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Abstract: The article deals with a computer-supported design of optimal and robust proportional-
integral-derivative controllers with two degrees of freedom (2DoF PID) for a double integrator plus
dead-time (DIPDT) process model. The particular design steps are discussed in terms of intelligent
use of all available information extracted from a database of control tracking and disturbance rejection
step responses, assessed by means of speed and shape-related performance measures of the process
input and output signals, and denoted as a performance portrait (PP). In the first step, the performance
portrait method (PPM) is used as a verifier, for whether the pilot analytical design of the parallel 2DoF
PID controller did not omit practically interesting settings and shows that the optimality analysis
can easily be extended to the series 2DoF PID controller. This is important as an explicit observer
of equivalent input disturbances based on steady-state input values of ultra-local DIPDT models,
while the parallel PID controller, allowing faster transient responses, needs an additional low-pass
filter when reconstructed equivalent disturbances are required. Next, the design efficiency and
conciseness in analyzing the effects of different loop parameters on changing the optimal processes
are illustrated by an iterative use of PPM, enabled by the visualization of the dependence between the
closed-loop performance and the shapes of the control signals. The main contributions of the paper
are the introduction of PPM as an intelligent method for controller tuning that mimics an expert
with sufficient experience to select the most appropriate solution based on a database of known
solutions. In doing so, the analysis in this paper reveals new, previously undiscovered dimensions of
PID control design.

Keywords: multiple real dominant pole method; performance portrait; PID control; disturbance
observer; ultra-local models

1. Introduction

The ever-increasing possibilities of computer technology allow an ever-increasing
part of the processes related to the automatic control of systems to be carried out using
programmable devices. Their design usually attempts to emulate important characteristics
of human intelligence, leading to a discipline called intelligent control.

The effort to mimic the helmsman’s action needed to control ships was at the birth of
proportional-integral-derivative (PID) regulators [1]. With the development of computer
technology, it was also further enhanced to fuzzy control [2–6]. Today, intelligent control
means, in addition to fuzzy control, a much broader class of control techniques that use var-
ious artificial intelligence (AI) computing approaches like neural networks [7–12], Bayesian
probability [13,14], particle swarm optimization [15–17], machine learning, reinforcement
learning [18–20], evolutionary computation, or genetic algorithms [21–24]. Of course, this
calculation is not definitive and can be expected to grow further, with the aim to propose
new solutions (as in, e.g., [25,26]) satisfying the continuously increasing new requirements
of practice.
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Intelligent control methods are successfully promoted, especially in areas where
conventional control design is associated with the need to solve complex problems, such
as, e.g., arising in nonlinear systems with incomplete and inadequate representation and
under incomplete specifications of how to do this in an uncertain environment toward a not
definitely specified control goal [4,5]. Their use also tends to reflect the personality of the
designer, who prefers intuitive and heuristic design methods and returns to the analytical
model-based approach only to verify and validate his intuitive results.

A large amount of work in the field of AI has already been devoted to optimizing
the settings of PI and PID controllers. However, tied to the intrinsic limitations of this
type of control, it has not always led to significant progress in the achieved performance.
The reasons could be partially caused by the incomplete understanding of the functionality
of these controllers. Just recently, they have been discussed as structures for system
stabilization with an explicit or implicit disturbance observer (DOB) for the reconstruction
of the input disturbance from steady-state input related to ultra-local integral models of
controlled systems [27,28]. Although this type of DOB represented by a first-order low-
pass filter is interesting due to its exceptional simplicity, it inherently places significant
limitations on the dynamics of the reconstruction processes and on the acceptable settings
of the controllers. In borderline, but not entirely rare, cases, these intrinsic limitations of
PID control can finally lead to the abuse of the concept of intelligent control, when the
adjective “intelligent” is rather a sign of the pursuit of a cheap and effective attribute.
Ultimately, such approaches can lead to pejorative attitudes to misleading overly simplified
“intelligent” designs.

The presented work brings a more consistent emphasis on two aspects of PID controller
design—system modeling using ultra-local integral models and possible DOB-based PID
interpretation—which belong to the basic indebtedness of traditional methods of automatic
control and their innovative modifications used within intelligent control. Whereas the
use of ultra-local models is today frequently preferred in such areas as model-free control
(MFC) [29,30], or active disturbance rejection control (ADRC) [31,32], in terms of use in
the field of PID control (despite frequent use, as in [33–35]), this is a neglected issue.
Furthermore, the DOB-based view on PID control represents a relatively new and not yet
sufficiently and systematically explored topic [27,28].

In addition, the paper develops another new dimension of an intelligent approach to
the design of optimal and robust controllers based on the performance portrait method
(PPM). After several initial steps [36,37], the PPM was fully developed, especially in the
works [38,39]. It could be simply stated that this contribution represents an extension
of the work dealing with optimal and robust control design of systems approximated
by integrator plus dead-time (IPDT) models using 2DoF PI controllers [38] to the case of
controlling DIPDT models by 2DoF PID controllers. However, such a formulation of the
focus of the work is only very indicative because the control of DIPDT models brings a
number of new moments that have influenced the scenario of work at many points.

