
����������
�������

Citation: Hu, M.; Lee, K.; Ahn, H.;

Choi, A.; Kim, H.; You, K.

Stabilization and Tracking of a

Quadrotor Using Modified Sigmoid

Sliding Mode Control. Sensors 2022,

22, 3618. https://doi.org/10.3390/

s22103618

Academic Editor: Gregor Klancar

Received: 16 March 2022

Accepted: 9 May 2022

Published: 10 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Communication

Stabilization and Tracking of a Quadrotor Using Modified
Sigmoid Sliding Mode Control
Mingyuan Hu 1, Kyunghyun Lee 2, Hyeongki Ahn 2, Ahyeong Choi 2, Hyunchang Kim 2 and Kwanho You 1,2,*

1 Department of Smart Fab. Technology, Sungkyunkwan University, Suwon 16419, Korea;
hmy160831@g.skku.edu

2 Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Korea;
naman2001@skku.edu (K.L.); ahk5721@skku.edu (H.A.); overcld7@skku.edu (A.C.);
gusckddmldkt@g.skku.edu (H.K.)

* Correspondence: khyou@skku.edu; Tel.: +82-31-290-7148

Abstract: A modified sigmoid sliding mode control (MS-SMC) approach is proposed for stabilizing
and tracking a quadrotor system with a nonlinear sliding surface, where the dynamics model is
underactuated, highly coupled, and nonlinear. The constructed nonlinear sliding surface is based on
the traditional sliding mode surface with a modified sigmoid function, allowing the initial value to
quickly reach equilibrium. A new type of nonlinear SMC is applied for performance improvement
of the quadrotor using the proposed modified sigmoid sliding surface. To control the quadrotor
effectively, a double-loop control method is used to design the control rate, in which the position
subsystem is the outer loop, and the attitude subsystem is the inner loop.With the Lyapunov function,
the stability of the overall closed-loop system is ensured by stabilizing each subsystem step by step.
Moreover, from a practical point of view, the system performance under the model uncertainties and
external disturbances are also considered. The simulation results show that the proposed MS-SMC
performs better than the conventional sliding mode control (CSMC) and the back-stepping sliding
mode control (BS-SMC) in terms of stabilization and tracking against external disturbances.

Keywords: quadrotor; sliding mode control; nonlinear sliding surface; double-loop; tracking control

1. Introduction

Unnamed aerial vehicles (UAVs) have advantages such as simple structure and high
safety, and is very useful in disaster situations and agricultural fields. However, the perfor-
mance of the PID controller is not satisfactory, to operate under uncertain environments.
Therefore, in this paper, sliding mode control (SMC) was introduced to overcome the limita-
tion of PID. SMC is an excellent robust controller and has advantages such as fast response
speed and stability. However, in case of the widely used linear sliding mode control, the
state cannot properly track the desired target. With the recent rapid expansion of the UAV
market, quadrotor—a type of UAV—has attracted the attention of many researchers owing
to its excellent control performance and convenience of vertical takeoff and landing. In
contrast to fixed-wing aircraft, quadrotors have the advantages of vertical takeoff, land-
ing, and fixed-point hovering. Compared to single-rotor helicopters, quadrotors have the
advantages of a simple mechanical structure, high safety, and relatively low complexity
of driving software owing to the absence of a tail rotor. Therefore, quadrotors have been
widely used in logistics transportation [1], fire protection [2], and precision agriculture [3].
Among UAVs, the quadrotor is the most widely used rotor vehicle. There are various
applications such as medical transportation, cargo delivery, emergency rescue, or resources
delivery to isolated areas. The adaptability for industrial use proves its high prospects [4,5].
Since a quadrotor is a multi-input multi-output, highly coupled, under-driven system,
stabilization and tracking control are the key issues associated with it. Although PID is
a widely used controller, its linearity puts restrictions to control quadrotor systems with
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multiple inputs and multiple outputs properly. Therefore, the control output is limited, and
it is difficult to fully derive the performance of the quadrotor. To overcome this problem,
several controllers have been introduced. There are linear quadratic regulators, sliding
mode control, back-stepping control, and adaptive control algorithms [6,7]. Among these
controllers, SMC is a nonlinear controller that is robust against disturbance and shows
excellent tracking ability.

