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Abstract: Social robotics is an emerging area that is becoming present in social spaces, by introducing
autonomous social robots. Social robots offer services, perform tasks, and interact with people in
such social environments, demanding more efficient and complex Human–Robot Interaction (HRI)
designs. A strategy to improve HRI is to provide robots with the capacity of detecting the emotions
of the people around them to plan a trajectory, modify their behaviour, and generate an appropriate
interaction with people based on the analysed information. However, in social environments in
which it is common to find a group of persons, new approaches are needed in order to make robots
able to recognise groups of people and the emotion of the groups, which can be also associated
with a scene in which the group is participating. Some existing studies are focused on detecting
group cohesion and the recognition of group emotions; nevertheless, these works do not focus on
performing the recognition tasks from a robocentric perspective, considering the sensory capacity
of robots. In this context, a system to recognise scenes in terms of groups of people, to then detect
global (prevailing) emotions in a scene, is presented. The approach proposed to visualise and
recognise emotions in typical HRI is based on the face size of people recognised by the robot during
its navigation (face sizes decrease when the robot moves away from a group of people). On each
frame of the video stream of the visual sensor, individual emotions are recognised based on the
Visual Geometry Group (VGG) neural network pre-trained to recognise faces (VGGFace); then, to
detect the emotion of the frame, individual emotions are aggregated with a fusion method, and
consequently, to detect global (prevalent) emotion in the scene (group of people), the emotions of
its constituent frames are also aggregated. Additionally, this work proposes a strategy to create
datasets with images/videos in order to validate the estimation of emotions in scenes and personal
emotions. Both datasets are generated in a simulated environment based on the Robot Operating
System (ROS) from videos captured by robots through their sensory capabilities. Tests are performed
in two simulated environments in ROS/Gazebo: a museum and a cafeteria. Results show that the
accuracy in the detection of individual emotions is 99.79% and the detection of group emotion (scene
emotion) in each frame is 90.84% and 89.78% in the cafeteria and the museum scenarios, respectively.

Keywords: social robots; emotion detection; group emotion; group detection; facial expression
recognition; group behaviour recognition; human–robot interaction

1. Introduction

Social robots are increasingly being incorporated into crowded human spaces, such
as museums, hospitals, and restaurants, in order to offer services, perform tasks, and
interact with people. Social robots are considered as physical agents with the abilities to
act in complex social environments [1]. They must imitate the socio-cognitive abilities of
humans and explore behaviours to be empathic and aid with the interactions between
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robots and humans [2,3], which in turn demands more efficient and complex Human–Robot
Interaction (HRI) designs. HRI must include behavioural adaptation techniques, cognitive
architectures, persuasive communication strategies, and empathy [4].

A strategy to improve HRI is to provide robots with the capacity of detecting the
emotions of the people around them in order to plan and organise different future actions,
such as adapting behaviour, planning, navigation, and control. In this sense, visual per-
ception could give them information to understand and recognise emotions, for example
through the user’s body language and vocal intonation [5] or through facial expression [6,7].
According to the detected emotion and the specific situation, robots adapt their actions to
show appropriate behaviours.

In a single HRI system, it is still complex to consider all the methods and approaches
of emotion recognition. Emotional systems are limited to recognising emotions in specific
situations and in controlled settings. The main challenges that these systems must overcome
are the flexibility of the algorithms to adapt to real environments (dynamic environments),
the consideration of the inter-cultural variations of people, the detection of groups of
people, and the recognition of group emotions [8–10].

In a group, people can express different emotions, and the robot must process the
emotion of each person and summarise them in a group emotion to define its actions. In
such a case, it is necessary to consider the robots’ first-person perspective of the world.
Cameras mounted on the robots’ head or chassis have allowed studying the scenes from a
point of view that provides robots such a first-person perspective of the world. This field of
research in computer vision is known as egocentric or first-person vision [11]. This practice
is useful when the social robot interacts with more than one person, for example in social
environments, such as schools, hospitals, restaurants, and museums.

The third-person camera is a device outside of the robot. Egocentric vision presents
advantages in comparison with the third-person camera as the robot is recording exactly
what it sees in front of it; the camera movement is driven by the robot’s body, and the
stabilisation of the image is controlled by the robot itself. Robots can use egocentric vision
to recognise emotions, navigate, or detect different objects. Developing systems with this
perspective makes the robot able to adapt to social groups of humans [12]. The detection
of groups of people improves the navigation of a social robot in indoor and outdoor
environments, and the detection of group emotions allows the robot to improve HRI,
exhibiting acceptable social behaviour [13–16], as well as associating the group emotion
with the scene in which the group is participating. Nevertheless, most existing studies
related to detecting group emotions are based on third-person cameras [17–21], but their
complexity makes them unsuitable for social robots with egocentric vision due to their
sensory capacity.

In this context, to overcome some limitations of existing studies, a system to recognise
scenes in terms of groups of people, to then detect the global (prevalent) emotion in the
scene, is proposed in this work. The scene detection is based on the size of the faces of
people detected by the robot during its recognition process; from the robot perspective,
the size of faces decreases when the robot moves away from the group of people. In
each frame, individual emotions are first recognised through a Visual Geometry Group
neural network to recognise faces (VGGFace (https://www.robots.ox.ac.uk/, accessed on
1 May 2022)), to then identify the frame emotion, and finally, detect the emotion of each
scene. Additionally, in the absence of adequate datasets with a robocentric perspective for
the training and validation processes of the machine learning models used, a strategy is
proposed for the creation of a dataset with images, to validate the estimation of individual
emotions, and a dataset with videos, to evaluate the detection of scenes and the emotions
of these scenes. Both datasets were generated from videos captured by robots through their
sensory capabilities, in a simulated environment with the Robot Operating System (ROS)
(https://www.ros.org/, accessed on 1 May 2022).

To evaluate the efficiency of the proposed approach to recognise the emotions of groups
of people conforming scenes, several experiments were carried out with two simulated
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scenarios in ROS/Gazebo: a cafeteria and a museum. With the implementation of the
proposed system, the robot is endowed with new capabilities for the perception of the
emotion of an environment, based on the emotion of various scenes, which in turn allows
improving the interaction between the robot and people.

