by 2020 [17] and countless numbers
of sensors will be connected to those devices. The scale and complexity of IoT data,
specifically sensor network data, will be unprecedented.

Given the modest resources of IoT devices, IoT data are typically offloaded to the cloud
for storage and subsequent processing [18]. Cloud computing (i.e., the cloud) consists
of centralized applications offered as services via the Internet and the resources in the
cloud provider’s data center providing those services [19]. The cloud, with its virtually
limitless resources, supports the management of IoT devices as well as the applications
and services exploiting IoT data [20]. However, cloud computing may not be the ideal
solution for IoT applications where edge devices (e.g., IoT, mobile, etc.) are major produc-
ers of data [21–23]. The transmission of large volumes of edge device data to the cloud
burdens network resources, introduces latency and jitter, and ultimately impacts user
experience [24]. Moreover, excessive backhaul network traffic to the cloud negatively im-
pacts the performance and survivability of edge devices by increasing power consumption,
introducing a single-point-of-failure, and wasting edge device computing resources [21–24].

Edge computing represents an emerging paradigm where substantial storage and
computing resources are placed at the edge of the network [24,25]. The “edge” is the
local network typically one-hop away from an edge device [25]. The adage “compute is
cheap, storage is cheaper, but data movement is very expensive” [26] and the fact that
edge device performance enhancements have outpaced network performance enhance-
ments [21] illustrate the motivation to move storage and computing resources to the edge.
Edge computing allows for the better control of data (e.g., privacy, security, etc.), enhanced
application performance (e.g., jitter, latency, etc.), increased scalability (e.g., data aggrega-
tion, preprocessing, etc.) and improved survivability (e.g., connectivity, reduced power
consumption, etc.) [24].

Within the current IoT landscape, edge computing is considered a critical computing
paradigm [25]. Edge computing is particularly useful to IoT applications where: (1) low
latency is required; (2) connectivity is constrained (i.e., network capacity) or nonexistent; or
(3) dense acquisition of relatively high sample rate data is occurring [18,25]. IoT applica-
tions utilizing IoT-based sensor networks to perform remote environmental monitoring
(i.e., seismic) typically acquire relatively high sample rate data (i.e., 10 s or 100 s of samples
per second, sps), from one, tens, hundreds, or even thousands of sensors, in locations where
connectivity is either constrained or nonexistent.

As geoscientists, we intend to mitigate performance limiters commonly encountered
when deploying IoT-based sensor networks for seismic monitoring by utilizing edge

https://www.arduino.cc/
https://www.gumstix.com/


Sensors 2022, 22, 3615 3 of 29

computing to collectively process data in a field setting without disrupting acquisition, and
regularly assess the quality of our deployment strategy and results. Our goals are to reduce
the cost and risk typically associated with seismic monitoring. One geophysical application
that is well-suited for IoT-based sensor networks is ambient noise seismic interferometry
(ANSI), in which low-amplitude body waves or surface waves traveling between sensors
are extracted from large volumes of continuously-recorded ground motion data. The waves
thus extracted can be used to create models of the subsurface via, for example, tomography.
Ambient noise seismic interferometry offers a low-cost alternative to traditional seismic
exploration methods, in which expensive seismic sources such as dynamite or Vibroseis are
used. In a typical ANSI example, a potentially large set of sensors is deployed to record
continuously for days or weeks and the time series recorded by a given station is cross-
correlated with that of every other station in a series of time windows. Results for each
time window are “stacked” (summed) to increase the signal-to-noise ratio and produce a
“virtual source gather”, which is an estimate of the Green’s function for subsurface structure
beneath the sensor array [27–33]. Recent deployments of sensor networks have comprised
thousands of stations in remote areas with limited access to the Internet [31,34]. Such
deployments could benefit greatly from IoT-enabled wireless sensor networks capable
of processing data in the field due to the fact that, while traditional seismic techniques
need only record a specified time window following a known seismic source, ANSI results
require the processing and stacking of many hours (or days or weeks) of data to reveal
low-amplitude waves. The quality of outcomes is less certain for ANSI unless processing
can be performed and assessed in the field, before the sensors are recovered and the team
has left the site.

In this paper, we present an edge storage and computing framework for IoT-based
sensor networks. The framework uses common embedded systems (i.e., Raspberry Pi
(https://www.raspberrypi.org/ accessed on 11 March 2022) and Tinker Board (https:
//www.asus.com/us/Single-Board-Computer/Tinker-Board/ accessed on 11 March 2022))
and IP-based networks to orchestrate general purpose, edge-based, computing services
using a popular distributed database (i.e., Apache Cassandra). Our goal was to utilize this
framework to automate the acquisition, transmission, storage, and processing of seismic
data, in a field setting. The main contributions of this paper are an architecture and topology
supporting IoT-based sensor network edge storage and computing that does not require
a connection to the internet for continuous monitoring yet scales efficiently to the large
numbers of nodes (i.e., thousands), spread over hundreds or thousands of meters, typically
used in modern seismic surveys. We further provide: (1) details of the selection and review
of a distributed database that complements the architecture and topology (which proved
critical to the sensor network’s success); (2) recommendations regarding embedded systems
to support the acquisition, storage, and processing of sensor data; and (3) a case study
that validates the system in real-world remote environmental (seismic) monitoring. In
this field setting, approximately 13 million samples were acquired, transmitted, stored,
and processed hourly and greater than 99% of the data acquired by the edge devices (i.e.,
seismic stations) overall was stored, queried, and extracted for seismic processing.

2. Motivation

There are myriad examples in which WSNs have been proposed to replace cable-based
connectivity for seismic monitoring applications [35–37]. However, these efforts largely
focus on wireless technology itself (e.g., protocols, specification, etc.). In 2018, Jamali-Rad
and Campman [38] proposed a wireless sensing framework, that utilized low-power wide-
area network (LPWAN), to prioritize: (1) inherently IoT-compatible, low power, and long
range wireless sensors; (2) scalable advanced wireless networking protocols; and (3) cloud
storage and computing. The static context header compression initiative (SCHC) for IoT
interoperability further strengthens the viability of LPWAN of IoT applications [39]. SCHC
is a novel compression and fragmentation scheme for transmitting IPv6/UDP packets over
LPWANs [40].
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The wireless sensing framework proposed by Jamali-Rad and Campman [38] and
Jamali-Rad et al. [41] relied upon a cloud paradigm (i.e., a centralized model) for remote
data storage and analysis. This centralized model required that acceptable latency, data
transmission rates, and data generation rates were considered when identifying applicable
scenarios of interest [38,41]. Jamali-Rad and Campman [38] identified four scenarios of
interest (i.e., triggered and/or continuous monitoring): (1) ground motion monitoring;
(2) ambient-noise seismic interferometry; (3) microseismic fracture monitoring; and (4) qual-
ity control for active land seismic surveys. However, continuous monitoring applications
required that an appropriate wireless network was available [38].

Valero et al. [42] and Clemente et al. [43] propose an in situ signal processing approach
that leverages IoT technologies to develop a real-time system for performing seismic
analytics within the sensor network. This approach is ideal for scenarios in which a
centralized model is untenable due to constrained or nonexistent backhaul connectivity [42].
Valero et al. [42] and Clemente et al. [43] leverage their respective solutions to successfully
perform autonomous, in situ, seismic imaging for thirteen nodes located a few meters
apart and six nodes located approximately 15 m apart, respectively. Valero et al. [42] and
Clemente et al. [43] both use MySQL (https://www.mysql.com/ accessed on 11 March
2022) to store data on individual sensor network nodes.

The challenges of acquiring, transmitting, storing, and processing seismic data are
non-trivial. The seismic methods used extensively in the oil and gas industry are costly and
time consuming; seismic surveys require operators to assume substantial cost and risk [44].
Likewise, seismic methods employed within the scientific community are typically costly
and time consuming. The outlay costs for a single transportable array broadband seismic
station (i.e., USArray (http://www.usarray.org/ accessed on 11 March 2022)) was between
$30,000 to $50,000 (USD) [45]. The utilization of edge storage and computing to reduce the
cost and mitigate the risk typically associated with seismic methods could have a profound
impact on the oil and gas industry and the scientific community. The edge storage and
computing framework described below could also prove to be particularly beneficial to the
emerging Industrial Internet of Things (IIoT) or other sensor-heavy IoT applications.

