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Abstract: Sentiment analysis was nominated as a hot research topic a decade ago for its increasing
importance in analyzing the people’s opinions extracted from social media platforms. Although
the Arabic language has a significant share of the content shared across social media platforms, its
content’s sentiment analysis is still limited due to its complex morphological structures and the
varieties of dialects. Traditional machine learning and deep neural algorithms have been used in a
variety of studies to predict sentiment analysis. Therefore, a need of changing current mechanisms is
required to increase the accuracy of sentiment analysis prediction. This paper proposed an optimized
heterogeneous stacking ensemble model for enhancing the performance of Arabic sentiment analysis.
The proposed model combines three different of pre-trained Deep Learning (DL) models: Recurrent
Neural Network (RNN), Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU) in con-
junction with three meta-learners Logistic Regression (LR), Random Forest (RF), and Support Vector
Machine (SVM) in order to enhance model’s performance for predicting Arabic sentiment analysis.
The performance of the proposed model with RNN, LSTM, GRU, and the five regular ML techniques:
Decision Tree (DT), LR, K-Nearest Neighbor (KNN), RF, and Naive Bayes (NB) are compared using
three benchmarks Arabic dataset. Parameters of Machine Learning (ML) and DL are optimized using
Grid search and KerasTuner, respectively. Accuracy, precision, recall, and f1-score were applied to
evaluate the performance of the models and validate the results. The results show that the proposed
ensemble model has achieved the best performance for each dataset compared with other models.

Keywords: machine learning; deep learning; ensemble learning; Arabic sentiment analysis

1. Introduction

With the noticeable increase and availability of internet forums, blogs, press sites,
and social networks, people have the opportunity to show and express their sentiments
and opinions publicly available to everyone. The steady increase in information and
data volumes created a new branch of science called sentiment analysis (SA). Sentiment
analysis can be summarized as the operation of analyzing opinions and also emotions
to deduce the tendencies appearing in the analyzed data, classifying them as positive,
negative, or even neutral. Sentiment analysis helps companies realize people’s opinions on
different topics and even various commodities, which has a tangible impact on helping the
concerned companies make the right economic and productivity decisions at the right time.
Its importance is extended even to the financial markets and stock exchange [1].
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The importance of the Arabic language and its position, which the dominant languages
may parallel in the world, came from the that Arabic is one of the six official languages used
within the united nations and the mother tongue for about 300 million people, occupying
22 different countries. Modern Standard Arabic (MSA) forms the formal language for
communication, which most Arabic-speaking people can understand [2]. MSA is commonly
used in radio, newspapers, and television. All these reasons lead to the inflation and
increase of Arab markets, and the expanding usage of media platforms leads to the interest
in analyzing data in Arabic despite its multiplicity of dialects [3].

ML algorithms utilize diverse statistical, optimization, and probabilistic calculations
and algorithms to absorb and comprehend experience to sketch functional patterns from
unstructured, large, and complex datasets [4]. These algorithms could be used in a variety
of applications that have an impact on the public and their daily lives, such as automated
text categorization [5], network intrusion detection [6], customer purchase behavior detec-
tion [7], disease modeling [8].

Recently, the research used ML algorithms to predict sentiment analysis and to enhance
the sentiment analysis method’s accuracy [9–11], transit from primarily linear models and
evolved until it reached what we see today of the more complex deep neural network.
In addition, deep learning (DL) algorithms have been used to extract features with great
effectiveness over other ML algorithms such as [12,13].

Ensemble learning has recently played a vital role in natural language processing to en-
hance results. The essential objective behind an ensemble of models is to aggregate several
base classifiers so that their combined performance compensates for and outperforms the
accuracy of each model function individually. Two points have a great impact on ensemble
learning performance, how predictions and base learners are combined, is meta-learning
or rule-based; also, the methods followed to complete the learning process, either it’s
sequential or concurrent [14,15]. Heterogeneous ensembles are constituted of classifiers of
diverse types, whereas homogeneous ensembles are made up of classifiers of the same type.
The strategies used to produce variation among the basis classifiers for homogeneous and
heterogeneous ensembles are different. Heterogeneous ensembles composed of predictors
represent different types, possibly having different biases. The combination of biased deci-
sions could be superior to homogeneous ensembles. If these biases are complementary [16].
In most cases, Ensemble learning methods can be in the form of three popular ones, namely
bagging [17], boosting [18], and stacking [19]. Many Researcher activities on ensemble
learning centered around homogeneous ensembles, even though heterogeneous ensembles
could prove more efficient in case of combining pre-trained models that are often readily
available such as [20,21].

Motivation and Contribution

The challenges of this era have made data and information analysis one of the most
vital things. Its importance comes from data sentiment is the way to obtain valuable
information that can be used and relied upon. As for its vitality, it appears that errors
in data analysis or interpretation will lead to many problems for the applications that
took that data as their input or can lead to wrong predictions resulting in dangerous
consequences. From here, it was necessary to have an elaborate and decisive way of
interpreting information, especially information from languages other than English, such
as Arabic. As a result of the increasing enthusiasm for infusing the Arabic language into
various disciplines related to computing, there has become a significant volume of Arabic
language data. In addition, ensemble methods could increase computational cost and
complexity due to the expertise and time required to train and maintain multiple models
rather than a single model [22] However, this point can be overlooked in front of the
advantages that could be gained when applying this method. There are two main reasons
to use an ensemble over a single model. First, ensemble techniques always achieve better
performance than all of its baseline single learner [23]. This gain in performance can be
explained as the model introducing bias to reduce the variance component of the prediction
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error [24]. Second, Ensemble reduces the spread or dispersion of the predictions, resulting
in improved model robustness, stability, and reliability in the average performance of a
model [24]. In more general terms, Ensemble is the optimal solution with the best situations
when compared to individual learner performance in many problems and situations [25]

A stacking ensemble model has been proposed in this paper that combines three
different DL models, Recurrent Neural Network (RNN), Long Short-Term Memory (LSTM),
Gated Recurrent Unit (GRU), using three meta-learners, Logistic Regression (LR), Random
Forest (RF), and Support Vector Machine (SVM), to enhance the model’s performance for
predicting Arabic sentiment analysis. We also compare the performance of the proposed
model with RNN, LSTM, GRU, and five regular ML models: Decision Tree (DT), LR,
K-nearest Neighbor (KNN), RF, and Naive Bayes (NB), using three benchmark datasets.

The contributions of this study are as follows:

• We proposed a stacking ensemble model that combines DL models (RNN, LSTM,
and GRU) using three meta-learners (LR, RF, and SVM) to enhance performance
models of predicting Arabic sentiment analysis.

• We optimize ML models, DL models, and proposed models using optimization meth-
ods to enhance performance.

• We conduct various experiments to evaluate the performance of the proposed model
using three benchmark datasets.

• We compare the proposed model’s performance with different ML and DL algorithms.

The remainder of the paper is organized as follows: Section 2 reviews related works
on sentiment analysis. The proposed model is presented in Section 3. The experimental
results and discussion are presented in Section 4. Finally, Section 6 provides a summary of
the paper.

2. Related Work

Research have been used ML, DL models to predict sentiment analysis. For example,
The authors in [26] proposed a hybrid model that integrates convolutional neural network
CNNs and LSTMs for predicting sentiment analysis. They used Arabic Health Services
Dataset (Main-AHS and Sub-AHS), ASTD, and Ar-Twitter. The study concluded that the
5-gram with CNN-LSTM has better sentiment classification results. Researchers in [27]
proposed an efficient Bidirectional LSTM Network (BiLSTM) coupled with the ability of
extraction features. The information extracted from the feature sequences is based on both
the forward and backward dependencies. Experiments were conducted using six bench-
mark sentiment analysis datasets to evaluate the performance of models. The results show
that the proposed model achieved significant improvements over the other models: SVM,
RF, and LSTM. In [28], authors investigated various DL models based on CNN and LSTM
for sentiment analysis of Arabic microblogs. They conducted experiments using CBOW,
skip-gram (SG), and ASTD and Ar-Twitter datasets. The experiments showed that LSTM
performs better than CNN. The authors [29] applied SVM and NB with different weight-
ing schemes (TF, TF-IDF) and n-gram sizes to predict Arabic sentiment analysis. They
conducted experiments using the AJGT dataset and the SVM classifier’s best-performing
scenario. In [30], the authors proposed the hybrid models-based DL algorithms for sen-
timent classification. They used more than 1 million tweets in different domains and
compared the hybrid model with RF, DT, RNN-LSTM, CNN, hybrid models. The result
showed the hybrid model has the best performance. A. M. Alayba et al. [31] used different
ML models: NB, SVM, LR Stochastic Gradient Descent (SGD), Ridge Classifier (RDG),
and DL model: CNN with other feature extraction methods to predict Arabic sentiment
analysis. Experiments were conducted using Arabic Health Services Dataset (Main-AHS
and Sub-AHS). Mohamed Fawzy et al. [32] discussed a variety of DL network architec-
tures used for Arabic sentiment classification coupled along with the word embedding
approaches. RNN, CNN, Bidirectional Multi-Layer LSTM with different word embedding
to do experiments. Experiments were conducted using Large-scale Arabic book reviews
(LABR). The result showed that Bidirectional Multi-Layer LSTM has high accuracy. In [12],
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author applied SVM, LR, DT, NB, and DL models on the Saudi dialect sentiment Arabic
tweets dataset. The result shows that deep learning and SVM classifiers perform best
with accuracy.

