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Abstract: Dealing with low-light images is a challenging problem in the image processing field.
A mature low-light enhancement technology will not only be conductive to human visual perception
but also lay a solid foundation for the subsequent high-level tasks, such as target detection and
image classification. In order to balance the visual effect of the image and the contribution of the
subsequent task, this paper proposes utilizing shallow Convolutional Neural Networks (CNNs) as
the priori image processing to restore the necessary image feature information, which is followed
by super-pixel image segmentation to obtain image regions with similar colors and brightness and,
finally, the Attentive Neural Processes (ANPs) network to find its local enhancement function on each
super-pixel to further restore features and details. Through extensive experiments on the synthesized
low-light image and the real low-light image, the experimental results of our algorithm reach 23.402,
0.920, and 2.2490 for Peak Signal to Noise Ratio (PSNR), Structural Similarity (SSIM), and Natural
Image Quality Evaluator (NIQE), respectively. As demonstrated by the experiments on image Scale-
Invariant Feature Transform (SIFT) feature detection and subsequent target detection, the results of
our approach achieve excellent results in visual effect and image features.

Keywords: low-light; Image enhancement; attentive neural processes; super-pixel segmentation

1. Introduction

Image enhancement technology has gradually pervaded all aspects of human life and
social production [1], with the enhancement of the low-light images being an important
branch of image enhancement. In the real scene, due to the lack of ambient light, anomalous
exposure, and other factors, when we took dark images, as shown in Figure 1a–c, the low
light environment affects our observation, and it greatly affects computer vision tasks such
as target recognition and landscape analysis [2]. Relatively, we select some of the bright
images of the Pascal VOC dataset (https://pjreddie.com/projects/pascal-voc-dataset-
mirror/ (accessed on 1 March 2020)) to display in Figure 1d–f, and we can see that the
bright images have a uniform distribution of light and have distinct features with rich
detailed information. Compared to dark images, bright images usually provide humans a
pleasant visual enjoyment and allow computers to better simulate human perception and
observation to obtain more accurate information about the corresponding scenes. Therefore,
we are looking for ways to improve the “quality” of low-light images for specific visual
tasks. There are two quality requirements: visual effect and image features. The visual
effect of an image influences a person’s most intuitive evaluation of the image: for example,
an image with full color and moderate brightness will often bring people a pleasant
experience. Image features describe the characteristics of the image or its surrounding
area [3], which can influence how an image is interpreted and recognized for a subsequent
special task. Although there are many studies on low-light image enhancement [4–6], their
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methods often fail to achieve a good balance between visual effects and image features,
ignoring feature information to make the image aesthetically pleasing.

Figure 1. Examples of low-light images (top row) and bright images (bottom row) with global
intensity histograms, their local illumination values and the number of sift features for each region.
(a,b) Real low light images that exist in reality, (c) synthesized low light image, ((d–f) bright images).

Figure 1a,b show that real-world low-light images near the light source are sharper
and contain more image information than those far away and that the number of features
contained in each image location varies greatly in both in bright and low-light images. As a
result, if we use the same enhancement strategies for every region of an image, we will
frequently end up with an overexposed or still dark image that ignores local information.
Most of the existing methods focus on the global strategies, Liang [7] takes this into
account and chooses the Gaussian Process (GP) to enhance low-light images. However,
because the method is based on uniform patches, the results are unsatisfactory. Inspired
by [7], this paper utilizes super-pixel image segmentation and ANP as the key enhancement
step to manipulate low-light enhancement from global to local. The super-pixel image
segmentation can divide images based on their luminance and color similarity, and the
regions of the segmentation can be improved with ANP to achieve a more natural visual
effect and restore the local features. In comparison to GP, ANP incorporates the attentional
mechanism, which improves the effectiveness of its observations of relationships between
image regions.