As the advantage of conventional sliding mode control (CSMC) is that it can over-
come the uncertainty of the system, it has robustness to disturbances and un-modeled
dynamics [8–10]. In particular, it has a good control effect on nonlinear systems. Moreover,
with the simple sliding mode structure algorithm, rapid response speed, robustness to
external noise interference, and parameter perturbation, CSMC has been widely used
in the field of quadrotor control. However, it is difficult for initial state to slide strictly
along the sliding mode surface as it zigzags to approach the equilibrium point for a linear
surface. The insecure sliding property cannot allow states to reach equilibrium within
a finite time [11]. Therefore, Xiong created a terminal SMC [12]. However, the terminal
sliding mode itself has a shortcoming of the singular problem [13]; hence, a nonsingular
terminal sliding mode has been proposed to solve this problem in [14–16]. In [17], a fast
terminal sliding mode control method for rigid manipulators was developed to achieve
high accuracy tracking control. Based on this, a full-order end-sliding-mode control strat-
egy was proposed to solve the chattering problem in [18]. Based on hybrid sliding mode
algorithms, a fully robust back-stepping sliding mode controller has been constructed
for both position control and attitude control [19,20]. In [21,22], an adaptive controller
has been presented for attitude and position tracking based on combined integral sliding
mode control, and the radial basic function neural network method, respectively. The
unknown parameters are estimated through online using the neural network algorithm,
requiring intensive computation. Hence, there exists a limit to be used for compact UAVs.
For low-cost devices in measurement and control, a research suggested an accurate and
economical method of estimating information on drone sensors [23]. As suggested in [23],
if an advanced controller replaces the classical PID controller, a quadrotor with outstanding
performance can be presented. In this study, we designed an SMC that enables quickly
tracking and stabilizing the quadcopter. In general, quadrotor motion dynamics can be
derived via the Newton–Euler and Euler–Lagrange methods. The Newton–Euler formalism
provides physical insights through derivation. The Euler–Lagrange formalism provides the
linkage between the classical framework and the Lagrangian or Hamiltonian method [24].
Herein, the dynamics of the quadrotor were formulated based on the Euler–Lagrange
approach. The control input can be obtained through the SMC. The desired angle (ψd, θd)
can be derived from the target position and control input. To provide rapid stability and
trajectory tracking, a nonlinear sliding mode plane was designed to reduce the time to
reach equilibrium. Moreover, dual-loop control [21,25,26] is used to design the control law,
in which the attitude subsystem is the inner loop, and the position subsystem is the outer
loop. The intermediate command signals ψd and θd generated by the outer loop must be
transmitted to the inner loop subsystem. The inner loop subsystem tracks two transmission
signals through SMC. In dual-loop control, the attitude-angle tracking error of the inner
loop system affects the stability of the outer loop, which induces the stability of the entire
closed-loop control system. The stability problem is related to the inner and outer loop
control, as the dynamic performance of the inner loop and the attitude-angle tracking error
affect the stability of the outer loop, especially for an initial error, and, consequently, affect
the stability of the entire closed-loop [27,28]. In this paper, position information is assumed
to be detected by a three-axis accelerometer and is compared with location information of a
virtual GPS. Attitude information is assumed to be detected through a three-axis gyroscope
and compared with the desired angle values (θd, ψd) generated by the position controller.
To improve the flying performance of the quadrotor, various sensors are mounted on the
structure. Recently, a vision sensor was used to provide accurate location information. In
addition, the altitude of quadrotor is precisely detected through a rangefinder to improve
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landing performance. Accurate attitude information is obtained through an additional
inertia measurement unit along with gyroscope. Continuous direction update of quadrotor
can also improve flight performance by using a magnetometer [29,30]. The simulation com-
pared the performance of CSMC, BS-SMC, and MS-SMC presented in this paper. Position
control and attitude subsystem control were performed under various conditions. Distur-
bance was applied to determine the robustness of the controller. Compared to CSMC and
BS-SMC, MS-SMC reached the desired target with more stable performance and confirmed
the lessened sensitivity to disturbance. In addition, the reaching speed of MS-SMC being
faster than CMSC and BS-SMC shows that the modified sigmoid function designed in this
paper functions properly.