Some research used ensemble learning approach to predict sentiment analysis. For ex-
ample, Al-Hashedi et al. [33] used NB, SGD, RF, LR, and voting classifier is an ensemble
classification method to predict sentiment analysis. The author collected Arabic tweets
about COVID19 and annotated tweets into positive and negative. The result shows that
the voting classifier has high performance. Alharbi et al. [34] proposed a DeepASA model
consisting of an input layer, the hidden layers, two types of DL networks were used GRU
and LSTM, and the final layer was used a voting system boost the model’s prediction
performance. Experiments were conducted using different Arabic datasets: Large Scale
Arabic Book Reviews Dataset (LABR), Hotel Reviews (HTL), Restaurant Reviews (RES),
Product Reviews (PROD), ArTwitter, and ASTD datasets. The result shows that the Deep-
ASA model has high performance. Oussous et al. [35] applied a voting algorithm on top
of three classifiers, SVM, NB, and Maximum Entropy, on the ASTD Arabic sentiment
analysis dataset. The results show vote algorithm has high accuracy. Al-Saqqa et al. [36]
proposed an ensemble of four ML classifiers, KNN, SVM, NB, and based on the majority
voting algorithm to classify the sentiment of Arabic text. Three varied size datasets were
used: movie reviews, ArTwitter, and large-scale Arabic sentiment analysis dataset (LABR).
The experiments revealed that the ensemble of the classifiers gives better results than
individual classifiers. Al-Azani et al. [37] compared the performance of different ensemble
learning techniques to boost the performance of individual classifiers, including bagging,
boosting, voting, stacking, and RF on the Arabic sentiment dataset. The result shows that
the stacking ensemble has high performance.

Other authors applied ensemble learning techniques for sentiment analysis with non-
Arabic languages. For example, Sitaula et al. [38] prepared a Nepali Twitter sentiment
dataset called the NepCOV19Tweets, and labeled it positive, neutral, and negative. The au-
thors proposed feature extraction methods using different feature selection techniques
including fastText, domain-specific, and domain-agnostic. They used different CNN mod-
els to implement each feature selection method. Then, they proposed a CNN ensemble
model to capture multi-scale information for better classification. In [39], the authors
proposed a multi-channel CNNs (MCNN) to classify the NepCOV19Tweets dataset into
positive, neutral, and negative sentiment classifications. Their proposed MCNN model
was trained using a hybrid feature extraction method for semantic and syntactic features.
The proposed hybrid features achieved the highest accuracy compared to individual feature
extraction methods, and the MCNN model had the highest accuracy.

Previous studies used regular ML, hybrid models, and homogeneous ensemble learn-
ing. However, they did not use heterogeneous ensemble learning. In our study, we
proposed heterogeneous ensemble deep learning model for enhanced Arabic sentiment
analysis.The proposed model combined three different DL models including RNN, LSTM,
and GRU. We explored three meta-learners including LR, RF, and SVM to enhance the
model’s performance for predicting Arabic sentiment analysis.

3. Methodology

The framework for predicting sentiment analysis for Arabic data includes the ML,
DL, and ensemble learning approaches as shown in Figure 1. In the ML approach, five
regular ML models are used: NB, KNN, DT, RF, and LR. Term frequency-inverse document
frequency (TF-IDF) with different sizes n-gram is used as a feature extraction method,
and grid search with cross-validation is used to optimize ML models. In the DL approach,
three models: RNN, LSTM, and GRU, are used. CBOW word embedding is used as the
feature extraction method. The Keras-tuner is used to optimize the DL models. In ensemble
learning, we proposed the stacking ensemble model that combines RNN, LSTM, and GRU
that are developed in the second approach using three meta-learners: LR, RF, and SVM.
The grid search is used to optimize meta-learners. Each approach will be described in detail.
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Figure 1. Steps of the predicting sentiment analysis for Arabic data.

3.1. Data Collection

Three benchmarks of Arabic sentiment analysis datasets are used in this paper.

Dataset1: Arabic Sentiment Twitter Corpus (ASTC)

Arabic Sentiment Twitter Corpus (ASTC) [40] was collected in April 2019 from Twitter.
In total, there are 56,795 Arabic tweets with positive and negative labels. It is divided into
two parts: a training set and a test set.There are 22,626 negative classes and 22,810 positive
classes in training set. There are 5703 positive and 5656 negative classes in the testing set.

3.2. Dataset2: (ArTwitter)

ArTwitter [41] was collected from Twitter on different topics: politics and arts. It
consists of 1951 Arabic tweets annotated in positive and negative labels. It is split into 80%
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training set and 20% testing set. The training set contains 794 positive and 766 negative
classes. The testing set contains 199 positive and 192 negative classes.

Dataset3 (AJGT)

Arabic Jordanian General Tweets (AJGT) [42] dataset consists of 1800 tweets have
been annotated as either positive or negative. It is divided into a training set of 80% and a
testing set of 20%. A total of 720 positive and negative classes are included in the training
set. A total of 180 classes are classified as positive and “negative” in the testing set.

3.3. Data Pre-Processing

Because the text of tweets is known to be noisy, it must be cleaned and pre-processed
before being analyzed.

• Cleaning Tweets: The removal of irrelevant information is crucial to cleaning Twitter
data due to its noisy nature. By removing non-Arabic letters, digits, single Arabic
letters, and special symbols, removing URLs, removing Emails, removing hashtags.

• Tokenizing: Tokenization only involves segmenting the sentences into parts. Tweets
will be tokenized by splitting text by space.

• Removing Arabic Stop Words: The data processing will be more efficient by excluding
Arabic stop words. Some of the stop words are removed from the original tweets.

• Stemming: The stemmer’s main job is to return the word construction to the base
word (root or stem). One Arabic stemmer included in the NLTK package is ISRI
Stemmer [43].

• Cleaning Emoticons: Twitter users employ symbols such as “: D” and “;)” to commu-
nicate their feelings and opinions. These emoticons, also known as emojis, convey
important information. As a result, they are labeled to discern the sentiment behind
the emotions. Therefore, we remove emojis, translate emojis, and conduct emoji
Unicode translation.

3.4. Splitting Dataset

Each dataset was separated into two sets: the training set and the testing set, with the
training set accounting for 80% of the dataset and the testing set accounting for 20% of the
dataset. The training set is used to train and optimize models. The testing set (unseen set)
is used to evaluate models.

3.5. Machine Learning Approach

Five models are utilized in the ML approach: NB, KNN, DT, RF, and LR. As a feature
extraction method, varied-sized n-grams coupled with TF-IDF are utilized upon ML models,
which are optimized using grid search with cross-validation.

3.5.1. Feature Extraction Method

The Bag-of-Words representation involves counting the number of times each word
appears in a text. Every word has a number that denotes a column. Bag-of-word imple-
mentation done using TF-IDF with different n-gram sizes.

1. The context of the acquired words is preserved using the N-gram approach. It employs
a collection of sequentially ordered words based on the value of the N variable. It
could be uni-gram, bi-gram, and trig-gram if N = 1, N = 2, and if N = 3, respectively.

• Uni-grams if the number of one word contained within a tweet.
• Bi-grams when the number of two-word sequences contained within a tweet.
• Tri-grams are the number of three-word sequences contained within a tweet.
• Four-gram is the number of four-word sequences contained within a tweet.

2. TF-IDF represents a statistical measure which applied to weight the importance “f”
for each word with reference to the corpus. TF-IDF implementation includes two
steps. Firstly, calculate the number of occurrences (TF) for each word presented in the
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document or tweet and then, Followed by finding each word occurrence frequency
(IDF) throughout the whole document or tweet. Small values for the TF-IDF mean
less significance for the word and vice versa. The larger values for TF-IDF mean the
less frequent word in the corpus fixing its significance [44,45].

Equation to measure TF =
number of the word’s occurrence

total number of the words ∈ the document
(1)

Equation to measure IDF = log
number of documents

number of documents that contain the word
(2)

The TF-IDF is calculated by multiplying the TF with the IDF values for each word.
If all of the words have equal weight, TF attempts to count their occurrences in the
data. IDF, on the other hand, assigns weights to words based on their relevance
and distinctiveness.

3.5.2. Optimization Methods

A tuning procedure that aims to determine the ideal hyperparameter values. In Com-
plex models that have diverse hyperparameters, It became necessary to figure out the
optimal combination for the values of the hyperparameters through searching in a multi-
dimensional space [46] In order to optimize ML models, grid search with stratified Cross-
validation is utilized.

• Grid search is a hyperparameter tuning approach based on partitioning the hyperpa-
rameter domain into discrete grids. Then, using cross-validation to determine the grid
point that maximizes the average value in cross-validation [47]. This point indicates
the best possible combination of hyperparameter values. Grid search determines the
optimal point in the domain by traversing all possible combinations.

• Cross-validation is a statistical procedure for evaluating and comparing learning
algorithms that involve dividing data into two segments: one for training a model and
the other for validating the model [48] or randomly dividing the set of observations
into roughly equal-sized k folds, or groups. The procedure’s general steps can be
described as follows: shuffle the dataset at random first, then divide the dataset into k
groups, with one group as a test data set and the remaining groups serving as training
data sets. The model is then trained for the training set and tested on the test set.
Finally, based on the sample of model evaluation scores, summarise the skill obtained
by the model [49].

3.5.3. ML Algorithms

The ML algorithms are briefly explained in this section.