Our approach involves the following steps. To begin, we train a CNN network using
a synthetic low-light image dataset to produce a preliminary enhanced image as an a priori
image processing. This process attempts to restore as much of the original low-light image
feature information as possible. After that, we use super-pixel image segmentation to create
a series of image regions made up of pixels with adjacent positions and similar features
such as color, brightness, texture, etc. Following that, ANP trains each low-light super-pixel
to improve its brightness, emphasize and recover its features, and then fuse them to create
the final enhanced image. Each ANP training includes the results of the previous training to
eliminate the unnatural junction part of each image region during the stitching and fusion
process. The experimental results show that in comparison to other advanced techniques,
our framework improves the visual brightness of the image while also restoring the image’s
feature information for subsequent tasks.
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The main contributions of this paper are as follows:

• We use CNN as the initial enhancement step, which can restore features from the
original image, allowing us to retain more details in our enhancement results for
subsequent feature matching, target detection, and other image processing operations.

• We propose a new local image enhancement method that utilizes super-pixel segmenta-
tion to obtain image regions and then enhances local information with ANP networks.

• Through extensive experiments on the synthesized low-light image and the real low-
light image, we verify that our approach achieves excellent results in visual effect and
image features.

This paper is organized as follows. Section 2 details the classification of low-light image
enhancement algorithms and the advantages and disadvantages of common algorithms.
Section 3 presents our experimental framework by modules in detail. Section 4 presents
the results of the study. Section 5 is the conclusion of this paper.

2. Related Works

Computer vision tasks are a rapidly developing branch of artificial intelligence that is
widely used in various engineering fields [8,9]. Chen [10] established a four-camera vision
system to obtain the visual information of targets and designed a point cloud correction
algorithm by filtering and splicing operations. Tang [11] proposed a mathematical model
for reconstructing the 3D deformation surface using the four-ocular visual coordinates and
point cloud matching.

Low-light image enhancement techniques are an important aspect of computer vision
and are critical for subsequent higher-order image tasks. Low-light image enhancement is
a technique for improving the brightness, contrast, color, and detail of low-quality images
taken in a low-light environment. At present, the various works can be categorized into
four categories [2].

The first category includes methods based on Histogram Equalization (HE) [12–15].
The basic concept behind HE is to alter the grayscale of the pixels in the original image.
It widens the grayscale levels in the image with more pixels and narrows the grayscale
levels in the image with fewer pixels, transforming the corresponding histogram into a
uniformly distributed form. The purpose is to enhance the overall contrast of the image
to improve its clarity. Moreover, the image reaches the greatest entropy and contains the
greatest amount of information. The Contrast Limited Adaptive Histogram Equalization
(CLAHE) [12] method proposed by Pisano et al. is a type of local processing of images that
prevents over-enhancement by limiting the stretching of similar grayscale levels in local
image patches.

The second category includes methods based on the Retinex model [16–19]. The basic
theory behind the Retinex model is that the color of an object is determined by its reflective
ability to long-wave (red), medium-wave (green), and short-wave (blue) light. Its color is
not determined by the absolute value of the intensity of the reflected light and is unaffected
by the non-uniformity of illumination. It means Retinex is based on color consistency.
Unlike traditional linear and non-linear methods that can only enhance certain types of
image features, Retinex can achieve a balance between dynamic range compression, edge
enhancement, and color constancy, allowing for adaptive enhancement of a variety of
different types of images. Li et al. [16] combine the noise map and the Retinex model to
achieve low-light enhancement by proposing a new optimization function.

The third category includes methods based on the defogging model [20–23]. Kaiming
He proposed the a priori theory of dark channels in images in 2011 [20], which has been
widely used in the field of image enhancement. The algorithm’s main idea is that inverting
a color image taken in a dark environment has a similar visual effect to a daytime image
taken in a foggy environment. Therefore, the inverted low-light image can be processed by
using the defogging algorithm based on a dark channel prior, which can then be inverted
back to obtain an enhanced low-light image.
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The fourth category includes methods based on neural networks, which have made sig-
nificant advances in image processing in recent years [24–27]. Deep learning is the creation
of a network model that mimics the human brain’s information processing mechanism. It
utilizes an efficient learning strategy to gradually restore features to accommodate complex
non-linear functions. CNN is been used as the basis of deep learning frameworks in many
research works [24,26]. Furthermore, deep learning approaches have been proposed based
on the Retinex theory as well [25].

