
����������
�������

Citation: Sakurai, K.; Togo, R.;

Ogawa, T.; Haseyama, M.

Controllable Music Playlist

Generation Based on Knowledge

Graph and Reinforcement Learning.

Sensors 2022, 22, 3722. https://

doi.org/10.3390/s22103722

Academic Editor: Muhammad

Ali Imran

Received: 14 April 2022

Accepted: 11 May 2022

Published: 13 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Controllable Music Playlist Generation Based on Knowledge
Graph and Reinforcement Learning †

Keigo Sakurai 1,*, Ren Togo 2 , Takahiro Ogawa 2 and Miki Haseyama 2

1 Graduate School of Information Science and Technology, Hokkaido University, N-14, W-9, Kita-ku,
Sapporo 060-0814, Hokkaido, Japan

2 Faculty of Information Science and Technology, Hokkaido University, N-14, W-9, Kita-ku,
Sapporo 060-0814, Hokkaido, Japan; togo@lmd.ist.hokudai.ac.jp (R.T.); ogawa@lmd.ist.hokudai.ac.jp (T.O.);
miki@ist.hokudai.ac.jp (M.H.)

* Correspondence: sakurai@lmd.ist.hokudai.ac.jp
† This paper is an extended version of our paper published in: Sakurai, K.; Togo, R.; Ogawa, T.; Haseyama, M.

User Background Information-Aware Music Recommendation with Reinforcement Learning-Based
Knowledge Graph Exploration. In the Proceedings of the IEEE International Conference on Consumer
Electronics—Taiwan (IEEE 2021 ICCE-TW), Penghu, Taiwan, 15–17 September 2021.

Abstract: In this study, we propose a novel music playlist generation method based on a knowledge
graph and reinforcement learning. The development of music streaming platforms has transformed
the social dynamics of music consumption and paved a new way of accessing and listening to
music. The playlist generation is one of the most important multimedia techniques, which aims to
recommend music tracks by sensing the vast amount of musical data and the users’ listening histories
from music streaming services. Conventional playlist generation methods have difficulty capturing
the target users’ long-term preferences. To overcome the difficulty, we use a reinforcement learning
algorithm that can consider the target users’ long-term preferences. Furthermore, we introduce
the following two new ideas: using the informative knowledge graph data to promote efficient
optimization through reinforcement learning, and setting the flexible reward function that target
users can design the parameters of itself to guide target users to new types of music tracks. We
confirm the effectiveness of the proposed method by verifying the prediction performance based
on listening history and the guidance performance to music tracks that can satisfy the target user’s
unique preference.

Keywords: music playlist generation; knowledge graph; reinforcement learning; multimedia
techniques; music recommendation; preference sensing

1. Introduction

In our daily lives, we are constantly exposed to various situations that change our
mental states. With the global acceleration of digital technologies, these changes have
become larger and more complex [1]. Digital devices have driven innovation in society at
an unprecedented speed, and new technologies are being created daily. It is important to
have a relaxing and refreshing environment to maintain one’s mental state and motivation
in this new era. Music is one of the primary ways to create such an environment. Music
can lead to various changes in our mental states, i.e., creating positive as well as negative
emotions [2,3].

The development of music streaming platforms, such as Spotify (https://www.spotify.
com, accessed on 12 May 2022) and YouTube Music (https://music.youtube.com/, accessed
on 12 May 2022) has transformed the social dynamics of music consumption and paved a
new way to access and listen to music [4–6]. Consumers can access millions of music tracks
on music streaming platforms at any time and from any location using mobile devices, such
as smartphones and tablets [7]. This creates an interesting challenge for users to find their

Sensors 2022, 22, 3722. https://doi.org/10.3390/s22103722 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22103722
https://doi.org/10.3390/s22103722
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-4474-3995
https://orcid.org/0000-0001-5332-8112
https://www.spotify.com
https://www.spotify.com
https://music.youtube.com/
https://doi.org/10.3390/s22103722
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22103722?type=check_update&version=2

Sensors 2022, 22, 3722 2 of 17

favorite music tracks among the overwhelming variety of music tracks on music streaming
platforms [8].

Music streaming platforms provide various services and tools to their users, with
playlist generation and recommendations being the most common [9]. According to
a Spotify announcement in 2017, there are more than 4 billion playlists available [10].
Furthermore, according to a study conducted by the Music Business Association in 2016 [11],
listeners in the United States spend 31% of their music listening time on playlists, which
is longer than the time spent listening to albums. These reports also show the growing
importance of playlists as a mode of music consumption. Generally, manual construction
of playlists by users can be a comparably complicated and time-consuming task [12–14].
Multimedia techniques, including automatic playlist generation by sensing the vast amount
of musical data and the users’ listening histories, contribute to releasing users from the
effort involved in the process [15–17].

Conventionally, various music playlist generation methods have been proposed,
such as the classical matrix factorization-based methods [18–20] and the recurrent neural
network-based methods [21,22]. These methods have achieved high accuracy in predicting
users’ short-term preferences for music tracks. However, almost all previous studies did
not focus on predicting target users’ long-term preferences. Music playlist generation is a
task that presents multiple music tracks as a list, unlike ordinary music recommendations,
which predict and provide a single music track [23,24]. It is difficult for conventional
methods based on short-term predictions to generate a playlist where all music tracks
are preferred by users. We consider that all music tracks in a generated playlist should
contribute to increasing user satisfaction.

Recent remarkable developments in reinforcement learning provide promising solu-
tions to the problem by maximizing long-term performance [25,26]. Reinforcement learning
(RL) is a method used for determining the optimal behavior that maximizes the reward
in a single episode based on a Markov decision process (MDP) [27,28]. The goal of the
RL-based playlist generation method is to select and list more music tracks that can satisfy
users in a single episode by treating the length of the playlist as an episode. The reward
function based on users’ listening histories and feedback from recommendation results has
been used in conventional RL-based playlist generation methods [29,30]. These methods
are designed to provide users with a pleasant playlist by learning the policy function to
maximize the values of the reward function.

The following two aspects of the above trials are yet to be resolved: predicting users’
preferences based on listening histories and guiding users to new preferences. The problem
in predicting users’ preferences is that learning the policy function directly toward opti-
mization objectives from users’ listening histories, which are probably sparse or limited, is
difficult [25,31]. Exploration and exploitation are the two basic learning processes in RL.
The exploration to grasp users’ preferences may take a huge amount of time and successful
optimization may not be guaranteed because listening histories are sparse. However, be-
cause the reward functions are based only on users’ listening histories and feedback from
the recommendation results, it is possible to end up with echo chambers and filter bubbles
when guiding users to new preferences [32,33]. It is not the primary purpose of a music
playlist generation to extremely narrow down the range of users’ interests by exploiting
their listening histories. Therefore, it is necessary to guide users to new types of music
tracks beyond the scope of users’ past preferences using not only the past listening histories
but also sensing explicit inputs from target users.