• Logistic Regression (LR) corresponds to supervised classification as a reliable and
well-defined procedure [50]. It can be thought of as an extension of normal regression
as it can only formulate variables that reflect the occurrence or non-occurrence of
an event in general. The LR model assists in determining the likelihood of allocat-
ing a new instance to a specific class. Since the logistic regression model outputs
predicted probability values that are mapped to two (binary classification) or more
(multi-class classification) classes, a threshold should always be set to discriminate
between them [51]. It permits us to model a correlation between a binary/binomial
target variable and several predictor factors. The term “logistic” originates from
the cost function (logistic function) with a form of Sigmund function with a distinc-
tive S-shaped curve. Figure 2 shows an illustration of the LR boundary curve with
its elements.
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Figure 2. The logistic regression boundary curve.

The LR is a sigmoid function-based transformation of a linear regression. The likeli-
hood for a specific categorization is represented on the vertical axis, while the value
of x is represented on the horizontal axis. It is presumed that y | x has a Bernoulli
distribution. The formula of LR is as follows [50]:

F(x) =
1

1 + e−(β0 + β1x)
(3)

Here, β0 + βl x is comparable to the linear model y = ax + b The logistic function uses
a Sigmund function to tie they value from a broad scale to a range of 0, 1. Multinomial
logistic regression is a more generalized version of logistic regression that models a
categorical variable with more than two values.

• Decision Tree (DT) is advantageous for organizing the data into a tree-like structure.
The DT algorithm is one of the first machine learning algorithms. It is highly effective
at classifying and filtering solutions in order to reach the best choices by comparing
results for assorting data items into a tree-like structure [51,52].
Starting with the root node, DT is usually built of multiple tiers. All internal nodes
have at least one child and indicate input attribute or variable testing. The branching
process repeats itself, directing the appropriate child node until it reaches the leaf node,
depending on the results of the test that represents a decision [53]. An illustration of a
DT with its elements and rules is depicted in Figure 3.
Figure 3 shows each variable (A, B, and C) as a circle, while the decision outcomes
(Class X and Class Y) are depicted as rectangles. Each branch is labeled with ‘True’ or
‘False’ depending on the outcome value from the test of its ancestor node on the route
to successfully classify a sample to a class.
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Figure 3. An illustration of the Decision tree.

• Random Forest (RF) is a tree-based machine learning technique that combines the
power of several decision trees to make the best possible conclusions [54]. The DT
method is simple to interpret and comprehend. However, a single tree is insufficient to
produce effective outcomes. This is why the RF algorithm has become so crucial [55].
The RF is a classifier made up of various DTs. Overfitting can occur in some deep DTs,
resulting in a lot of fluctuation in the classification results, even for modest changes
in the input data [17]. The input vector of RF must be passed down to every DT
in the forest. Then, each DT evaluates a separate component for that input vector,
yielding a classification result. In the case of numeric classification, the forest picks the
classification with the highest average for all trees in the forest or the most votes in the
case of discrete classification. Each node in the decision tree operates on a subset of
features to determine the output. To generate the final result, RF aggregates the output
of the different decision trees. Figure 4 depicts a representation of the RF algorithm.

• The Naive Bayesian (NB) classifier is based on Bayes’ theorem, which maintains
predictor independence assumptions [56,57]. Its goal is to describe the probability of
an event based on past knowledge of the circumstances. Despite the possibility of
dependency among the class members, it is assumed that a specific feature in a class is
unrelated to any other feature. The Bayes theorem allows you to calculate posterior
probability P(c | x) from P(x), P(c) and P(c | x). According to the NB classifier,
the influence of predictor (x) on a given class (c) is unrestricted by the values of other
predictors. Class conditional independence is the name given to this presumption.

P(c | x) =
P(x | c)P(c)

P(c)
(4)

where P(c | x) represents the posterior probability of class (target) given predictor
(attribute), P(x | x) represents the eventuality, which is the probability of predictor
given class, P(c) represents the prior probability of a class, which is equal to the
occurrence of certain cases of y divided by the total number of records, and P(x)
represents the prior probability of predictor.
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Figure 4. The RF which consists of three different decision trees. Each one was trained using a subset
of the training dataset.

• K-nearest neighbor (KNN) is one of the primary and straightforward ML algorithms,
relying on the Supervised Learning approach [58]. The KNN algorithm assumes that
the new attached case/data and the existing cases are comparable and then places the
latest data in the appropriate category that is similar to the existing categories [51,59].
Figure 5 displays how the KNN works.

Figure 5. The K-nearest neighbor diagram.



Sensors 2022, 22, 3707 11 of 28

3.6. Deep Learning Approach

In the DL approach, three models: RNN, LSTM, and GRU. CBOW word embedding is
used as the feature extraction method. The Keras-tuner is used to optimize the DL models.

3.6.1. Optimization Method

KerasTuner is a salable hyperparameter optimization framework with built-in Hy-
perband, Bayesian Optimization, and Random Search algorithms to configure the search
space with a define-by-run syntax, then leverage one of the available search algorithms to
fetch the optimal hyperparameter values suitable for the models [60]. A set of hyperpa-
rameter values is adapted for RNN, LSTM, and GRU models. Each layer has a different
amount of neurons, ranging from 100 to 1000. reg_rate for L2 regularizer is adapted to the
values 0.0001, 0.0002, 0.0003, 0.0004, and 0.0005. The dropout value for the dropout layer is
adapted between 0.1 to 0.9.

3.6.2. Feature Extraction Method

Arabic contains a pre-trained distributed word embedding for the Arabic language
that includes different word embedding models in Tweets and Wikipedia. In this paper, we
used Twitter-CBOW with a 300 vector size.

3.6.3. DL Algorithms

Figure 6 presents main layers of RNN, LSTM, and GRU models that consist of embed-
ding, hidden, dropout, flatten, and output layers.

Figure 6. The architecture of the proposed stacking ensemble model.

The embedding layer takes word embedding a matrix as input. It takes three argu-
ments: input_dim represents the size of a word in tweets. output_dim defines the size
of the output vectors from this layer for each word. It is adapted 300 because Twitter-
CBOW word embedding = 300 vector size. input_length represents the length of the input
sequence = 20,000. RNN, LSTM, and GRU are used in the hidden layer. The dropout
layer is a regularization technique that is used to reduce the overfitting and complexity of
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models. The output layer includes two neurons to predict the output of opinion, positive
or negative. We used the softmax as an activation function; the ADAM optimizer has the
value of learning_rate = 0.0004.

The DL algorithms are briefly explained in this section.

• Recurrent Neural Network (RNN): When it comes to sequence data inputs, RNN is
a type of neural network that works best with feedforward networks. We will need
to modulate the neural network to recognise dependencies if we have sequence data
where one data point is dependent on the previous data point. RNNs have the concept
of “memory”, which enables them to store prior input states or data in constructing
the sequence’s next output [61].
RNN has a feedback cycle as shown in Figure 7 [62]. In order to get the shape illus-
trated in Figure 8, the feedback loop can be unrolled in three-time steps. The notation
is as follows: At time step t, xt is a scalar number with a single characteristic. The net-
work’s output at time step t is yt. The values of the hidden units/states at time t are
stored in the vector yt. This is also known as the current context, and the h0 vector is
set to zero. In the recurrent layer, there are wx weights connected with inputs. Weights
linked with hidden units in the recurrent layer are wh. Weights related to concealed
output units are wy. The bias associated with the feedforward layer is bh, which is
the bias associated with the recurrent layer. We can unfold the network for k time
steps in each time step to retrieve the output at time step k + 1. The unfolded network
resembles the feedforward neural network in appearance. The operation depicted by
the rectangle contained within the unfurled network. The activation function f :

ht+l = f (xt, ht, wx, wk, bk) = f (wxxt + wkht + bb) [62] (5)

yt = f (ht, wk) = f
(
wk · ht + by

)
[62] (6)

Figure 7. Compressed representation for the RNN [62].

Figure 8. Unfolded network representation for the the RNN [62].

• Long Short Term Memory (LSTM): When dealing with short-term dependencies,
RNNs perform admirably. When dealing with a large amount of irrelevant input,
the RNN may need to retain the context, yet the relevant information may be discon-
nected from the moment where it is needed, causing the RNN would fail. In order to
prevent the long-term dependence of RNNs, researchers proposed long short term
memory neural networks. To do this, the core of LSTM is the cell state, which may
add or delete information from cells while selectively allowing information to flow
via the door mechanism. The LSTM is made up of three gates: forget gate, input gate,
and output gate. As illustrated in Figure 9, Both the forget gate and the input gate
determine which information is erased from and added to the cell state. When these
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two points are known, the cell state can be updated. Finally, the network’s final output
is determined by the output gate [63].

Figure 9. Representation for the Long Short Term Memory.

The state of each node in this process is determined by below equations [63].

ft = σ
(

W f · [ht−1, xt] + b f

)
(7)

it = σ(Wi · [ht−1, xt] + bi) (8)

čt = tanh(Wc · [ht−1, xt]) + bc (9)

ct = ft ∗ ct−1 + it ∗ čt (10)

ot = σ(W0 · [ht−1, xt] + b0) (11)

ht = ot ∗ tanh(ct) (12)

ht−1 denotes the previous layer’s hidden state, xt denotes the current input, W and
b denote the weight and bias, Sigmund function, ft denotes the forget gate’s output,
čt denotes the input gate’s output, čt denotes the temporary intermediate state, ct−1
denotes the previous layer’s cell state, ct denotes the next layer’s cell state, ot denotes
the output of the output gate, and ht denotes the hidden state of the next layer.