The methods listed above have worked well in the low-light field in different ways.
However, there are still some issues that need to be solved. The HE model has the disad-
vantage of causing color shift and a loss of detail in the image due to grayscale merging.
In some scenes, the Retinex models can compromise the image’s robustness and cause
severe color distortion. The defogging model lacks physical interpretation, while the bright-
ness and contrast of the resulting graphs still need to be improved. Deep learning-based
models for low-light image enhancement have performance advantages, but they require
large datasets, and the increased complexity of the network structure leads to a sharp
increase in the time complexity of the corresponding algorithms. Furthermore, the majority
of methods focus solely on the visual enjoyment provided by the final result, ignoring
the critical information such as image features required for subsequent image processing.
However, features are crucial for images to enhance the robustness of image matching and
improve the efficiency of subsequent image target matching.

Our paper seeks to find a balance between image visualization and image feature
restoration and improve the ability of our approach to combine fast operation and good
enhancement quality. Therefore, our method utilizes CNN as an image prior; then, it
selects super-pixel segmentation and ANP as image local enhancement steps, which differs
from traditional neural networks that look for a set of function relations and then invokes
different mappings according to different requirements to obtain the final result rather
than looking for a global function to represent the enhancement relations. This makes
our experimental results not only visually appealing but also restores the original feature
information of the image and enriches the image details.

3. Proposed Method

In this section, we present give the overall framework of our algorithm, which contains
two stages. We then describe in detail the component modules of the two stages.

3.1. The Overall Framework of Our Method

Our method is divided into two stages. The first stage is to obtain the image’s initial
global enhancement result. We use a shallow CNN to improve the brightness of the
original image while restoring primary features. The second stage is the local enhancement
of the image. We focus on the use of super-pixel segmentation and the ANP network
structure in our approach to achieve the corresponding enhancement of different image
regions. The local enhancement step can help restore low-light image features and improve
visual effects.

First, the RGB color space is converted to YUV color space for the low-light image. We
then use a CNN network to obtain the preliminary enhancement results for the luminance
component (Y) of the low-light image while keeping the chromaticity (U) and saturation
(V) components unchanged. Then, we perform super-pixel segmentation on the initial
enhanced image obtained by CNN and copy the segmentation result directly to the cor-
responding low-light image to have consistent regions of segmentation between image
pairs. Finally, each low-light image region is gradually trained with ANP to achieve natural
image blend boundaries, and then, the output image is converted to RGB space to obtain
the final enhanced image. The flowchart of our algorithm is shown in Figure 2.
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Figure 2. The flowchart of our method.

3.2. Initial Enhancement

Since bright images contain rich feature information, as shown in Figure 1d–f, we
utilize bright images to generate low-light images as a training set, which is generated with
a fixed formula. Therefore, we designed a shallow neural network to recover the bright
images and consequently restore the features. Figure 3 shows the CNN network structure
for our approach.

Figure 3. The architecture of CNN network.

There are four convolutional layers in the CNN network, with the kernel sizes 9× 9,
1× 1, 5× 5 and 5× 5, and output feature maps 64, 32, 16, and 1, respectively. We choose to
minimize the Mean Square Error (MSE) loss function to update the weights to establish
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pixel-to-pixel correspondence and complete the mapping between images. It is expressed
as Equation (1):

MSE =

n
∑

i=1
(yi − yi

p)2

n
(1)

N in the equation represents the number of pixels in the image, and yi and yi
p represent

the intensity of pixel i in the training image and the corresponding target image, respectively.
The Linear Rectification (ReLu) and Leaky ReLu (LReLu) functions [28] were chosen

because of their highly non-linear characteristics, which allows them to mitigate the gradi-
ent vanishing phenomenon. When these two functions are combined, they can improve the
ability to retain the original image’s detailed information and facilitate feature restoration
using high-speed training.