With respect to this, the paper is structured as follows. A brief overview of the
plant modeling from the point of view of positional control of autonomous vehicles is
discussed in Section 2, together with the basic problems of an analytical 2DoF PD and PID
controller design.

Section 3 discusses the basic limitations of an analytical design of optimal 2DoF PID
control and introduces the ideal shapes of transient responses, together with the related
performance measures enabling us to evaluate deviations of achieved transients from their
ideal wave-forms. Section 4 deals with the introduction of the performance portrait (PP)
and its use in the performance portrait method (PPM), allowing optimal nominal parallel
and series PID controller tuning. Contrary to [28], it offers an extension of PPM with the
possibility of weighting the emphasis on the resulting behavior in terms of setpoint tracking
and disturbance rejection while also considering the optimization of the reference setpoint
signal weighting by optimal settings of pre-filter parameters.
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Discussion of the main results of the paper in Section 5, together with their summary
in the Conclusions, show that due to strong limitations of the up-to-now available math-
ematical apparatus, just the intelligent control based on the PPM is able to analyze and
exploit all (even up to now hidden) dimensions of PID control.

2. PD and PID Controller Schemes for Analysis and Implementation

In order to be able to use illustrative physical interpretations of the considered steps
when working with PPM and also to stress the differences with respect to the traditional
approaches to PID control typical, e.g., in process control, let us assume the application of
the method for controlling the position of vehicles with one degree of freedom of movement.
Due to the existing analogies of the description of dynamic systems, the method can, of
course, also be fully used for the control of any other dynamic systems, for the reliable
stabilization of which the proportional-derivative (PD) controller must be used. As the
main specific feature of the chosen domain of interpretation, we will highlight the fact
that in terms of reference setpoint tracking, the need for smooth monotonic setpoint step
responses without over-regulation will be emphasized.

2.1. Double-Integrator and Double-Integrator-Plus-Dead-Time Models

Due to the forces changing nonlinearly during a vehicle motion, whereby several
system parameters are not fully known and can vary in time, control of a moving body
can be treated by several possible approaches to nonlinear uncertain systems. All the
possible approaches can be unified by application of Newton’s second law when the
vehicle acceleration is proportional to the resulting force applied (F = ma). When we leave
the designations typical of physics in Figure 1 and instead denote the position of the vehicle
by the variable x, its velocity as ẋ and acceleration as ẍ, and after introducing the gain
Ks = 1/m instead of the mass m, the system equation can be written in the form:

ẍ = Ks(ur + di − Fr(x, ẋ)). (1)

Thereby, ur ≡ F corresponds to the system’s manipulated variable (control signal),
Fr(x, ẋ) represents the resulting force acting against the control signal (consisting of friction
and gravitational forces), and the input disturbance di summarizes the influence of external
or internal forces not taken into account by the considered model.

When considering repeated movements in a known environment and with a known
load, it probably makes sense to apply nonlinear methods to the control design as exact
linearization [40], or to consider linearization around the selected fixed operating point,
replacing nonlinear dependencies Fr(x, ẋ) with “local” linear approximations obtained,
e.g., by the Taylor series expansion. However, when moving in an unknown environment,
it is usually impossible to work on the control design with linear or nonlinear approxi-
mations Fr(x, ẋ) depending on x and ẋ. There is nothing left but to merge the unknown
value Fr(x0, ẋ0) in the current state x = (x0, ẋ0)

t with the external disturbance di into an
equivalent disturbance:

de = di + Fr(x0, ẋ0) (2)

as typically used in ADRC.
In case of output disturbances do, the output equation can be written as:

y = x + do. (3)

As for the output disturbance, it can be, for example, an inaccuracy in the location
of the vehicle or the drift of ships by sea currents. However, with regard to the inertia of
the movement, the output disturbances of a jumping nature are certainly not possible, and
therefore we will limit ourselves to considering the jump changes of the required position
and the input disturbance (load) and consider y = x.
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Figure 1. Description of an autonomous vehicle movement in one dimension.

In addition, when neglecting the possible control saturation by considering u(t) = ur(t)
and taking into account that all other delays arising in the transmission and processing of
information, in the actuators, filters, and sensors can be denoted as a model dead-time Tm,
the double integrator plus dead time (DIPDT) model [28,41] can be written as:

F(s) =
Y(s)
U(s)

=
Ks

s2 e−Tms (4)

In the case of a non-measurable output derivative, its value has to be reconstructed by
a derivation combined with a binomial low-pass filter Qn(s):

Qn(s) =
1(

Tf s + 1
)n ; n ≥ 1 (5)

Thereby, the sampling period Ts used for implementation must be chosen to fulfill
Ts << Tf . The total loop dead-time Td must include, in addition to an estimate of the loop
delay Tm, an equivalent filter delay estimate Te:

Td = Tm + Te; Te = nNTf , (6)

where Te (as proposed in [42]) approximates the filter dynamics in terms of a dead time
that can simply be added to the total dead time Td, where the coefficient N can be given
by values in the range from N = 0.5 (equivalence based on “the half rule”) to N = 1
(equivalence based on “the average residence time”).