To show the entire process of this work, the rest of this document is organised as
follows. In Section 2, studies related to the detection of group emotions are explained.
Section 3 explains the proposal for the detection of individual emotions, emotions per frame,
and emotions per scene. To validate the detection of these emotions, in Section 4, a method
to create a database is presented. Section 5 shows the implementation of the proposal in
Gazebo and ROS and shows the results obtained in these simulations. Discussions about
the findings are presented in Section 6. Finally, Section 7 presents the final conclusions and
future research.

2. Related Work

Most proposals related to this research are focused on the recognition of group emo-
tions and the study of the effects this has on the planning and behaviour of social robots.
Regarding the first aspect, some recent and relevant studies, although they are not in the
robotics area, are reviewed. For social robots, only a few works dealing with group emotion
recognition were found, which are described afterwards.

2.1. Group Emotion Recognition

To analyse the proposals that perform the recognition of group emotions, four aspects
are considered: pre-processing of the images, feature extraction, the fusion method, and
evaluation. The review focus is on works that mainly base the recognition of emotions on
facial expressions, as is done in this work.

2.1.1. Pre-Processing of Images

To estimate the emotions of a single person or of groups of people on images, a pre-
processing step is demanded to detect the regions of interest, which can be faces, bodies, or
other objects within the image that influence the emotion.

For face detection, some approaches are based on neural networks, such as the Multi-
tasking Convolutional Neural Network (MTCNN) [22]. This network uses three cascaded
convolutional networks to improve face detection accuracy, which makes its use very
common [18,23–29]. There are other methods that also use neural networks, such as Reti-
naFace [21,30], PyramidBox [19], TinyFace [19,20,31], and the Single-Shot Scale-Invariant
Face Detector (S3FD) [32]. Other methods do not use neural networks for face detection,
such as the Viola–Jones algorithm [33], which uses Haar characteristics to locate the face in
an image. This technique was used in the study presented in [17] and in the work described
in [34]; it was used in conjunction with the Histogram of Oriented Gradients (HOG). In [35],
Seetaface was used, an algorithm in which there are several cascading classifiers. A mixture
of trees to detect faces and postures was used in [36,37]; this model detects faces even when
a deformation exists due to a facial expression. Once the face is detected, additional steps
can be performed, such as face frontalisation [38], to make all detected faces have a frontal
orientation through matrix projection or determine the importance of each face in a group
through Cascade Attention Networks (CANs), as proposed in [25].

To estimate a global emotion in a group, other aspects different from faces and bodies
are considered, fr example detecting areas containing salient objects or features that can
influence the emotion of the group [18]. In [26], the removal of faces was performed, using
heat maps with Gaussian distributions, to obtain a cleaner representation of the scene.

2.1.2. Feature Extraction

As mentioned in the previous section, the detection of group emotions is carried out
through the face, posture, skeleton, visual attention (i.e., points of interest of members of
the group), and the elimination of faces to consider only objects in the environment (i.e.,
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the context). To detect group emotions according to these characteristics, it is common to
use different models of neural networks to process each modality (face, posture, context,
etc.), in which different feature extraction architectures are used.

Most common architectures for face feature extraction are based on neural networks,
the VGGFace neural network [39] being the most used for the extraction of face features, as
done in [17,23,25,28,29,31,34,35]. This neural network was trained with 2.6 million images,
and its main function is face recognition. To improve the feature extraction process, VG-
GFace can be used in conjunction with other architectures, such as Squeeze-and-Excitation
Networks (SENets), Residual Networks (ResNets), Deep Convolutional Neural Networks
(DCNNs), and Graph Neural Networks (GNNs), to improve accuracy in estimating individ-
ual emotions, as followed in [18,25,28,35]. There is another version of this neural network,
known as VGG2-Senet-ft-FACE (pre-trained with the VGGFace2 database), which results
from the combination of the ResNet and SENet networks, as described in [18], but it can
also be used separately, as the study in [20,25] proposed.

Residual networks are used to extract characteristics from the facial region using
the ResNet-18 neural network in [32]. In [24], two residual networks of different ResNet-
64 layers (to process aligned faces) and ResNet-34 (to process non-aligned faces) were
used. In [26], two ResNet models were used: ResNet-18 for small faces (size less than
48 × 48) and ResNet-34 for large faces (size larger than 48 × 48). To improve the precision
in the detection of individual emotions, apart from using a Dense Convolutional Network
(DenseNet201), two neural networks (Inception-ResNet-v2) can be combined, as in [19], or
new blocks (e.g., excitement and comprehension blocks) can be added to a neural network,
as in [18,25].

Since the input is low quality images, in [36], a reduced AlexNet architecture was
used for feature extraction, in which the input image was cropped to 40 × 40 pixels.
To predict facial emotions, the study presented in [37] tried a pre-trained Convolutional
Neural Network (CNN) and a CNN trained from scratch; the best results were obtained
with the pre-trained model. Similarly, in [27], several CNNs with different depths were
used, but in this case using the softmax angular loss (A-Softmax) to make the learned
characteristics more discriminative. In [40], after detecting the faces, the neural networks
VGG-16 and MobileNet-v1 were used to extract the characteristics of each face. Instead
of training a neural network, in [21], EmoNet was proposed. This architecture improves
the convolutional operator, increases the capacity of the network, and reduces the spatial
dimension in the first layers.

To recognise group emotions in a video, static and spatial-temporal characteristics were
considered in [30]. Static features were used to estimate the emotion on each frame of the
video from individual faces and postures, while spatial–temporal features considered both
audio and video. To extract face and posture characteristics, CNN, Batch Normalisation
Inception (BNInception), and ResNet models were respectively used.

2.1.3. Fusion Methods and Evaluation

Once individual emotions are detected, a fusion method is applied to estimate the
group emotion. The most common fusion method are the weighted sum, in which a weight
is assigned to each score, according to the size of the face, for example, as used in [17,18],
and the average scores, used in [23,24,26].

More sophisticated fusion methods can also be used, such as neural networks. The
Long Short-Term Memory (LSTM) neural network was used in [35,36,40] to learn how
individual emotions affect the group emotion. Residual networks, such as cascade attention
networks, were used in [25,32], to determine the influence of each face in the detection of
the emotion of the group.