In this paper, we use a CNN network to determine the Y component of a bright image
based on its corresponding low-light image, which requires a large amount of supervised
data. However, the current datasets of low-light images [25] are usually images taken
under low-light conditions or low-light images obtained by changing the camera exposure,
which is not conducive to the training of the CNN network. Furthermore, because the
bright images, as mentioned in Section 1, contain rich feature information, they can be used
as ground truth to generate low-light images to create a paired dataset. It is then possible to
design a CNN network to recover the ground truth image and thereby restore the features
indirectly. We adopt the method of adjusting normal images with Equation (2) based on
gamma correction to generate low-light images with different darkness levels.

Vout = Vγ
in (2)

Vout represents the output image, while Vin represents the input image. The whole
process is pixel-wise. γ is utilized to adjust image illumination. We choose γ = [2, 4, 8, 16]
to perform the synthesis of low-light images, and the effect is shown in Figure 4.

Figure 4. Low-light images are synthesized from bright images using different parameters γ.

3.3. Local Enhancement
3.3.1. The Super-Pixel Segmentation

Super-pixel [29] refers to the irregular blocks of pixels with similar texture, color,
brightness, and other features, which make up a certain visual meaning. Super-pixel
segmentation is the process of grouping pixels together based on their similar features and
replacing a large number of pixels with a small number of super-pixels to express an image’s
features, greatly reducing image post-processing complexity. Super-pixel segmentation of
the image, in our approach, makes subsequent image local enhancement operations easier,
resulting in a more natural visual result with more details.

Our paper uses Simple Linear Iterative Clustering (SLIC) [30], a simple linear iterative
clustering method, to segment the preliminary enhanced images obtained by CNN. Then,
based on the segmentation result, we acquire the same regions on the low-light image to
form region pairs as ANP training data. CNN networks can improve low-light images by
restoring features in the dark areas, resulting in more accurate super-pixel segmentation
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results. However, there is no corresponding bright image for real low-light images, resulting
in inaccurate segmentation results. So, the initial enhancement of the CNN network for
low-light images is necessary for the super-pixel segmentation step in our method.

Some “isolated” pixels that do not belong to the same connectivity component as
their clustering center may remain after the clustering process is completed. Therefore,
in order to make the color brightness of the regions of images obtained by segmentation
more similar, the label of the nearest cluster center can be assigned to these pixels using a
connectivity component algorithm [31].

3.3.2. ANP for Local Enhancement

After the super-pixel segmentation, we obtain the image region pairs, utilize the ANP
network to learn the function mapping distribution of each regional pair from input to
output, and use the distribution to make predictions for a given input when testing.

Gaussian processes are very powerful approximators. DeepMind has presented three
studies that combine Gaussian processes with neural networks, the models that achieve
the efficiency of neural network training with the flexibility of Gaussian processes in
inference, namely Neural Processes (NPs) [32], Conditional Neural Processes (CNPs) [33],
and Attentive Neural Processes (ANPs) [34]. ANP incorporates an attentional mechanism,
which result in a better fit than the previous two. ANP can reason about multiple functions
for the same data and can capture output synergies for a given input. The overall structure
of the ANP network in this paper is shown in Figure 5.

Figure 5. The structure of the ANP.

During the training phase, we first get a subset of contexts C with randomly selecting
N pixel pairs at the same location from the initial enhancement image obtained by CNN
and the input low-light image. Then, Nc pixel pairs are randomly selected from C as
targets T. Through three paths, they obtain the data expression r∗, the normally distributed
expression Z, and the distribution F(T) of T. During the testing phase, we assume that the
target is set to T′, which is a sequence of uniformly distributed intensity values between
the region’s lowest and highest pixels and is determined by the input image region. When
combining this sequence with the trained parameters, we can obtain a distribution of pixel
intensities in the region. Finally, we can apply the distribution to the original low-light
image region to obtain the final enhancement results.