In this study, we focus on designing a nonlinear SMC denoted by MS-SMC for position
and altitude control with external disturbance on the dynamics in 6 DOF (x, y, z, roll, pitch,
and yaw). The proposed nonlinear SMC is based on a modified sigmoid sliding surface. All
controllers of this study are obtained from Lyapunov stability to ensure a fast stabilization
and tracking in the presence of disturbances. We demonstrate the technological advantages
of our approach through a comparison of simulation results from CSMC and BS-SMC. As
a result, the chattering effect can be eliminated, resulting in a more stable performance.
Moreover, the stabilization and tracking performance of a quadrotor are more robust and
faster to adapt when the disturbance is bounded.

To design the nonlinear SMC based on a modified sigmoid sliding surface, this paper
is organized as follows. In Section 2, the dynamical model of a quadrotor is presented. The
control design method with a nonlinear sliding surface is described in Section 3 in addition
to the control strategy for constructing the sliding mode controller of the position and
attitude of a quadrotor. In Section 4, we demonstrate the effectiveness of modified sigmoid
sliding mode control(MS-SMC) through simulation results. Finally, our conclusions are
presented in Section 5.

2. Quadrotor Dynamic Modeling

The quadrotor used in this study was set up in the body frame and the earth frame as
shown in Figure 1. More details of the configuration can be found in [31–33]. The dynamic
model of the quadrotor can be derived via the Euler–Lagrange method, and a simplified
model is found as follows:

ẍ = u1(cos φ sin θ cos ψ + sin φ sin ψ)− K1 ẋ
m

+ dx,

ÿ = u1(sin φ sin θ cos ψ− cos φ sin ψ)− K2ẏ
m

+ dy,

z̈ = u1 cos φ cos ψ− g− K3ż
m

+ dz,

θ̈ = u2 −
lK4θ̇

I1
+ dθ ,

ψ̈ = u3 −
lK5ψ̇

I2
+ dψ,

φ̈ = u4 −
lK6φ̇

I3
+ dφ, (1)

where vector [x, y, z]T denotes the quadrotor position; vector [φ, θ, ψ]T represents the angles
of roll, pitch, and yaw, respectively; Ki denotes the drag coefficients; Ii is the body inertia, l
is the lever length; g is gravity, and m is the mass of the quadrotor. Here, ui ∈ R, i = 1, 2, 3, 4,
are the control inputs for a quadrotor, described as



Sensors 2022, 22, 3618 4 of 14


u1
u2
u3
u4

 =


(F1+F2+F3+F4)

m
l(−F1−F2+F3+F4)

I1
l(−F1+F2+F3−F4)

I2
C(F1−F2+F3−F4)

I3

, (2)

where Fi is the thrust generated by four rotors, and C denotes the force-to-moment scaling
factor. To consider unknown perturbations such as noise, uncertainty, unmodeled dynamics,
and external disturbances in the real environment, the dynamic model of Equation (1)
includes unknown perturbations (dx, dy, dz, dφ, dθ , dψ ); thus, it leads to errors between the
measured and estimated values of the states. Regarding the unknown disturbances, we
redefine dx, dy, dz, dφ, dθ , and dψ after changing Equation (1) to the form of the state space
as in Equation (5). To drive the control law, Equation (1) can be written in the state-space
form of ẋ = f(x, u) . Let x ∈ [x1, x2, · · ·, x12]

T be a state variable vector, defined as:

x1 = x, x2 = ẋ, x3 = y, x4 = ẏ, x5 = z, x6 = ż,

x7 = θ, x8 = θ̇, x9 = ψ, x10 = ψ̇, x11 = φ, x12 = φ̇. (3)

In Equation (1), the mechanical structure can be written as

a1 =
K1

m
, a2 =

K2

m
, a3 =

K3

m
,

a4 =
lK4

I1
, a5 =

lK5

I2
, a6 =

lK6

I3
,

ux = cos x11 sin x7 cos x9 + sin x11 sin x9,

uy = sin x11 sin x7 cos x9 − cos x11 sin x9,

uz = cos x11 cos x9. (4)