• Gated Recurrent Unit
One of the most common recurrent neural network types has seen a lot of use in
machine translation. The Gated Recurrent Unit, or GRU, follows the same workflow
as the RNN, with the exception of the operations and gates associated with each GRU
unit. To capture dependencies on diverse time scales, GRU was used to produce each
recurrent unit. The GRU, like the LSTM unit, has gating units that influence the flow
of information inside the unit without the use of distinct memory cells, as shown in
Figure 10. GRU integrates two gate operating techniques named Update gate and
Reset gate to solve the problem presented by ordinary RNN [64].
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Figure 10. illustrate Gated Recurrent Unit.

The GRU equations are defined below [65].

zt = σg(Wzxt + Uzht−1 + bz) (13)

rt = σg(Wrxt + Urht−1 + br) (14)

ĥt = ∅h(Whxt + Uh(rt � ht−1) + bh) (15)

ht = (1− zt)� ht−1 + zt � ĥt (16)

where W, U, and b are parameter matrices and vector [65] and ht is the output vector,
ĥt is the candidate activation vector, zt is the update gate vector, and rt is the reset
gate vector. The update gate is in charge of ensuring that the precious memory is
preserved in order to pass on to the next state. This is extremely useful since the
model can choose to duplicate all of the data from the past, eliminating the risk
of vanishing the gradient. The reset gateregulates how new input is incorporated
into the previous memory. The reset gate is activated first, and it stores pertinent
information from the previous time step into new memory content. The input vector
and hidden state are then multiplied by their weights. The element-wise multiplication
between the reset gate and the previously hidden state multiple is then calculated.
After combining the preceding steps, the non-linear activation function is used to
construct the next sequence.

3.7. The Proposed Stacking Ensemble Model

Figure 6 illustrates the proposed model’s architecture. Reveals that prediction perfor-
mance can be improved by using an ensemble of multiple independently trained models.
Different pre-trained models are loaded: RNN, GRU, and LSTM. Each model has its own
architecture, and we freeze each layer of the model except the final layer (output layer).
Then, each pre-trained model utilized the training set’s word embedding matrix for training
models and generating predictions. The forecast of each model’s training set is then blended
into the stacking. In stacking, we combine the training set predictions from each model
and send them to a meta-learner to learn. In addition, we integrate each model’s prediction
of the testing set in stacking and end it in the meta-learner to make the final prediction.

3.8. Evaluating Models

The suggested models are evaluated using four common performance metrics: accu-
racy (ACC), precision (PRC), recall (REC), and F1-score (F1). These are calculated in the
following [66]:

Accuracy =
TP + TN

TP + FP + TN + FN
. (17)
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Precision =
TP

TP + FP
(18)

Recall =
TP

TP + FN
(19)

F1 =
2 · precision · recall
precision + recall

(20)

4. Experiments Results

This section presents the experimental setup, and results of each datasets.

4.1. Experimental Setup

The experiments for this study were carried out using Python on a Google Colab.
The sci-kit-learn and Keras packages were used to implement ML and DL models, respec-
tively. Grid-search with stratified cross-validation and the KerasTuner package was also
used to optimize ML and DL models, respectively. The proposed model was implemented
using the sci-kit-learn and Keras packages. The meta-learners were tuned via grid search.
Three Arabic sentiment analysis benchmark datasets were separated into training and
testing sets with 80% training and 20% testing. The cross-validation and testing perfor-
mance results will be recorded. Learning rate of admin optimizer: 0.0001, Batch size:
1500, and Epochs: 20 were some of the values of DL model parameters that were altered.
The KerasTuner method library has chosen the best settings for the parameters of the DL
models for each dataset, as shown in Table 1.

Table 1. The best values parameters of DL models for each dataset.

Dataset Models Neurons Dropout reg_rate1

ASTC dataset

RNN 300 0.7 0.0001

LSTM 150 0.6 0.01

GRU 300 0.2 0.4

ArTwitter dataset

RNN 1000 0.4 0.7

LSTM 950 0.2 0.2

GRU 500 0.4 0.05

AJGT dataset

RNN 500 0.5 0.4

LSTM 400 0.8 0.0006

GRU 750 0.8 0.05

4.2. Results of ASTC Dataset

This part is presented the performance results of ML and DL and The proposed model
with cross-validation and testing results over the ASTC dataset. And it is presented the
best values of DL parameters models that have been selected by the KerasTuner method.

Table 2 shows the values of four metrics, including ACC, PRC, REC, and F1 of cross-
validation and testing results for ML models, DL models, and the proposed model.

4.2.1. Cross-Validation Results

When comparing the performance results of ML techniques, it is clear that LR with
uni-gram is the best classifier (ACC = 93.21 percent, PRE = 93.23%, REC = 93.21%, and
F1 = 93.2%) when compared to other ML classifiers. On the other hand, DT with four-gram
had the worst performance compared to other classifiers (ACC = 60.97%, PRE = 72.27%,
REC = 60.95%, and F1 = 54.29%). In terms of (ACC = 92.79%, PRE = 92.87%, REC = 92.85%,
and F1 = 92.78%), RF with uni-gram has the best second performance. In comparison, DT
has the lowest performance in terms of (ACC = 87.51%, PRE = 87.63%, REC = 87.51%, and
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F1 = 87.5%) according to uni-gram. Also, because the number of times a single word is
repeated is greater than the frequency of many words together, we can see that unigram
with TF-IDF feature extraction achieves the best overall performance in the classifiers.

Table 2. The performance results of ML, DL, and the proposed models for ASTC dataset.

Approach Models Models Matrix Size
Cross Validation Performance Test Performance

ACC PRE REC F1 ACC PRE REC F1

ML models

DT

Unigram 92.16 92.13 92.14 92.12 89.55 89.57 89.55 89.55

Bi-gram 77.54 82.83 77.56 76.61 75.97 81.11 75.97 74.96

Tri-gram 73.67 77.13 63.68 58.55 62.93 63.15 62.93 62.75

Four-gram 60.97 72.27 60.95 54.29 60.39 72.36 60.39 53.44

KNN

Unigram 90.72 90.72 90.72 90.72 88.58 88.6 88.58 88.57

Bi-gram 83.45 83.78 83.45 83.41 69.79 74.54 69.79 68.31

Tri-gram 72.24 81.02 72.24 70.17 66.92 67.11 66.92 66.85

Four-gram 71.27 74.89 71.27 70.33 64.3 64.63 64.3 64.12

LR

Unigram 93.21 93.23 93.21 93.2 91.04 91.12 91.04 91.03

Bi-gram 86.82 87.42 86.82 86.77 80.79 82.54 80.79 80.54

Tri-gram 79.1 83.38 79.1 78.43 70.81 78.64 70.81 68.71

Four-gram 75.23 82.05 75.23 73.87 67.08 78.13 67.08 63.57

RF

Unigram 92.79 92.87 92.85 92.78 90.68 90.72 90.68 90.67

Bi-gram 78.28 82.86 78.53 78.26 78.18 78.19 78.18 78.18

Tri-gram 66.02 76.97 66.03 62.25 66.78 69.37 66.78 65.59

Four-gram 63.35 75.94 63.41 58.26 63.83 69.36 63.83 60.96

NB

Unigram 87.51 87.63 87.51 87.5 86.09 86.13 86.09 86.09

Bi-gram 86.15 86.67 86.15 86.1 78.97 79.98 78.97 78.78

Tri-gram 78.95 82.7 78.95 78.34 67.91 68.95 67.91 67.43

Four-gram 74.76 78.02 74.76 74.03 64.05 66.79 64.05 62.45

DL models

RNN CBOW 94.92 94.92 94.92 94.92 90.18 90.18 90.18 90.17

LSTM CBOW 96.96 97.0 97.0 97.0 91.89 91.9 91.89 91.89

GRU CBOW 94.89 94.87 94.87 94.87 88.6 88.61 88.6 88.6

The proposed model

Stacking
LR CBOW 98.08 98.09 98.08 98.08 92.22 92.23 92.22 92.22

Stacking SVM CBOW 98.07 98.07 98.07 98.07 92.1 92.11 92.1 92.1

Stacking RF CBOW 97.27 97.28 97.27 97.27 91.98 91.99 91.98 91.98

According to DL models, LSTM has the highest result in terms (ACC = 96.96%,
PRE = 97.0%, REC = 97.0%, and F1 = 97.0%), and it improved ACC by 3.75%, PRE by
3.77%, and REC by 3.79% and F1 by 3.8% compared to LR with unigram. While RNN and
GRU are registered the same approximately performance.

According to the proposed model, stacking LR and stacking SVM achieved the highest
performance compared to ML models and DL models. The stacking LR is registered
performance in terms (ACC = 98.08%, PRE = 98.09%, REC = 98.08%, and F1 = 98.08%), and
it improved ACC by 1.12%, PRE by 1.09%, and REC by 1.8% and F1 by 1.08% compared to
LSTM models.
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4.2.2. Testing Results

When comparing the performance results of ML approaches, it is apparent that LR with
unigram is the best classifier compared with other ML classifiers in terms of (ACC = 91.04%,
PRE = 91.12%, REC = 91.04%, and F1 = 91.03%). In contrast, DT with four-gram achieved
the worst performance compared with different classifiers in terms of (ACC = 60.39%,
PRE = 72.36%, REC = 60.39%, and F1 = 53.44%). RF with unigram achieves the best second
performance with unigram in terms of (ACC = 90.68%, PRE = 90.72%, REC = 90.68%, and
F1 = 90.67%). Also, we can be observed that unigram with TF-IDF feature selection is
achieved the best performance overall in the classifiers because the number of times a
single word is repeated will be more than the frequency of more than one word together.