Other less-popular fusion methods have been used, such as attention mechanisms, used
in [27], the Frame Attention Network (FAN) model, proposed in [30], and the combination
of feature vectors, as in [19]. Similarly, in [29], the three feature vectors (scene, face, and
object) were concatenated and weighted to learn the weights of the context-aware fusion.
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Attention mechanisms use the individual face feature vectors to predict the group emotion.
In [27], several attention mechanisms were tested, in which the best results were obtained
with a fully connected neural network combined with a weighted sum. In [19], the average,
minimum, and maximum feature vector were concatenated to train a Multilayer Perceptron
(MLP) to determine the group emotion. In [30], to determine the emotion in videos, the
authors used a Frame Attention Network (FAN), composed by a function incorporation
module and a frame attention module, to generate a single feature vector. In [20], the Discrete
label to Continuous score (D2C) method was implemented to estimate group cohesion scores
considering the interaction between continuous and discrete labels. In [21], a different fusion
method was proposed, called Non-Volume Preserving Fusion (NVPF). This method stacks
the features of each face to form a single group-level feature and then models a probability
density distribution to account for the individual and group-level features.

Concerning the evaluation metrics to show and compare the results, the studies use
the following metrics: accuracy, Mean Absolute Error (MAE), Root-Mean-Squared Error
(RMSE), and Mean-Squared Error (MSE), the accuracy being the most used one.

2.1.4. Comparative Evaluation

All these works are summarised in Table 1, emphasising group emotion detection from
faces, considering pre-processing, individual emotion detection, and the fusion method.
These works demonstrate that neural networks have been successfully used for face de-
tection, with MTCNN models, and for feature extraction to detect individual emotions,
with the VGGFace architecture. It is also worth noting that ResNet architectures are also
common for feature extraction. The fusion methods used seem to be more variable, with a
light trend of using attention mechanisms and the average of individual emotions.

Table 1. Comparison of methods for individual emotion recognition.

Reference Pre-Processing for Face
Detection

Individual Emotion
Detection Model Fusion Method

Sun et al., 2016 [36] Intraface AlexNet LSTM
Tan et al., 2017 [24] MTCNN ResNet-64 and ResNet-34 Average

Guo et al., 2017 [17] Regression Trees and
Viola–Jones VGGFace Weighted Sum

Wei et al., 2017 [35] Seetaface VGGFace with LSTM and
DCNN with LSTM LSTM

Rassadin et al., 2017 [34] HOG and Viola–Jones VGGFace Unmentioned
Abbas and Chalup, 2017 [37] Mixtures of Trees Method CNN Unmentioned
Balaji and Oruganti, 2017 [31] TinyFace VGGFace Unmentioned

Guo et al., 2018 [18] MTCNN VGGFace and
VGG2-SENet-ft-FACE Weighted Sum

Wang et al., 2018 [25] MTCNN ResNet64, VGGFace,
ResNet-34 and SENet154 Cascade Attention Networks

Khan et al., 2018 [26] MTCNN ResNet-18 and ResNet-34 Average

Gupta et al., 2018 [27] MTCNN
Deep Hypersphere

Embedding for Face
Recognition

Attention Mechanisms

Xuan Dang et al., 2019 [19] PyramidBox and TinyFace
ResNet50,

Inception-ResNet-v2 and
DenseNet201

Combination of Feature
Vectors

Guo et al., 2019 [32] S3FD and MTCNN ResNet18 Cascade Attention Networks
Zhu et al., 2019 [23] MTCNN VGGFace Average
Yu et al., 2019 [40] Unmentioned VGG-16, MobileNet-v1 Bi-directional LSTM

Guo et al., 2020 [28] MTCNN VGGFace and GNN Unmentioned
Sun et al., 2020 [30] RetinaFace ResNet and BNInception FAN Model
Tien et al., 2021 [20] TinyFace ResNet50 MLP network with D2C block
Khan et al., 2021 [29] MTCNN VGGFace and GNN Context-aware Fusion

Quach et al., 2022 [21] RetinaFace EmoNet NVPF
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2.2. Emotion Recognition for Social Robots

In the context of HRI, emotion recognition has become an essential strategy to generate
the behaviours of social and service robots sharing spaces with humans. According to the
emotion detected, the robot can modify its behaviour or its navigation, showing a socially
accepted attitude. The study presented in [41] described 232 papers focused on emotional
intelligence (i.e., how the system processes the emotion, the algorithm used, the use of
external information, and the alteration of emotions based on past information), the emo-
tional model, or the implementation of the model, showing the trends and advancements of
improving HRI from these three perspectives. The authors in [9] mentioned the importance
of emotion recognition for HRI.

Robots expressing emotions are also another aspect of interest in this area, as shown
in [42]. That survey presented a review of research papers from 2000 to 2020 focused
on studying the generation of artificial robotic emotions (stimulus), human recognition
of robotic artificial emotions (organism), and human responses to robotic emotions (re-
sponse), as a contribution to the robotic psychology area. These works described in both
surveys [41,42] demonstrated that social robotics is a growing area, where psychology and
sociology aspects converge [8].

The estimation of individual emotion also influences the proxemic behaviour that a
social robot should have. This separation between the robot and people can be limited by
the accessibility distance, the user’s comfort distance, and the user’s emotion. Based on
these features and the ability of robots to recognise moods or emotional states of people,
robots can plan the best routes to follow [15,43,44].

A variety of sensorial capacities allows robots to capture several multimedia contents
(e.g., images, videos, speech, text), from which emotions can be detected. As in this work,
many studies are focused on face emotion recognition from images and videos to improve
HRI or social navigation. A survey of 101 papers from 2000 to 2020 dealing with the
detection of human facial emotion and generation of robot facial expressions was presented
in [45]. The authors compared the accuracy of face emotion recognition from images in the
wild versus images in controlled scenarios, revealing that for the first case, the accuracy
was considerably lower than for the second case. As an effort to improve the accuracy
when the information is taken from the wild (as for social robots in service), an emerging
strategy consists of considering multimodal or multisource approaches. Thus, a few works
have started to adopt multimodal approaches combining several modalities based on
the information captured by several robots’ sensors, such as: (i) from Kinect cameras to
recognise emotion based on human facial expression and gait, as the study presented
in [46]; (ii) from cameras and the speech system of robots, some studies combine facial and
speech [47–53] and body gesture and voice [5] to detect human emotions and accordingly
improve HRI or navigation; (iii) from text and speech by converting speech to text to then
apply Natural Language Processing (NLP) to recognise emotions, as done in [54]. However,
this topic of robotics is still limited, as the survey presented in [55] reported.