In Equation (4), a1 through a6, are parameters comprising body inertia, lever length,
and rotor inertia. ux and uy are the control inputs of the quadrotor, using roll, pitch, and
yaw. From Equations (1) and (3), the dynamics of the quadrotor can be obtained using
Equation (5):

ẋ = f(x, u) =



x2
u1(ux + ∆u1)− (a1 + ∆a1)x2 + d1 + n1

x4
u1(uy + ∆u2)− (a2 + ∆a2)x4 + d2 + n2

x6
u1(uz + ∆u3)− g− (a3 + ∆a3)x6 + d3 + n3

x8
u2(1 + ∆u4)− (a4 + ∆a4)x8 + d4 + n4

x10
u3(1 + ∆u5)− (a5 + ∆a5)x10 + d5 + n5

x12
u4(1 + ∆u6)− (a6 + ∆a6)x12 + d6 + n6



(5)

From a practical point of view, we updated Equation (1) to state-space form and
added environmental noise, uncertainty, unmodeled dynamic, and external disturbances
in Equation (5). ∆ui, ∆ai, and di, i = 1, 2, · · · , 6 are the nonlinear functions that introduce
the system uncertainties, unmodeled dynamic, and external disturbance, respectively.
ni, i = 1, 2, · · · , 6 is a term that simulates a noisy environment. To handle better the
system uncertainties, unmodeled dynamic, external disturbances, and environmental
noise are redefined as dx = u1∆b1 − ∆a1x2 + d1 + n1, dy = u1∆b2 − ∆a2x4 + d2 + n2,
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dz = u1∆b3 − ∆a3x6 + d3+ n3, dθ = u2∆b4 − ∆a4x8 + d4 + n4, dψ = u3∆b5 − ∆a5x10 + d5
+n5, dφ = u3∆b5 − ∆a6x12+ d5 + n6. Therefore, Equation (5) can be considered as:

ẋ = f(x, u) =



x2
u1ux − a1x2 + dx

x4
u1uy − a2x4 + dy

x6
u1uz − g− a3x6 + dz

x8
u2 − a4x8 + dθ

x10
u3 − a5x10 + dψ

x12
u4 − a6x12 + dφ



. (6)

The structure of the entire control system is shown in Figure 2. The control system in
Equation (6) belongs to the inner and outer loop control system and adopts the double-loop
control method. The position subsystem is the outer loop, and the attitude subsystem com-
prises the inner loop. The outer loop generates two intermediate command signals (ψd, θd)
and transmits the results to the inner loop. The inner loop tracks these two intermediate
commands using the SMC law.

xy

z

E

1
F

3
F 4

F

2
F

B

f

y
z

x
y

q

Figure 1. Coordinates of a quadrotor UAV.

Position System

Attitude System2 3 4, ,u u u

1u

Attitude Controller

( , )d dy qSignals Generator , ,d d dx y z

df

Pitch angle controller

Yaw angle controller

Roll angle controller

x-direction controller

y-direction controller

!-direction controller

Position Controller

Quadrotor UAV

( )1 2 3 4 5 6( ), ( ), ( ), ( ), ( ), ( )x x x x y x y x z x z xɺ ɺ ɺ

( )7 8 9 10 11 12( ), ( ), ( ), ( ), ( ), ( )x x x x x xq q y y f fɺ ɺɺ

Figure 2. Control scheme of quadrotor.



Sensors 2022, 22, 3618 6 of 14

3. Nonlinear Sliding Mode Control Design
3.1. Nonlinear Sliding Surface

As a CSMC, a linear sliding surface was applied owing to the simple design procedure.
For better performance, we consider the nonlinear sliding surface of a quadrotor controller
for fast transient response. In Equations (7) and (8), σ(ei, t) indicates the sliding plane. The
sliding surface function allows the state to move swiftly to the desired state in SMC. The
traditional sliding plane can be written in the following form:

σ(ei, t) = λiei + ėi,

= λi(xi − xid) + ẋi − ẋid, (7)

where λi is a positive integer, and ei denotes the error between the state value(xi) and the
desired value(xid). For a fast stabilization and tracking response, a new nonlinear sliding
surface is proposed as follows:

σ(ei, t) = −bi
1− ε−ciei

1 + ε−ciei
+ hiei + ėi, (8)

where ε is an exponential function, and bi, ci, and hi are positive constants. The sig-
moid function has the same basic form as ex/(ex + 1). In this paper, it is modified as in
Equation (8) to increase the reaching speed to equilibrium. Figure 3 shows the modified
sigmoid sliding surface. In Figure 3, parameters bi, ci, and hi are set to 1, 50, and 2, respec-
tively. The sliding mode plane can be divided into two parts. The first part is from infinity
to N, and the second part is from N to 0. The first part is the linear plane that is controlled
by hiei from Equation (8), and the second part is the nonlinear part that is controlled by
−bi(1− ε−ciei )/(1 + ε−ciei ) in Equation (8). When the initial value reaches the first part of
the sliding mode plane, it will first move to 0 along the linear sliding mode plane, and then
accelerate to 0 along the nonlinear sliding mode plane after reaching point N. When the
initial value reaches the second part of the sliding mode plane, it will converge to 0 directly
along the nonlinear sliding mode plane. It can be seen from Figure 3 that the inclination
angle of the second part is much larger than that of the first part, so the convergence speed
is much faster than the speed of the first part. Contrary to the traditional linear sliding
mode plane, the sliding mode plane that we designed has nonlinear acceleration parts.
Therefore, MS-SMC converges faster than the CSMC. We design the controller according to
the sliding surface in Equation (8).

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-3

-2

-1

0

1

2

3

N

Figure 3. The proposed modified sigmoid sliding surface.

3.2. Position Subsystem Control

Owing to the complex characteristics of the quadrotor system, the proposed control
scheme adopts a feedback dual-loop system, as shown in Figure 2. The position system is
in the outer loop, and the attitude subsystem is in the inner loop. First, the position system
controller was designed. From Equation (1), the subsystems ux, uy, uz for position control
can be defined as
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ux = u1(cos φ sin θ cos ψ + sin φ sin ψ),

uy = u1(sin φ sin θ cos ψ− cos φ sin ψ),

uz = u1 cos φ cos ψ, (9)

where u1 is associated with pitch and yaw angle. Using Equation (9), the formula for
Equation (1) can be modified. The position-related parts in Equation (1) can be represented
in the following form:

ẍ = ux − a1 ẋ + dx,

ÿ = uy − a2ẏ + dy,

z̈ = uz − g− a3ż + dz. (10)

To overcome the time delay owing to the deceleration curve in SMC, the nonlinear
sliding surface that reduces the convergence time with a modified deceleration curve was
proposed [34]. With Equation (8), the novel modified sigmoid sliding surfaces can achieve
the fast-tracking trajectory owing to a nonlinear term in the sliding surfaces. Using the new
nonlinear sliding surface in Equation (8) to design a sliding mode controller, the nonlinear
sliding surfaces can be represented as:

e1 = x1 − x1d, ė1 = x2 − x2d,

e2 = x3 − x3d, ė2 = x4 − x4d,

e3 = x5 − x5d, ė3 = x6 − x6d, (11)

where e1, e2, and e3 are the errors of x1, x3, and x5, respectively; ė1, ė2, and ė3 are the errors
of x2, x4, and x6, respectively:

σx = −b1
1− ε−c1e1

1 + ε−c1e1
+ h1e1 + ė1,

σy = −b2
1− ε−c2e2

1 + ε−c2e2
+ h2e2 + ė2,

σz = −b3
1− ε−c3e3

1 + ε−c3e3
+ h3e3 + ė3, (12)

where σx, σy, and σz are the three sliding surfaces for ux, uy, and uz, respectively. For the
first position subsystem, the controller can be designed as follows:

ux = −
(

b1
ε−c1e1

(1 + ε−c1e1)2 c1 ė1 + h1 ė1 − a1x2 − ẋ2d + η1sgn(σx) + α1σx

)
, (13)

where η1 and α1 have conditions of η1 ≥ dx and, α1 > 0, respectively.

Proposition 1. For the position system in x-direction described by Equation (10), if the sliding
mode surface σ(ei, t) is selected as in Equation (8), the quadrotor in x-direction guarantees stability
and tracks the desired value fast.