According to DL models, LSTM is achieved the highest result in terms (ACC = 91.89%,
PRE = 91.9%, REC = 91.89%, and F1 = 91.89%) and it improved ACC by 0.85%, PRE by
0.78%, and REC by 0.85% and F1 by 0.86% compared to LR with unigram. While GRU is
obtained the lowest performance in terms (ACC = 88.6%, PRE = 88.61%, REC = 88.6%, and
F1 = 88.6%).

According to the proposed model, stacking LR and stacking SVM achieved the highest
performance compared to ML and DL models. The Stacking LR is registered performance in
terms (ACC = 92.22%, PRE = 92.23%, REC = 92.22%, and F1 = 92.22%) and it improved ACC
by 0.33%, PRE by 0.33%, and REC by 0.33% and F1 by 0.33% compared to LSTM models.

4.3. Results of ArTwitter Dataset

This part is presented the performance results of ML and DL and The proposed model
with cross-validation and testing results over the ArTwitter dataset. Table 3 shows the
values of four metrics, including ACC, PRC, REC, and F1 of cross-validation and testing
results for ML models, DL models, and the proposed model.

4.3.1. Cross-Validation Results

When comparing the performance results of ML approaches, it is apparent that
LR with unigram is the best classifier compared with other ML classifiers in terms of
(ACC = 85.38%, PRE = 85.68%, REC = 85.38%, and F1 = 85.37%). In contrast, KNN with
tri-gram achieved the worst performance compared with different classifiers in terms of
(ACC = 48.97%, PRE = 31.17%, REC = 48.97%, and F1 = 32.61%). NB with unigram achieves
the best second performance in terms of (ACC = 84.23%, PRE = 85.1%, REC = 84.23%, and
F1 = 84.1%). In comparison, based on unigram, DT performs the lowest performance in
terms of (ACC = 76.79%, PRE = 77.49%, REC = 76.28%, and F1 = 77.73%). Also, we can
be observed that unigram with TF-IDF feature selection is achieved the best performance
overall in the classifiers because the number of times a single word is repeated will be more
than the frequency of more than one word together.

According to DL models, GRU has the highest result (ACC = 88.48%, PRE = 88.48%,
REC = 88.48%, and F1 = 88.48%). It improved ACC by 3.1%, PRE by 2.8%, REC by 3.1%,
and F1 by 3.11% compared to LR with unigram. While LSTM and RNN are registered the
same approximately performance.

According to the proposed models, stacking SVM is achieved the highest performance
compared to ML and DL models in terms (ACC = 92.24%, PRE = 92.39%, REC = 92.24%,
and F1 = 92.24%), and it improved ACC by 3.76%, PRE by 3.91%, and REC by 3.76% and F1
by 3.76% compared to GRU models.

4.3.2. Testing Results

When comparing the performance results of ML approaches, it is apparent that LR with
unigram is the best classifier compared with other ML classifiers in terms of (ACC = 75.7%,
PRE = 75.99%, REC = 75.7%, and F1 75.67%). In contrast, KNN has the worst performance
compared with different classifiers based on ACC, PRE, and REC. Based on the F1 term,
the NB with Four-gram has performed the worst performance at 31%. NB with unigram
achieves the best second performance with unigram in terms (ACC = 74.17%, PRE = 75.68%,
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REC = 74.17%, and F1 = 73.7%). Also, we can be observed that unigram with TF-IDF
feature selection is achieved the best performance overall in the classifiers because the
number of times a single word is repeated will be more than the frequency of more than
one word together.

Table 3. The performance results of ML, DL, and the proposed model for dataset ArTwitter.

Approach Models Models Matrix Size
Cross-Validation Performance Test Performance

ACC PRE REC F1 ACC PRE REC F1

ML models

DT

Unigram 76.79 77.49 76.28 77.73 72.63 73.67 72.63 72.41

Bi-gram 60.13 76.05 60.32 53.15 56.27 75.18 56.27 46.81

Tri-gram 53.08 70.64 53.33 38.82 52.17 75.34 52.17 37.12

Four-gram 52.69 70.2 52.63 38.16 51.92 75.28 51.92 36.57

KNN

Unigram 79.42 79.84 79.42 79.36 66.5 69.88 66.5 64.77

Bi-gram 51.22 73.0 51.22 36.92 49.62 75.13 49.62 33.47

Tri-gram 48.97 31.17 48.97 32.61 51.41 75.14 51.41 35.46

Four-gram 49.36 35.3 49.36 35.96 50.64 50.18 50.64 45.81

LR

Unigram 85.38 85.68 85.38 85.37 75.7 75.99 75.7 75.67

Bi-gram 68.27 77.41 68.27 65.6 56.78 74.04 56.78 47.97

Tri-gram 53.97 74.64 53.97 40.95 52.17 75.34 52.17 37.12

Four-gram 53.4 75.68 53.4 39.61 52.17 75.34 52.17 37.12

RF

Unigram 78.78 80.44 78.91 78.6 73.15 74.0 73.15 72.97

Bi-gram 60.71 75.62 60.51 54.84 57.03 75.55 57.03 48.15

Tri-gram 53.33 75.66 53.46 39.58 52.17 75.34 52.17 37.12

Four-gram 53.33 75.63 53.33 39.23 52.17 75.34 52.17 37.12

NB

Unigram 84.23 85.1 84.23 84.1 74.17 75.68 74.17 73.7

Bi-gram 60.83 75.18 60.83 53.78 55.5 66.49 55.5 45.7

Tri-gram 53.97 74.64 53.97 40.95 52.17 75.34 52.17 37.12

Four-gram 53.4 75.68 53.4 39.61 51.17 74.34 51.17 31.12

DL models

RNN CBOW 87.12 87.12 87.12 87.12 81.86 81.88 81.86 81.77

LSTM CBOW 87.83 87.83 87.83 87.83 81.33 81.6 81.33 81.27

GRU CBOW 88.48 88.48 88.48 88.48 82.1 82.63 82.1 82.05

The proposed model

Stacking LR CBOW 91.99 92.07 91.99 91.99 82.35 82.93 82.35 82.3

Stacking SVM CBOW 92.24 92.39 92.24 92.24 83.12 83.85 83.12 83.06

Stacking RF CBOW 92.12 92.2 92.12 92.11 82.86 83.14 82.86 82.85

According to DL models, GRU has the highest result in terms (ACC = 82.1%, PRE = 82.63%,
REC = 82.1%, and F1 = 82.05%) improved ACC by 6.4%, PRE by 6.64%, and REC by 6.4% and
F1 by 6.38% compared to LR with unigram. While LSTM and RNN are registered the same
approximately performance.

According to the proposed models, stacking SVM is achieved the highest perfor-
mance compared to ML models and DL models in terms (ACC = 83.12%, PRE = 83.85%,
REC = 83.12%, and F1 = 83.06%), and it improved ACC by 1.02%, PRE by 1.22%, and REC
by 1.02% and F1 by 1.01% compared to GRU models.
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4.4. Results of AJGT Dataset

This part is presented the performance results of ML and DL and the proposed model
with cross-validation and testing results over the AJGT dataset. Table 4 shows the values of
four metrics, including ACC, PRC, REC, and F1 of cross-validation and testing results for
ML models, DL models, and the proposed model.

Table 4. The performance results of ML, DL, and the proposed models for AJGT dataset.