2.2. Stabilizing PD Controller Tuning by the Triple Real Dominant Pole Method

Today, even people without an education in automatic control, but with the experience
of a car driver, know that to stabilize the movement of the vehicle, its position, speed,
load, and the driver’s reaction time must be taken into account. Thus, to control the
DIPDT system (4) with a constant input disturbance di, a proportional-derivative (PD)
controller expressed with the help of the Laplace transform as Cs(s) = Kp(1 + TDs) and
supplemented by a disturbance feedforward counteracting the equivalent disturbances
with the equation:

u = Kp(1 + TDs)(w− y)− d̂e (7)

has to be used, where y denotes the actual and w the reference setpoint output values. Here,
d̂e represents a measurement, or estimate of the equivalent disturbance de = di + Fr(x0).
Analysis of an optimal controller tuning for a DIPDT system by the triple real dominant
pole method can be found in [41,43]. In [44], the PD controller has been proposed by
modification of PI control for an IPDT system based on the relative time-delay margin.
Furthermore, ref. [45] starts with the modification of PI control for an IPDT system, whereby
the PD controller design is based on pole placement by using the Lambert W function.
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DIPDT model stabilization by an ideal PD controller:

U(s) = (Kp + Kds)E(s) (8)

having at its input the (tracking) control error:

E(s) = W(s)−Y(s) (9)

yields the closed loop transfer function:

Fwy(s) =
Y(s)
W(s)

=
Ks(Kds + Kp)

eTdss2 + Ks(Kp + Kds)
(10)

Its characteristic quasi-polynomial:

APD(s) = eTdss2 + Ks(Kp + Kds) (11)

has a triple real pole so, when the loop parameters fulfill the requirements:[
APD(s);

dAPD(s)
ds

;
dA2

PD(s)
ds2

]
s=so

= 0 (12)

i.e., when:
so = ε/Td = −0.5858/Td; To = −1/so = 1.7071Td (13)

Here, To denotes the time constant associated with the real pole so. As pointed out
by one of the anonymous reviewers, according to [46], for the given closed-loop model,
the maximum pole multiplicity is three. At the same time, to determine two unknown
controller parameters and the position of the corresponding multiple pole, one has to solve
a system (12) with minimally three solutions.

Although the analytical design of controllers of systems with delays and the transcen-
dent nature of the mathematical description is associated with limitations, it will help to
clarify several other possibilities of numerical solutions of the problem. The fastest non-
oscillatory responses corresponding to a triple-real-dominant-pole (TRDP) so = −0.5858/Td,
which yields Kp = 0.079/(KsT2

d ); Kd = 0.461/(KsTd), can finally be shown to be guaran-
teed by dimensionless controller parameters:

κo = KpKsT2
d = 0.079; δo = KdKsTd = 0.461; τD = δo/κo = 5.8284;

po = soTd = −0.5858.
(14)

Due to the zero of Fwy in (10), the corresponding setpoint step responses typically have
overshoot. For its elimination, a pre-filter must be added to the PD controller (8):

Fp(s) =
1 + bs

1 + TDs
; TD =

Kd
Kp

; b = To, (15)

Its denominator cancels the numerator zero −1/TD. The numerator coefficient b can
be determined to cancel one of the triple poles of the closed-loop so = −1/To.

2.3. From the PD Controller to the Series and Parallel PID Controller Design

In addition to Minorsky’s work [1], which influenced the development of the simplest
systems control theory and the development of relevant terminology by designing the
three-term control concept, there was also a practical branch of research in which pneumatic-
based controllers prevailed for a long time [47]. Although there has been significantly less
information published in this area (in terms of patent protection), over time, elements
of an intelligent approach that sought to emulate and replace the work of experts can
also be traced. Thus, proportional-integration (PI) controllers were first created, in which
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the need to set the additional controller output signal (offset) required to achieve zero
permanent control error under the influence of constant disturbances was replaced by
the introduction of positive feedback from the controller output [27,28]. This created the
controllers, originally called “automatic reset”. Their essence can be explained by the
observation that in integral systems, the steady state-output of the controller is equal to the
negative value of the input disturbance di. Because a counteracting signal must be added to
the controller output to compensate for the constant di acting on the plant input, a double
inversion of the sign gives positive feedback. To measure the steady-state values of the
controller output ur (see Figure 2), it was sufficient to take a given signal using a low-pass
filter with a time constant Ti substantially longer than the time constant of transients in the
circuit with the stabilizing controller (denoted in previous section as To). Relatively short
transients caused by input step changes affect the output of such a filter only negligibly,
and the controller steady-state output values dominate in it.

Figure 2. Creating 2DOF series PID controller from PD controller for DIPDT plant.

At this moment, it is necessary to stress that only when neglecting the constraints
put on the control action in Figure 2 (only in the proportional control band), can the
corresponding series PID controller be described by the transfer function:

Cs(s) =
U(s)
E(s)

= Kcs
(1 + sTis)(1 + TDss)

sTis
(16)

where the controller parameters considered with the indices “s” are: Kc the controller gain,
Ti the integral, and TD the derivative time constant.