To solve these problems, this study presents a novel controllable music playlist gen-
eration method based on a knowledge graph and RL. In the proposed method, we newly
introduce the following two ideas. First, to promote efficient optimization through RL, we
use informative knowledge graph (KG) data. KG is a directed graph that can represent
higher-order relationships among nodes [34,35]. The advantage of KG is that it is possible
to compute informative features considering the relevance of rich metadata based on em-
bedding methods [36]. The proposed method achieves effective optimization and solves

Sensors 2022, 22, 3722 3 of 17

the sparsity problem using the state representation based on music features obtained from
KG in addition to users’ listening histories. Second, we create a flexible reward function
that target users can design to guide target users to new types of music tracks. The reward
function consists of indices to reflect users’ specific preferences for popularity, novelty,
and acoustic feature similarity. Target users are directed to new types of music tracks
based on the index they specify by manipulating the weight parameters of each index.
We use the policy gradient, one of the RL algorithms, to determine the agent’s policy for
generating playlists based on the states and rewards designed above. Finally, we generate
music playlists for target users based on the obtained agent’s policy. Our contribution is
the accurate prediction of target users’ preferences and the introduction of new types of
music tracks to target users.

The rest of this paper is organized as follows. In Section 2, we present related works on
music playlist generation, such as RL-based and KG-based recommendations. In Section 3,
we provide preliminary information to support the understanding of our method. Section 4
explains the proposed music playlist recommendation method. Section 5 presents the
experimental results using a real-world music playlist dataset. Finally, we conclude our
study in Section 6.

2. Related Works

In this section, we present related works on a music playlist generation and KG-based
recommendations to clarify the novelty and contribution of our study.

2.1. Music Playlist Generation

A music playlist generation problem can be considered a special case of music recom-
mendation problems [37]. The order and characteristics of music tracks affect the quality of
the playlist, which is a unique feature of music playlist creation. A previous study used
machine learning techniques that consider a time series to tackle the problem of a music
playlist generation [21,22,38–41]. Choi et al. used a recurrent neural network (RNN) to
generate a music playlist that focused on the qualities of track transitions [21]. Monti et al.
used an ensemble strategy of RNNs based on pre-trained embeddings representing albums,
titles, etc. [38]. Irene et al. predicted users’ future preferences by analyzing playlists created
manually based on RNN and a convolutional neural network (CNN) [22]. However, it is
difficult to capture users’ long-term preferences because these approaches are trained to
acquire sequence characteristics of a few steps.

Recently, RL-based music playlist generation methods have been studied to consider
users’ long-term preferences. An important factor that influences the performance of
RL-based playlist generation is the reward function. Hu et al. attempted to improve
the performance of playlist generation by introducing user feedback on recommendation
results into the reward function [30]. However, this approach may lead to a feedback loop
that narrows the range of users’ interests. Shih et al. introduced novelty and popularity-
based indices into the reward function and generated playlists containing many new and
famous music tracks [42]. Our previous study focused on the “smooth track transition,”
and we introduced indices based on acoustic feature similarity to the reward function [3,17].
However, there is no consensus in conventional RL-based playlist generation studies as
to which indices of the reward function are better. To address this problem, we use an
approach that allows users to create playlists they desire by manipulating the parameters
of the reward function themselves.

2.2. Knowledge Graph-Based Recommendation

The recent development of KG in the field of recommender systems has been remark-
able [43–46]. The approach of these KG-based recommendation studies uses the rich relation
information of KG for improving the explainability and accuracy of recommender systems.
Furthermore, higher performance can be achieved by combining KG and RL [36,47–51].
Xian et al. attempted KG reasoning for recommendation using the soft reward function

Sensors 2022, 22, 3722 4 of 17

based on KG embeddings [36]. Song et al. used a hard reward function based on user
interaction information in addition to a soft reward function to improve recommendation
accuracy [48]. Furthermore, our previous study introduced a soft reward function based on
KG using acoustic features into the music recommendation algorithm [49]. However, it is
unclear whether the KG is involved in the proper training of RL because these methods
apply KG-based features only for the reward function.

Some researchers in the field of sequential recommendation have focused on how to
use KG. Wang et al. have introduced KG embedding features into the state representation
and the reward function of RL to accelerate the training of proper RL [25]. Based on this
approach, we introduce music features, such as higher-order relation information obtained
from the KG, into the music playlist generation algorithm. To the best of our knowledge, it
is the first time that KG has been used in music playlist generation methods.

3. Preliminary

In this section, we present the preliminary to clarify our playlist generation task,
especially the concept of RL. First, we introduce the notations in our task to make the
process of playlist generation clear in advance. Furthermore, we explain the definition of
our playlist generation task, and a MDP, which is a key concept of RL.

Notation

A scenario of a music playlist generation consists of a target user’s listening history and
his/her explicit inputs. Let U denote a set of users andM denote a set of music tracks in
a database. For each target user uv (v = 1, 2, ..., Nu; Nu being the number of target users)
∈ U , we set luv

1:Nuv = luv
1 → luv

2 → · · · → luv
Nuv (Nuv being the number of music tracks in the

listening history of a target user uv) to denote the listening history of the target user uv.
Specifically, luv

1 denotes the music track that the target user uv listened to first. In addition
to the listening history of a target user, our model uses the target user’s explicit inputs γ
for the parameter of the reward function in RL. Furthermore, a KG G is provided for the
task of music playlist generation, where each record is a triplet consisting of two entities
and their relationships. The set of music tracksM can be arranged in the KG. Based on the
KG, we can obtain associated knowledge information of music tracks, e.g., an artist of a
music track or genres of an artist.

Task definition

We used RL to generate music playlists. Based on the above notations, our model generates
a music playlist and recommends it to a target user. The main advantage of our model
is that it can predict the target user preferences based on the user’s listening history and
guide the target user to the new types of music tracks based on the user’s explicit inputs.

Markov decision process

MDP is an important principle of RL. First, we briefly introduce the MDP. Generally, the
MDP can be described by a quintuple 〈 S , A, T, R, π 〉:

State S
S denotes a set of states, and each s ∈ S represents the information state of an agent in the
environment.
Action A
A denotes a set of actions, and each a ∈ A denotes the actions that the agent can take with
respect to the environment.
Transition function T
T denotes a transition function for updating the state according to the action and current
state, i.e., st+1 = T(st, at).
Reward function R
R denotes a reward function, e.g., if the agent performs at in state st, it gives an immediate
reward R(st, at).

Sensors 2022, 22, 3722 5 of 17

Policy π

π denotes the agent’s action policy. Generally, it is modeled using a probability distribution
over possible actions.

Based on the above five definitions, we obtained the optimal policy through repeated trial
and error.

4. Proposed Method

In this section, we introduce the proposed controllable music playlist generation
method in detail. The overview of the proposed method is shown in Figure 1. Our method
generates music playlists using the RL algorithm based on the target user’s listening history
and their explicit inputs.

Figure 1. The overview of the proposed method. Based on the target user’s listening history luv
1:t and

his/her explicit inputs γ, our model learns the policy function π for the agent that generates the

playlist p1:Np
t according to the MDP.