Approach Models Models Matrix Size
Cross Validation Performance Test Performance

ACC PRE REC F1 ACC PRE REC F1

ML models

DT

Unigram 78.82 79.1 77.92 79.28 71.39 72.44 71.39 71.05

Bi-gram 60.76 75.31 60.97 53.26 56.39 69.18 56.39 47.66

Tri-gram 51.53 70.41 51.39 36.45 51.11 75.28 51.11 35.76

Four-gram 50.0 35.05 50.07 33.64 50.0 25.0 50.0 33.33

KNN

Unigram 78.26 79.3 78.26 78.06 68.89 70.09 68.89 68.42

Bi-gram 51.18 60.19 51.18 39.84 50.28 51.16 50.28 38.6

Tri-gram 50.0 25.0 50.0 33.33 50.28 75.07 50.28 33.95

Four-gram 50.07 27.67 50.07 34.23 50.0 25.0 50.0 33.33

LR

Unigram 84.03 84.5 84.03 83.96 76.94 77.25 76.94 76.88

Bi-gram 67.99 76.69 67.99 65.11 56.94 67.97 56.94 49.14

Tri-gram 53.54 75.21 53.54 40.79 51.11 75.28 51.11 35.76

Four-gram 50.56 53.47 50.56 34.66 50.0 25.0 50.0 33.33

RF

Unigram 78.26 80.81 78.96 78.07 75.83 77.56 75.83 75.45

Bi-gram 60.76 76.34 60.56 53.59 56.94 68.83 56.94 48.88

Tri-gram 52.43 65.32 52.29 38.32 51.11 75.28 51.11 35.76

Four-gram 50.42 50.09 50.49 33.94 50.0 50.0 50.0 47.92

NB

Unigram 83.47 83.85 83.47 83.43 76.94 77.01 76.94 76.93

Bi-gram 60.9 72.04 60.9 54.67 56.94 67.97 56.94 49.14

Tri-gram 53.54 75.21 53.54 40.79 51.11 75.28 51.11 35.76

Four-gram 50.56 53.47 50.56 34.66 50.0 25.0 50.0 33.33

DL models

RNN CBOW 86.86 86.86 86.86 86.86 82.78 83.04 82.78 82.74

LSTM CBOW 89.45 89.45 89.45 89.45 84.72 84.9 84.72 84.7

GRU CBOW 89.01 89.01 89.01 89.01 84.72 84.9 84.72 84.7

The proposed
ensemble model

Stacking
LR CBOW 93.4 93.5 93.4 93.4 86.11 86.13 86.11 86.11

Stacking SVM CBOW 93.4 93.48 93.4 93.4 86.01 86.01 86.01 86.01

Stacking RF CBOW 92.9 93.05 92.99 92.98 85.83 85.89 85.83 85.83

4.4.1. Cross-Validation Results

When comparing the performance results of ML approaches, it is apparent that
LR with unigram is the best classifier compared with other ML classifiers in terms of
(ACC = 84.03%, PRE = 84.5%, REC = 84.03%, and F1 = 83.96%). In contrast, KNN with
tri-gram is achieved the worst performance compared with other classifiers in terms of
(ACC = 50.0%, PRE = 25.0%, REC = 50.0%, and F1 = 33.33%). NB with unigram achieves
the best second performance with unigram in terms of (ACC = 83.47%, PRE = 83.85%,
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REC = 83.47%, and F1 = 83.43%). Also, we can be observed that unigram with TF-IDF
feature selection is achieved the best performance overall in the classifiers because the
number of times a single word is repeated will be more than the frequency of more than
one word together.

According to DL models, LSTM has the highest result in terms (ACC = 93.4%,
PRE = 93.5%, REC = 93.4%, and F1 = 93.4%), and it improved ACC by 9.55%, PRE by
9.08%, and REC by 9.55% and F1 by 9.62% compared to LR with unigram. While RNN is
registered the lowest performance in terms (ACC = 86.86%, PRE = 86.86%, REC = 86.86%,
and F1 = 86.86%).

According to the proposed ensemble model, LR stacking and SVM stacking achieved
the highest performance compared to ML models and DL models. LR is registered per-
formance in terms (ACC = 93.4%, PRE = 93.5%, REC = 93.4%, and F1 = 93.4%) and it
improved ACC by 3.95%, PRE by 4.05%, and REC by 3.95% and F1 by 3.95% compared to
LSTM models.

4.4.2. The Testing Results

When comparing the performance results of ML approaches, it is apparent that
LR with unigram is the best classifier compared with other ML classifiers in terms of
(ACC = 76.94%, PRE = 77.25%, REC = 76.94%, and F1 = 76.88%). In contrast, KNN with
four-gram achieved the worst performance compared with other classifiers in terms of
(ACC = 50.28%, PRE = 75.07%, REC = 50.28%, and F1 = 33.95%). NB with unigram achieves
the best second performance with unigram in terms of (ACC = 76.94%, PRE = 77.01%,
REC = 76.94%, and F1 = 76.93%). Also, we can be observed that unigram with TF-IDF
feature selection is achieved the best performance overall in the classifiers because the
number of times a single word is repeated will be more than the frequency of more than
one word together.

According to DL models, LSTM is achieved the highest result in terms ACC = 84.72%,
PRE = 84.9%, REC = 84.72%, and F1 = 84.7%) and it improved ACC by 7.78%, PRE by
7.65%, and REC by 7.78% and F1 by 7.82% compared to LR with unigram. While RNN is
registered the lowest performance in terms (ACC = 82.78%, PRE = 82.78%, REC = 82.78%,
and F1 = 82.74%).

According to the proposed model, LR stacking and SVM stacking achieved the highest
performance compared to ML models and DL models. LR is registered performance in
terms (ACC = 86.11%, PRE = 86.11%, REC = 86.11%, and F1 = 86.11%) and it improved ACC
by 3.33%, PRE by 3.09%, and REC by 3.33% and F1 by 3.37% compared to LSTM models.

5. Discussion

Overall, compared to other algorithms, the proposed model has the highest perfor-
mance for cross-validation and testing results for all datasets.

For ASTC dataset, the comparison between the highest performing models for cross-
validation and testing for ASTC dataset is shown Figure 11. The proposed model (stacking
LR) has the highest performance in terms (ACC = 98.08%, PRE = 98.09%, REC = 98.08%,
F1 = 98.08%) and (ACC = 92.22%, PRE = 92.23%, REC = 92.22%, F1 = 92.22%) for cross
validation and testing; respectively. while LR with Unigram has the lowest performance
in terms (ACC = 93.21%, PRE = 93.23%, REC = 93.23%, F1 = 93.2%) and (ACC = 91.04%,
PRE = 91.12%, REC = 91.04%, F1 = 91.03%) for cross validation and testing, respectively.

For ArTwitter dataset, the comparison between the highest performing models for
cross-validation and testing for ArTwitter is shown Figure 12. the proposed model (SVM
stacking) has the highest performance in terms(ACC = 92.24%, PRE = 92.39%, REC = 92.24%,
F1 = 92.24%) and (ACC = 83.12%, PRE = 83.85%, REC = 83.12%, F1 = 83.06%) for cross
validation and testing; respectively. While SVM with unigram has the lowest performance
in terms (ACC = 85.38%, PRE = 85.68%, REC = 85.38%, F1 = 85.37%) and (ACC = 75.7%,
PRE = 75.99%, REC = 75.7%, F1 = 75.69%) for cross validation and testing, respectively.
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(a)

(b)

Figure 11. Comparison of performance the best models for ASTC dataset, (a) Cross-validation
performance and (b) testing performance.

For AJGT dataset, the comparison between the highest performing models for cross-
validation and testing for AJGT dataset is shown Figure 13. The proposed model (stacking
LR) has the highest performance in terms (ACC = 93.4%, PRE = 93.5%, REC = 93.4%,
F1 = 93.4%) and (ACC = 86.11%, PRE = 86.13%, REC = 86.11%, F1 = 86.11%) for cross
validation and testing; respectively. While LR with unigram has the lowest performance
in terms (ACC = 84.03%, PRE = 84.5%, REC = 84.03%, F1 = 83.96%) and (ACC = 76.94,
PRE = 77.25%, REC = 76.94%, F1 = 76.88%) for cross validation and testing, respectively.
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Figure 12. Comparison of performance the best models for ArTwitter, (a) Cross-validation perfor-
mance and (b) testing performance.

The proposed models are compared with the literature studies. Table 5 compares the
proposed model to existing literature for the three datasets. We noticed that the proposed
models for Arabic sentiment analysis perform better than other existing works that use
methods based on DL and ensemble learning. First, compared to the authors who used the
ArTwitter dataset, in [26], ACC was registered 88%, in [27], ACC was registered 92.39%,
in authors used a voting algorithm and achieved ACC of 86%. The authors [28] used
CNN-LSTM hybrid model and the performance was 86.45%, 86.46%, 86.45%, and 86.45%
for ACC, PRE, REC, and F1, respectively. For the AJGT dataset, the authors in [67] proposed
an SVM-based model and achieved 88.72% for ACC and 88.27% for F1.
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Table 5. The comparison of results to previous studies.

Paper Alg. Dataset Performance

Alayba et al. [26] CNN+LSTM
ASTD 77% of ACC

ArTwitter 88% of ACC

Hanane Elfaik [27] Bi-LSTM
ASTD 76.83% of ACC

ArTwitter 92.39% of ACC

Al-Saqqa et al. [36] voting algorithm based on
KNN, NB, DT, and SVM ArTwitter 86% of ACC

Al-Azani et al. [28] CNN and LSTM ArTwitter

86.45% of ACC
86.46% of PRE
86.45% of REC
86.45% of F1

Alomari et al. [67] SVM AJGT 88.72% of ACC
88.27% of F1

Al-Azani et al. [37]
Voting, Bagging,
Boosting,
Stacking and RF

Arabic Tweets 85% of F1

The proposed stacking model

The pre-trained RNN,
GRU and LSTM
with meta-learner LR

ASTC dataset

For cross-validation,
98.08%of ACC,
98.09% of PRE,
98.08% of REC,
98.08% of F1

For testing,
92.22% of ACC,
92.23% of PRE,
92.22% of REC,
92.22% of F1

The pre-trained RNN,
GRU and LSTM
with meta-learner SVM

ArTwitter

For cross-validation,
92.24% of ACC,
92.39% of PRE,
92.24% of REC,
92.24% of F1

For testing,
83.12% of ACC,
83.85% of PRE,
83.12% of REC,
83.06% of F1

The pre-trained RNN,
GRUand LSTM
with meta-learner LR

AJGT

For cross-validation,
93.4% of ACC,
93.5% of PRE,
93.4% of REC,
93.4% of F1

For testing,
86.11% of ACC,
86.13% of PRE,
86.11% of REC,
F86.11% of F1
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(a)
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Figure 13. Comparison of performance the best models for AJGT dataset, (a) Cross-validation
performance and (b) testing performance.

In summary, the proposed models have registered the highest cross-validation and
testing performance with the three datasets. Moreover, we compared our models with the
literature studies that have used other datasets than the used three datasets. For instance,
authors in [36] explored the ensemble models of voting, bagging, boosting, stacking, and RF.
They achieved an F1 of 85% using the Arabic Tweets dataset. As clearly noticed, our models
achieved better results compared to [36].