In the deterministic path, the encoder is shared between all context pairs and consists
of a Multilayer Perceptron (MLP) and an attention module. The experimental task finds
the correspondence between two-dimensional image intensities, which is essentially a
one-dimensional regression task. Therefore, three layers of MLP with ReLu nonlinearities
are sufficient to simulate the interaction between each context pair, with the implicit layer’s
number of neurons set to 128. The network structure includes an attentional mechanism
that allows it to focus on a subset of its inputs (or features) and thus more efficiently selects
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image information for enhancement. We choose Multihead attention [35] in our paper.
It is a parametrized extension that linearly transforms the keys, values, and queries for
each head before applying dot-product attention to produce headspecific values. These
values are concatenated and linearly transformed to produce the final values as shown in
Equation (3):

MultiHead(Q, K, V) = concat(head1, ..., headH)W
headh = DotProduct(QWh

Q, KWh
K, VWh

V),
(3)

where Q represents the numerical matrix for a given low light intensity T, K represents
the data matrix extracted during training, and V is the data representation of training data
obtained through MLP. H represents the number of subspaces divided on the model, which
is chosen as 8 in this paper. W is a weight matrix to indicate the importance of each part of
the information.

In the latent path, the encoder in its path is also shared by all context pairs, which
has the same hidden layer size as the defined path. Then, using two fully connected
layers, we calculate the mean and standard deviation of the data representation to obtain
its distribution expression Z, which results correlations in the marginal distribution of the
target predictions.

In the decoding path, r∗, T, and Z are passed through the decoder to predict the
maximum posterior probability value, and the parameters of the whole network are learned
the same as in article [34] by maximizing the Evidence Lower Bound (ELBO) [36] as shown
in Equation (4):

log p(yT |xT , xc, yc) ≥ Eq( z|sT)
[log p(yT |xT , rc, z)]− DKL(q( z|sT)‖q(z|sc ) ) (4)

for a random subset of contexts C and targets T via the reparameterization trick.
When the ANP has enhanced the low-light super-pixel region, the result is combined

with the next super-pixel region and sent to the ANP network for progressive enhancement.
Then, we repeat this step until the low-light image is completely enhanced. The step-by-
step enhancement process causes ANP to pay more attention to the local regions, resulting
in more natural stitching and fusion between local regions of the image and also stronger
features of each super-pixel region.

4. Experiments and Results Analysis

In this section, the performance of our proposed methodology is compared with sev-
eral state-of-art methods, including: LIME [37], Gaussian Process (GP) [7], CLAHE [38],
RetinexNet [25], BIMEF [39], OCTM [40], DeHaze [21], KinD+ [41] and CNN in stage 1.
For supervised images, we used PSNR and SSIM [42] as the quality evaluation; as for feature
restoration, we use SIFT feature matching to validate our method. The synthetic low-light
images are obtained by darkening the brightness of the bright images according to the
method described in Section 3.2. For real low-light images, we select the ExDark dataset [43]
for qualitative assessment. The Exclusively Dark dataset contains 7363 low-light images
with 12 object classes from very low-light environments. We evaluate our method from
subjective effects and objective indicators with the NIQE [44] metric and numbers of sift
features. In addition, to explore the superiority of our method in feature restoration, we per-
form object detection on the enhanced results. To establish a fair comparison with the other
methods, the code of [7] is reimplemented based on the details given by the paper, whereas
the codes of LIME (https://github.com/aeinrw/LIME (accessed on 1 May 2021)), CLAHE
(https://github.com/lxcnju/histogramequalization (accessed on 1 May 2021)), RetinexNet
(https://github.com/daooshee/BMVC2018website (accessed on 1 May 2021)), BIMEF
(https://github.com/baidut/BIMEF (accessed on 1 May 2021)), OCTM (https://github.
com/Eason-Sun/Enhancement-of-Low-Lighting-Color-Images (accessed on 1 May 2021)),
DeHaze (https://github.com/evmavrop/Hyperion (accessed on 1 May 2021)) and KinD+
(https://github.com/zhangyhuaee/KinD (accessed on 1 May 2022)) are obtained from the
open source website.