In such a situation, it is then also possible to get the parallel PID controller:

Cp(s) =
U(s)
E(s)

= Kcp
1 + Tips + TipTDps2

Tips
(17)

with parameters denoted with the index “p”. To get in both structures the same controller
transfer function, it must hold:

C(s) =
U(s)
E(s)

= Kcs
(1 + sTis)(1 + TDss)

sTis
= Kcp

1 + Tips + TipTDps2

Tips
(18)

Whereas the re-calculation from a series to a parallel controller is always possible
according to:

Tip = Tis + TDs; Kcp = Kcs
Tis + TDs

Tis
; TDp =

TisTDs
Tis + TDs

(19)

the replacement of a parallel PID controller by a series one according to:

Tis = [Tip ±
√
(T2

ip − 4TipTDp)]/2

Kcs = Kcp[Tip ±
√
(T2

ip − 4TipTDp)]/(2Tip) =

= Kcp[0.5±
√
(0.25− TDp/Tip)]

TDs = [Tip ∓
√
(T2

ip − 4TipTDp)]/2

(20)

is only possible for Tip ≥ 4TDp.
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2.4. Optimal Parallel PID Tuning by the Quadruple Real Dominant Pole Method

In [48], the PID controller design has been based on SIMC design [49,50]. In [33],
it has been modified, based on optimization using the exact gradient method. In [44],
the controller optimization was based on the dead-time margin.

Next, the analytical controller tuning will be based on the quadruple real dominant
pole (QRDP) method [28,41,42]. If, for simplicity, we omit the index “p” from the param-
eter designation, application of the parallel PID controller (17) leads to the closed-loop
transfer functions:

Fwy(s) =
Y(s)
W(s)

=
KcKs(1 + Tis + TiTDs2)

Tis3eTds + KcKs(1 + Tis + TiTDs2)

Fiy(s) =
Y(s)
Di(s)

=
KsTis

Tis3eTds + KcKs(1 + Tis + TiTDs2)

(21)

Similar to above, from the characteristic quasi-polynomial:

P(s) = Tis3eTds + KcKs(1 + Tis + TiTDs2) (22)

with four unknown parameters yields the requirement of a quadruple real dominant pole
(QRDP) so, which requires the conditions:[

P(s);
dP(s)

ds
;

dP2(s)
ds2 ;

d3P(s)
ds3

]
s=so

= 0 (23)

to be met, the dimensionless parameters of the parallel PID controller:

po = soTd = −0.416; τo = −1/po = 2.405;
κp = KcpKsT2

d = 0.1248; δp = KdpKsTd = 0.5045; ηp = KipKsTd = 0.0121;
τip = Tip/Td = 10.324; τDp = TDp/Td = 4.043.

(24)

Overshooting of the setpoint step responses due to zeros of Fwy in (21) can now be
eliminated by a pre-filter:

Fp(s) =
1 + bs + cs2

1 + Tips(1 + TDps)
(25)

with the trivial numerator tuning:
b0 = c0 = 0. (26)

The setpoint responses can be accelerated by cancelling a single dominant pole so,
and even more by cancelling two dominant poles s2

o , when:

c1 = 0, b1 = To, or c2 = T2
o , b2 = 2To; To = −1/so = 2.405Td (27)

3. Basic Limitations of Analytical Tuning of PD and PID Controller

If we want to evaluate the basic pros and cons of the above analytical setup of PID
controllers for the DIPDT system, we must first state the performance measures appropriate
to the problem and its applications in (vehicle) control.

3.1. Evaluation of the Speed of Transient Response

For the tracking error (9) defined in the time domain as e(t) = w(t)− y(t), the speed
of transients can be evaluated in terms of the integral of the absolute error (IAE):

IAE =
∫ ∞

0
|e(t)|dt. (28)
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For the unit setpoint step responses and di = do = 0 it will be denoted as IAEw.
For w(t) = 0, do = 0 and unit input disturbance (load) step as IAEi. Some works (for ex-
ample, [33,44]) used in derivation of Pareto-optimal (PO) PID controller with maximal
sensitivity constraints in the cost function:

J = sw
IAEo

IAEo,min
+ si

IAEi
IAEi,min

; sw + si = 1 (29)

where IAEo corresponds to unit step responses of the output disturbance do. However, they
do not give examples of applications with the possibility of step changes of do. Of course,
when applied to vessel control (as in [44]), output disturbances caused by drift due to sea
currents can be expected. However, in no case will these be jump disturbances, and it is,
therefore, questionable whether such optimization will lead to concise results. Similarly,
when driving autonomous vehicles, output disturbances may occur due to inaccurate
GPS location. However, such disturbances will be rather random in nature, and it will
be more appropriate to classify them as measurement noise. In the following, therefore,
the cost function:

J = sw
IAEw

IAEw,min
+ si

IAEi
IAEi,min

; sw + si = 1 (30)

similar to [38,51] will be used to evaluate the optimality of control.
Unit setpoint step responses lead under the TRDP PD controller (14) to optimal IAE

values:
IAEw = 4.1213Td. (31)

When considering the parallel PID controller, depending on the prefilter (25) numera-
tor order, the QRDP PID tuning (24) yields IAE values corresponding to unit setpoint and
disturbance steps:

IAEw0 = 10.323Td; IAEw1 = 7.918Td; IAEw2 = 5.513Td; IAEi = 82.728T3
d . (32)

Significant differences in the optimal values IAEw and IAEi of the controller’s an-
alytical design show why standardization using minimum achievable values IAEw,min
and IAEi,min is necessary when optimizing general designs with an emphasis on setpoint
tracking or disturbance rejection. They also document that, with the introduction of I-action,
it is possible to compensate for the disturbances acting, but at the cost of prolonging the
transients (in the case given by IAEw2/IAEw by 5.513/4.1213 = 1.34 times, 1.92 times for
IAEw1, and by 2.5 times for IAEw0) with the current paradoxical increase in proportional
gain (Kc/Kp = 0.1248/0.079 = 1.58 times).