4.1. Formulation of Markov Decision Process

First, we use MDP to obtain the optimal policy and generate sophisticated playlists. In
the MDP situation, the agent interacts with the environment at each time step and observes
its state. In our task, the state of the environment contains the target user’s listening
history and KG information describing the higher-order relationships of music tracks in
the database. The state at step t is defined as follows:

st = [luv
1:t,G], (1)

Sensors 2022, 22, 3722 6 of 17

where luv
1:t (1 ≤ t ≤ Nuv) denotes the music track sequence in the listening history luv

1:Nuv and
G denotes the KG. Here, the initial state s0 is defined as follows:

s0 = [∅,G]. (2)

Furthermore, the agent takes an action at ∈ A, which selects music tracks from the

music track setM and generates a playlist p
1:Np
t (Np being the number of music tracks in

the playlist) for the target user uv at step t. Specifically, p1
t is the first music track in the

generated playlist at step t. The agent’s actions are determined on the basis of its policy
π(at|st). In our model, we define the policy π(at|st) as a softmax function that outputs a
probability of each music track. The policy π(at|st) is defined as follows:

π(at|st) =
exp{ptWst}

∑m′∈M exp{m′Wst}
, (3)

pt =
Np

∑
i=1

pi
t

Np
, (4)

where m′ and pi
t denote the music features of m′ and pi

t obtained in Section 4.2, respectively,
W denotes the parameters of the policy function, and st is the embedding feature of state st.

According to the action, the agent obtains a reward rt+1. The reward is designed
based on the user’s listening history and explicit inputs from the target user. Furthermore,
the transition function T(st, at) representing the alteration to the next state can be defined
as follows:

T(st, at) = T([luv
1:t,G], p

1:Np
t) (5)

= st+1. (6)

The new state st+1 is defined as [luv
1:t+1, G] and associated with an embedding feature

st+1. Based on the above formulation of MDP, we generate a sophisticated playlist by
gradually updating the policy from the listening history and the explicit inputs.

4.2. Extraction of Music Feature from Knowledge Graph

In this subsection, we explain how to calculate music features using a KG. KG is a
directed graph that can represent higher-order relationships among nodes. In the proposed
method, we construct the KG using music tracks and their metadata. The KG G having
a node set N and an edge set E is defined as G = {(nhead, e, ntail) | nhead, ntail ∈ N , e ∈ E },
where nhead and ntail are a head node and a tail node, respectively, and e is an edge
connecting nhead with ntail. In the proposed method, these nodes consist of music tracks
mx (x = 1, 2, ..., Nm; Nm denotes the number of music tracks), artists ry (y = 1, 2, ..., Nr; Nr
denote the number of artists) and genres gz (z = 1, 2, ..., Ng; Ng denote the number of genres
of music tracks). Furthermore, we define “the directed edge e(ry,mx) connecting music track
mx to artist ry that created the music track mx” and “the directed edge e(mx,gz) connecting
music track mx to genres gz that artist ry belongs to.” By using the directed graph, we can
understand the hierarchical relationships of the heterogeneous entities.

Furthermore, we use TransE [52], which is a typical KG embedding method, to design
KG G and calculate the embedding features of each node and edge. In TransE, features of
nodes and edges are calculated to satisfy the following equation:

nhead + e = ntail, (7)

where nhead, e and ntail are embedding features of nhead, e and ntail, respectively. Here, we
define the embedding features of mx, ry, gz, e(ry,mx) and e(mx,gz) as mx, ry, gz, e(ry ,mx) and
e(mx ,gz), respectively. Furthermore, we denote the embedding features mx as the music

Sensors 2022, 22, 3722 7 of 17

features of each music track. In this way, we can obtain music features that can represent
higher-order relationships between music tracks and their metadata.

4.3. Setting of State Representation

Modeling the appropriate state representation is an important feature of the RL algo-
rithm. We incorporate knowledge information from KG to learn a good state representation
and set up the following three types of state representations: past preference-based represen-
tation, current preference-based representation, and future preference-based representation.
This allows us to construct an RL learning algorithm that understands user preferences
using rich information from the KG.

4.3.1. Historical Preference State Representation

First, we used the gated recurrent unit (GRU) [53], which is a standard recurrent neural
network (RNN) model, for encoding the target user’s listening history. The objective of the
representation is to capture the characteristics of the user’s historical listening preferences,
and it does not use information obtained from the KG. The historical preference-based state
representation ht is defined as follows:

ht = GRU(ht−1, luv
1:t; Φgru) (8)

where Φgru denotes all related parameters of the GRU.

4.3.2. Current Preference State Representation

Second, we used the target user’s listening history and the music features calculated in
Section 4.2. The objective of the representation is to obtain the characteristics of the music
track content preferred by the users from the rich information of the KG. Based on the
literature [25], we use a mean pooling strategy to aggregate KG features of music tracks
played by the target user. The current preference-based state representation is defined
as follows:

ct =
t

∑
j=1

luv
j

t
, (9)

where luv
j denotes the music feature of luv

j . Note that the above equation does not consider
temporal information or attention mechanisms because there is no significant performance
improvement over the simple representation described above.

4.3.3. Future Preference State Representation

Third, we introduce the future preference to grasp the interest evolution of the target
user at future time steps. We use an induction network to predict future preferences based
on current preferences as the key point to generating a sophisticated music playlist. In
our model, the induction network is developed using a multi-layer perceptron (MLP). We
predict a future preference representation using the current preference-based representation
ct as an input. The future preference-based state representation is defined as follows:

ft = IDN(ct; Φidn), (10)

where IDN (·) denotes the induction network constructed based on the MLP, Φidn denotes
the parameters of the induction network. We assume that the target user’s preference for
the content of music tracks should not change much over successive time steps. Therefore,
our goal is to predict the future preference based on the target user’s current preference.
Learning the future preference from KG is useful for RL-based algorithms because it is
an important point in developing a rational and profitable search. By using the MLP, the
induction network is expected to grasp the growth of the target user’s preferences.

Sensors 2022, 22, 3722 8 of 17

4.3.4. Final State Representation

From the above discussion, we present the final state representation. For a final state
st, we defined its representation st as the concatenation of three representation embeddings:
The final state representation is defined as follows:

st = ht ⊕ ct ⊕ ft, (11)

where⊕ denotes the concatenation operator, ht, ct and ft are obtained in Sections 4.3.1–4.3.3,
respectively. Our model can generate music playlists containing music tracks predicted to
be preferred by the target user by capturing the past, current, and future preferences of the
target user.

4.4. Setting of Reward Function

In the subsection, we set the reward function. Our model’s main goals are to predict
target users’ preferences based on their listening histories and to guide the target user to
new types of music tracks based on their explicit inputs. To achieve both purposes, we
introduce two types of rewards. The first is a prediction reward based on the similarity
of the generated playlist and the ground truth listening history. The other is the guiding
reward reflecting the target user’s specific preference for acoustic features similarity, year,
and popularity of music tracks. Our model can generate playlists personalized to each
user’s specific preferences by allowing the target user to control the balance of those
rewards based on explicit inputs. In the following, we describe each reward.

4.4.1. Prediction Reward

In the prediction reward, we consider measuring the quality of music features of the
generated playlist. Exact matching between the ground truth (GT) listening history and the
generated playlist is an effective solution for predicting music tracks. However, training
for exact matching may be difficult because GT listening histories are sparse for the entire
database. To avoid the sparse problem and promote efficient training, one of the rational
solutions is to exploit the similarity of music features obtained in Section 4.2. The similarity
of music features is not sparse, and music features representing higher-order relationships
of metadata of the music tracks lead to approximate matching. Therefore, we introduce
cosine similarity between music features of GT listening history and the generated playlist
into the prediction reward, which solves the sparse problem and facilitates efficient training.