https://github.com/aeinrw/LIME
https://github.com/lxcnju/histogram equalization
https://github.com/daooshee/BMVC2018website
https://github.com/baidut/BIMEF
https://github.com/Eason-Sun/Enhancement-of-Low-Lighting-Color-Images
https://github.com/Eason-Sun/Enhancement-of-Low-Lighting-Color-Images
https://github.com/evmavrop/Hyperion
https://github.com/zhangyhuaee/KinD
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4.1. Implementation Details

For the CNN training data, we selected 300 normal high-resolution images from the
Pascal VOC dataset with correction to obtain 1600 images (including the original images)
with four different darkness levels as training data. The model was trained using the
original images that are resized to 255× 255 pixels and normalized to the range of [0, 1]. We
chose to train the CNN to restore the image’s contextual information and features, ensuring
that it captures valid object features, while ANP handles the subsequent local intensity
processing. During each step of the ANP network training process, we randomly select
200 pairs of pixels at a time for a total of 2000 training sessions to obtain the distribution.
The experiment uses the tensorflow1.6 and, python3.6 environments, and the experimental
platform includes an Intel (R) Core (TM) i5-9300H processor, 8 GB of-G memory, and an
NVIDIA GTX 1650 GPU.

4.2. Supervised Images Qualitative Evaluation

Firstly, we qualitatively compare the results of the methods in this paper to a number
of currently available methods on supervised images. Figure 6 shows an example of a
low-light image and the results produced by each method.

Figure 6. Example of low-light enhancement on a synthesized low-light image.

It is clear that our method, along with GP and CNN, has the most natural and no-
ticeable brightness. In addition, for the part with more details and more complex lines in
the image (blue boxes in Figure 6), RetinexNet, LIME and Dehaze’s result has a certain
degree of feature loss, and the colors are too close to each other, which makes it difficult to
distinguish the details of the image. CLAHE has some color distortion, OCTM enhances
the brighter part of the original image, which produces unsatisfactory results. KinD+
and BIMEF’s overall enhancement effect is not as significant as our method. To make the
comparison of results more convincing, more examples of results are shown in Figure 7.
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Figure 7. More examples of low-light enhancement on synthesized low-light images. The part
represented by the red box has been enlarged and is shown in Figure 8.

Figure 8 is the partially image patches obtained by enlarging the red box of Figure 7,
and it can be seen that CNN highlights the feature boundaries of the original image to
provide key information. However, its overemphasis on features leads to unnatural color
transitions in the image. Subsequent ANP enhancement can preserve the details of the
original image in a more natural way. In comparison to GP, ANP’s attention mechanism
makes it more predictive of function distribution and reduces the appearance of noise.
The results can also be reflected in subsequent objective metrics.

Figure 8. The comparison in details of GP, CNN, and our approach.

In order to objectively assess the image quality, we use quantitative assessments based
on three evaluation metrics: the PSNR, SSIM, and local feature matching.

PSNR (Peak Signal to Noise Ratio) is an objective standard for evaluating images.
To measure the quality of the processed image, we usually refer to the PSNR value to see if
a method is satisfactory. Its mathematical formula is as shown in Equation (5):

PSNR = 10× log10(
(2n − 1)2

MSE
), (5)

where MSE is the mean square error between the original image and the resulting image.
SSIM (Structural SIMilarity) is a measure of the similarity between two images, one

of which is an uncompressed, distortion-free image, and the other is a distorted image.
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Given two images x and y, the SSIM of the two images can be determined as shown in
Equation (6):

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µx2 + µy2 + c1)(σx2 + σy2 + c2)
, (6)

where µ denotes the mean and σ denotes the variance of the images. c1 and c2 stand for
two constants, avoiding division by zero. When two images are identical, the value of SSIM
is equal to 1.

Table 1 shows the results of the average PSNR for the RGB channel and the SSIM
for the gray channel for all test images. All values were obtained by selecting 50 low-
light synthetic images at random and enhancing them in the same running environment.
To ensure fair results for comparison, we used the same parameters on the evaluation
metrics. In particular, as part of the ablation experiment, we add the network with the super-
pixel segmentation step removed to verify the functionality of our individual modulesas.