Concerning group emotion recognition in social robotics, only a few studies dealing
with group detection and recognition of individual emotions were found. For the navigation
of social robots, parameters such as the trajectory, position, or speed of the movements of
people or the robot itself were considered, but they did not take into account the emotions
of multiple people [12,56–58]. There are studies that consider the influence of a robot
within a group of people [13,16,59], but the detection of group emotions was not carried
out and even less the detection of the emotion of an environment. There are very few
studies proposing methods for group emotion estimation. In [60], based on individual
emotion recognition with a Bayesian network, an approach to estimate group emotion
from face expressions and prosodic information was proposed. Similarly, with a Bayesian
network and individual facial expression recognition, but combined with environmental
conditions (e.g., light, temperature), in [61], an approach to estimate the group emotion
to then produce appropriate stimuli to induce a target group emotion was presented.
Furthermore, from individual facial expressions, in [62], a system to recognise group
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emotion for an entertainment robot was described. In [63], research on HRI in small groups
was carried out, concluding that groups are complex, adaptable, and dynamic systems. The
authors recommended developing suitable robots for group interactions and improving the
methodologies used in the process of measuring human and robotic behaviour in situations
involving HRI.

Without pretending to be an exhaustive review, these studies revealed that some
limitations and some challenges are still open in the area of HRI and social navigation
considering groups of people. Even though emotion recognition for social robots has
become the focus of many works and presents important advancements, group recognition,
group emotion recognition, and even scene emotion detection are still the first steps, leading
to the lack of available datasets to support the training, testing, and validation of machine
learning models to do so. The RICA database [64], generated from a robocentric view, has
been presented, but it is focused on group interactions. In this work, a new approach to
estimate group emotions from a robocentric perspective is proposed. With the proposed
approach, robots are able to detect groups of people conforming a scene and estimate the
scene emotion. To do so, the proposed approach is based on classical machine learning
models as those shown in Table 1. For pre-processing, the Viola–Jones algorithm is used; to
extract face features and detect individual emotions, the VGGFace neural network is used
and the average as the fusion method; all of these were adapted to be performed in the
embedded hardware of robots. Since group emotion detection is just currently emerging,
there is a lack of appropriate datasets for training and validation; thus, a strategy to create
datasets with videos and images taken from the sensor capacity of robots, in simulated
environments, is also proposed.

3. Group Emotion Detection: The Proposal

The proposed emotion detection approach is based on a machine learning model
focused on the analysis of individual emotions and the size of faces, to identify a scene
conformed by a group of people and then recognise the emotion of such a group (scene
emotion). To better understand the whole pipeline of the proposal, the definitions of
different elements from the point of view of the robot are first presented, as follows:

• Video (V): This is a recording of a sequence of images (frames) of an indoor space,
taken from the robot sensors. While the robot is moving around the room, it records
what it sees, with the aim of detecting groups of people (scenes).

• Frame ( f ): This is an image of the set of images in a video. In this case, the frames
with people are the targeted frames for the robots, in which an emotion is recognised,
denoted as f .emotion.

• Scene (s): This is a sequence of frames (short video) in which a group of persons is
detected. In each scene, an emotion is recognised, denoted as s.emotion.

• Blocks of frames in a video (BOF): A video is divided into blocks of frames (BOF),
each one conformed by β frames. The β parameter is provided by the users and
defines the windows to identify scenes (i.e., the number of frames that a robot should
analyse to detect scenes in the video). If the video has n frames, the video is divided
into k BOF, where k = n

β ; hence, BOFj = { f1,j, f2,j, . . . , fβ,j}, where 1 ≤ j ≤ k and fi,j

is the frame i of BOFj.
• Set of biggest faces per BOF (BF): For each BOFj, the area of the biggest face among

the frames in BOFj is extracted, such that BF = {b f1, b f2, . . . , b fk}, where b f j is the
area of the biggest face found in BOFj.

• A BOFj can contain two scenes at a maximum, since the start of a scene is marked by
the b f j (the biggest face in BOFj) if the b f j+1 is smaller than b f j, or several BOF might
belong to the same scene, if b f j is smaller than b f j+1. Hence, a video contains one or
more scenes, such that V = {s1, s2, . . . , su}, where si is the scene i in the video V and
1 ≤ u ≤ 2k.
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The complete pipeline of the proposed approach is shown in Figure 1. First, the
capture of frames is carried out through the front camera of the robot, while it navigates in
the indoor space. On each frame with people, all the faces are detected by the Viola–Jones
algorithm, and they are stored in a vector. For each stored face, the area of the face is
calculated, the feature extraction is performed, and the individual emotion of each face in
the frame is estimated. Then, the frame emotion is determined with a fusion method of
individual emotions; if there is only one person in the frame, the emotion of the frame is
the emotion of that person.

Figure 1. Process for the detection of scenes and the recognition of the emotion of scenes and video.

To detect a scene, the user has to set the value of β. If β is to low, the robot could
detect many scenes that do not correspond to the real groups. In contrast, if it is too big, the
robot might assemble several groups in just one scene. Therefore, the value of β has to be
adjusted according to the scenario in which the robot participates, the density of people
in the room, etc. Thus, the robot analyses blocks of β frames (BOF), by identifying the
biggest face of each BOF and building the set of biggest faces (BF = {b f1, b f2, . . . , b fk}).
Afterwards, the robot compares if b f j ≤ b f j+1 (where b f j is the largest face found in BOFj),
then all frames between b f j and b f j+1 belong to the current scene, and the comparison
continues; otherwise, those frames belong to another scene, and the frame containing b f j
is the limit of the scene (this means that the frame that contains b f j+1 has a face that is far
away from the current scene (group) and should belong to another scene.