Given the GT listening history and the generated playlist, namely lGT
1:Np−t and p

1:Np
t , we use

the simple average method to aggregate the music feature of music tracks, denoted by cGT
t

and p
1:Np
t , respectively. In this way, the prediction reward Rpre

t is defined as follows:

Rpre
t =

cGT
t · p

1:Np
t

>

||cGT
t || · ||p

1:Np
t

>
||

. (12)

The prediction reward Rpre
t is also used to train the induction network to update future

state ft because it has a significant impact on the prediction performance of music tracks.
The training of the induction network is discussed in detail in Section 4.5.

4.4.2. Guiding Reward

The guiding reward aims to direct users to new types of music tracks that can satisfy
their unique preferences. It consists of the following three indices: acoustic similarity,
popularity, and novelty rewards. We assume that the target user’s unique preferences
change over time and under different circumstances and that they cannot be recognized
solely based on their listening history. To capture the user’s temporal unique preference,
we receive reward function parameters from the user as explicit inputs and use them for
balancing each reward.

Sensors 2022, 22, 3722 9 of 17

Acoustic Similarity Reward

Conventionally, playlists with smooth track transitions are effective in increasing users’
satisfaction [17,54]. We design a reward based on the similarity of acoustic features of
music tracks for users who prefer playlists with highly smooth track transitions. Specif-
ically, the acoustic similarity reward Raco

t is calculated using the cosine similarity of the
acoustic feature of the i-th and “i + 1”-th music tracks in the generated playlist and defined
as follows:

Raco
t =

1
Np

Np−1

∑
i=0

pi
t,aco · pi+1

t,aco
>

||pi
t,aco|| · ||p

i+1
t,aco

>||
, (13)

where pi
t,aco denotes the acoustic feature of the music track pi

t.

Popularity Reward

We assume that users who are unfamiliar with music or who are meek often listen to
music based on its popularity. Many music streaming services have gained popularity
by recommending popular music tracks to users who do not know what types of music
they like. This means that popular music can attract users’ attention. To accommodate
users who want to listen to popular songs, we use the value of popularity obtained from
the Spotify API (https://developer.spotify.com/documentation/web-api/, accessed on 12
May 2022) in the popularity reward Rpop

t , which is defined as follows:

Rpop
t =

1
Np

Np

∑
i=1

Popularity(pi
t)

Popularity(phighest)
, (14)

where Popularity(·) denotes the function that returns the popularity values of music track
obtained from Spotify API and phighest denotes the music track with the highest popularity
value in the database.

Novelty Reward

Many music-savvy users may want to focus on the latest music. Notably, Shih et al. argues
that it is important to consider the novelty of music tracks in the playlist [42]. We design
the reward based on the year in which music tracks were released so that the generated
playlist contains more new music tracks. The novelty reward Rnew

t is defined as follows:

Rnew
t =

1
Np

Np

∑
i=1

Year(pi
t)− Year(moldest)

Year(mnewest)− Year(moldest)
, (15)

where Year(·) denotes the function that returns the year of the music track, moldest and
mnewest denote the oldest and the newest music tracks in the database, respectively.

4.4.3. Final Reward Function

Based on the above discussion, we present the final reward function. The ability to
control the balance of the influence of each reward based on explicit inputs γ from the
target user is a critical feature of our model. The explicit inputs γ are the four parameters
for each reward, which are as follows:

γ = {γpre, γaco, γpop, γnew}, (16)

where, γpre, γaco, γpop and γnew denote the coefficient parameters of Rpre
t , Raco

t , Rpop
t and

Rnew
t , respectively.

However, because the above rewards have different distributions, we cannot make
equal comparisons using a simple linear combination. To make equal comparisons between
each reward, we introduce the empirical distribution function [55]. The empirical distribu-
tion function is one of the distribution functions in the field of statistics that can be defined
as a step function that increases by 1/n for every n data point. We create new reward

https://developer.spotify.com/documentation/web-api/

Sensors 2022, 22, 3722 10 of 17

distributions R′pre
t , R′aco

t , R′pop
t and R′new

t that are robust to different variances and outliers
using the empirical distribution function for distributing Rpre

t , Raco
t , Rpop

t and Rnew
t ,.

Finally, we define the final reward function based on the obtained new reward distri-
bution as follows:

Rt = γpreR′pre
t + γacoR′aco

t + γpopR′pop
t + γnewR′new

t . (17)

4.5. Optimization

In this subsection, we describe the optimization of our model. To obtain the optimal
strategy based on the designed state, action, and reward, we trained the MDP using
the REINFORCE [28], which is a standard policy gradient algorithm. Furthermore, we
simultaneously trained the induction network to acquire future states to obtain better music
prediction performance. The details are shown below.

4.5.1. Training with Policy Gradient

In our music playlist generation task, we obtain a stochastic policy π that maximizes
the expected cumulative reward J(Θ) for all target users. The derivative of J(Θ) can be
obtained as follows:

∇J(Θ) = Eπ [∑
U

T

∑
t′=t

γt′−t
π Rt′

∇π(at|st; Θ)

π(at|st; Θ)
], (18)

where E[·]π denotes the expected value when the agent acts according to the policy π,
γπ denotes the discount rate, Θ denotes all related parameters to learn, and T denotes
the terminal time step of one episode. We use the REINFORCE [28] strategy to learn the
parameters of the policy function. The agent generates D playlists every one time step.
Specifically, for each state st, our model sample playlists p1:Np(d) (1 ≤ d ≤ D) composed of
Np music tracks according to policy function Equation (3). Given the playlist p1:Np(d) , the
learning process is written as follows:

∇Θ =
T

∑
t′=t

γt′−t
π Rt′

∇π(p
1:Np
t (d)|st; Θ)

π(p
1:Np
t (d)|st; Θ)

. (19)

To estimate a better cumulative reward, our model repeats the above process D times.

4.5.2. Training the Induction Network

The key component of our model for predicting target users’ preferences is the induc-
tion network in Equation (9). To train such a neural network, a simple solution is to apply
regression losses such as mean squared error (MSE). However, in our task, it is difficult to
efficiently train an induction network using simple regression loss because of the sparse GT
listening history. We then use the pairwise ranking strategy to train the induction network
based on the idea of literature [25].

Based on the generated playlist, we can derive their music feature-based future prefer-
ence representations based on Equation (9), which is denoted by f (1)t , f (2)t , . . . , f (D)

t . Our
objective is to train the induction network so that accurate future preference representations
can be acquired. To achieve this objective, we introduce pairwise comparisons as additional

constraints to the induction network. Specifically, given f (d)t and f (d
′)

t , we first exploit the
reward to determine the preference order over D playlists. Furthermore, we add pairwise

constraints to train the induction network, where MLP(f (d)t) > MLP(f (d
′)

t) if Rpre(luv
t+1:Np

,

p
1:Np
t (d)) > Rpre(luv

t+1:Np
, p

1:Np
t (d′)) for 1 ≤ d, d′ ≤ D.