When someone thinks about ways to improve the performance of the loops using a
PID controller, it is also important to remember that:

Remark 1 (Fundamental restrictions on PID controller integral time constant). The integral
time constant Ti = 10.324Td (24) of the QRDP PID controller must be much longer than the
dominant time constant To = 1.707Td of transients stabilized by the TRDP PD controller (13).

Detailed research based on the analysis of several other optimal settings of PI and PID
controllers [27,28] has shown that this fundamental limitation of the disturbance reconstruc-
tion rate and thus the transient speed resulting from the nature of the disturbance observer
used (reconstruction from steady-state controller output values) cannot be removed even
using artificial intelligence methods.
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Remark 2 (The inability to achieve QRDP optimal responses by a series PID controller). It
follows from the transformation relations (20) for the conversion of the series controller parameters
from the parallel PID parameters that due to:√

(0.25− TDp/Tip = 0.25− 4.043/10.324 = −0.1416 < 0 (33)

it is impossible to achieve QRDP optimal responses by a series PID controller with real parameters.
Instead, optimal series PID controllers always have (see, for example, [33]):

τis = τDs (34)

However, such a selection requires that their value be appropriately determined and the value
of Kcs added.

3.2. Evaluating the Excessive Controller Effort

In application of PID control, a high attention has to be devoted to measurement
noise impact, which in combination with not appropriate controller tuning can lead to an
unacceptable excessive controller effort. In [33,44,48], it has been evaluated in terms of
total variation:

TV(u) =
∞

∑
i=0
|ui+1 − ui| (35)

Although TV(u) plays an important role in circuit assessment, the identification of this
measure with excessive controller effort is incorrect because the total amount of absolute
increments also includes useful control signal changes used to achieve the desired output
change [50]. In other words, reaching the “ideal” value of TV(u) = 0 would mean that
the output of the DIPDT system if it was initially in a steady state, would not change at all
during the transient.

Although the value of TV (35) is related to excessive control efforts, it does not in itself
have an immediate physical or mathematical interpretation. However, appropriate TV
modifications can be useful in evaluating the deviations of the time responses from optimal
shapes based on the concept of monotonicity. Monotonic output variable changes mean
that all its increments have contributed to the output change from an initial value y0 to
the final value y∞ without causing some counteractive movement. Thus, the output signal
samples yi viewed with the sampling period Ts yield a measure [38]:

TV0(y) =
∞

∑
i=0
|yi+1 − yi| − |y∞ − y0| (36)

that can be interpreted as a deviation from monotonicity. TV0(y) > 0 signalizes a non-
monotonic transient with some increments not contributing to the requested change, e.g., for
a smooth response with a single overshoot amplitude ∆, TV0(y) = 2∆. Therefore, TV0(y)
finds application mainly in the evaluation of setpoint step responses at the system output.

The situation will be more complicated when evaluating the output waveforms after a
disturbance step. Due to the delayed response of the controller, which occurs as a result
of to the transport delay of the system, the deviation of the output from the setpoint will
increase in the first phase of the input disturbance step coming after steady state. When
the response of the controller finally manifests itself, ideally the output of the system
monotonically returns to the desired value: the output thus consists of two monotonic
sections. Such a course is hereinafter referred to as one pulse (1P) shape. The deviation of
the real course from its ideal 1P shape is calculated by summing the deviations from the
monotonicity on these two individual sections according to:

TV1(y) = ∑
i
|yi+1 − yi| − |2ym − y∞ − y0| (37)
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where ym /∈ (y0, y∞) lying outside the interval formed by the initial and final output values
y0 and y∞ represents the point separating the monotonic sections of the 1P response.