Finally, to determine the emotion of the current scene sj, the emotions of the frames
that belong to sj are used. The predominant emotion in these frames is the fusion method
that determines the emotion of sj. The output of this process is an image for the scene
detected, highlighting the identified faces, the emotion of each face, and the emotion of the
scene textually indicated, as shown in Figure 1. The process continues for all frames in the
video (until the robot stops capturing images), and the final output is the emotion of the
video. Each phase of the proposed pipeline is detailed in the following subsections.

3.1. Face Detection

The objective of this stage is to detect all the faces in a frame. For this, the Viola–Jones
classifier is used as the face detector, which stores the coordinates of the upper left corner
(x, y), the width (w), and the height (h) of each face. With the values of w and h, the
area (w ∗ h) of each face is calculated, whose information is used for scene detection. In
such a case, as the robot moves towards a group of people, the area of the faces captured
by the robot begins to grow, and when it moves away, the areas begin to decrease. With
this information, the limits to determine a scene are established, which is explained in
Section 3.5.
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3.2. Feature Extraction

At this stage, the characteristics of the detected faces are extracted. The objective of this
stage is to find a vector of characteristics that efficiently represents the useful information
of the detected faces. This process is important because it reduces the amount of data that
represent a face without loss of information. For this, the VGGFace neural network is used,
pre-trained with 2.6 million images. The vector of image characteristics is in the flatten layer,
where the multidimensional data (obtained by the convolutional layers) is transformed to
one-dimensional data. According to the configuration of this neural network, the input
images must have a size of 224 × 224 pixels.

3.3. Estimation of Individual Emotion

VGGFace was trained to recognise 2622 classes. However, in this case, there are not
2622 emotions to classify; therefore, the fully connected layers of the VGGFace model are
modified, shown in Table 2. Layers fc6 and fc7 have 512 nodes and layer fc8 has 6 nodes,
which represent the emotions to be classified (happy, sad, angry, fear, disgust, and surprise).
In addition, a dropout of 0.5 was added, to reduce the overfitting of the neural network
(layers d1 and d2). Once this setup is done, only the fully connected layer of the VGGFace
neural network is trained with the image dataset. The weights of the convolutional layers
(Section 3.2) are sufficient to extract the features of the simulated faces used in this work.

Table 2. Fully connected layer settings.

Layer (Type) Output Shape

fc8 (Dense) (None, 512)
d1 (Dropout) (None, 512)
fc7 (Dense) (None, 512)

d2 (Dropout) (None, 512)
fc6 (Dense) (None, 6)

3.4. Estimation of Emotion in Each Frame, Scene, and Video

The representation of individual emotions in this work is categorical; thus, the six
basic emotions proposed by Ekman [65] were considered in this work. Even though there
are other approaches that consider other emotions as basic [66,67], most studies discussed
in Section 2 used the Ekman representation.

A frame of a video is an image, in which different faces can be detected and, therefore,
different emotions can be detected. The same is true for a scene, which is conformed by
several frames, and a video, which in turn is a set of scenes. The fusion method used in this
work to obtain the emotion of a frame, a scene, and a video is to consider the predominant
emotion in each case and classify it according to three categories: positive emotion, neutral
emotion, or negative emotion.

The reason for adding three additional categories to the six basic emotions is related to
using the valence dimension (it indicates how negative or positive an emotion is). Table 3
shows the classifications of the six emotions into three categories. Surprise is considered a
neutral emotion because it can be positive or negative. With respect to the other emotions,
by default, these can be intuitively classified as positive or negative. In addition, positive
and negative emotions will have a greater weight over neutral emotions.

Table 3. Classification of the six basic emotions.

Positive Emotions Neutral Emotions Negative Emotions

Happy Surprise Sad, Fear, Disgust, and Angry
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3.5. Scene Detection

The duration of a scene, in which a group is detected, is determined from the area of
identified faces in the frames. As the robot approaches or moves away from a group of
people, the area of the faces increases or decreases, accordingly. In this approach, the robot
analyses β frames to distinguish a scene. An example is shown in Figure 2, with β = 10;
every 10 frames conform a BOF, in which the robot extracts the biggest face among the
frames belonging to that BOF (blue dots in Figure 2); since the area of the biggest faces
in BOF1, BOF2, BOF3, and BOF4 keeps growing, all these frames belong to the first scene
(until Frame 32 in BOF4; green line in Figure 2); this is the limit of the first scene; from that
frame until the end of BOF6 conform the second scene. Thus, a scene is made up of all the
frames that the robot captures while approaching a group (increasing face areas), and if the
robot sees a far away face (decreased face area), it is considered as another scene.

Algorithm 1 details the detection of scenes and emotions in a video. The inputs of the
algorithm are V, the video; β, the number of frames to process to determine a scene; and n,
the number of frames in the video V. This algorithm returns S, which is the list of scenes
in the video, each one with the emotion recognised; F, which indicates the start and end
frames for each scene; and V.emotion, the emotion of video V. From β and n, the algorithm
determines k, the number of Blocks of Frames (BOF) (Line 2). The algorithm goes through
all the frames in each block BOFj to determine its emotion ( fl,i.emotion),and in each block
BOFj, the largest face is detected (b f j) (Lines 3 to 8). Once all biggest faces in all BOF are
determined, the algorithm proceeds to identify the scenes (Lines 9 to 17). If b f j < bj+1, the
scene does not change (ss), but if bj > bj+1, the scene changes (ss+1): the scene ss would be
made up of the frames finit and fend. Thus, the frame where the biggest face (b f j) is located
is the first frame of the scene ss+1. Finally, the emotion of each scene is determined (Lines
18 to 20), as well as the emotion of the video (Line 21).

Algorithm 1 Scene and Emotion Detection for a Video
Input: V = the video; β = number of frames per block; n = number of frames in the video.
Output: S = array of scenes, F = pairs of frames that delimit each scene.
1. s = 1, finit = 1 // First scene, first frame of the first scene.
2. k = n

β // Number of BOF to analyse.
3. for i← 1 to k do
4. for l ← 1 to β do
5. fl,i.emotion← determine the emotion of the frame
6. end for
7. b f [i]← determine the largest face of block BOFi.
8. end for
9. for j← 1 to k− 1 do
10. if b f [j] > b f [j + 1] then
11. S[s]← add a new scene ss.
12. fend ← frame where b f [j] is located.
13. F ← [ finit, fend] // first and last frame that form the scene S[s].
14. finit ← fend
15. s← s + 1
16. end if
17. end for
18. for j← 1 to size(S) do
19. S.sj.emotion← detect scene emotion sj in S
20. end for
21. V.emotion← determine emotion of video V from S
22. return V.emotion, S, F // Video and scenes detected with their emotions tagged.
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Figure 2. Scene detection with face areas.