Proof. The stability of ux can be proved by the Lyapunov function of V(σx) = σ2
x /2 as

V̇(σx) = σxσ̇x

= σx

(
b1

ε−c1e1

(1 + ε−c1e1)2 c1 ė1 + h1 ė1 + ux − a1x2 + dx − ẋ2d

)
. (14)

Substituting Equation (12) into Equation (13), Equation (14) can be simplified as follows:
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V̇(σx) = σx[−η1sgn(σx)− α1σx]

= −η1|σx| − α1σ2
x < 0. (15)

This completes the proof of stability. By following the same design procedures for uy
and uz, we obtain:

uy = −
(

b2
ε−c2e2

(1 + ε−c2e2)2 c2 ė2 + h2 ė2 − a2x4 − ẋ4d + η2sgn(σy) + α2σy

)
, (16)

uz = −
(

b3
ε−c3e3

(1 + ε−c3e3)2 c3 ė3 + h3 ė3 − a3x6 − g− ẋ6d + η3sgn(σz) + α3σz

)
, (17)

where η2 and α2 have conditions that are η2 ≥ dy and α2 > 0, respectively; η3 and α3 have
conditions that are η3 ≥ dz and α3 > 0, respectively.

3.3. Virtual Attitude Angles

To achieve θ and ψ tracking for θd and ψd, we need to obtain the solution in a closed
analytic form. The subsystem łfor and in Equation (9) can be expressed in matrix form:

[
ux
uy

]
=

[
cos φd sin φd
sin φd − cos φd

][
sin θd cos ψd

sin ψd

]
u1. (18)

For the first row of Equation (18), ψd can be found as:

ψd = arctan

(
sin φd cos φdux − cos2φduy

uz

)
. (19)

For the second row of Equation (18), θdcan be found as:

sinθd =
cos φd(cos φdux + sin φduy)

uz
. (20)

Since the value of the sine function is between −1 and 1, the value of sin θd is bounded
as −1 < sin θd < 1. To prevent sinθd from taking a real value out of the [−1, +1] range, we
define an intermediate value H, which is cos φd(cos φdux + sin φduy)/uz. When H is out
of the range [−1, +1], θd does not exist. We thus assign values to achieve the continuity
of Equation (20), i.e., if H < −1, sin θd = −1 and θd = −π/2 ; if H > 1, sin θd = 1 and
θd = π/2; finally, when |H| ≤ 1, θdis calculated as follows:

θd = arcsin
[

cos φd(cos φdux + sin φduy)

uz

]
, (21)

Since u1 is related to roll and yaw angle, after obtaining θd and ψd, the control law of
position u1 is as follows:

u1 =
uz

cos φd cos ψd
. (22)

3.4. Attitude Subsystem Control

As the outer loop system of the two angles (roll and yaw) generated by the position
system needs to be processed in the inner loop, three inputs (roll, pitch, and yaw) are passed
to the position system. The design of the attitude subsystem is important for deciding a
control input that is closely related to the location output. By using the new nonlinear
sliding surface in Equation (8) to design the attitude controller, the nonlinear sliding surface
can be represented as:
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e4 = x7 − x7d, ė4 = x8 − x8d,

e5 = x9 − x9d, ė5 = x10 − x10d,

e6 = x11 − x11d, ė6 = x12 − x12d, (23)

where e4, e5, and e6 are the errors of x7, x9, and x11, respectively,ė4, ė5, and ė6are the errors
of x8, x10, and x12, respectively.

σθ = −b4
1− ε−c4e4

1 + ε−c4e4
+ h4e4 + ė4,

σψ = −b5
1− ε−c5e5

1 + ε−c5e5
+ h5e5 + ė5,

σφ = −b6
1− ε−c6e6

1 + ε−c6e6
+ h6e6 + ė6, (24)