Feldbaum’s principle of time-optimal control of a vehicle described by the second-
order differential equation expressed the need for two intervals with constrained control
signal alternating individual limits more than half a century ago [52]. It is true that in the
literature focused on smoother PID controllers, Feldbaum’s theorem has been practically
forgotten (with exception of few authors, as in [53,54]). However, the requirement to ac-
count for active control pulses applies not only to relaying rectangular control interventions,
but also to their smoother modifications, in which case some of the limit values may not
even be reached. Especially in the field of vehicle motion control, it is certainly not possible
to optimize their movement by minimizing the value of TV, but it must be adjusted for the
values of useful interventions needed to accelerate and brake the vehicle. Thus, for a double
integrator [37,38], the optimal shape of the control signal u(t), t ∈ [0−, ∞) associated with
an ideal monotonic setpoint changes and 1P disturbance responses of the output (given
by the inverse plant dynamics) will be specified by two extreme points um1, um2 occurring
at times t1, t2 ∈ (0, ∞), lying between the initial and final values u0 and u∞ and satisfying
the condition:

(um1 − u∞)(um2 − u∞) < 0. (38)

They form three monotonic control intervals of the two-pulse (2P) optimal control
signal shape and the excessive control effort (summing the deviations from monotonicity
over these three intervals) has to be evaluated according to:

TV2(u) = ∑
i
(|ui+1 − ui|)− |2um1 − 2um2 + (u∞ − u0)sign(um1 − u∞)| (39)

It means that for more complex controller output shapes (as, for example, in Figure 3),
the total variations (35) has to be decreased by a “useful” contribution term combining
the acceleration-deceleration amplitudes 2(um1 − um2) with the total control signal change
u∞ − u0 considered with the polarity depending on the first amplitude value with respect
to the final steady-state control signal.
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Figure 3. A “useful” control signal contribution of a more complex plant input (controller output)
calculated as: TV2(u) = um1 − u0 + um1 − um2 + u∞ − um2 = 2um1 − 2um2 + u∞ − u0.
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3.3. Example 1: Performance Evaluation of PD and PID Controllers

To illustrate the properties of derived TRDP PD and QRDP PID controllers, consider
their evaluation using the proposed performance measures and comparison with the design
of the PD controller according to [45].

For the plant model (4), implementation filter (5), and the delay equivalence (6) with
parameters:

Km = Ks = 1; Tm = 1; N = 1; n = 1; Tf = Tm/4; Tsim = 30; (40)

it will be considered:

1. The QRDP PID controller (24) (Kp = 0.08; Kd = 0.4043; TD = 5.0537; Ti = 12.905;
To = 3.0062) and the prefilter (25) with the numerator tuning c1 = 0, b1 = To (QRDP);

2. The TRDP PD controller (14) (Kp = 0.0506; Kd = 0.3688; TD = 7.2943; To = 2.1339)
and the prefilter (15) with the numerator tuning b = To (TRDPb);

3. The TRDP PD controller (14) and the prefilter (15) with the numerator tuning b = 0
(TRDP0);

4. The PD controller according to [45] with parameters Kp = 0.12705/(KsT2
d ) = 0.0813;

Kd = 0.53228/(KsTd) = 0.4258, the prefilter (15), TD = Kd/Kp = 5.2369 with the
numerator tuning b = 0 (GJ).

Simulation with the step Ts = 0.001 yields the setpoint step responses in Figure 4 with
the performance measures in Table 1.

Figure 4. Setpoint step responses of the QRDP PID controller (24) with the prefilter (25), c1 = 0,
b1 = To, TRDP PD controller (14) with the prefilter (15), b = T0 (TRD Pb) and b = 0 (TRDP0) and the
PD controller according to Gerov and Jovanovic [45] with the prefilter (15), b = 0 (GJ).

Table 1. Performance measures corresponding to the setpoint step responses in Figure 4.

- QRDP TRDPb TRDP0 Gerov-Jovanovic [45]

IAEw 9.8868 5.1608 7.2944 5.4013

TV0(yw) 0.0000 0.0000 0.0000 0.0457

TV2(uw) 0.0000 0.0000 0.0000 0.0033

In terms of IAEw (Table 1), the fastest transients apparently correspond to the TRDPb
controller. However, due to the zero relative degree of the prefilter, there is a discontinuity
of the control action variable at the beginning. The undesirably high peak in u can be
removed by using a saturation block, without significantly slowing down the transient that
occurs in the case of TRDP0. Similar problems would arise when ingesting TRDP PID with
a zero relative degree prefilter. Thanks to the reconstruction of disturbances in the TRDP
PID from steady-state values of the controller output, this controller also yields the slowest
transients. However, all responses with controllers set by the multiple real pole method are
characteristic with a minimum number of monotonic sections at the input and output of
the system, which corresponds to the zero values of TV0(yw) and TV2(uw).
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When using the controller GJ according to [45], the output response is already over-
regulated even when using the pre-filter (15) with b = 0, which is signaled by the non-zero
value TV0(yw). The output overshooting ∆y = 0.021 < TV0(yw)/2 then also increases the
overall controller activity signalized by the TV2(uw) > 0 value.

4. Performance Portrait Method

Examining all possible meaningful solutions to a problem before deciding which
one best meets the defined criteria is one of the basic aspects of “intelligent” problem
solving. It is the basis of a method called brainstorming, but also of such legally established
procedures as public procurement. Verification of assumed meaningful solutions is also
an approach that is very popular in the design of optimal control by practitioners who
prefer experimentation over a theoretically justified design. They return to the theoretical
arguments only when they already know the optimal solution and use the theoretical
justification to support its adoption.