4. Generation of Datasets

As shown in Section 2, there is increasing research in the development of methods
for the detection of group emotions and competitions, such as EmotiW https://sites.
google.com/view/emotiw2020, accessed on 1 May 2022), which help in the development
of this research. In spite of these advances, the work related to the detection of group
emotions from a robotic perspective is not very common. Consequently, as far as we
know, there are no databases containing images or videos taken by robots (i.e., from
an egocentric view). Therefore, with the help of ROS and Gazebo, we created datasets
https://github.com/marco-quiroz/Dataset-in-ROS, accessed on 1 May 2022) to validate
the results obtained with the proposed method. The social robot Pepper simulated in
ROS/Gazebo was used, which has various sensors to know its environment; in this case,
only the front camera located in the upper part of the robot’s head was used. This camera
has a resolution of 640 × 480 pixels at a speed of 1–30 fps.

The methodology to generate the datasets is shown in Figure 3. With this methodology,
two datasets were generated, the first one made up of images and the second one made
up of videos. The images dataset was used to train and evaluate the modified VGGFace
neural network, while the videos dataset was used to detect scenes, as well as to validate
the emotions of each frame and each scene. In the first stage of the methodology, the
virtual environment was generated (e.g., museum, cafeteria, office), where the formation
of groups was performed. The virtual environments where the simulations were carried
out were created by the ROS community. For the images dataset, all the virtual characters
(i.e., person representations in the environment) have the same emotion, since the idea is to
have different faces, but with the same emotional expression. This is followed by a video
recording of the robot’s path. Face detection is performed on each video. The labelling
of the images dataset is automatic, because all the detected faces have the same emotion.
For the videos dataset, the groups are conformed by persons with different emotional
expressions, as in a scene, people can express different emotions. In this case, the labelling
is performed manually.

Figure 3. Applied method to create the datasets.

https://sites.google.com/view/emotiw2020
https://sites.google.com/view/emotiw2020
https://github.com/marco-quiroz/Dataset-in-ROS
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4.1. Images Dataset

To generate this dataset, a virtual office environment in ROS/Gazebo (Figure 4) was
used. For each emotion, six groups of three members were formed, and the trajectory
of the robot where faces were detected at different angles and directions was recorded.
Then, the detected faces were automatically stored and tagged for each emotion. Hence,
approximately 4000 faces were generated for each emotion, from which 82% were used
as training samples and 18% as evaluation samples. In total, this dataset contains 23,222
images of faces that are classified according to six emotions (happiness, sadness, anger,
surprise, disgust, and fear). Table 4 shows the number of images for each emotion and the
distribution for training and testing.

Figure 4. Virtual office used to generate the image dataset.

Table 4. Images dataset.

Emotions Happy Sad Angry Disgust Surprise Fear

Training
Data 3371 3145 3363 2872 3179 2976

Test Data 750 750 750 566 750 750
Total 4121 3895 4113 3438 3929 3726

4.2. Videos Dataset

To generate this database, two virtual environments of ROS/Gazebo were used: a
museum and a cafeteria (Figures 5 and 6, respectively). In this case, the important issue
is to form groups of people who have different emotions. In each virtual environment,
12 groups were formed, and how the robot moves forward and sweeps to capture all the
faces in the group were recorded. Each video consists of approximately 60 frames and is
approximately 4 s long. Then, there was manual tagging of the emotion for each frame.

Figure 5. Virtual museum used to generate the 12 videos conforming the videos dataset.

For the formation of the groups in the videos, five people were used for each emotion,
that is a representation of 30 people in total. These representations of people are different
from those used in the creation of the image database. The formation of groups was carried
out considering the circular formation (groups of three people or more) and the side-by-side
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formation (groups formed by two people). In total, there were 24 videos that were used as
test the data to validate the emotion of each frame.

Figure 6. Virtual cafeteria used to generate the 12 videos conforming the videos dataset.

5. Simulations and Results

To validate and evaluate the performance of this proposal, A set of experimental
simulations was performed. In this section, we present such experiments, as well as the
results obtained.

5.1. Simulation Environment

For the training of the VGGFace neural network, Google Collaboratory Pro was used
(https://colab.research.google.com/, accessed on 1 May 2022), with the “NVIDIA Tesla
K80” GPU. ROS Kinetic and Gazebo 7 were used to simulate the behaviour of robots in
indoor virtual environments; this version of ROS works with Ubuntu 16.04 and Python 2.7.
Furthermore, to implement the proposal of this work in ROS, a virtual environment was
created in PyCharm, with the Keras 1.2.2 and Tensorflow 0.12.1 packages. All simulations
were performed on a desktop PC, with 16 GB RAM memory, an AMD A10 7860k 4-core
CPU, and an AMD RX-570—4 GB graphic card (the GPU was only used to simulate the
virtual environments in ROS; no additional drive was installed).

5.2. Individual Emotion

To validate the results of the detection of individual emotions, the dataset of 23,222 im-
ages was used, from which 82% were used as training samples and 18% as evaluation
samples. Figure 7 shows the loss of the training and validation datasets during 20 training
epochs. It was observed that the loss value of the model in training and in the test continued
to decrease across the epochs. The average loss value was 1.3246 in the validation data and
1.4056 in the training data, which represent the error rate in the prediction. Additionally,
the average accuracy value during training was 0.9719 (97.19%), and the average accuracy
value in the validation data was 0.9948 (99.48%) (Figure 8). Problems, such as overfitting or
misfitting of the data, are not observed in Figures 7 and 8; this indicates that the training
process was correct.

Figure 7. Loss of the modified VGGFace neural network.

https://colab.research.google.com/
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Figure 8. Accuracy of the modified VGGFace neural network.