Ongoing information and communication technology (ICT) development has resulted
in the availability of increased computing resources and widespread connectivity enabling
scientists and engineers to streamline research and create practical solutions to real-world
problems [46]. In 2016, we integrated a commercially available geoscience-related digi-
tizer (i.e., REF TEK 130-01) with an inexpensive and easy-to-use embedded system (i.e.,
Raspberry Pi) to provide the Raspberry Pi Enhanced REF TEK (RaPiER) platform [47].
The RaPiER proved to be an effective single-node edge-based solution. However, more
complex analysis requires data from multiple nodes to be processed collectively. We built
upon our previous effort and utilized easy-to-use and well-established (i.e., within the
ICT community) components to develop a novel edge-based solution capable of scaling to
hundreds of nodes deployed over thousands of meters.

In our study, we use an array of RaPiERs to carry out ambient noise seismic interfer-
ometry (ANSI). ANSI requires repeated cross-correlation between time series recorded by
every pair of stations, computed over time and summed together to extract waves traveling
between stations. RaPiERs carry out these computations while stations are still deployed in
the field and can also perform real-time assessments and cataloging data characteristics
as they vary over time. Results of assessments, if they are available in quasi-real-time,
allow us to reconfigure the seismic deployment’s geometry or acquisition parameters, if
necessary, to ensure a study’s success. Keeping track of data characteristics can help us
address the important questions “How long does it take to extract seismic arrivals?” and
“Have the virtual source gathers computed so far converged to an accurate estimate of
the subsurface Green’s functions?” Additional processing schemes, including selectively
stacking the “best” data windows, can be devised and implemented with RaPiERs (and
other WSNs), as well [31]. By enabling real-time computing of seismic data at the edge,
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RaPiERs allow us to optimize data acquisition by maximizing the quality of results while
also minimizing effort and cost in ANSI studies.

3. Framework Overview
3.1. Background

We planned to acquire data from approximately 150 seismic stations (i.e., digitizers
and sensors) spaced evenly along a line slightly more than two kilometers in length. Each
seismic station would acquire 250 sps data from three channels (i.e., a tri-axis geophone).
However, only one channel (i.e., the vertical), downsampled to 50 sps, would be processed.
It would therefore be necessary to acquire, transmit, store, and collectively process ap-
proximately 650 million data samples per day, in a field setting. At 24 bits per sample,
this would result in approximately 1.8 gigabytes (GB) of data generated per day. The
seismic stations would be deployed in a remote environment, without permanent support
infrastructure (e.g., communication, power, etc.), for approximately one week. We intended
to utilize commercially available communications infrastructure, digitizers, a distributed
database, and embedded systems to minimize the cost and complexity of implementing
the edge-based solution described here.

Given the requirements described above, we developed an edge-based solution re-
lying upon an IoT-based sensor network to accomplish our goals as geoscientists. Over
the course of multiple deployments, we developed a tiered architecture of embedded
systems, arranged in a hub-and-spoke topology, hosting a distributed database allowing
for the acquisition, transmission, storage, and hourly processing of seismic data. Thus,
allowing for the adjustment, if necessary, of the configuration (e.g., acquisition parameters,
geometry, etc.) and modification (i.e., the shortening or lengthening) of the duration of our
deployment with high levels of confidence our goals had been achieved. Details regarding
our deployment will be provided in the ‘Case Study’ section of this paper.

The collective processing of sensor network data, at the edge of the network, reduces
the cost of individual sensor nodes, increases fault tolerance, and promotes flexible config-
uration and management of shared sensor network resources (i.e., communication, storage,
and computational). However, these resources must be capable of handling the velocity, vol-
ume, etc. of sensor network data [48]. It is necessary to implement an edge-based solution
where the design and arrangement of communication, storage, and computational re-
sources support the processing of sensor network data and mitigate the inevitable network
connectivity problems commonly encountered during remote environmental monitoring.
The following subsections present information regarding the selection of an appropri-
ate architecture, topology, distributed database, embedded systems, and communication
infrastructure to support the edge storage and computing framework.

3.2. Architecture
3.2.1. Background

In an effort to maximize energy efficiency, sensor networks in the early 2000s adopted
an architectural design that assumed it would be necessary to store and process data, as
close to the data source as possible, on nodes with modest resources [49]. This architectural
design featured an application-specific and data-centric approach where the sensor net-
works were customized for specific applications and data were decoupled from the sensors
(i.e., nodes) producing it [50]. Essentially, an egalitarian collection of sensor nodes, located
within an immediate vicinity of each other, coordinate to achieve high-level objectives [50].

3.2.2. Tenet Principle

Although this approach was widely adopted, Gnawali et al. [49] believed it increased
system complexity and decreased manageability. Gnawali et al. [49] expected future large-
scale sensor networks would be tiered (i.e., lower and upper). The lower tier would
consist of many constrained sensor nodes and the upper tier would consist of fewer less-
constrained nodes [49]. The upper tier reduced complexity and increased manageability
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via the restriction of multi-node storage and processing to the upper tier (i.e., the Tenet
principle) [49]. The restriction of multi-node storage and processing to the upper tier
could introduce a single-point-of-failure or be less energy efficient [50]. Nonetheless,
the Tenet architectural principle complements our desire to minimize the complexity of
integrating commercially available components into an overarching edge storage and
computing framework.

3.2.3. Proposed Architecture

Reference architectures (RA), such as INTEL-SAP RA, Edge Computing RA 2.0, etc.,
were developed to establish standards regarding the design of edge computing architectures
and their integration with ICT [51]. Edge computing RA are typically based upon a three-
layer model including cloud services as the upper layer [51]. Figure 1 illustrates a generic
edge computing reference architecture.
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Figure 1. Generic edge computing architecture.

We utilized general purpose embedded systems to implement an architecture consist-
ing of three, Tenet architectural principle inspired, tiers (i.e., lower, middle, and upper).
However, our tiers (i.e., layers) are defined by workload. The complexity of the workload
and, in turn, embedded systems (i.e., hardware and software) increases from the lower
to upper layers. The lower layer is responsible for the “sensing workload”, the middle
layer maintains the “transactional workload” and the upper layer supports an “analytic
workload”. See Figure 2 for our edge storage and computing architecture. The sensing
workload consists of edge devices (i.e., digitizers and sensors) and edge gateways (i.e.,
lower layer embedded systems) responsible for the acquisition of raw sensor data, the
pre-processing of sensor data, and its subsequent insertion into middle layer edge nodes.
Middle layer edge nodes form a distributed database that stores sensor data from multiple
edge devices and replicates the data to the upper layer edge nodes. The upper layer edge
nodes form a distributed database that stores sensor data from multiple middle edge nodes.
Sensor data within the upper layer edge nodes can be queried and extracted locally for
analysis or it can be replicated to other locations (e.g., cloud, edge, etc.).
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3.3. Topology
3.3.1. Background

The distance sensor network data traverses (i.e., wired and wireless) varies from a few
meters to thousands of kilometers. Network delay, errors, etc. could negatively impact
the quality and timeliness of sensor network performance [48]. Considering the inevitable
network connectivity problems commonly encountered during remote environmental
monitoring, it is necessary to arrange communication, storage, and computational resources
in a manner ameliorating the negative effects of data delay, loss, etc. in the collective
processing of sensor network data [48].

3.3.2. Hub-and-Spoke

In communications networks, the hub-and-spoke topology consists of nodes (i.e.,
spokes) connected to centralized hubs acting as switching points for network traffic [52].
Hubs are interconnected with other hubs via backbone (i.e., backhaul) networks typically
carrying larger volumes of network traffic compared to hub-to-spoke network connec-
tions [52]. The hub-and-spoke topology is commonly used for computer, military, and
telecommunication applications [53]. Sensor networks often adopt a hub-and-spoke topol-
ogy to improve system performance by efficiently routing traffic between specific sources
and destinations [53].

We adopted a hub-and-spoke topology, consisting of wired and wireless networks, to
facilitate the concentration of sensor network data from the lower to upper layers of our
edge storage and computing architecture. Figure 3 illustrates the specific hub-and-spoke
network (i.e., a tree/star network) used. In the tree/star network, nodes are connected to a
hub (i.e., a concentrator) that is, in turn, connected to a central location or other to another
intermediary concentrator, in a hierarchical structure [52]. Our choice of the tree/star
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network was influenced by the following three factors: (1) the hierarchical structure allows
for the use of concentrators with greater capability (e.g., memory, storage, etc.) as they
progress upward in the tree [52]; (2) the limits (e.g., network capacity, storage and processing
capabilities, etc.) of concentrators can be overcome by adding additional concentrators and
redistributing nodes accordingly; and (3) the tree/star networks allows for the continued
addition of nodes (i.e., scaling), provided sufficient backhaul network capacity.
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3.4. Distributred Database
3.4.1. Background

A structured collection of data, relating to some modeled real-world phenomena, is
known as a database [54]. If the database structure (i.e., model) takes the form tables, it
is known as a relational database [54]. The relational model has been used to develop
most conventional distributed database technology [54]. A collection of multiple, logically
interrelated, databases distributed over a network is known as a distributed database [54].
Distributed database management system (DBMS) is the software used to obfuscate the
complexity of distributed data storage and allow for the management of the distributed
database [54]. Like DBMS, a relational database management system (RDBMS) affords
similar functionality to users. Microsoft Access, MySQL, and Oracle are examples of
RDBMS with which readers may be familiar.