Sensors 2022, 22, 3707 25 of 28

In addition, many studies shared the code of their implemented models. In [68],
the authors used DL techniques, including RNN, LSTM, Bi-LSTM, and CNN, and two-
word embedding techniques Word2Vec and fastText for predicting the Sinhala Language
Sentiment Analysis (https://github.com/LahiruSen/sinhala-sentiment-anlaysis-tallip (ac-
cessed on 2 April 2022)). In [69], the authors proposed a hybrid model based on CNN
and LSTM and made comparisons against CNN, LSTM, and RNN for predicting the
English Language sentiment analysis (https://github.com/pmsosa/CS291K (accessed
on 2 April 2022)). The results show that their hybrid model was achieved the best
performance. In [70], the authors evaluated CNN models using a different word em-
bedding Word2Vec and Glove on different English sentiment analysis datasets (https:
//github.com/shreydesai/cnn-sentiment-analysis (accessed on 2 April 2022)).

6. Conclusions

This study proposes an optimized stacked ensemble DL model for solving the Arabic sen-
timent analysis problem. The proposed model combines three heterogeneous pre-trained DL
models including RNN, LSTM, and GRU. We explore three meta-learners including LR, RF,
and SVM. The meta-learner models are optimized using the grid search hyperparameter optimiza-
tion technique. We tested the models on three well-known Arabic sentiment analysis benchmark
datasets including AJGT, ASTC, and ArTwitter. The data splitting strategy is 80% training set
and 20% testing set. The study compares the proposed models’ results with other regular ML
and DL models. The utilized ML models include NB, KNN, DT, RF, and LR. The TF-IDF with
variable-sized n-grams is used as a feature selection method for the ML models. The feature
extraction approach is CBOW word embedding. The Keras-tuner is used to optimize the DL
models. For ML models, the best results are achieved with the unigram, while the worst results
are with the four-gram in all comparisons. The proposed model achieves the best results against
all other ML and DL models in all comparisons including testing and cross-validation stages.
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ML Machine Learning
DL Deep Learning
RNN Recurrent Neural Network
LSTM Long Short-Term Memory
GRU Gated Recurrent Unit
LR Logistic Regression
RF Random Forest
SVM Support Vector Machine
NB Naive Bayes
KNN K-nearest Neighbor
DT Decision Tree
PRC precision
ACC Accuracy
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REC Recall
F1 F1-score
PRC Precision
SG Skip-gram
CNN Convolutional Neural Network
Bi-LSTM Bidirectional long-short term memory
ASTC Arabic Sentiment Twitter Corpus

References
1. Shah, D.; Isah, H.; Zulkernine, F. Predicting the effects of news sentiments on the stock market. In Proceedings of the 2018 IEEE

International Conference on Big Data, Seattle, WA, USA, 10–13 December 2018; pp. 4705–4708.
2. Wojtkiewicz, K.; Treur, J.; Pimenidis, E.; Maleszka, M. Advances in Computational Collective Intelligence. In Proceedings of the

13th International Conference, ICCCI 2021, Kallithea, Greece, 29 September–1 October 2021; Springer: Berlin, Germany, 2021.
3. Ricard, B.J. Machine Learning Methods in Social Media Analysis with Applications in Mental Health. Ph.D. Thesis, Dartmouth

College, Hanover, NH, USA, 2021.
4. Mitchell, T.M. Machine learning and data mining. Commun. ACM 1999, 42, 30–36.
5. Sebastiani, F. Machine learning in automated text categorization. ACM Comput. Surv. (CSUR) 2002, 34, 1–47.
6. Sinclair, C.; Pierce, L.; Matzner, S. An application of machine learning to network intrusion detection. In Proceedings 15th IEEE

Annual Computer Security Applications Conference (ACSAC’99), Phoenix, AZ, USA, 6–10 December 1999; pp. 371–377.
7. Kim, E.; Kim, W.; Lee, Y. Combination of multiple classifiers for the customer’s purchase behavior prediction. Decis. Support Syst.

2003, 34, 167–175.
8. Yao, D.; Yang, J.; Zhan, X. A Novel Method for Disease Prediction: Hybrid of Random Forest and Multivariate Adaptive

Regression Splines. J. Comput. 2013, 8, 170–177.
9. Shahi, T.; Sitaula, C.; Paudel, N. A Hybrid Feature Extraction Method for Nepali COVID-19-Related Tweets Classification.

Comput. Intell. Neurosci. 2022, 2022, 5681574.
10. Hasan, A.; Moin, S.; Karim, A.; Shamshirband, S. Machine learning-based sentiment analysis for twitter accounts. Math. Comput.

Appl. 2018, 23, 11.
11. Singh, C.; Imam, T.; Wibowo, S.; Grandhi, S. A Deep Learning Approach for Sentiment Analysis of COVID-19 Reviews. Appl. Sci.

2022, 12, 3709.
12. Abo, M.E.M.; Idris, N.; Mahmud, R.; Qazi, A.; Hashem, I.A.T.; Maitama, J.Z.; Naseem, U.; Khan, S.K.; Yang, S. A Multi-Criteria

Approach for Arabic Dialect Sentiment Analysis for Online Reviews: Exploiting Optimal Machine Learning Algorithm Selection.
Sustainability 2021, 13, 10018.

13. Elshakankery, K.; Ahmed, M.F. HILATSA: A hybrid Incremental learning approach for Arabic tweets sentiment analysis. Egypt.
Inform. J. 2019, 20, 163–171.

14. Tsoumakas, G.; Partalas, I.; Vlahavas, I. A taxonomy and short review of ensemble selection. In Proceedings of the Workshop on
Supervised and Unsupervised Ensemble Methods and Their Applications, Patras, Greece, 21–22 July 2008; pp. 1–6.

15. Whalen, S.; Pandey, G. A comparative analysis of ensemble classifiers: Case studies in genomics. In Proceedings of the 2013 IEEE
13th International Conference on Data Mining, Dallas, TX, USA, 7–10 December 2013; pp. 807–816.

16. Sabzevari, M.; Martínez-Muñoz, G.; Suárez, A. Building heterogeneous ensembles by pooling homogeneous ensembles. Int. J.
Mach. Learn. Cybern. 2022, 13, 551–558.

17. Breiman, L. Bagging predictors. Mach. Learn. 1996, 24, 123–140.
18. Svetnik, V.; Wang, T.; Tong, C.; Liaw, A.; Sheridan, R.P.; Song, Q. Boosting: An ensemble learning tool for compound classification

and QSAR modeling. J. Chem. Inf. Model. 2005, 45, 786–799.
19. Wang, G.; Hao, J.; Ma, J.; Jiang, H. A comparative assessment of ensemble learning for credit scoring. Expert Syst. Appl. 2011,

38, 223–230.
20. Handhika, T.; Fahrurozi, A.; Sari, I.; Lestari, D.P.; Zen, R.I.M.; et al. Hybrid Method for Sentiment Analysis Using Homogeneous

Ensemble Classifier. In Proceedings of the 2019 2nd International Conference of Computer and Informatics Engineering (IC2IE),
Banyuwangi, Indonesia, 10–11 September 2019; pp. 232–236.

21. Subba, B.; Kumari, S. A heterogeneous stacking ensemble based sentiment analysis framework using multiple word embeddings.
Comput. Intell. 2021, 38, 530–559.

22. El-Rashidy, N.; Abuhmed, T.; Alarabi, L.; El-Bakry, H.M.; Abdelrazek, S.; Ali, F.; El-Sappagh, S. Sepsis prediction in intensive care
unit based on genetic feature optimization and stacked deep ensemble learning. Neural Comput. Appl. 2022, 34, 3603–3632.

23. Ali, F.; El-Sappagh, S.; Islam, S.R.; Kwak, D.; Ali, A.; Imran, M.; Kwak, K.S. A smart healthcare monitoring system for heart
disease prediction based on ensemble deep learning and feature fusion. Inf. Fusion 2020, 63, 208–222.

24. El-Rashidy, N.; El-Sappagh, S.; Abuhmed, T.; Abdelrazek, S.; El-Bakry, H.M. Intensive care unit mortality prediction: An
improved patient-specific stacking ensemble model. IEEE Access 2020, 8, 133541–133564.

25. Maglogiannis, I.G. Emerging Artificial Intelligence Applications in Computer Engineering: Real Word Ai Systems with Applications in
Ehealth, HCI, Information Retrieval and Pervasive Technologies; IOS Press: Amsterdam, The Netherlands, 2007; Volume 160.



Sensors 2022, 22, 3707 27 of 28

26. Alayba, A.M.; Palade, V.; England, M.; Iqbal, R. A combined CNN and LSTM model for arabic sentiment analysis. In International
Cross-Domain Conference for Machine Learning and Knowledge Extraction; Springer: New York, NY, USA, 2018; pp. 179–191.

27. Elfaik, H. Deep bidirectional lstm network learning-based sentiment analysis for arabic text. J. Intell. Syst. 2021, 30, 395–412.
28. Al-Azani, S.; El-Alfy, E.S.M. Hybrid deep learning for sentiment polarity determination of Arabic microblogs. In Proceedings of

the International Conference on Neural Information Processing, Guangzhou, China, 14–18 November 2017; Springer: New York,
NY, USA, 2017, pp. 491–500.