σθ , σψ, and σφ are three sliding surfaces for u2, u3, and u4, respectively. Following the
same design procedures as the secondary position subsystem, an attitude controller can be
designed. Therefore, the controllers for the attitude angle (θ, ψ, φ) are as follows:

u2 = −
(

b4
ε−c4e4

(1 + ε−c4e4)2 c4 ė4 + h4 ė4 − a4x8 − ẋ8d + η4sgn(σθ) + α4σθ

)
, (25)

u3 = −
(

b5
ε−c5e5

(1 + ε−c5e5)2 c5 ė5 + h5 ė5 − a5x10 − ẋ10d + η5sgn(σψ) + α5σψ

)
, (26)

u4 = −
(

b6
ε−c6e6

(1 + ε−c6e6)2 c6 ė6 + h6 ė6 − a6x12 − ẋ12d + η6sgn(σφ) + α6σφ

)
, (27)

where η4, η5, and η6 have conditions that η4 ≥ dθ , η5 ≥ dψ , η6 ≥ dφ, and α4, α5 , and α6
are positive. u3 is the controller related to the attitude angle of pitch, and u4 controls the
attitude angle of yaw, which can realize the fast convergence of θ and ψ. Moreover, u2
controls the roll angle φ, which can track the desired angle of φd. Due to the existence of
the discontinuous switching function sgn(.) in Equations (13), (16), (17) and (25)–(27), the
chattering problem occurs after the initial value reaches the sliding surface; therefore, the
nonlinear quadrotor system with uncertainty may appear to be an undesired response.
To solve this problem, the function sgn(.) can be replaced by the following continuous
saturation function:

sat(σ) =
{

sgn(σ), |σ| > Λ,
σ
Λ , |σ| ≤ Λ,

(28)

where Λ is the boundary layer thickness.
The Lyapunov candidate function for overall closed-loop system in Equation (5) is

selected as

Voverall =
1
2

(
σ2

x + σ2
y + σ2

z + σ2
θ + σ2

ψ + σ2
φ

)
. (29)

The derivative of Equation (29) with respect to time can be written as Equation (30) with
ux, uy, uz, uθ , uψ, and uφ being substituted by Equations (13), (16), (17) and (25)–(27), respec-
tively. Therefore, the stability of overall closed-loop system is guaranteed by Equations (29)
and (30), ensuring trajectory tracking capability of position and attitude subsystem:

V̇overall = σxσ̇x + σyσ̇y + σzσ̇z + σθ σ̇θ + σψσ̇ψ + σφσ̇φ ≤ 0. (30)
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4. Simulations

In this section, a simulation is performed to confirm the effectiveness of the quadrotor
controller based on the proposed MS-SMC. MS-SMC exhibited high performance compared
with CSMC and BS-SMC. To prove the feasibility of the proposed control algorithm, we
used MATLAB/Simulink and chose ODE45 as a solverin Simulink. In our simulation,
dx, dy, dz, dφ, dθ , and dψ are set to−0.2+ 0.4 · rand(t). The parameters of the UAV model are
listed in Table 1. h1, h2, and h3 are the parameters of the position controller, and the values
are set to 1.1. h4, h5, and h6 are related to the parameters of the attitude controller, and the
values are all 50. α1, α2, and α3 are parameters related to the control rate of the position
controller, with the value of 0.10. α4, α5, and α6 are parameters related to the attitude control
rate, with the value of 0.10. η is a parameter to adjust the chattering of the sliding mode
controller. The position parameters are η1, η2, and η3, with the value of 0.1. The attitude
controller’s parametersη1, η2, and η3 with the value of 50. Moreover, the boundary layer
thickness is set to 0.2 in the saturation function. The angle that we track is 72°, and the
desired altitude in the z-axis direction is 3.0 m.

Table 1. Numerical parameters of the quadrotor model.

Parameter Value Unit

I1,I2 1.25 [Ns2/rad]
I3 2.5 [Ns2/rad]
m 2 [kg]

K1 = K2 = K3 0.010 [Ns/m]
K4 = K5 = K6 0.012 [Ns/m]

l 0.2 [m]
g 9.8 [m/s2]

x(0) 2 [m]
y(0) 1 [m]
z(0) 0 [m]

θ(0) = φ(0) = ψ(0) 0 [degree]