Finally, our model generates the playlist of Np music tracks for the target user based
on the trained induction network and policy function. In the test phase, we first obtain
the states and rewards corresponding to the target user’s listening history and the explicit

Sensors 2022, 22, 3722 11 of 17

inputs with the trained induction network. Based on the obtained states and rewards, the
trained policy function outputs the playlist for the target user.

5. Experiment

In this section, we present the experiment that was used to confirm the effectiveness
of our model by comparing it with conventional playlist generation and music recommen-
dation methods. Our experiment evaluates our model in the following two aspects: (1)
whether it can predict target users’ preferences based on their listening histories and (2)
whether it can guide target users to appropriately new types of music tracks based on their
explicit inputs. We present the details of the experimental settings in Section 5.1, and their
results and discussion in Section 5.2.

5.1. Experimental Setting

In the experiment, we used 1006 users’ listening histories provided by the Spotify
Million Playlist Dataset [56] and the metadata of music tracks provided by Spotify API.
The dataset contains 57,880 music tracks, 1006 users, 14,973 artists, and 2517 genres of
artists. Each artist belonged to at least one genre. The number of dimensions of the music
feature mi obtained from TransE was set to 50. For the acoustic features of the music tracks,
we used eight-dimensional values of danceability, energy, speeches, acoustics, valence,
instrumentals, liveness, and tempo provided by the Spotify API. The popularity values of
music tracks range from 0 to 100. In our dataset, the highest popularity of phighest is 90, the
year of moldest is 1935 and the year of mnewest is 2022. The training and test data are the first
90% and the last 10% of music tracks in each playlist, respectively. The number of music
tracks in the generated playlist is set to 10.

To confirm the performance of the proposed method (PM), we compared the PM with
the following four music playlist generation methods based on the basic RNN model, the
graph exploration-based model, and the state-of-the-art KG- and RL-based recommenda-
tion models.

CM1:

The method is based on GRU [53] trained by only the target users’ listening history

CM2 [17]:

The playlist generation method is based on the exploration of the graph constructed from
the acoustic similarities of the music tracks

CM3 [49]:

The method is based on a deep RL-based music recommendation model that uses the KG
constructed from users’ listening history and acoustic features of music tracks

CM4 [36]:

The method is based on the item recommendation model and uses RL-based KG reasoning
to explain recommendation results

The music playlist generation is a special case of music recommendation, as described
in Section 2.1. Therefore, we used the state-of-the-art RL- and KG-based music recom-
mendation model [17] and the item recommendation model [36], which is the predecessor
of [17], as the comparison methods. Note that CM4 generates playlists in which the acous-
tic features of consecutive tracks are highly similar, and does not focus on prediction
performance based on the target user’s listening history.

To make a very legitimate and reliable comparison of PMs and CMs, it is desirable
to conduct a large-scale online evaluation where target users assess the quality of the
generated playlist. However, it requires a complex infrastructure that is beyond the scope
of this study. Instead of the large-scale online evaluation, we conducted a standard offline
evaluation as performed in [42] using models based on real users. In the evaluation, we
used seven PM-based models with different parameters of the reward function Rt, assuming

Sensors 2022, 22, 3722 12 of 17

target users with various backgrounds and unique preferences. The PM-based models
and every parameter are shown in Table 1. For example, PM-A, PM-PN, and PM-ALL
are models assuming a user who desires a playlist consisting of music tracks with similar
acoustic features, a user who enjoys new and popular music tracks, and a user who focuses
on all of the similarities of acoustic features of music tracks, novelty, and popularity of
music tracks. Since the parameter γ is user-controllable, in practice, the target user can
sequentially generate user-specific playlists by setting the desired gamma value. Naturally,
the target users can also set γ values other than these seven model’s γ values. Note that
γpre is not set to 0 because the state cannot be updated if the induction network receives
vacant value of Rpre.

Table 1. PM-based models and each parameter value of the reward function Rt.

Parameter γpre γaco γpop γnew

PM-A 0.5 0.5 0 0
PM-P 0.5 0 0.5 0
PM-N 0.5 0 0 0.5

PM-AP 0.33 0.33 0.33 0
PM-AN 0.33 0.33 0 0.33
PM-PN 0.33 0 0.33 0.33

PM-ALL 0.25 0.25 0.25 0.25

To evaluate aspect (1), we use normalized discounted cumulative gain@k (nDCG@k)
and Hit Rate@k (k = 1, 5, 10), which are commonly used to evaluate the prediction per-
formance of the playlist generation [57,58]. However, to objectively evaluate aspect (2),
we used the following three evaluation metrics corresponding to the rewards R′aco, R′pop
and R′new.

Acoustic Similarity Metric Maco

To measure the similarity of acoustic features of successive music tracks in the generated
playlist, we designed Maco as follows:

Maco = ∑
U

1
Np

uv

Np
uv−1

∑
i=0

pi
uv ,aco · pi+1

uv ,aco
>

||pi
uv ,aco|| · ||p

i+1
uv ,aco

>||
, (20)

where Np
uv denotes the number of music tracks in the playlist generated for the target user

uv, and pi
uv ,aco denotes the acoustic feature of i-th music track in the playlist generated for

the target user uv.

Popularity Metric Mpop

To evaluate whether the generated playlist consists of music tracks with high popularity,
we used the average values as the popularity metric. The popularity metric Mpop is defined
as follows:

Mpop = ∑
U

1
Np

uv

Np
uv

∑
i=1

Popularity(pi
uv), (21)

where pi
uv denotes the music track in the playlist generated for the target user uv.

Novelty Metric Mnew

To evaluate whether new music tracks are included in the generated playlist, we used the
average of the year that the music tracks were released as a novelty metric. The novelty
metric Mnew is defined as follows:

Mnew = ∑
U

1
Np

uv

Np
uv

∑
i=1

Year(pi
uv). (22)

Sensors 2022, 22, 3722 13 of 17

5.2. Results and Discussion

In this subsection, we present and discuss the results of our experiment. First, the
values of nDCG@k and Hit Rate@k for the PM-based models and CMs are shown in Table 2.
It shows that all PM-based models achieve higher values of nDCG@k and Hit Rate@k
than all CMs for all values of k. PM outperforms CM1, indicating the effectiveness of
introducing RL to the music playlist generation for analyzing not only the target user’s
short-term preference but also the long-term preference. For CM3 and CM4, we use the
target user’s listening history as a component of the KG, not as a sequence. PM can capture
the target user’s short-term and long-term preference using the target user’s listening
history as a sequence and it can be analyzed on the basis of the GRU and RL. The prediction
performance of CM2 is not high because it only considers the similarity of acoustic features
of the music tracks. Furthermore, we compare PM-based models with each other. PM-P
and PM-N are the PM-based models with the highest values of nDCG@1, nDCG@10 and
Hit Rate@k (k = 1, 5, 10), and the highest values of nDCG@5, respectively. The prediction
parameter γpre of PM-P and PM-N is 0.5, which is greater than that of other models.
This implies that the similarity of music features obtained from KG contributes to the
improvement of the prediction performance. According to the above discussion, PM can
accurately predict target users’ preferences using RL and KG.