As data volumes increase, RDBMS administrators have two available scaling options:
(1) the distribution of data across more machines (i.e., horizontal scaling) or (2) increasing
the system performance of the existing machine (i.e., vertical scaling) [55]. Vertical scaling
is simple to implement. However, it may not be the most effective scaling method given
cost and technology limitations. Horizontal scaling uses relatively inexpensive commodity
hardware to distribute the database across multiple systems, thus reducing the overall
workload of individual systems. Unfortunately, a distributed RDBMS results in distributed
transactions. This requires the implementation of a two-phase commit to prevent new
transactions from executing until the prior transaction is complete and a commit response
has been returned to the transaction manager [55]. As the number of transactions (i.e.,
data velocity) and duration of transaction processing time (i.e., data volume) increase,
the RDBMS will likely encounter performance problems resulting from the way RDBMS
inherently operate [55,56].

In 2016, we conducted a literature review to identify RDBMS (i.e., SQL) alternatives
ideally suited for remote environmental monitoring applications [57–61]. Given our need
to store and process 100 s of millions of samples per day, a “Not only SQL” (i.e., NoSQL)
database, specifically Apache Cassandra, emerged as our database of choice. Initially
created by Facebook to solve their Inbox Search problem, Cassandra leveraged Amazon’s
Dynamo and Google’s Bigtable to meet challenging write-heavy (i.e., billions per day),
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geographically distributed, reliability, and scalability requirements [62]. Cassandra, ac-
cepted as an Apache Software Foundation (ASF) top level project in February 2010, is
an open source, distributed, decentralized, multi-location (e.g., cloud, on-premises, etc.),
operationally simple, nearly linearly scalable (i.e., horizontally scalable), highly available,
fault-tolerant, wide-column database [55,63].

3.4.2. CAP Theorem

To better illustrate the differences between SQL and NOSQL (i.e., Cassandra) we will
elaborate on the consistency, availability, and partition tolerance (CAP) theorem [55]. In
2000, Eric Brewer conceived that there are three, mutually dependent, requirements present
within large-scale distributed systems: consistency, availability, and partition tolerance [55].
Consistency means each node in the system returns the “correct” response, availability
necessitates each request eventually receives a response, and partition tolerance requires
the distributed system continue to function even when faulty connectivity has partitioned
the network [64]. CAP theorem—sometimes referred to as Brewer’s theorem—states it
is only possible to strongly support two of the three requirements at a time [55]. The
CAP theorem was formally proved to be true by Gilbert and Lynch [65]. Figure 4 was
inspired by a graphic presented by Carpenter and Hewitt [55] illustrating where a variety
of datastores align along the CAP continuum. Relational databases (e.g., MySQL, SQL
Server, etc.) prioritize availability and consistency and Cassandra prioritizes availability
and partition tolerance [55].

Sensors 2022, 22, x FOR PEER REVIEW 9 of 30 
 

 

accepted as an Apache Software Foundation (ASF) top level project in February 2010, is 
an open source, distributed, decentralized, multi-location (e.g., cloud, on-premises, etc.), 
operationally simple, nearly linearly scalable (i.e., horizontally scalable), highly available, 
fault-tolerant, wide-column database [55,63]. 

3.4.2. CAP Theorem 
To better illustrate the differences between SQL and NOSQL (i.e., Cassandra) we will 

elaborate on the consistency, availability, and partition tolerance (CAP) theorem [55]. In 
2000, Eric Brewer conceived that there are three, mutually dependent, requirements pre-
sent within large-scale distributed systems: consistency, availability, and partition toler-
ance [55]. Consistency means each node in the system returns the “correct” response, 
availability necessitates each request eventually receives a response, and partition toler-
ance requires the distributed system continue to function even when faulty connectivity 
has partitioned the network [64]. CAP theorem—sometimes referred to as Brewer’s theo-
rem—states it is only possible to strongly support two of the three requirements at a time 
[55]. The CAP theorem was formally proved to be true by Gilbert and Lynch [65]. Figure 
4 was inspired by a graphic presented by Carpenter and Hewitt [55] illustrating where a 
variety of datastores align along the CAP continuum. Relational databases (e.g., MySQL, 
SQL Server, etc.) prioritize availability and consistency and Cassandra prioritizes availa-
bility and partition tolerance [55]. 

 
Figure 4. CAP Theorem with examples of datastores positioned along CAP continuum. 

In 2012, Brewer provided an updated perspective maintaining that CAP theorem’s 
“2 of 3” is misleading since: (1) partitions are uncommon; (2) low level choices between 
availability and consistency occur often; and (3) availability, consistency, and partition 
tolerance are continuous rather than binary [66]. Brewer’s update is germane to enter-
prise-grade solutions including robust network infrastructure, servers, etc. However, we 
believe edge-based solutions running on extremely modest hardware, regularly encoun-
tering network connectivity problems, require a database with architectural pillars (i.e., 
mechanisms) supporting a bottom-up approach to partition tolerance. Moreover, edge-
based solutions may benefit from a more nuanced approach to partitioning (e.g., data, 
operational, etc.) and tunable consistency that may significantly improve the solution’s 

Figure 4. CAP Theorem with examples of datastores positioned along CAP continuum.

In 2012, Brewer provided an updated perspective maintaining that CAP theorem’s
“2 of 3” is misleading since: (1) partitions are uncommon; (2) low level choices between
availability and consistency occur often; and (3) availability, consistency, and partition
tolerance are continuous rather than binary [66]. Brewer’s update is germane to enterprise-
grade solutions including robust network infrastructure, servers, etc. However, we believe
edge-based solutions running on extremely modest hardware, regularly encountering net-
work connectivity problems, require a database with architectural pillars (i.e., mechanisms)
supporting a bottom-up approach to partition tolerance. Moreover, edge-based solutions
may benefit from a more nuanced approach to partitioning (e.g., data, operational, etc.)
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and tunable consistency that may significantly improve the solution’s robustness to major
network connectivity problems without immediately compromising availability [64].

3.4.3. Apache Cassandra
Physical Architecture

According to Carpenter and Hewitt [55], a collection of Cassandra nodes managing
a dataset are known as a cluster. A Cassandra cluster is composed of nodes (i.e., a single
instance of Cassandra running on a computer, and one or more data centers); a Cassandra
data center (DC) is a logical set of nodes, connected via a reliable network, that are relatively
close to each other [55]. Figure 5 illustrates a Cassandra cluster consisting of two DCs,
each with four Cassandra nodes. Cassandra clusters can consist of multiple DCs, often
geographically distributed, containing one or more Cassandra nodes [55]. However, a
minimum of four Cassandra nodes are typically required to realize the advantages of
Cassandra as a distributed database. Refer to Carpenter and Hewitt [55] for additional
information regarding the physical architecture of Cassandra.

Sensors 2022, 22, x FOR PEER REVIEW 10 of 30 
 

 

robustness to major network connectivity problems without immediately compromising 
availability [64]. 

3.4.3. Apache Cassandra 
Physical Architecture 

According to Carpenter and Hewitt [55], a collection of Cassandra nodes managing 
a dataset are known as a cluster. A Cassandra cluster is composed of nodes (i.e., a single 
instance of Cassandra running on a computer, and one or more data centers); a Cassandra 
data center (DC) is a logical set of nodes, connected via a reliable network, that are rela-
tively close to each other [55]. Figure 5 illustrates a Cassandra cluster consisting of two 
DCs, each with four Cassandra nodes. Cassandra clusters can consist of multiple DCs, 
often geographically distributed, containing one or more Cassandra nodes [55]. However, 
a minimum of four Cassandra nodes are typically required to realize the advantages of 
Cassandra as a distributed database. Refer to Carpenter and Hewitt [55] for additional 
information regarding the physical architecture of Cassandra. 

 
Figure 5. Cassandra cluster, with two DCs, and four Cassandra nodes each. 