Figure 9 shows the confusion matrix of the test data. The predicted labels by the model
are represented on the x axis, and the true labels are on the y axis. The values on the diagonal
of the confusion matrix are the predictions made correctly, and the labels that obtain the
most correct predictions are represented by blue cells. The confusion matrix shown in
Figure 9 was designed with 750 validation images for each label, except the disgust label,
having 566 images. Finally, the validation process had only nine incorrect images.

Figure 9. Confusion matrix of the modified VGGFace neural network.

5.3. Emotion of Videos

To validate the results of emotion detection in videos, the dataset of 24 videos with two
groups of people forming two scenes was used, 12 videos recorded in the virtual museum
and 12 videos recorded in the virtual cafeteria. Figures 10 and 11 show the emotions in each
video. At the left end are the videos (Video 1, Video 2, . . ., Video 12), and at the right end
are the detected emotions. The size of the representative points determines which scene the
frame belongs to, and the colour of the points determines the emotion of the frame.

5.3.1. Videos Recorded in the Museum

To validate the results of the detection of emotions in the museum, 12 videos were
recorded. Figure 10 shows that six videos were made up of two scenes, and the other six
contained only one scene. The emotions detected per frame correspond to what the robot
was observing. For example, Video 2 is mostly made up of people with a positive emotion,
but it is shown that in Scene 2, there are frames with negative and neutral emotions. This
limitation is due to the fact that the robot detects only the emotion that it is seeing, and if
this detection is prolonged, it can be the emotion of the scene even if this emotion is not the
dominant one.
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Figure 10. Results obtained for each video recorded in the museum.

Table 5 shows more details of the results shown in Figure 10. The less accurate results
shown in Figure 10 were due to the lighting inside the virtual museum, and in some cases,
the detected faces were not looking directly at the robot’s camera. For example in Video 3,
the virtual museum was dark, and in the case of Video 4, the detected faces did not look
directly at the robot’s camera. The lowest accuracy was found in Video 3; this is because
the dark lighting in the environment caused the face detector (i.e., Viola–Jones model) to
consider other regions as faces. These are examples of how the robotic perspective and the
environment conditions impact the process of emotion recognition.

Table 5. Summary table of the emotions detected in each video and the accuracy of emotion detection
in each frame for the videos recorded at the museum.

Video Emotion of the
Scene

Emotion of the
Video Accuracy

Video 1 Neutral Emotion Negative Emotion 1.0000Negative Emotion

Video 2 Positive Emotion Positive Emotion 1.0000Neutral Emotion

Video 3 Neutral Emotion Negative Emotion 0.5094Negative Emotion
Video 4 Neutral Emotion Neutral Emotion 0.7736

Video 5 Positive Emotion Positive Emotion 0.8113Positive Emotion
Video 6 Neutral Emotion Neutral Emotion 0.9811
Video 7 Neutral Emotion Neutral Emotion 1.0000

Video 8 Neutral Emotion Neutral Emotion 0.9811Neutral Emotion
Video 9 Neutral Emotion Neutral Emotion 1.0000

Video 10 Neutral Emotion Negative Emotion 0.7924Negative Emotion
Video 11 Neutral Emotion Neutral Emotion 0.9811
Video 12 Positive Emotion Positive Emotion 0.9434

Average Accuracy - - 0.8978

5.3.2. Videos Recorded in the Cafeteria

To validate the results of emotion recognition in the virtual cafeteria, 12 videos were
recorded. Figure 11 shows that there were four videos made up of one scene (Video 2,
Video 8, Video 9, Video 11). This is because there was no substantial change in the area of
the detected faces due to the height of the people or the approach of the robot. This would
be another example where the robocentric perspective affects the outcome.
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Figure 11. Results obtained for each video recorded in the cafeteria.

Table 6 shows the results obtained with the videos recorded in the cafeteria. The
lowest accuracy was found in Video 10; this is because not all faces were detected in the
video. In this case, the group had a neutral emotion and the undetected faces generated an
error in emotion recognition. The same happened in Video 6, but the undetected faces did
not affect the result because the group had a negative emotion, as well as undetected faces.
These results demonstrate, once again, that environmental conditions (e.g., lighting) and
the robot’s perspective can affect the final classification.

Table 6. Summary table of the emotions detected in each video and the accuracy of emotion detection
in each frame for the videos recorded in the cafeteria.

Video Emotion of the Scene Emotion of the Video Accuracy

Video 1 Neutral Emotion Neutral Emotion 0.9559Neutral Emotion
Video 2 Negative Emotion Negative Emotion 1.0000

Video 3 Positive Emotion Positive Emotion 0.7544Positive Emotion

Video 4 Neutral Emotion Neutral Emotion 1.0000Neutral Emotion

Video 5 Neutral Emotion Neutral Emotion 1.0000Neutral Emotion

Video 6 Neutral Emotion Neutral Emotion 1.0000Neutral Emotion

Video 7 Neutral Emotion Neutral Emotion 1.0000Neutral Emotion
Video 8 Neutral Emotion Neutral Emotion 0.7813
Video 9 Positive Emotion Neutral Emotion 0.9811

Video 10 Neutral Emotion Negative Emotion 0.4286Negative Emotion
Video 11 Neutral Emotion Neutral Emotion 1.0000

Video 12 Neutral Emotion Neutral Emotion 1.0000Neutral Emotion
Average Accuracy - - 0.9084

Tables 5 and 6 show the percentage of accuracy in the recognition of individual
emotions for each frame of the 24 videos. To determine the percentage of accuracy of
the emotions recognised in each frame, how many emotions were correctly detected with
respect to the emotions labelled in the database was calculated. From the experiments, we
obtained an average accuracy of 89.78% and 90.84% in emotion recognition in each frame
of the twelve videos recorded in the museum and in the cafeteria, respectively. Accuracy
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is only observed for emotion per frame, because the emotion of a scene depends on the β
parameter, so it cannot be labelled.

5.4. Simulation in ROS/Gazebo

In Sections 5.2 and 5.3, the results obtained in the detection of individual emotions
and by scenes were validated using the image and video databases. The group emotion de-
tection algorithm (presented in Figure 1) was also tested directly in the simulated scenarios
in ROS/Gazebo with the robot Pepper (i.e., as the real robot is executing the algorithm).