The performance portrait method (PPM) [28,36–38] assumes verification of loop prop-
erties at all possible relevant controller settings. For the DIPDT models, such meaningful
intervals of optimal controller parameters were analytically investigated by selecting differ-
ent groupings of real dominant poles in [28]. After choosing the appropriate quantization
of particular dimensionless variables, which should be fine enough to capture all the impor-
tant specifics of the problem under consideration, it enabled one to limit the control design
to a grid of points and thus to spare the time and energy. The finer the quantization is
choosen, the higher the total number of points at which one has to verify the properties of
the system, either by simulation or real-time control. By concise approximation (modeling)
of initial systems and work with dimensionless parameters (as in (24)), the applicability of
information obtained by system analysis on a given grid can be extended to a significantly
wider set of systems.

When analyzing closed loop properties at the controller parameters corresponding to
the selected tuning point, several performance measures are evaluated, such as IAEw, IAEi,
TV0(yw), TV1(yi), TV2(uw), TV2(ui), corresponding to the steps of the reference variable w
and the load disturbance di. This list is, of course, not exhaustive and may be extended or
modified as necessary (for example, by the values of the sensitivity functions Ms and Mt
preferred by many authors, maximum overshoot values, settling times, etc.). As we showed
in the previous example, the amplitude of the maximum overshoot can also be estimated
from the value of TV0(yw). Since the values of Ms and Mt are important in relation to
the limits of stability, but with higher demands on positioning accuracy and the shape of
transients, they do not give as concise information as deviations from monotonicity and
will not be used in this contribution.

Definition 1 (Performance Portrait (PP) and Performance Portrait Method (PPM)). The infor-
mation about the process is obtained, evaluated, and stored using computer technology. If necessary,
it can be step-wise extended or reduced and reused for optimal and robust design of control circuits.

The performance portrait method (PPM) represents a digitization of controller settings inspired
by the behavior of practitioners who first verify everything by experimenting. It is a reflection of
four types of learning styles [55] in the field of controller design and by its nature falls within the
trends of Industry 4.0.

Furthermore, if someone refers to the performance portrait method (PPM) as a “brute
force” approach [34], it should be noted that traditional methods of optimizing controller
parameters are much closer to that name. With PPM in general, there is no problem with
convergence to the optimal solution, while the search for optimums can be repeated with
minimal effort indefinitely, with the choice of new criteria of optimality (or using their
various combinations).
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4.1. Example 2: Generating PP of the Parallel PID Controller

To facilitate the possibility of repeating the next procedure to potential applicants,
the generation of PP will be explained using simulation of the loop with a 2DoF parallel
PID controller with an additional disturbance observer. Based on the experience of [28] and
after adding another dimension needed to determine the appropriate prefilter coefficient b,
it follows as a suitable choice:

κ ∈ [0.05, 0.35]; ∆κ = 0.01; δ ∈ [0.15, 1.05]; ∆δ = 0.03;
τi ∈ [6, 22]; ∆τi = 2; b ∈ [0.1, 0.9]; ∆b = 0.1.

(41)

In order to be able to generate PP independently of the choice of the derivative action
filter needed for the parallel PID controller implementation, a state-space scheme with
available output derivative will be used (Figure 5) with the prefilter:

Fp(s) =
bTis + 1
Tis + 1

(42)

deleting the zero of Fwy(s):

Fwy(s) =
KcKs(Tis + 1)

Tis2(seTds + KcKsTi) + KcKs(1 + Tis)
(43)

Figure 5. Matlab/Simulink simulation scheme of the parallel PID controller used to generate PP
(41) with the prefilter Fp(s) = (1 + bTips)/(1 + Tips) (42) and an additional low-pass filter used for
disturbance reconstruction.

The PP will be generated by simulating the unit setpoint and input disturbance step
responses corresponding to the grid parameters (41). For each grid point, the performance
measures IAEw, IAEi, TV2(uw), TV2(ui), TV0(yw), TV1(yi) will be stored in the correspond-
ing performance measures matrices.

The simulations have been carried out in a total of 31× 31× 9× 9 + 31× 31× 9 =
86,490 points. The duration of the PP calculation on a standard PC was 37 h. Because the
calculation of performance measures at individual points is independent of each other,
the whole problem can be advantageously parallelized. Of course, in the traditional
evaluation of experiments by practitioners, it would not be realistic to work with such
a high number of experiments and process characteristics using different performance
measures. Thus, in terms of the detailed information considered in the controller design,
PPM multiplies the capabilities of human experts.

In the next process of using PPM, we determine whether there is a point (or in the case
of uncertain systems a compact group of points) in which a closed circuit would meet the
specified limits on the values of dimensionless parameters. These must be chosen so that
the requirements for the real system with specific values of the DIPDT model parameters
are ultimately met.

4.2. Example 3: Optimal Nominal Tuning of the Parallel PID Controller

Choice of the “optimal” nominal solution will be based on weighted IAE values (30),
allowing to take into account the weight on the results from the evaluation of unit setpoint
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and input disturbance step responses. As constraints in the optimization, the admissible
shape-related constraints have been specified by the vector εyw, εyi, εuw, εui as:

TV0(yw) ≤ εyw ; TV1(yi) ≤ εyi
TV1(uw) ≤ εuw ; TV1(ui) ≤ εui

(44)

Since the above analytical approach studied in Section Äl’ yields ideal shapes of
transient responses, it can be characterized by constraints:

ε = εyw = εyi = εuw = εui → 0 (45)

In practical applications, each of the permissible restrictions may be specified by a
separate number. However, if we want to show general trends in this work regarding the
impact of permissible restrictions, we will choose, for simplicity, a vector of ”sufficiently”
small figures:

ε = εyw = εyi = εuw = εui ∈ {0.001, 0.01, 0.1} (46)

This choice is surely of an ”ad hoc” nature, has a strong influence on the resulting
transients, but represents a trade-off between practical usability and computational effort.