Ring 
The data managed by a Cassandra cluster are known as a ring; each node comprising 

the ring is assigned a range of data known as its token range [55] (see Figure 6). An indi-
vidual token within a Cassandra node’s token range is identified by a 64-bit integer that 
represents a partition within the ring [55]. A Cassandra cluster’s tokens therefore span the 
range −263 to 263 − 1 [55]. When data are written to Cassandra, a hashing function (i.e., a 
partitioner) determines the data’s token value based upon its partition key [55]. The data’s 
token value is compared with Cassandra nodes’ token ranges, its owner-node is identi-
fied, and the data are written to the appropriate partition [55]. Cassandra is able to write 
data to disk quickly since its design does not require disk reads or seeks [55]. Essentially, 
Cassandra writes data to, likewise reads data from, disks sequentially according to the 
data’s partition key. This design is particularly advantageous when working with time 
series data that has been partitioned (i.e., bucketed) according to anticipated access pat-
terns (e.g., hourly, daily, etc.). For detailed information regarding Casandra’s ring or write 
path refer to Carpenter and Hewitt [55]. 

Figure 5. Cassandra cluster, with two DCs, and four Cassandra nodes each.

Ring

The data managed by a Cassandra cluster are known as a ring; each node comprising
the ring is assigned a range of data known as its token range [55] (see Figure 6). An
individual token within a Cassandra node’s token range is identified by a 64-bit integer that
represents a partition within the ring [55]. A Cassandra cluster’s tokens therefore span the
range −263 to 263 − 1 [55]. When data are written to Cassandra, a hashing function (i.e., a
partitioner) determines the data’s token value based upon its partition key [55]. The data’s
token value is compared with Cassandra nodes’ token ranges, its owner-node is identified,
and the data are written to the appropriate partition [55]. Cassandra is able to write data to
disk quickly since its design does not require disk reads or seeks [55]. Essentially, Cassandra
writes data to, likewise reads data from, disks sequentially according to the data’s partition
key. This design is particularly advantageous when working with time series data that has
been partitioned (i.e., bucketed) according to anticipated access patterns (e.g., hourly, daily,
etc.). For detailed information regarding Casandra’s ring or write path refer to Carpenter
and Hewitt [55].
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Replication and Consistency

In Cassandra, the database object controlling the replication of data to one or more
nodes or DCs within a Cassandra cluster is known as the keyspace; the user defined param-
eter (i.e., replication factor) determining how data are replicated across Cassandra nodes
and DCs is specified in the keyspace [55]. Read queries or write operations in Cassandra
include a user defined consistency level specifying how many nodes must respond before
a read or write is considered successfully completed [55]. Together, replication factor and
consistency level allow for tunable consistency supporting Cassandra’s prioritization of
availability and partition tolerance over the “all or nothing” approach of strict consis-
tency [55]. It is important to note that any Cassandra node (i.e., coordinator node) or client
connected to a coordinator node can coordinate a read or write operation; the coordinator
node determines which Cassandra node or nodes own the data (i.e., replicas) and forwards
the read or write request accordingly [55].

Mechanisms

Anti-entropy, gossip, etc. are some of the architectural pillars (i.e., mechanisms)
supporting Cassandra’s decentralized distributed operations. A review of all of these
mechanisms is beyond the scope of the current discussion. However, it is important to
note that some of these mechanisms are considered essential for decentralized edge-based
sensor network solutions in general [67]. Below, we will provide a brief introduction to
Cassandra’s commit log, hinted handoff, gossip protocol, and snitch mechanisms. Our
selection of Cassandra for our edge-based solution’s distributed database was heavily
influenced by its use of these mechanisms. For additional information regarding these
mechanisms refer to Carpenter and Hewitt [55].

When a write operation occurs, Cassandra immediately writes the data to a commit
log (i.e., to disk); the commit log is a mechanism supporting Cassandra’s durability via
crash-recovery [55]. A write operation is not considered successful unless it is written
to the commit log [55]. If a Cassandra node crashes, the commit log is replayed in order
to ensure data are not lost [55]. If a write operation is sent to a coordinator node and
the Cassandra node owning the partition corresponding to the data’s partition key is
unavailable, Cassandra implements the hinted handoff mechanism [55]. Hints are saved
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on the coordinator node and are sent via hinted handoff once the replica node or nodes
are back online [55]. Cassandra utilizes a gossiping protocol to exchange endpoint state
information amongst Cassandra nodes [55]. In addition to the gossip protocol, Cassandra
also implements a snitch to gather network topology information; Cassandra uses this
information to efficiently route read and write operations by determining the relative
proximity of Cassandra nodes [55].

DataStax Enterprise

Initially, we planned to replicate data from the middle to upper layer of our architecture
by deploying a single Cassandra cluster consisting of two DCs (i.e., a transactional DC
and an analytic DC). Our first real-world field deployment (June 2017) consisted of a
single Cassandra cluster with a 20 Cassandra node transactional DC and a three Cassandra
node analytic DC. Unfortunately, intermittent network connectivity (i.e., wireless backhaul
network) between the two DCs resulted in Cassandra nodes being deprecated due to
unanswered topological gossip state updates. Ultimately, this resulted in a loss of data
replication at the Cluster and DC levels. In order to overcome the real-world network
connectivity problems commonly encountered during remote environmental monitoring,
we needed a solution allowing for cluster-to-cluster (i.e., middle-to-upper layer) replication
that was tolerant of faulty backhaul network connectivity.

For subsequent field deployments, we transitioned from Cassandra (i.e., DataStax
Community Edition) to DataStax Enterprise (DSE) (https://www.datastax.com/products/
datastax-enterprise accessed on 11 March 2022). DSE is an enterprise-grade version of
Cassandra providing commercial confidence and extra capabilities such as automatic man-
agement services, advanced security, and advanced functionality. Our primary interest in
DSE’s advanced functionality was DSE Advanced Replication (https://docs.datastax.com/
en/dse/6.0/dse-admin/datastax_enterprise/advReplication/advRepTOC.html accessed
on 11 March 2022). DSE Advanced Replication supports the configurable replication of data
from source to destination clusters in a manner tolerate of the intermittent loss of backhaul
network connectivity. DSE Advanced Replication allows for the configuration of automatic
failover, permits, and priority to manage traffic between clusters [68]. Using DSE Advanced
Replication, we transitioned from a single cluster with two DCs to a direct cluster-to-cluster
implementation. DSE Advanced Replication could be configured to further extend our
infrastructure to support additional one-to-one or many-to-one (i.e., cluster(s)-to-cluster)
implementations. Although not open-source, DSE grants customers a limited no-fee license
(https://www.datastax.com/legal/datastax-enterprise-terms accessed on 11 March 2022)
for non-production purposes, without the right to support.

Summary

There are three key takeaways regarding the use of Cassandra (i.e., DSE) as the edge
storage solution for our IoT-based sensor network: (1) DSE is ideally suited for time series
data due to its sequential (i.e., from disk) read and write operations; (2) mechanisms, such
as commit log, gossip, hinted handoff, and snitches, allow DSE to support high availability,
fault-tolerant, and geographically distributed implementations; and (3) the shared-nothing
architecture of DSE, when coupled with DSE Advanced Replication, enables nearly linear
horizonal scalability for our edge storage and computing framework.

3.5. Embedded Systems
3.5.1. Background

Embedded systems include, but are not limited to, microcontrollers, embedded com-
puters, system-on-chip, computer-on-module, and system-on-module. Typically, embed-
ded systems are inexpensive, low power, small, and have modest capabilities when com-
pared with desktop or laptop computers. The Raspberry Pi is among the most popular
embedded systems. As of December 2018, the Raspberry Pi was the world’s third best-
selling general-purpose computer [69]. As a system originally intended to teach children

https://www.datastax.com/products/datastax-enterprise
https://www.datastax.com/products/datastax-enterprise
https://docs.datastax.com/en/dse/6.0/dse-admin/datastax_enterprise/advReplication/advRepTOC.html
https://docs.datastax.com/en/dse/6.0/dse-admin/datastax_enterprise/advReplication/advRepTOC.html
https://www.datastax.com/legal/datastax-enterprise-terms
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computer science, the Raspberry Pi is inherently easy-to-use and inexpensive [69]. Having
developed an immense community of users, Raspberry Pi based industrial and scientific
projects are commonplace [70–72].

Our initial selection of the Raspberry Pi was influenced by the Raspberry Pi’s vast
community of users and its widespread use within the industrial and scientific communities.
We began our development of a multi-node edge-based solution in October of 2016. At the
time, the Raspberry Pi 3 B (i.e., 1.2 GHz 64-bit quad core processor with 1 GB of RAM) was
available. We installed and configured DSE on the Raspberry Pi 3 B. However, the modest
resources of the Raspberry Pi 3 B resulted in frequent downtime (e.g., hangs, reboots, etc.).

In order to improve reliability, we offloaded the Raspberry Pi’s DSE workload by
replacing the Raspberry Pi 3 B with the Asus Tinker Board. The Tinker is like the Raspberry
Pi 3 B, with an additional gigabyte of RAM (i.e., 2 GB of RAM total). We found the additional
gigabyte of RAM significantly improved DSE performance and reliability. Although the
Tinker performed well as a DSE node, its user community is not as large as the Raspberry
Pi’s. We spent a disproportionate amount of time configuring the Tinker due to its relatively
limited support (e.g., drivers, examples, etc.).