Figures 4 and 5 show the performances on tracking and stability, respectively. Figure 4
shows the simulation results for stability, which correspond to the pitch and yaw angles.
θd and ψd are derived from x, y, and z in the position subsystem and are related to the roll
value. Therefore, θd and ψd change over time, as shown in Figure 4. Figure 4a,b show the
tracking trajectories of attitude angles (θ, ψ) controlled by CSMC, BS-SMC, and MS-SMC,
respectively. In Figure 4, the red, blue, cyan, and black dashed lines represent the desired
angle, the quadrotor angles of CSMC, BS-SMC, and MS-SMC, respectively. As shown in
Figure 4, the CSMC and BS-SMC have a large deviation, and the MS-SMC follows the
desired angle of θd and ψd with less fluctuation. In Figure 4a, the pitch angle θ of each
method tracks its desired signal θd at t = 1.2 s by CSMC, at t = 1.1 s by BS-SMC, and at
t = 0.8 s by MS-SMC. In Figure 4b, the yaw angle ψ of each method tracks its desired signal
ψd at t = 1 s by CSMC and BS-SMC, and at t = 0.1 s by MS-SMC. Therefore, tracking time is
effectively lessened by MS-SMC. Figure 5 shows the tracking of degrees of freedom such as
x, y, z, and roll angle, which are represented by subgraphs (a), (b), (c), and (d), respectively,
and the designed MS-SMC is compared with CSMC and BS-SMC. Figure 5a,b describe
the movement in the x and y directions, respectively.In Figure 5, the red, cyan, and black
dashed lines represent CSMC, BS-SMC, and MS-SMC, respectively. Moreover, initial values
are set to x(0) = 2.0 m and y(0) = 1.0 m. Both values were set to finally reach the position
of 0 m. These changes can clearly show the control performance of each controller. The
results show that MS-SMC reaches the equilibrium point faster than CSMC and BS-SMC.
Figure 5c,d describe the trajectory in the z-axis and roll angle, respectively. In Figure 5a, the
desired trajectory of x is tracked after 1.5 s by CSMC, and 1.4 s by BS-SMC. For MS-SMC,
the result is much better with a tracking time of 1.2 s. The position of y reaches the target
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value of 0m at t = 2.0 s by CSMC, at t = 1.8 s by BS-SMC, and at t = 0.8 s by MS-SMC
in Figure 5b. In Figure 5c, CSMC, BS-SMC, and MS-SMC take the same time of 1.4 s to
reach the desired value in the z-direction. In Figure 5d, the desired angle of φ is tracked by
MS-SMC after 0.14 s while the tracking time is 0.2 s for CSMC and BS-SMC. We checked the
tracking performance in the z-axis and roll angle. After setting the initial value in the z-axis
to 0, the target value is put as 3.0 m. At this time, the controller has the role of adjusting
the roll angle from the initial value 0◦ to 72◦. In this paper, it can be checked that MS-SMC
reaches the target value quickly compared to CSMC. As disturbances are applied, the
system controlled by the CSMC and BS-SMC becomes unstable. On the contrary, MS-SMC
makes it easier to maintain the stability after reaching the target. The simulation results
show that MS-SMC reaches the target value faster than CSMC and BS-SMC. Figure 6 shows
the control input comparison for CMSC, BS-SMC, and MS-SMC. The control input u1
represents the total force applied for the altitude control of the quadrotor. Other control
inputs (u1, u2, u3) are the force values for control of pitch, yaw, and roll angles, respectively.
MS-SMC demonstrates better control behavior in Figure 6.
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Figure 4. Stabilization of quadrotor using MS-SMC, CSMC, and BS-SMC.
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Figure 5. Tracking of quadrotor for x, y, z, and φ.
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Figure 6. Control inputs of overall system: (a) control input for lifting force, (b) control input for
pitch angle, (c) control input for roll angle, and (d) control input for yaw angle.
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5. Conclusions

In this study, we applied the MS-SMC based on a new nonlinear sliding surface to
improve the stabilization and tracking of a quadrotor. Compared with CSMC and BS-SMC,
a nonlinear sliding surface can reduce the time required to reach equilibrium. The position
control (ux, uy, uz, u1) can be derived from the position subsystem using the proposed
MS-SMC algorithm. Attitude control (u2, u3, u4) can be obtained by the attitude subsystem
using the proposed MS-SMC. The desired angles of roll and pitch are obtained by the
control inputs of x, y, and z. According to our design method, the pitch and yaw angles
(θ, ψ) can converge quickly to θd and ψd. Similarly, x, y, z, and φ can achieve good tracking
effects compared to the CSMC and BS-SMC.
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