Table 2. The values of nDCG@k and Hit Rate@k (k = 1, 5, 10). The bold values are the maximum
values for each evaluation metrics, respectively.

Metric
nDCG@k [×10−2] Hit Rate@k [%]

k = 1 k = 5 k = 10 k = 1 k = 5 k = 10

PM-A 18.2 24.7 26.2 18.2 30.9 37.9
PM-P 19.3 25.6 27.9 19.3 33.4 40.4
PM-N 18.2 26.1 26.8 18.2 32.9 39.6

PM-AP 17.5 23.5 24.8 17.5 29.8 36.8
PM-AN 17.0 24.9 24.5 17.0 27.2 34.2
PM-PN 18.7 22.1 24.6 18.7 30.5 38.1

PM-ALL 18.0 23.0 24.1 18.0 29.0 36.0

CM1 10.2 13.9 17.2 10.2 21.8 28.8
CM2 [17] 0.00 0.52 0.40 0.00 0.43 1.03
CM3 [49] 3.42 5.30 6.22 3.42 6.71 11.5
CM4 [36] 3.59 4.30 5.94 3.59 7.05 12.0

Table 3 shows the values of Maco, Mpop, and Mnew for the PM-based models and CMs.
For Mpop and Mnew, the models with the highest values are PM-P and PM-N, respectively,
and the models with the second-largest values are PM-AP and PM-PN, respectively. These
results imply that our model can generate playlists comprising popular and recent music
for target users who desire popular and new music tracks. For Maco, the model with
the largest value is CM2. This is not a surprising result because CM2 is a method that
specializes only in making the similarity of acoustic features of successive music tracks
higher. Table 3 shows that CM2 has poor predictive performance and cannot control Mpop
and Mnew. The models with the second highest and third-highest values of Maco are PM-A
and PM-AN, respectively. This means that our model can also accommodate the target
user’s specific preferences regarding the similarity of acoustic features of music tracks.

Sensors 2022, 22, 3722 14 of 17

Table 3. The values of Maco, Mpop, and Mnew. The bold and underlined values are the maximum and
second highest values for each evaluation metrics, respectively

.

Metrics Maco Mpop Mnew

PM-A 0.90 19.0 2001.9
PM-P 0.57 52.8 2012.4
PM-N 0.64 37.6 2013.4

PM-AP 0.81 50.6 2006.6
PM-AN 0.86 27.2 2011.4
PM-PN 0.65 48.0 2012.8

PM-ALL 0.73 42.0 2009.8

CM1 0.56 41.2 2005.4
CM2 [17] 0.97 19.3 2004.2
CM3 [49] 0.65 38.6 2006.6
CM4 [36] 0.60 40.7 2007.0

Figure 2 shows examples of the generated playlists. According to the playlist examples,
it is possible to generate playlists that meet the target users’ requirements by adjusting the
parameters of the reward function. Therefore, we conclude that our model can guide target
users to music tracks that can satisfy their unique preferences.

Figure 2. The examples of the generated playlists. The playlists generated for target users A and
B contain many popular and new music tracks, respectively. Furthermore, our model generated a
playlist consisting of both many popular and new music tracks for the target user C.

Sensors 2022, 22, 3722 15 of 17

6. Conclusions

In this study, we present a controllable music playlist generation method based on
a knowledge graph and reinforcement learning. Our model can predict target users’
preferences based on their listening histories and guide target users to new types of music
tracks based on their explicit inputs. The experimental results show that the proposed
method outperforms existing playlist generation methods.

However, our model remains the three following problems. The first problem is that
the effectiveness of PM has not been verified by actual users. In the experiment, we evaluate
the effectiveness of PM by using seven models assuming a user, however, the practicality of
PM based on actual user interactions and feedback has not been evaluated. Therefore, we
will verify the effectiveness of PM through a large-scale online evaluation in future work.
The second problem is that the reward function is incomplete. We introduced four indices
into the reward function, however, we should also consider other various factors, such
as the artist and label of the music. In future work, we will set the reward function that
better responds to users’ niche preferences by introducing additional indices. Furthermore,
we will estimate the parameters of the reward function appropriate for each target user.
The third problem is that PM did not consider the structure and length of music tracks. If
the generated playlist consists of long music tracks, target users may become bored due
to the redundancy of the playlist. In addition, the position of the chorus and the length of
the intro may also affect user satisfaction. In future work, we will take into account the
relationship between the structure of music tracks and playlist quality.

Author Contributions: Conceptualization, K.S., R.T., T.O. and M.H.; methodology, K.S., R.T., T.O.
and M.H.; software, K.S.; validation, K.S., R.T., T.O. and M.H.; data curation, K.S.; writing—original
draft preparation, K.S.; writing—review and editing, R.T., T.O. and M.H; visualization, K.S.; funding
acquisition, T.O. All authors have read and agreed to the published version of the manuscript.

Funding: This work was partially supported by JSPS KAKENHI, grant number JP21H03456.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Publicly available datasets were analyzed in this study. This data can
be found here: https://www.aicrowd.com/challenges/spotify-million-playlist-dataset-challenge
(accessed on 12 March 2022).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Matt, C.; Hess, T.; Benlian, A. Digital transformation strategies. Bus. Inf. Syst. Eng. 2015, 57, 339–343. [CrossRef]
2. Yang, Y.H.; Lin, Y.C.; Su, Y.F.; Chen, H.H. A regression approach to music emotion recognition. IEEE Trans. Audio Speech Lang.

Process. 2008, 16, 448–457. [CrossRef]
3. Sakurai, K.; Togo, R.; Ogawa, T.; Haseyama, M. Music playlist generation based on reinforcement learning using acoustic feature

map. In Proceedings of the IEEE 9th Global Conference on Consumer Electronics, Kobe, Japan, 13–16 October 2020; pp. 942–943.
4. Swanson, K. A Case Study on Spotify: Exploring Perceptions of the Music Streaming Service. MEIEA J. 2013, 13, 207–230.

[CrossRef]
5. Korver, J. Facing the music: The Current State of Streaming Services in The Music Industry. Ph.D. Thesis, Florida Southern

College, Lakeland, FL, USA, 2019.
6. Paul, D.; Kundu, S. A Survey of Music Recommendation Systems with a Proposed Music Recommendation System. In Emerging

Technology in Modelling and Graphics; Springer: Berlin/Heidelberg, Germany, 2020; pp. 279–285.
7. Pichl, M.; Zangerle, E.; Specht, G. Understanding playlist creation on music streaming platforms. In Proceedings of the IEEE

International Symposium on Multimedia, San Jose, CA, USA, 11–13 December 2016; pp. 475–480.
8. Eriksson, M. The editorial playlist as container technology: On Spotify and the logistical role of digital music packages. J. Cult.