In June 2019, the Raspberry Pi Foundation announced the release of the Raspberry
4 [73]. The Raspberry Pi 4 is available in three configurations (i.e., with 2 GB, 4 GB, and
8 GB of RAM), offers USB 3.0 support, and Gigabit Ethernet connectivity. We recently
bench tested the Raspberry Pi 4 (i.e., with 2 GB of RAM) and confirmed DSE performance
and reliability was equivalent to the Tinker’s. However, we have not had an opportunity
to test the Raspberry 4 in a field setting. Any future efforts on our part would utilize the
Raspberry Pi 4 as our DSE node’s embedded system.

3.5.2. Related Work

Cassandra and DSE were established cloud and on-premises NoSQL solution in
2016 However, to the best of our knowledge no one had attempted to deploy Cassan-
dra or DSE, on an embedded system, as an edge-based storage and computing solution
supporting remote environmental monitoring. Nonetheless, there have been several publi-
cations since 2016 exploring the idea of utilizing the Raspberry Pi and Cassandra for IoT
applications [74–76]. In 2017, Richardson [74] explored the feasibility of using the Rasp-
berry Pi to host Cassandra in support of IoT applications. Richardson [74] utilized the
Raspberry Pi (i.e., with 1 GB of RAM) and virtual machines (i.e., with 1 GB, 2 GB, and
4 GB of RAM) to assess the feasibility and performance impact of hosting Cassandra on
modest platforms; a minimum of 2 GB of RAM was identified by Richardson [74] as critical
for “in-situ IoT storage” using Cassandra. Also in 2017, Romero Lopez [76] undertook
the ambitious endeavor of creating a three node Raspberry Pi (i.e., with 1 GB of RAM)
Cassandra cluster, deployed via Docker (https://www.docker.com/ accessed on 11 March
2022), including Apache Spark (https://spark.apache.org/ accessed on 11 March 2022).
Romero Lopez [76] concluded the Raspberry Pi did not have enough memory (i.e., RAM)
for Cassandra or Spark and recommend 4 GB and 8 GB of memory for Cassandra and
Spark, respectively.

In 2018, Ferencz and Domokos [75] introduced a data acquisition and storage system
using Cassandra and the Raspberry Pi as an alternative to existing IoT data acquisition and
storage solutions. Although their system architecture represented a practical and flexible
approach to IoT acquisition and storage, Ferencz and Domokos [75] did not run Cassandra
on the Raspberry Pi. Likewise, Ooi et al. [77] utilized the Raspberry Pi and Cassandra to
effectively acquire and store sensor network data (i.e., seismic). However, Cassandra was
not run on the Raspberry Pi.

3.6. Communicaion Infrastructure

There is considerable interest in novel, inherently IoT compatible, wireless technologies
(i.e., low-power wide-area networks) for seismic applications [38]. However, in order to
minimize complexity, we utilized commercially available IP-based wired and wireless

https://www.docker.com/
https://spark.apache.org/
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components to connect our digitizers, edge devices, edge gateways, and edge nodes. The
ports used by Cassandra and DSE for cluster communication and the port used by our
digitizers are all IP-based; Cassandra and DSE use TCP and the REF TEK 130-01 uses UDP.
See Figure 7 for an overview of the communication infrastructure used for the case study
presented in the following section.
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An important point to consider, when using embedded systems for remote environ-
mental monitoring, is that their onboard Wi-Fi capabilities are typically inadequate for
real-world deployments. Typically, remote environmental monitoring requires that em-
bedded systems and other electronics be placed within enclosures located on or near the
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ground, in which case the quality of wireless connectivity may degrade. Ideally, embedded
systems would connect to a Wi-Fi antenna external to the enclosure. Unfortunately, the
Raspberry Pi required board-level modification to connect an external Wi-Fi antenna. The
Tinker did allow for the connection of an external antenna via a MHF4 connector. However,
the onboard Wi-Fi of the Raspberry Pi (i.e., Raspberry Pi 3 B) and the Tinker did not support
our desire to utilize 802.11ac standard communication infrastructure.

A USB Wi-Fi dongle (i.e., TP-Link Archer T2UH AC600 (https://www.tp-link.
com/us/home-networking/adapter/archer-t2uh/?utm_medium=select-local accessed
on 11 March 2022)) was used to circumvent embedded system Wi-Fi limitations. The TP-
Link Archer T2UH AC600 allowed for the connection of an external Wi-Fi antenna and
utilized the 802.11ac standard. However, the Tinker did not support the use of the TP-
Link Archer T2UH AC600. Ultimately, external antenna capable, 802.11ac standard, Wi-Fi
connectivity was achieved by connecting the Tinker to a radio (i.e., EnGenius ENS500EXT-
AC (https://www.engeniustech.com/engenius-products/enturbo-outdoor-5-ghz-11ac-
wave-2-wireless-access-point/ accessed on 11 March 2022)) via its Ethernet port. The
Raspberry Pi used the TP-Link Archer T2UH AC600 to achieve external antenna capable,
802.11ac standard, Wi-Fi connectivity.

4. Case Study
4.1. Background

Our edge storage and computing framework for IoT-based sensor networks was devel-
oped over the course of four test and evaluation (T&E) events occurring in May 2017 (East-
land Lakes, TX, USA), June 2017 (Soda Lake Geothermal Field, NV, USA), July 2018 (Baylor
Research and Innovation Collaborative, TX, USA), and May 2019 (San Emidio Geothermal
Field, NV, USA). Our first deployment to a geothermal field (i.e., Soda Lake Geothermal
Field) consisted of 20 seismic stations deployed along a line approximately 575 m in length
and our second deployment to a geothermal field (i.e., San Emidio Geothermal Field)
consisted of 144 seismic stations (i.e., planned) deployed along a line approximately 2100 m
in length. The case study described below is specific to the San Emidio Geothermal Field
T&E event that occurred in May 2019.

4.2. Edge Storage and Computing Workflow

A brief overview of the responsibilities of the layers (i.e., workloads) of the edge
storage and computing framework was provided in the Framework Overview section
of this paper. What follows is a detailed description of the actions performed by the
sensing, transactional, and analytic workloads. The sensing workload is responsible for the
acquisition of raw seismic data (i.e., three-channels at 250 sps) and the storage of this data
in an archive (i.e., RTPD archive) maintained by the edge gateway. The RTPD archive is
maintained “as is” in order to keep an original copy of the raw seismic data. A file watcher
running on the edge gateway is used to monitor the RTPD archive. When a RTPD file closes,
the file (i.e., five-minute file) is copied to a preprocessing directory. Every five minutes,
files from the preprocessing directory are read, converted, processed, and data for the
vertical channel (i.e., a single channel at 50 sps) is saved as a Comma-Separated Value (CSV)
file formatted for insertion into the transactional workload DSE cluster (i.e., transactional
cluster). The edge gateway connects to the transactional cluster, via a coordinator node, and
writes the CSV data into the cluster. The data are then replicated across the transactional
cluster according to a user defined replication factor of two. Two copies of the data are
saved on the transactional cluster.

DSE Advanced Replication is configured to replicate data from the transactional
cluster to the analytic workload DSE cluster (i.e., analytic cluster). If the backhaul network
connectivity between the transactional and analytic clusters is down, the transactional
cluster maintains the data needing replication until backhaul connectivity is reestablished.
With connectivity reestablished, the transactional cluster replicates data to the analytic
cluster. The data are then replicated across the analytic cluster according to a user defined

https://www.tp-link.com/us/home-networking/adapter/archer-t2uh/?utm_medium=select-local
https://www.tp-link.com/us/home-networking/adapter/archer-t2uh/?utm_medium=select-local
https://www.engeniustech.com/engenius-products/enturbo-outdoor-5-ghz-11ac-wave-2-wireless-access-point/
https://www.engeniustech.com/engenius-products/enturbo-outdoor-5-ghz-11ac-wave-2-wireless-access-point/
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replication factor of two. Two copies of the data are saved on the analytic cluster. See
Figure 8 for an overview of the San Emidio Geothermal Field T&E event edge-based
solution workflow.
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Every hour, data from the analytic cluster is queried and extracted for subsequent
seismic processing. Query and extract scripts were executed on a Mini PC (i.e., Intel NUC
(https://www.intel.com/content/www/us/en/products/boards-kits/nuc.html accessed
on 11 March 2022)) that was collocated with the analytic cluster. Extracted data were then
automatically copied to a second collocated Intel NUC designated for processing. ANSI
processing was carried out by first applying a bandpass filter of 0.01–24 Hz to remove
anthropogenic noise and data recorded by each sensor was divided into 20-s windows.
Each window was bit- normalized to adjust amplitudes and then cross-correlated with
similar data windows from other sensors and results are stacked to produce virtual source
gathers. A virtual source gather is a time vs. distance plot in which one station acts as a
source, and is placed at the origin, and the other stations serve as receivers and are plotted
as a function of the offset distance from the virtual source station. Upon the completion of
ANSI processing, virtual source gathers are saved as plots locally on the NUC.