Table 1. Average PSNR and SSIM. The best data is marked in red.

Method Dark
Image LIME DeHaze CLAHE RetinexNet KinD+

PSNR 12.523 16.345 17.369 19.014 16.223 23.016
SSIM 0.410 0.677 0.883 0.792 0.748 0.870

Method BIMEF OCTM GP CNN in
Stage 1

Remove
Super

Pixel Seg-
mentation

Proposed

PSNR 17.629 13.837 21.442 22.170 22.845 23.402
SSIM 0.866 0.629 0.891 0.902 0.898 0.916

From Table 1, it can be seen that our method has the highest PSNR and SSIM. Our
method is more natural and produces a better visual effect, which also means that ANP
prioritizes the extraction and restoration of details and features over other network struc-
tures without sacrificing the enhancement effect. In addition, according to the ablation
experiments, we can find that super-pixel segmentation plays an important role in the
whole algorithm. It enables each image processing to focus on a specific region, reducing
the amount of data per processing and improving the effectiveness of feature recovery.

For qualitative evaluation of image features, we use SIFT feature matching [7], which
is scale-invariant feature transformation, to detect local features of the image, and extract
the position, scale, and rotation invariance of these points. These key points are some
very prominent points that do not change due to lighting and noise factors, such as corner
points, edge points, bright spots in dark areas, and dark spots in bright areas, so they are
independent of the image size and rotation, and they have a high tolerance for light, noise,
and perspective changes. Figure 9 shows some examples of features detected from the
enhancement results and matched to the features detected in the original bright image.
We use Euclidean distance to describe the similarity between features and equally set
the threshold to 0.4. We can also see from the ablation experiments that super-pixel
segmentation is important in the overall algorithm. It allows each image processing to
focus on a specific region, reducing the amount of data processed per processing and
improving feature recovery effectiveness.
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Figure 9. SIFT features matched in synthetic low-light images using different enhancement methods.

The image’s feature points are represented by the colored circles in the figure, which
represent the image’s color, texture, shape, and spatial relationships. Although visually
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appealing, the results obtained by LIME and RetinexNet suffer from color distortion, so
the feature point matching will differ significantly from the original image. It can be seen
that our method has the most feature points that match the original image, implying that it
achieves the feature restoration effect. Furthermore, when compared to the CNN results
in Stage 1, the addition of ANP improves the naturalness of the enhancement results and
restores more features.

4.3. Real Low-Light Images Qualitative Evaluation

Realistic low-light images usually do not have a corresponding image to compare.
Therefore, we will provide three unsupervised evaluation criteria in this section.

First of all, for the subjective evaluation, we selected 30 people for the optimal choice of
the results of different methods, and the statistical results are shown in Figure 10. The low-
light images for the survey were chosen at random from the ExDark dataset.

Figure 10. Subjective evaluation of enhanced results. a, b, c represent the enhancement results of
three different real low light images shown in Figure 11.

As can be seen in Figure 10, the results obtained by our method are most widely
accepted and more in line with the public’s visual perception. According to multiple
reflections, LIME is overexposed, BIMEF and Dehaze enhancements are relatively dim,
KinD+ makes the image contrast too high and blurs the image details, and the other
methods are distorted. To get a better sense of each method’s visual effect and to match the
previous subjective evaluation, we show the results of three different real low-light images
a,b,c obtained through different enhancement algorithms in Figure 11.

Many methods are available to perform unsupervised quality assessment of images,
such as the Deep Neural Network-Based Super-Resolution Image Quality Assessor (Deep-
SRQ) [45,46]. In this paper, we choose NIQE [44] as the objective evaluation metric in this
section, which does not require the original image and uses the Multivariate Gaussian
(MYG) model to normalize the modeled image pixels. NIQE has a higher level of pre-
dictability, monotonicity, and consistency. It is more similar to the human visual system
and can evaluate image quality in real time. The NIQE results are assessed as shown in
Table 2. The smaller the NIQE, the better the image quality.
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Figure 11. The enhancement results obtained for real images. They are the criteria for the experiments
in Figure 10.