Econ. 2020, 13, 415–427. [CrossRef]
9. Liebman, E.; Saar-Tsechansky, M.; Stone, P. The Right Music at the Right Time: Adaptive Personalized Playlists Based on Sequence

Modeling. MIS Q. 2019, 43, 765–786. [CrossRef]

https://www.aicrowd.com/challenges/spotify-million-playlist-dataset-challenge
http://doi.org/10.1007/s12599-015-0401-5
http://dx.doi.org/10.1109/TASL.2007.911513
http://dx.doi.org/10.25101/13.10
http://dx.doi.org/10.1080/17530350.2019.1708780
http://dx.doi.org/10.25300/MISQ/2019/14750

Sensors 2022, 22, 3722 16 of 17

10. Schedl, M.; Zamani, H.; Chen, C.W.; Deldjoo, Y.; Elahi, M. Recsys challenge 2018: Automatic playlist continuation. In Proceedings
of the Late-Breaking/Demos 18th International Society for Music Information Retrieval Conference, Suzhou, China, 23–27
October 2017.

11. Music Biz Consumer Insights. Available online: https://musicbiz.org/news/playlists-overtake-albums-listenership-says-loop-
study/ (accessed on 2 May 2022).

12. Andric, A.; Haus, G. Automatic playlist generation based on tracking user’s listening habits. Multimed. Tools Appl. 2006,
29, 127–151. [CrossRef]

13. Dias, R.; Gonçalves, D.; Fonseca, M.J. From manual to assisted playlist creation: A survey. Multimed. Tools Appl. 2017,
76, 14375–14403. [CrossRef]

14. Volkovs, M.; Rai, H.; Cheng, Z.; Wu, G.; Lu, Y.; Sanner, S. Two-stage model for automatic playlist continuation at scale. In ACM
Recommender Systems Challenge; ACM: New York, NY, USA, 2018; pp. 1–6.

15. Gatzioura, A.; Vinagre, J.; Jorge, A.M.; Sànchez-Marrè, M. A hybrid recommender system for improving automatic playlist
continuation. IEEE Trans. Knowl. Data Eng. 2019, 33, 1819–1830. [CrossRef]

16. Oliver, N.; Kreger-Stickles, L. PAPA: Physiology and Purpose-Aware Automatic Playlist Generation. In Proceedings of the 7th
International Society for Music Information Retrieval Conference, Victoria, BC, Canada, 8–12 October 2006.

17. Sakurai, K.; Togo, R.; Ogawa, T.; Haseyama, M. Music Playlist Generation Based on Graph Exploration Using Reinforcement
Learning. In Proceedings of the IEEE 3rd Global Conference on Life Sciences and Technologies, Nara, Japan, 9–11 March 2021;
pp. 53–54.

18. Vall, A. Listener-inspired automated music playlist generation. In Proceedings of the 9th ACM Conference on Recommender
Systems, Vienna, Austria, 16–20 September 2015; pp. 387–390.

19. Kaya, M.; Bridge, D. Automatic playlist continuation using subprofile-aware diversification. In ACM Recommender Systems
Challenge; ACM: New York, NY, USA 2018; pp. 1–6.

20. Nabizadeh, A.H.; Jorge, A.M.; Tang, S.; Yu, Y. Predicting user preference based on matrix factorization by exploiting music
attributes. In Proceedings of the 9th International Conference on Computer Science & Software Engineering, Porto, Portugal,
20–22 July 2016; pp. 61–66.

21. Choi, K.; Fazekas, G.; Sandler, M. Towards playlist generation algorithms using rnns trained on within-track transitions. arXiv
2016, arXiv:1606.02096.

22. Irene, R.T.; Borrelli, C.; Zanoni, M.; Buccoli, M.; Sarti, A. Automatic playlist generation using convolutional neural networks and
recurrent neural networks. In Proceedings of the 27th European Signal Processing Conference, A Coruña, Spain, 2–6 September
2019; pp. 1–5.

23. Pauws, S.; Eggen, B. PATS: Realization and user evaluation of an automatic playlist generator. In Proceedings of the 2nd
International Society for Music Information Retrieval Conference, Paris, France, 13–17 October 2002; pp. 222–230.

24. Lee, J.H.; Bare, B.; Meek, G. How Similar Is Too Similar?: Exploring Users’ Perceptions of Similarity in Playlist Evaluation. In
Proceedings of the 11th International Society for Music Information Retrieval Conference, Utrecht, The Netherlands, 9–13 August
2010; pp. 109–114.

25. Wang, P.; Fan, Y.; Xia, L.; Zhao, W.X.; Niu, S.; Huang, J. KERL: A knowledge-guided reinforcement learning model for sequential
recommendation. In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information
Retrieval, Xi’an, China, 25–30 July 2020; pp. 209–218.

26. Huang, L.; Fu, M.; Li, F.; Qu, H.; Liu, Y.; Chen, W. A deep reinforcement learning based long-term recommender system.
Knowl.-Based Syst. 2021, 213, 106706. [CrossRef]

27. Kaelbling, L.P.; Littman, M.L.; Moore, A.W. Reinforcement learning: A survey. J. Artif. Intell. Res. 1996, 4, 237–285. [CrossRef]
28. Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction; MIT Press: Cambridge, MA, USA, 2018.
29. Liebman, E.; Saar-Tsechansky, M.; Stone, P. Dj-mc: A reinforcement-learning agent for music playlist recommendation. arXiv

2014, arXiv:1401.1880.
30. Hu, B.; Shi, C.; Liu, J. Playlist recommendation based on reinforcement learning. In Proceedings of the International Conference

on Intelligence Science, Shanghai, China, 25–28 October 2017; pp. 172–182.
31. He, R.; McAuley, J. Fusing similarity models with markov chains for sparse sequential recommendation. In Proceedings of the

IEEE 16th International Conference on Data Mining, Barcelona, Spain, 12–15 December 2016; pp. 191–200.
32. Ge, Y.; Zhao, S.; Zhou, H.; Pei, C.; Sun, F.; Ou, W.; Zhang, Y. Understanding echo chambers in e-commerce recommender systems.

In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, Xi’an,
China, 25–30 July 2020; pp. 2261–2270.

33. Nguyen, T.T.; Hui, P.M.; Harper, F.M.; Terveen, L.; Konstan, J.A. Exploring the filter bubble: The effect of using recommender
systems on content diversity. In Proceedings of the 23rd international Conference on World Wide Web, Seoul, Korea, 7–11 April
2014; pp. 677–686.

34. Nickel, M.; Murphy, K.; Tresp, V.; Gabrilovich, E. A review of relational machine learning for knowledge graphs. IEEE 2015,
104, 11–33. [CrossRef]

35. Wang, Z.; Zhang, J.; Feng, J.; Chen, Z. Knowledge graph embedding by translating on hyperplanes. In Proceedings of the AAAI
Conference on Artificial Intelligence, Québec City, QC, Canada, 27–31 July 2014; Volume 28.

https://musicbiz.org/news/playlists-overtake-albums-listenership-says-loop-study/
https://musicbiz.org/news/playlists-overtake-albums-listenership-says-loop-study/
http://dx.doi.org/10.1007/s11042-006-0003-9
http://dx.doi.org/10.1007/s11042-016-3836-x
http://dx.doi.org/10.1109/TKDE.2019.2952099
http://dx.doi.org/10.1016/j.knosys.2020.106706
http://dx.doi.org/10.1613/jair.301
http://dx.doi.org/10.1109/JPROC.2015.2483592

Sensors 2022, 22, 3722 17 of 17

36. Xian, Y.; Fu, Z.; Muthukrishnan, S.; De Melo, G.; Zhang, Y. Reinforcement knowledge graph reasoning for explainable
recommendation. In Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information
Retrieval, Paris, France, 21–25 July 2019; pp. 285–294.