Communication in ROS is basically through nodes. When a message is sent in ROS,
it transports the message using buses called topics. Each topic has a unique name, and
any node can access this topic and send or receive data through it. In this case, the topic
“/pepper/camera/front/image_raw” was used. Figure 12 shows the robot Pepper in a
virtual office and the image obtained by the front camera in the robot (as shown in the
lower left part in Figure 12).

Figure 12. Image obtained by the front camera of the Pepper robot.

Figure 13 shows how the robot detects people’s faces, detects individual emotions
(starting with the faces on the left: sad, sad, and happy), and shows to which scene the
current frame belongs (Scene 1), the emotion of the frame (sad), and the emotion of the scene
so far (sad). This simulation was recorded and is available (https://www.youtube.com/
watch?v=i63hOTaeu-Y, accessed on 1 May 2022). These tests demonstrate the feasibility of
implementing this algorithm in real robots.

Figure 13. Emotions detected in the first scene.

6. Discussion

This first version of this proposal, as a proof-of-concept, demonstrates the feasibility
and efficiency of a robotic system capable of recognising group emotions from interactions
with humans, through a robotic perspective. This experience provided the opportunity to
extract some current limitations, as well as lessons learned.

https://www.youtube.com/watch?v=i63hOTaeu-Y
https://www.youtube.com/watch?v=i63hOTaeu-Y
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6.1. Datasets with Robocentric Perspective and Group Emotion Detection

Most studies developed in the context of emotion recognition for social robots base
their proposed approaches on datasets with a third-person perspective to train and validate
the machine learning models—i.e., datasets are built with emotions detected through
human vision or by fixed cameras in a determined place, using this information as the
perspective of the robot. The egocentric perspective of a robot can change depending
on several aspects, such as displacement, vibration, external agents, circular and angular
movements, as well as space conditions, which are part of the natural process of the
robot when it is moving around the environment. All these conditions impact the final
classification result, as shown in Sections 5.3.1 and 5.3.2.

Furthermore, most of the available datasets are limited to the recognition of individual
emotions, neglecting repositories suitable for group emotion recognition. The robocen-
tric perspective has become a key factor in recent studies for building datasets in other
areas, such as human recognition [64], conversational group detection [68–70], objects
detection [71], and visual–inertial navigation [72–74]; however, as far as we know, there
are no available egocentric datasets for group emotion recognition. Therefore, the need
for datasets of images and videos of groups of people expressing emotions created from
sensors available in the robot (camera, Lidar, IMU, encoder, etc.) and with different camera
angles, robot joint positions, etc., which reflect the first-person perspective of the robot, is
evident. Thus, it is possible to have better training, testing, and validation of group emotion
recognition models in social robotics scenarios.

Although the method proposed to create robocentric perspective datasets was devel-
oped in virtual environments, the visual perspective of the robot and some aspects related
to robots, such as the movement of the robot’s head and its displacement, were considered.
A similar method can be implemented in a real robot with real people, which may improve
the results, especially considering the aspects of real-time response and characterisation of
other robot’s aspects. For future studies in this area, the creation of new datasets that take
into consideration the robocentric perspective and suitability for group emotion recognition
is essential. Furthermore, to improve accuracy, it is planned to generate other datasets, con-
sidering postures, groups, and other objects besides faces, from a robocentric perspective
and create a multimodal system. A multimodal system to recognise emotions is intended
to simultaneously consider several modalities (e.g., faces, postures, context, voice), since
people express emotion in several ways [53,75]. It is expected that researchers that have
these possibilities can share their datasets for the community interested.

6.2. Emotion of a Scene

In this work, we proposed the idea of the “emotion of a scene” through the recognition
of groups of people and their emotions. This concept can be applied in cases in which the
context in which the group is acting is relevant, for example recognising the emotion that
an artwork (in a museum), a speaker (in a conference), an animal (in a zoo), or food (in a
restaurant) produces in a group of people.

In this research, to identify a scene, we only considered the group of people, based
on the size of the faces of the people in the groups. Although the results obtained were
satisfactory, the scene detection was still limited. Thus, it is planned to extend this approach
by considering the context of the group, such as other people or objects near the group,
as well as the conditions of the whole scene. Consequently, with the emotions of various
scenes, it is possible to determine the emotion of an environment.

6.3. Applicability

The main objective of this work was to identify the emotion of a group of people,
through the perception of the robot. Then, why would a robot want to detect the emotion
of groups of people? An obvious application is to design the behaviour of robots and
improve HRI to make them more socially accepted. For example, if the robot identifies
a negative emotion of the group, it moves away to avoid conflicts or has a submissive
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reaction; in contrast, if the emotion detected is positive, the robot can approach and talk to
the group. Another example of an application is for the robot to have the task of monitoring
and registering the emotions of groups of people participating in a course, conference,
musical presentation, museum, etc.; this is beyond recognising the emotion of a group,
but the emotion of a scene defined for the group; this information can be used not only
to define the behaviour of robots and improve HRI, but for post-analysis; secondly, this
information can be analysed, classified, and evaluated for further actions and decisions
related to the specific environment. Among these examples, many others can arise in the
context of modelling the robots’ behaviour, improving HRI, and other aspects in which
social robotics can be immersed.

7. Conclusions

In this article, we proposed a system to detect group emotions from a robocentric
perspective, which can be applied and extended to identify scene emotions. To do so,
the VGGFace model was used for individual emotion detection and an emotion fusion
was performed to detect group emotion, scene emotion, and video emotion. Due to
the lack of suitable datasets for training and testing group emotion recognition models,
we also proposed a methodology to generate datasets of images and videos from the
egocentric perspective of the robot, i.e., considering the sensory capacity of the robot,
which in turn can be influenced by its movement, position, vision angle, etc., and by the
environment conditions (e.g., lighting). The proposed approach was proven in several
simulated scenarios with a Pepper robot, obtaining results that demonstrated the efficiency
and good performance of the proposed system, as well as the feasibility of being applicable
in the robotics domain.

The ongoing work is focused on developing the methodology to build robocentric
datasets for group emotion recognition in real robots, improving the identification of a
scene and its emotion, and implementing the whole group emotion recognition pipeline in
real robots to model their behaviours in HRI or social navigation.
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