29. Alomari, K.M.; ElSherif, H.M.; Shaalan, K. Arabic tweets sentimental analysis using machine learning. In Proceedings of the
International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems, Arras, France, 27–30
June 2017; Springer: New York, NY, USA, 2017; pp. 602–610.

30. Abd El-Jawad, M.H.; Hodhod, R.; Omar, Y.M. Sentiment analysis of social media networks using machine learning. In Pro-
ceedings of the 2018 14th IEEE International Computer Engineering Conference (ICENCO), Cairo, Egypt, 29–30 December 2018;
pp. 174–176.

31. Alayba, A.M.; Palade, V.; England, M.; Iqbal, R. Improving sentiment analysis in Arabic using word representation. In Proceedings
of the 2018 IEEE 2nd International Workshop on Arabic and Derived Script Analysis and Recognition (ASAR), London, UK,
12–14 March 2018; pp. 13–18.

32. Fawzy, M.; Fakhr, M.W.; Rizka, M.A. Word Embeddings and Neural Network Architectures for Arabic Sentiment Analysis.
In Proceedings of the 2020 16th IEEE International Computer Engineering Conference (ICENCO), Cairo, Egypt, 20–30 December
2020; pp. 92–96.

33. Al-Hashedi, A.; Al-Fuhaidi, B.; Mohsen, A.M.; Ali, Y.; Gamal Al-Kaf, H.A.; Al-Sorori, W.; Maqtary, N. Ensemble Classifiers for
Arabic Sentiment Analysis of Social Network (Twitter Data) towards COVID-19-Related Conspiracy Theories. Appl. Comput.
Intell. Soft Comput. 2022, 2022, 6614730.

34. Alharbi, A.; Kalkatawi, M.; Taileb, M. Arabic sentiment analysis using deep learning and ensemble methods. Arab. J. Sci. Eng.
2021, 46, 8913–8923.

35. Oussous, A.; Lahcen, A.A.; Belfkih, S. Impact of text pre-processing and ensemble learning on Arabic sentiment analysis.
In Proceedings of the 2nd International Conference on Networking, Information Systems & Security, Sanya, China, 27–29
December 2019; pp. 1–9.

36. Al-Saqqa, S.; Obeid, N.; Awajan, A. Sentiment analysis for Arabic text using ensemble learning. In Proceedings of the 2018
IEEE/ACS 15th International Conference on Computer Systems and Applications (AICCSA), Aqaba, Jordan, 28 October–1
November 2018; pp. 1–7.

37. Al-Azani, S.; El-Alfy, E.S.M. Using word embedding and ensemble learning for highly imbalanced data sentiment analysis in
short arabic text. Procedia Comput. Sci. 2017, 109, 359–366.

38. Sitaula, C.; Basnet, A.; Mainali, A.; Shahi, T. Deep Learning-Based Methods for Sentiment Analysis on Nepali COVID-19-Related
Tweets. Comput. Intell. Neurosci. 2021, 2021, 2158184.

39. Sitaula, C.; Shahi, T.B. Multi-channel CNN to classify nepali covid-19 related tweets using hybrid features. arXiv 2022,
arXiv:2203.10286.

40. Arabic Sentiment Twitter Corpus. Available online: https://www.kaggle.com/mksaad/arabic-sentiment-twitter-corpus
(accessed on 2 April 2022).

41. Abdulla, N.A.; Ahmed, N.A.; Shehab, M.A.; Al-Ayyoub, M. Arabic sentiment analysis: Lexicon-based and corpus-based.
In Proceedings of the 2013 IEEE Jordan Conference on Applied Electrical Engineering and Computing Technologies (AEECT),
Amman, Jordan, 3–5 December 2013; pp. 1–6.

42. Arabic Jordanian General Tweets (AJGT). Available online: https://github.com/komari6/Arabic-twitter-corpus-AJGT (accessed
on 2 April 2022).

43. ISRI Stemmer. Available online: https://www.nltk.org/_modules/nltk/stem/isri.html (accessed on 2 April 2022).
44. Dhar, A.; Dash, N.S.; Roy, K. Application of tf-idf feature for categorizing documents of online bangla web text corpus. In

Intelligent Engineering Informatics; Springer: New York, NY, USA, 2018; pp. 51–59.
45. Qaiser, S.; Ali, R. Text mining: Use of TF-IDF to examine the relevance of words to documents. Int. J. Comput. Appl. 2018,

181, 25–29.
46. Fayed, H.A.; Atiya, A.F. Speed up grid-search for parameter selection of support vector machines. Appl. Soft Comput. 2019,

80, 202–210.
47. Ahmad, M.; Aftab, S.; Bashir, M.S.; Hameed, N.; Ali, I.; Nawaz, Z. SVM optimization for sentiment analysis. Int. J. Adv. Comput.

Sci. Appl. 2018, 9, 393–398.
48. Browne, M.W. Cross-validation methods. J. Math. Psychol. 2000, 44, 108–132.
49. Refaeilzadeh, P.; Tang, L.; Liu, H. Cross-validation. Encycl. Database Syst. 2009, 5, 532–538.
50. Le Cessie, S.; Van Houwelingen, J.C. Ridge estimators in logistic regression. J. R. Stat. Soc. Ser. C Appl. Stat. 1992, 41, 191–201.
51. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.;

et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.
52. Quinlan, J.R. Induction of decision trees. Mach. Learn. 1986, 1, 81–106.
53. Chollet, F. Xception: Deep learning with depthwise separable convolutions. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1251–1258.

https://www.kaggle.com/mksaad/arabic-sentiment-twitter-corpus
https://github.com/komari6/Arabic-twitter-corpus-AJGT
https://www.nltk.org/_modules/nltk/stem/isri.html


Sensors 2022, 22, 3707 28 of 28

54. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32.
55. Sarker, I.H.; Kayes, A.; Watters, P. Effectiveness analysis of machine learning classification models for predicting personalized

context-aware smartphone usage. J. Big Data 2019, 6, 1–28.
56. John, G.H.; Langley, P. Estimating continuous distributions in Bayesian classifiers. arXiv 2013, arXiv:1302.4964.
57. Sarker, I.H. A machine learning based robust prediction model for real-life mobile phone data. Internet Things 2019, 5, 180–193.
58. Aha, D.W.; Kibler, D.; Albert, M.K. Instance-based learning algorithms. Mach. Learn. 1991, 6, 37–66.
59. Singh, A.; Halgamuge, M.N.; Lakshmiganthan, R. Impact of different data types on classifier performance of random forest,

naive bayes, and k-nearest neighbors algorithms. Int. J. Adv. Comput. Sci. Appl. 2017.
60. O’Malley, T.; Bursztein, E.; Long, J.; Chollet, F.; Jin, H.; Invernizzi, L.; de Marmiesse, G.; Fu, Y.; Podivìn, J.; Schäfer, F.; et al. Keras

Tuner. 2019. Available online: github.com/keras-team/kerastuner (accessed on 2 April 2022).
61. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016.
62. Medsker, L.; Jain, L.C. Recurrent Neural Networks: Design and Applications; CRC Press: Boca Raton, FL, USA, 1999.
63. Lipton, Z.C.; Kale, D.C.; Elkan, C.; Wetzel, R. Learning to diagnose with LSTM recurrent neural networks. arXiv 2015,

arXiv:1511.03677.
64. Su, Y.; Kuo, C.C.J. On extended long short-term memory and dependent bidirectional recurrent neural network. Neurocomputing

2019, 356, 151–161.
65. Gruber, N.; Jockisch, A. Are GRU cells more specific and LSTM cells more sensitive in motive classification of text? Front. Artif.

Intell. 2020, 3, 40.
66. AlZoman, R.M.; Alenazi, M.J. A comparative study of traffic classification techniques for smart city networks. Sensors 2021, 21, 4677.
67. Kazmaier, J.; van Vuuren, J.H. The power of ensemble learning in sentiment analysis. Expert Syst. Appl. 2022, 187, 115819.
68. Senevirathne, L.; Demotte, P.; Karunanayake, B.; Munasinghe, U.; Ranathunga, S. Sentiment Analysis for Sinhala Language using

Deep Learning Techniques. arXiv 2020, arXiv:2011.07280.
69. Sosa, P.M. Twitter sentiment analysis using combined LSTM-CNN models. Eprint Arxiv 2017, 1–9.
70. Desai, S. Word Embedding Aware Convolutional Networks for Sentiment Analysis. Available online: https://github.com/

shreydesai/cnn-sentiment-analysis/blob/master/paper/paper.pdf (accessed on 2 April 2022).

github.com/keras-team/kerastuner
https://github.com/shreydesai/cnn-sentiment-analysis/blob/master/paper/paper.pdf
https://github.com/shreydesai/cnn-sentiment-analysis/blob/master/paper/paper.pdf

	Introduction
	Related Work
	Methodology
	Data Collection
	Dataset2: (ArTwitter)
	Data Pre-Processing
	Splitting Dataset
	Machine Learning Approach
	Feature Extraction Method
	Optimization Methods
	ML Algorithms

	Deep Learning Approach
	Optimization Method
	Feature Extraction Method
	DL Algorithms

	The Proposed Stacking Ensemble Model
	Evaluating Models

	Experiments Results
	Experimental Setup
	Results of ASTC Dataset
	Cross-Validation Results
	Testing Results

	Results of ArTwitter Dataset
	Cross-Validation Results
	Testing Results

	Results of AJGT Dataset
	Cross-Validation Results
	The Testing Results


	Discussion
	Conclusions
	References