37. Bonnin, G.; Jannach, D. Automated generation of music playlists: Survey and experiments. ACM Comput. Surv. 2014, 47, 1–35.
[CrossRef]

38. Monti, D.; Palumbo, E.; Rizzo, G.; Lisena, P.; Troncy, R.; Fell, M.; Cabrio, E.; Morisio, M. An ensemble approach of recurrent
neural networks using pre-trained embeddings for playlist completion. In ACM Recommender Systems Challenge; ACM: New York,
NY, USA, 2018; pp. 1–6.

39. Vall, A.; Quadrana, M.; Schedl, M.; Widmer, G. The importance of song context and song order in automated music playlist
generation. arXiv 2018, arXiv:1807.04690.

40. Kim, J.; Won, M.; Liem, C.C.; Hanjalic, A. Towards seed-free music playlist generation: Enhancing collaborative filtering with
playlist title information. In ACM Recommender Systems Challenge; ACM: New York, NY, USA, 2018; pp. 1–6.

41. Yang, H.; Zhao, Y.; Xia, J.; Yao, B.; Zhang, M.; Zheng, K. Music playlist recommendation with long short-term memory. In
Proceedings of the International Conference on Database Systems for Advanced Applications, Chiang Mai, Thailand, 22–25 April
2019; pp. 416–432.

42. Shih, S.Y.; Chi, H.Y. Automatic, personalized, and flexible playlist generation using reinforcement learning. arXiv 2018,
arXiv:1809.04214.

43. Sun, Z.; Yang, J.; Zhang, J.; Bozzon, A.; Huang, L.K.; Xu, C. Recurrent knowledge graph embedding for effective recommendation.
In Proceedings of the 12th ACM Conference on Recommender Systems, Vancouver, BC, Canada, 2 October 2018; pp. 297–305.

44. Ji, S.; Pan, S.; Cambria, E.; Marttinen, P.; Philip, S.Y. A survey on knowledge graphs: Representation, acquisition, and applications.
IEEE Trans. Neural Netw. Learn. Syst. 2021, 33, 494–514. [CrossRef]

45. Wang, H.; Zhang, F.; Wang, J.; Zhao, M.; Li, W.; Xie, X.; Guo, M. Ripplenet: Propagating user preferences on the knowledge
graph for recommender systems. In Proceedings of the 27th ACM International Conference on Information and Knowledge
Management, Turin, Italy, 22–26 October 2018; pp. 417–426.

46. Zhang, Z.; Cui, P.; Zhu, W. Deep learning on graphs: A survey. IEEE Trans. Knowl. Data Eng. 2020, 34, 249–270. [CrossRef]
47. Guo, Q.; Zhuang, F.; Qin, C.; Zhu, H.; Xie, X.; Xiong, H.; He, Q. A survey on knowledge graph-based recommender systems.

IEEE Trans. Knowl. Data Eng. 2020. [CrossRef]
48. Song, W.; Duan, Z.; Yang, Z.; Zhu, H.; Zhang, M.; Tang, J. Explainable knowledge graph-based recommendation via deep

reinforcement learning. arXiv 2019, arXiv:1906.09506.
49. Sakurai, K.; Togo, R.; Ogawa, T.; Haseyama, M. Deep Reinforcement Learning-based Music Recommendation with Knowledge

Graph Using Acoustic Features. ITE Trans. Media Technol. Appl. 2022, 10, 8–17. [CrossRef]
50. Zhou, S.; Dai, X.; Chen, H.; Zhang, W.; Ren, K.; Tang, R.; He, X.; Yu, Y. Interactive recommender system via knowledge

graph-enhanced reinforcement learning. In Proceedings of the 43rd International ACM SIGIR Conference on Research and
Development in Information Retrieval, Xi’an, China, 25–30 July 2020; pp. 179–188.

51. Wang, X.; Xu, Y.; He, X.; Cao, Y.; Wang, M.; Chua, T.S. Reinforced negative sampling over knowledge graph for recommendation.
In Proceedings of the Web Conference, Taipei, Taiwan, 20–24 April 2020; pp. 99–109.

52. Bordes, A.; Usunier, N.; Garcia-Duran, A.; Weston, J.; Yakhnenko, O. Translating embeddings for modeling multi-relational data.
Adv. Neural Inf. Process. Syst. 2013, 26, 2787–2795.

53. Cho, K.; Van Merriënboer, B.; Gulcehre, C.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning phrase representations
using RNN encoder-decoder for statistical machine translation. arXiv 2014, arXiv:1406.1078.

54. Ben-Elazar, S.; Lavee, G.; Koenigstein, N.; Barkan, O.; Berezin, H.; Paquet, U.; Zaccai, T. Groove radio: A bayesian hierarchical
model for personalized playlist generation. In Proceedings of the ACM International Conference on Web Search and Data Mining,
Cambridge, UK, 6–10 February 2017; pp. 445–453.

55. Turnbull, B.W. The empirical distribution function with arbitrarily grouped, censored and truncated data. J. R. Stat. Soc. Ser. B
(Methodol.) 1976, 38, 290–295. [CrossRef]

56. Chen, C.W.; Lamere, P.; Schedl, M.; Zamani, H. Recsys challenge 2018: Automatic music playlist continuation. In Proceedings of
the 12th ACM Conference on Recommender Systems, Vancouver, BC, Canada, 2 October 2018; pp. 527–528.

57. Ferraro, A.; Kim, Y.; Lee, S.; Kim, B.; Jo, N.; Lim, S.; Lim, S.; Jang, J.; Kim, S.; Serra, X.; et al. Melon Playlist Dataset: A public
dataset for audio-based playlist generation and music tagging. In Proceedings of the 46th IEEE International Conference on
Acoustics, Speech and Signal Processing, Toronto, ON, Canada, 6–11 June 2021; pp. 536–540.

58. Jannach, D.; Lerche, L.; Kamehkhosh, I. Beyond “hitting the hits” Generating coherent music playlist continuations with the
right tracks. In Proceedings of the 9th ACM Conference on Recommender Systems, Vienna, Austria, 16–20 September 2015;
pp. 187–194.

http://dx.doi.org/10.1145/2652481
http://dx.doi.org/10.1109/TNNLS.2021.3070843
http://dx.doi.org/10.1109/TKDE.2020.2981333
http://dx.doi.org/10.1109/TKDE.2020.3028705
http://dx.doi.org/10.3169/mta.10.8
http://dx.doi.org/10.1111/j.2517-6161.1976.tb01597.x

	Introduction
	Related Works
	Music Playlist Generation
	Knowledge Graph-Based Recommendation

	Preliminary
	Proposed Method
	Formulation of Markov Decision Process
	Extraction of Music Feature from Knowledge Graph
	Setting of State Representation
	Historical Preference State Representation
	Current Preference State Representation
	Future Preference State Representation
	Final State Representation

	Setting of Reward Function
	Prediction Reward
	Guiding Reward
	Final Reward Function

	Optimization
	Training with Policy Gradient
	Training the Induction Network

	Experiment
	Experimental Setting
	Results and Discussion

	Conclusions
	References