4.3. Implementation
4.3.1. Planned

Prior to the San Emidio Geothermal Field T&E event, we leveraged information
obtained from our previous three T&E events to identify performance limiters (e.g., ingest
rates, network capacity, etc.) that could not be easily overcome without significant upgrades
to solution hardware (i.e., communication infrastructure and embedded systems). Likewise,
we considered other physical limiters such as internode spacing of seismic stations, overall
length of the seismic line, topography, and operational constraints (e.g., vehicle access,
weather, etc.). We considered these limiters in tandem with our geoscientific requirements
to organize edge devices, edge gateways, and edge nodes, layer-by-layer (i.e., lower,
middle, and upper), into an edge-based solution allowing us to acquire, transmit, store, and
process seismic data hourly, in a field setting. The edge-based solution was then replicated
and scaled up until it totaled 144 seismic stations. Figure 9 illustrates a “headquarters”
consisting of four upper layer edge nodes (i.e., analytic cluster) connected wirelessly to a
“squadron” consisting of four middle layer edge nodes (i.e., transactional cluster), in turn,
connected (i.e., wired or wirelessly) to twelve lower layer edge gateways, in turn, connected
(i.e., wired) to 36 edge devices. Each squadron was responsible for acquiring approximately
778 million samples per day. However, only approximately 156 million samples per day
were inserted into the transactional cluster (i.e., squadron) and subsequently replicated to
the analytic cluster (i.e., headquarters).

https://www.intel.com/content/www/us/en/products/boards-kits/nuc.html
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4.3.2. Actual

We intended to deploy four squadrons and four headquarters totaling 144 lower layer
edge devices (i.e., seismic stations), 48 lower layer edge gateways, 16 middle layer edge
nodes, and 16 upper layer edge nodes. Ultimately, we only deployed 142 seismic stations
due to broken or missing REF TEK 130-01 components and middle layer and upper layer
components for two (i.e., squadron #1 and squadron #2) of the four planned squadrons.
Figure 10 shows a lower layer station consisting of an edge device and edge gateway and
Figure 11 shows a middle layer edge node. Weather-related delays and unplanned trou-
bleshooting (i.e., digitizers and communication infrastructure) were primarily responsible
for our inability to deploy all four squadrons. However, the organization of squadrons and
headquarters into groups, operating independent of each other, provided an opportunity
to assess the performance and suitability of our edge-based solution regardless of the total
number of squadrons deployed.
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Figure 11. San Emidio Geothermal Field T&E event exterior view of middle layer edge node (left)
and interior view edge node (right). The Asus Tinker is shown in the red circle (interior view) with
power-related components to its left (e.g., DC-to-DC, terminal bus, etc.) and a battery and network
switch located within the enclosure.

4.3.3. Communication Infrastructure

During the San Emidio Geothermal Field T&E event, we deployed our edge-solution
in three different communication infrastructure configurations (i.e., “wired”, “hybrid”,
and “wireless”) corresponding to T&E event test blocks. The three different configurations
allowed us to assess system (e.g., distributed database, embedded system, etc.) performance
“layer-by-layer” as we transitioned from predominantly wired to predominantly wireless
infrastructure. All three configurations utilized wireless (i.e., a point-to-point wireless
bridge) for backhaul network cluster-to-cluster (i.e., middle-to-upper layer) replication;
likewise, all three configurations utilized wired (i.e., Ethernet cables) for lower layer edge
device to edge gateway connectivity. Headquarters edge nodes (i.e., analytic cluster) were
collocated and always connected to each other using wired (i.e., Ethernet cable) connections.

The “wired” configuration utilized Ethernet cables to connect lower layer edge gate-
ways to middle layer edge nodes and middle layer edge nodes (i.e., the transactional
cluster) to each other. The “hybrid” configuration continued to use Ethernet cables to
connect lower layer edge gateways to middle layer edge nodes. However, middle layer
edge nodes (i.e., the transactional cluster) were connected to each other wirelessly (i.e.,
a WDS access point). Lastly, the “wireless” configuration connected middle layer edge
nodes (i.e., the transactional cluster) to each other wirelessly (i.e., a WDS access point) and
lower layer edge gateways were also connected to middle layer edge nodes wirelessly (i.e.,
a wireless access point). Table 1 provides an overview of communication infrastructure
configuration. “Wired” and “hybrid” test blocks were conducted for squadron #1 and
“wired”, “hybrid”, and “wireless” test blocks were conducted for squadron #2.
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Table 1. Communication Infrastructure Configuration.

Communication
Infrastructure
Configuration

Lower Layer to
Lower Layer

Lower Layer to
Middle Layer

Middle Layer to
Middle Layer

Middle Layer to
Upper Layer

(See Figure 9 for Layer Details)

“Wired” Ethernet Cable Ethernet Cable Ethernet Cable Point-to-Point
Wireless Bridge

“Hybrid” Ethernet Cable Ethernet Cable
Wireless

Distribution System
Access Point

Point-to-Point
Wireless Bridge

“Wireless” Ethernet Cable Wireless
Access Point

Wireless
Distribution System

Access Point

Point-to-Point
Wireless Bridge

5. Results

The overall effectiveness of the edge storage and computing framework for IoT-based
sensor networks can be assessed by considering its performance and suitability. The
solution’s performance refers to quantifiable metrics associated with its ability to function
as intended and its suitability refers to its ability to operate in its intended environment.

5.1. Performance
5.1.1. Architecture and Topology Performance

Assessing the performance of the edge-based solution’s architecture and topology
quantitatively is challenging. Our selection of a Tenet principle inspired architecture and
the tree/star hub-and-spoke topology was not driven by specific performance require-
ments; rather, our choice of architecture and topology evolved over the course of our four
T&E events. Nonetheless, we believe the architecture and topology of our edge-based
solution supports the implementation non-application specific solutions that complement
the constraint driven nature of remote environmental monitoring.

5.1.2. Distributed Database Performance

As an established, enterprise-grade, NoSQL solution, DSE and DSE Advanced Repli-
cation proved to be an ideal choice as our framework’s distributed database. Once we
determined the absolute minimum hardware requirements (i.e., 2 GB of RAM total), DSE
and DSE Advanced Replication performed reliably. Although running on hardware well
below its recommended minimum requirements, DSE supported our write-heavy applica-
tion and provided the performance, reliability, and scalability we required. Layer-by-layer
performance data will be provided in the following section.

As a horizontally scalable distributed database (i.e., NoSQL), DSE complemented
our architecture and topology by allowing us to empirically determine our squadron
configuration based upon hardware constraints and performance requirements. Essentially,
we added/removed nodes, branched, and cut to meet the performance requirements
necessary for our specific seismic method. DSE performed consistently and reliably as we
arranged and rearranged our squadron configuration over the course of four T&E events.

5.1.3. Layer Performance
Lower Layer Performance

Although weather-related delays were primarily responsible, unplanned troubleshoot-
ing also impacted our ability to deploy middle layer and upper layer components for the
planned four squadrons. Digitizer (i.e., the REF TEK 130-01) problems (i.e., GPS week
number rollover [78] and bad backup battery problems) were relatively easy to solve.
However, they were difficult to diagnose. Without the ability to remotely configure the REF
TEK 130-01 we were forced to visit seismic stations multiple times before the lower layer
components were fully functional. The REF TEK 130-01 can be configured remotely using
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software provided by the vendor. However, we had not configured the REF TEK 130-01
and the Raspberry Pi (i.e., the edge gateway) to allow remote access to REF TEK 130-01.

Once faulty components were replaced (i.e., the GPS antenna and backup batteries)
and the REF TEK 130-01s reconfigured, the lower layer performed its sensing workload as
expected. No edge gateway hardware (i.e., the Raspberry Pi) or software (e.g., operating
system, Python script, etc.) failures were observed. However, there were instances in which
faulty lower layer components required troubleshooting or needed to be replaced (e.g.,
Ethernet cables, Ethernet switches, etc.).