Table 2. Average NIQE. The best data is marked in red.

Method LIME DeHaze CLAHE Retinex Net GP BIMEF OCTM KinD+ Proposed

NIQE 3.6680 3.3621 4.2952 3.5205 2.4387 2.5294 4.7017 2.5186 2.2490

The values in Table 2 are the results of randomly selecting 50 real low-light images
from the ExDark dataset for enhancement and then averaging the NIQE for each effect.
When compared to other methods, we can see that our method has the lowest NIQE
value, indicating that our algorithm properly adjusts the light and significantly eliminates
degradation to achieve excellent results.

Finally, we use the number of features approach to evaluate the ability of feature
restoration in enhanced images, which is an important metric for evaluating image quality.
In this experiment, we utilize SIFT to implement keypoints detection, and the number of
features acquired is represented in Figure 12. The edge response points are removed in all
experiments to avoid the effects of noise on feature recovery. As can be seen, our method
recovers the most features from low-light images, implying that our final result has the
most edge and detail information.

4.4. Object Detection Test

In this section, we will further investigate the potential of low-light image enhancement
in advanced computer vision tasks such as target detection. For this purpose, we utilize
Yolov3 [47] to test on real low-light images as well as their enhancement results obtained
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by LIME, RetinexNet, the first stage of CNN, GP, KinD+, and our method. We do not
adjust or retrain any parameters of the Yolov3 model to obtain the most realistic and
intuitive comparison.

Figure 12. The enhanced image with their number of features.
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From Figure 13, we can see that our method has the best detection results. For instance,
in the left example, our method allows the two most prominent objects in the image,
the car and building, while the others are overly concentrated in the red area, leading
to the misjudgment of fire or misidentification of noise obtained during the low-light
enhancement as fireworks or other objects. In the right example, our method accurately
detects the presence of buses, not cars, boats, or other potentially confusing objects, and it
is the only method capable of detecting the presence of streetlights. We can see that
the addition of the local enhancement method in stage 2 makes the image information
extracted by CNN more prominent, and the image detection results are more in line with
the ground truth.

Figure 13. Top 4 object detection results of low-light image (a), enhanced by LIME (b), enhanced by
RetinexNet (c), enhanced by CNN in stage 1 (d), enhanced by GP (e), KinD+ (f) and enhanced by our
proposed method (g) using Yolov3 model. The detection rates from highest to lowest are: blue box,
red box, yellow box and green box, respectively.
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The experiment demonstrates the viability of low-light image enhancement in practical
application, demonstrating and showing that our proposed enhancement technology can be
used as a pre-processing method for tasks such as target detection, image classification, etc.

5. Discussion

In this paper, we try to make the low-light image enhancement results not only be
a pleasant visual experience for the observer but also restore as much feature and image
detail as possible for subsequent image vision tasks. We utilize CNN trained by synthetic
data as the image prior to obtaining the initial enhanced image. Then, at the image local
enhancement step, we use super-pixel segmentation and ANP to achieve a more natural
view and richer image detail. Furthermore, the experiments on the synthesized low-light
image and the real low-light image show that our method achieves the state-of-the-art
visual effects and capability of feature restoration. Our method varies from typical low-
light enhancement methods in that it places a greater emphasis on picture feature recovery,
which is critical for subsequent computer image processing. Although the color of our
result is not sufficiently sharp, we have a more natural visual effect. Nonetheless, there
are several limitations to our approach. Our network structure’s overall computational
load is currently quite high. The time it takes us to improve an image is consistently
2 min, which is substantially longer than other algorithms’ second or even millisecond
accuracy. We will continue to innovate ANP’s structure and combine the complete network
into an end-to-end architecture in future work. In addition, we will look at incorporating
intelligent optimization algorithms to see if we can lower the complexity of our method
while maintaining its effectiveness.
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