Lower Layer to Middle Layer Performance

For the “wired” configuration approximately 99.7% and 98.9% of the data acquired
by the edge devices was inserted, by the edge gateways, into the edge nodes (i.e., the
transactional cluster), for squadron #1 and #2, respectively. Approximately 99.2% and
99.9% of “hybrid” configuration data acquired by the edge devices was inserted, by the
edge gateways, into the edge nodes (i.e., transactional cluster), for squadron #1 and #2,
respectively. Lastly, the “wireless” configuration resulted in approximately 85.0% of the
data acquired by the edge devices being inserted, by the edge gateways, into the edge
nodes (i.e., transactional cluster) for squadron #2. Table 2 provides an overview of lower
layer to middle layer performance metrics.

Table 2. Summary of lower layer to middle layer performance metrics.

Layer
Communication

Infrastructure
Configuration

Squadron # % Data Inserted
into DSE

Approximate
Data Ingest Rate

(Writes per Second)

Lower Layer
to Middle Layer

(See Figure 9 for Layer
Details)

“Wired”
Squadron #1 99.7

1900Squadron #2 98.9

“Hybrid” Squadron #1 99.2
1550Squadron #2 99.9

“Wireless”
Squadron #1 –

1200Squadron #2 85.0

We transitioned from 802.11n to 802.11ac standard communication infrastructure for
the San Emidio Geothermal Field T&E event. Unfortunately, compatibility problems with
the edge gateway’s external antenna and USB Wi-Fi dongle prevented us from deploying
our wireless configuration as planned. Spare radios (i.e., the EnGenius ENS500EXT-AC),
from our two undeployed squadrons, were used to connect edge gateways wirelessly, via
their Ethernet port. However, modifications to the edge gateway “wireless” communication
infrastructure were performed in a field setting and required troubleshooting that we
believe negatively impacted overall “wireless” configuration performance.

During the San Emidio Geothermal Field T&E event, each edge gateway was responsi-
ble for inserting 45,000 samples of seismic data into DSE every five minutes. A minimum
rate of 150 sps (i.e., per edge gateway) was required to ingest data into DSE faster than it
was created by edge devices. However, data processing overhead, distributed database-
related mechanisms, and variations in network capacity could affect ingest rates. The ratio
of edge devices, edge gateways, and edge nodes (i.e., 36:12:4) was adjusted, prior to the
T&E event, to allow for a least five times (i.e., 750 sps) the required minimum ingest rate.

Ultimately, our use of 802.11ac standard communication infrastructure supported
edge gateway ingest rates ranging from approximately 1200 to 1900 sps, depending upon
the communication infrastructure configuration. Approximately eight to twelve times
the required minimum ingest rate was available during the San Emidio Geothermal Field
T&E event. This provided adequate network capacity to support increasing the number of
devices per edge gateway, the ingestion of additional device channels (i.e., the horizontal
channels), or increasing the sampling rate of data ingested into DSE.
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Middle Layer to Upper Layer Performance

For squadron #1 and squadron #2, 100% of “wired” test block data inserted into
the transactional cluster was replicated to the analytic cluster (i.e., headquarters #1 and
headquarters #2), via DSE Advanced Replication. Approximately 99.9% of squadron #1 and
100% of squadron #2 “hybrid” test block data were replicated to their respective analytic
cluster (i.e., headquarters #1 and headquarters #2), via DSE Advanced Replication. Lastly,
99.5% of squadron #2 “wireless” test block data were replicated to its analytic cluster (i.e.,
headquarters #2), via DSE Advanced Replication. The DSE Advanced Replication backlog
was monitored during the “wired”, “hybrid”, and “wireless” test blocks; the DSE Advanced
Replication backlog never exceeded more than a few 1000 writes (i.e., samples). Table 3
provides an overview of middle layer to upper layer performance metrics.

Table 3. Summary of middle layer to upper layer performance metrics.

Layer
Communication

Infrastructure
Configuration

Squadron # % Data Inserted into
DSE

Middle Layer to
Upper Layer

(See Figure 9 for
Layer Details)

Wired
Squadron #1 100.0
Squadron #2 100.0

Hybrid Squadron #1 99.9
Squadron #2 100.0

Wireless
Squadron #1 –
Squadron #2 99.5

Note that only 85.0% of squadron #2 “wireless” test block data acquired by edge
devices was inserted into its transactional cluster. However, 99.5% of squadron #2 “wireless”
test block data were replicated from its transactional cluster to analytic cluster. This
represents an anomaly where more edge device data resided within an analytic cluster
than its corresponding transactional cluster. Although the exact cause of this anomaly
remains unknown, we believe the anomaly is a result of the independent communication
links (i.e., point-to-point wireless versus WDS access point) and the different mechanisms
(e.g., commit log, hinted handoff, etc.) used by DSE versus DSE Advanced Replication (i.e.,
change-data-capture).

Upper Layer Performance

An automated script (i.e., Python) was used to query and extract seismic data hourly
from the analytic clusters. Leveraging the Python Cassandra driver (https://docs.datastax.
com/en/developer/python-driver/3.18/ accessed on 11 March 2022), seismic data were
queried from the two analytic clusters (i.e., headquarters #1 and headquarters #2) in parallel
and CSV files were extracted for subsequent seismic processing. The query and extract
scripts were executed on an Intel NUC and the extracted CSV files were then automatically
copied to a second Intel NUC designated for seismic processing. The query and extract of
one hour’s worth of squadron data (i.e., 36 seismic stations or approximately 6.5 million
samples) took approximately ten minutes, at a rate of approximately 11,000 sps. This
provided up to 50 min to perform seismic processing before the next one hour’s worth of
data was available for query and extract.

5.1.4. Results from Ambient Noise Seismic Interferometry

In May 2019, we carried out Ambient Noise Seismic Interferometry (ANSI) using the
142-element RaPiER array at the San Emidio Geothermal Field. Figure 12 shows virtual
source gathers in which body waves were retrieved from ambient seismic noise using all
recorded data in near-real-time. The body wave arrival in Figure 12a,b has a velocity of
380 m/s. The arrival in Figure 12a is not seen beyond ~0.6–0.7 km. This limitation was
overcome, and the arrival was observed to nearly twice that distance, by using selective

https://docs.datastax.com/en/developer/python-driver/3.18/
https://docs.datastax.com/en/developer/python-driver/3.18/
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processing methods. Selective stacking of time windows that are deemed the “best” by
certain quantitative measures could be automated, along with additional performance
assessments, in seismic WSN deployments. See Thangraj and Pulliam (2021) for details
of seismic processing and analysis of results. Extracting body wave arrivals from ambient
noise seismic data is challenging but with the RaPiER array we were able to produce
results with high signal-to-noise qualities using just three days of data and thus validate
the acquisition parameters chosen for our seismic deployment.
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5.2. Suitability

From a suitability perspective, we are confident the San Emidio Geothermal Field T&E
event represented a real-world remote environmental monitoring use case. It was neces-
sary for us to deploy temporary infrastructure supporting the operation of edge devices,
edge gateways, and edge nodes (i.e., edge components). Antenna masts, batteries, enclo-
sures, and solar panels were deployed to support the continuous acquisition, transmission,
storage, and processing of data, without the need to service edge components.

5.2.1. Power

Our power related support infrastructure relied on one 60 Amp-hour battery and a
20 W solar panel for each edge device (i.e., REF TEK 130-01) not collocated (i.e., not sharing
a battery) with an edge gateway (i.e., Raspberry Pi), one 60 Amp-hour battery and 20 W
solar panel for each edge device and edge gateway pair (i.e., sharing a battery), and two
60 Amp-hour batteries and a 60 W solar panel for each edge node (i.e., Tinker).

We estimated the overall power draw, via bench testing, of an edge device not collo-
cated with an edge gateway at approximately 2 W, an edge device and edge gateway pair
at approximately 4 W, and an edge node at approximately 8 W. The variability in power
draw is a result of the various components, configurations, and workloads of the edge
components. Without considering solar charging, we estimated a minimum of six days’
worth of available power for edge devices not collocated with an edge gateway, three days’
worth of power for edge device and edge gateway pairs, and three days’ worth of power
for edge nodes.

Our power estimates proved to be accurate. During the San Emidio Geothermal
Field T&E event we experienced more than three days of continuous cloud coverage that
limited solar charging. We observed low voltage conditions that triggered solar charge
controller power cycling (i.e., load off) until battery voltage was restored. This resulted in
the temporary loss of a few edge components, typically in the early morning, until power
was restored later that morning.



Sensors 2022, 22, 3615 23 of 29

5.2.2. Environmental

Over the course of our four T&E events, we have had ample opportunity to assess
the environmental suitability of the edge-based solution. We deployed the equipment in
temperatures that ranged from approximately 1 ◦C to 48 ◦C and in weather that included
dry, dusty, rainy, sleeting, and windy conditions.

Provided they are protected from moisture, commercially available components can
usually operate across a wide range of temperatures and environmental conditions. The
EnGenius ENS500EXT-AC and the Raspberry Pi’s operating temperatures are −20 ◦C to
60 ◦C and −25 ◦C to 80 ◦C, respectively. However, we did experience temperature-related
failures (i.e., overheating) when deploying other commercially available components (i.e.,
home or lab use) such as DC to DC converters, ethernet switches, etc. during our first
two T&E events. Ultimately, we transitioned to industrial-use components with operating
temperatures more closely aligned with the Raspberry Pi’s operating temperature. We
did not experience any problems related to environmental conditions during our last two
T&E events.

6. Discussion

The edge storage and computing framework presented utilizes easy-to-use, inexpen-
sive, and well-established commercially available components and a popular distributed
database to orchestrate an edge-based solution for IoT-based sensor networks. Moreover,
our use of an architecture inspired by the Tenet principle and the tree/start hub-and-spoke
topology supports highly configurable, general-purpose solutions that meet the demands of
constraint-driven applications such as remote environmental monitoring. Metrics acquired
during the San Emidio Geothermal Field T&E event indicate that the solution supported
the in situ acquisition, transmission, storage, and processing of seismic data. As a result,
we believe the use of embedded systems (i.e., the Raspberry Pi and Tinker), Mini PCs
(i.e., the Intel NUC), DSE, and DSE Advanced Replication to implement an edge-based
solution that reduces the cost and risk associated with seismic methods is tenable. We
believe our edge-based solution offers two distinct advantages over frameworks that rely
on a centralized model (i.e., cloud) or utilize vertically scalable databases (i.e., SQL): (1) it is
better suited for remote environmental monitoring (i.e., constraint-drive applications) and
(2) it scales from a performance (i.e., node count) and from a geographical perspective.

As geoscientists, our need to design, develop, and deploy an edge-based solution to
acquire and process seismic data in a field setting was strongly influenced by our method
of seismic monitoring. We planned to utilize a cost effective and non-invasive exploration
method using ambient (i.e., passive) seismic noise to characterize the subsurface. One
of the primary challenges of using passive (i.e., anthropogenic or natural) seismic noise
sources is not knowing the characteristics of the noise sources in advance. As a result, it is
impossible to know when you have acquired enough data to successfully characterize the
subsurface without first processing and analyzing the data.

The edge-based solution described here minimizes the cost and mitigates the risk
typically associated with passive methods of seismic exploration. With data in hand, in a
field setting, myriad possibilities are available to leverage conventional and bleeding edge
methods to generate higher quality data products. For a summary of framework features
see Table 4.

Although we successfully demonstrated an effective edge storage and computing
framework for IoT-based sensor networks, this edge-based solution is not without limita-
tions. For instance, the deployment of conventional sensor networks (i.e., wired or wireless)
is often logistically challenging. The effort required to prepare, mobilize, and deploy
142 seismic stations for the San Emidio Geothermal Field T&E event was significant. The
cables, digitizers, enclosures, power systems, and sensors required for seismic monitoring
are expensive, sizeable, and often require specialized knowledge to configure, deploy, and
maintain. Commercially available embedded systems and communication infrastructure
are relatively easy-to-use and inexpensive. However, they add to the overall logistical
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burden of sensor network deployments. The value of edge storage and computing must be
weighed carefully against its logistical impact.

Table 4. Summary of edge storage and computing framework features.

Framework Features

Architecture Utilizes a tiered architecture supporting workloads of varying complexity.

Topology Utilizes a hub-and-spoke topology supporting the addition and/or redistribution of edge nodes to
overcome common edge-based performance limiters.

Distributed Database

Uses a datastore based upon an open-source solution that:
is ideally suited for time series data,
supports high availability, fault-tolerant, and geographically distributed implementations, and
offers nearly linear horizontal scalability.

Embedded Systems Uses easy-to-use, inexpensive, and well-established commercially available components.

Communication
Infrastructure Uses commercially available IP-based wired and wireless components.

Commercially available digitizers used in geoscience applications, such as the REF
TEK 130-01, are typically very reliable and do not require a lot of supervision. Although
Cassandra and DSE support high availability and fault tolerant implementations, our
use of embedded systems to host DSE at the edge represents a novel implementation
that required continuous oversight during the San Emidio Geothermal Field T&E event.
DSE OpsCenter (https://www.datastax.com/products/datastax-enterprise/dse-opscenter
accessed on 11 March 2022) is an enterprise-grade management and monitoring solution
for DSE clusters. However, the OpsCenter client is not available for embedded systems
(i.e., ARM architecture processors). In order to monitor our edge-based solution, we used
Ansible (https://www.ansible.com/ accessed on 11 March 2022) and custom Python code
to log performance metrics. However, our performance monitoring did not include an
overview dashboard. Instead, we were forced to manually review log files throughout our
T&E event. We recommend using an overview dashboard, such as OpsCenter, to monitor
the overall status of the edge-based solution.

The San Emidio Geothermal Field T&E event provided an opportunity to assess, at
hourly intervals, our edge-based solution and the quality of our deployment strategy (i.e.,
process) in a geoscience application. Unfortunately, an abundance of data can often result
in “analysis paralysis” that stifles the decision-making process. When confronted with large
data rates, we learned that we needed a strategy that automated the assessment edge-based
products and process.

Typically, geoscience-related products are generated using “human-in-the loop” sys-
tems that exploit the domain expertise of geoscientists. We believe the automatic generation
of geoscience-related products, using an edge-based solution, require specialized methods
to objectively assess the overall quality of the products. These specialized methods (e.g., ar-
tificial intelligence, statistical, etc.) are necessary to support the relatively rapid operational
tempo afforded by an edge-based solution. Likewise, we believe an automated edge-based
(i.e., decentralized) version of a seismic quality control program, similar to the program
put forth by Ringler et al. [79], allowing for the timely identification and communication of
data quality problems would benefit the edge-based solution.

7. Conclusions

In this paper we presented an edge storage and computing framework that leverages
commercially available communication infrastructure, digitizers, and embedded systems
and demonstrated that they can provide valuable capabilities for ambient noise seismic
interferometry. The framework is organized in a tiered architecture, arranged in a hub-
and-spoke topology, and hosts a popular distributed database to support the acquisition,
transmission, storage, and processing of IoT-based sensor network data. We provided

https://www.datastax.com/products/datastax-enterprise/dse-opscenter
https://www.ansible.com/
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details regarding the selection of the architecture, distributed database, embedded systems,
and topology used to implement the solution. Lastly, a real-world (i.e., geoscience) case
study was presented that leveraged the edge storage and computing framework to acquire,
transmit, store, and process millions of samples of seismic data per hour. More than 99% of
the data acquired by edge devices (i.e., seismic stations) was stored, queried, and extracted
from edge nodes for subsequent seismic processing, in a field setting.

The release of the Raspberry Pi 4 further complements the architecture and topology
of our edge-based solution. The availability of three inherently compatible Raspberry
Pi 4 versions, with differing capabilities (i.e., RAM), eliminates the need to use different
types of embedded systems and Mini PCs for different layers (i.e., lower, middle, and
upper), thus simplifying the overall effort required to design, develop, and deploy an
edge-based solution.

More importantly, the 4 GB and 8 GB versions of the Raspberry Pi 4 provide an easy-
to-use, inexpensive, and well-established embedded system to support an edge-based
implementation of Apache Spark. Spark, accepted as an ASF top level project in February
2014, is the most actively developed, open source, unified computing engine for the parallel
processing of data on a computer cluster [80]. Spark manages and coordinates the execution
of tasks across a cluster of computers [80]. Leveraging the pooled resources of a computer
cluster, often in conjunction with a distributed datastore, Spark can process data that a
single computer typically cannot [80].

Our edge-based solution is already capable of implementing Spark. DSE provides addi-
tional out-of-the-box capabilities, via DSE Analytics (https://docs.datastax.com/en/dse/6.
0/dse-dev/datastax_enterprise/analytics/analyticsTOC.html accessed on 11 March 2022),
that include Spark integration. Using the Raspberry Pi’s quad-core processor and 4 GB or
8 GB of RAM, upper layer edge nodes could be configured for an analytic workload that
leverages the DSE cluster to support Spark (i.e., distributed processing). We have used the
Raspberry Pi 4 (i.e., with 4 GB of RAM) to host a four-node, i.e., Spark-enabled, analytic
workload DSE cluster and have performed a series of bench tests to assess the feasibility of
edge-based distributed processing. We believe the utilization of multiple Raspberry Pi 4s
to host a Spark-enabled DSE cluster is feasible and warrants further investigation.
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