In a similar way as in [38], the following theorem can be derived for working with
dimensionless quantities and quantities of a real circuit corresponding to the model (4)
with Tm = Td.

Theorem 1. Let us consider PP, including items IAE(ȳs), IAE(ȳi), TV0(ȳs), TV1(ȳi), TV2(ūs),
and TV2(ūi) generated for the IPDT plant with Ks = 1, Td = 1 over the chosen grid of points
Kc, Ti, TD, b by simulating setpoint responses (w = 1, di = 0) with output and input ȳs(τ),
ūs(τ) and input disturbance responses (w = 0, di = 1) with ȳi(τ), ūi(τ). The properties of these
responses are stored and expressed over a grid of dimensionless variables:

κ = KcKsT2
d ∈ [κmin, κmax] ; δ = KdKsTd ∈ [δmin, δmax];

τi = Ti/Td ∈ [τimin, τimax] ; b ∈ [bmin, bmax].
(47)

Then, the PP items corresponding to any plant model parameters Ks, Td, and prefilter tuning b
belonging to the range (47) with the corresponding responses ys(t), us(t), yi(t), and ui(t) can be
calculated according to:

IAE(ys) = Td IAE(ȳs) ; IAE(yi) = KsT3
d IAE(ȳi)

TV0(ys) = TV0(ȳs) ; TV1(yi) = KsT2
d TV1(ȳi)

TV2(us) =
1

KsT2
d

TV2(ūs) ; TV2(ui) = TV2(ūi)
(48)

This theorem shows that it is enough to carry out the optimal design just in the
space of dimensionless parameters and to calculate the actual values of the performance
measures just when wishing to show the relative character of some chosen admissible
shape-related deviations (44)–(46), which have to be interpreted in the context of particular
model parameters Td and Ks.

For sw = 0.5 and si = 1− sw = 0.5, the search over the stored PP with performance
measures satisfying the above requirements yields vectors of optimal controller tuning parameters:

ε = 0.001 : κo = 0.19; δo = 0.6; τD = 3.16; τio = 8; b = 0.3;
ε = 0.01 : κo = 0.21; δo = 0.66; τD = 3.14; τio = 8; b = 0.3
ε = 0.1 : κo = 0.24; δo = 0.72; τD = 3.00; τio = 8; b = 0.5.

(49)

A comparison of transients with the QRDP analytical method in Figure 6 shows that
PPM makes it possible to find faster transients. Thereby, the advantage of QRDP tuning
(24) is that it works with lower controller gains (which is important in noisy loops) and,
nominally, it gives ideal response shapes (ε = 0) for any values of the model parameters Ks
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and Td. The non-zero shape deviations specified for dimensionless quantities are subject to
changes depending on the parameters of the model when moving to real values of the shape
deviations, which means that they can ultimately be significantly different [28,38]. This
transformation must be taken into account when specifying search constraints. The speed
of transients can be increased by tolerating larger deviations from ideal courses (i.e., by
increasing the ε values).

The location of the found optimal settings in the overall context of PP can be seen
using the cross-sections in Figure 7. In the case of setpoint responses, it can be noticed that
at higher values of b, the area corresponding to the transients with small deviations from
the monotonicity disappears. Allowing larger deviations from ideal shapes of transients
leads to acceleration (decreased IAE values) of both setpoint and disturbance responses.

Remark 3 (Impact of increased loop inertia on the ideal controller output shape). Allowable
areas specified by TV2(u) ≤ 0.001 in Figure 7 are very small and difficult to display using contours.
However, from the application of Feldbaum’s theorem to a double integrator supplemented by the
integral action of the controller and delays, which further increase the circuit order, the question
arises whether it might not be interesting to look for solutions with higher allowable TV2(u) values
or directly with higher number of allowable pulses of optimal system input, evaluated, for example,
by TV2(u) [50].

Figure 6. Unit setpoint step responses (left) and unit input disturbance step responses (right) achieved
with the QRDP PID controller (black), responses corresponding to POI-PID controllers [44] with a
prescribed Ms constraints and responses corresponding to optimal tuning calculated by the PPM with
the parameter grid (41) under the performance specifications (46) and (44); Tm = 1; Ks = 1; Ts = 0.001.

4.3. Parallel PID Controller Tuning Optimized under Consideration of Sensitivity Constraints

To get a picture of the differences in the approaches of traditional PID controller design,
often based on IAE optimization supplemented by sensitivity constraints, the responses
obtained using PPM and QRDP analytical tuning are compared with the optimal solutions
from [44] given for three different Ms values:

κ = 0.0694; τD = 5.7675; τi = 13.3862; Ms = 1.59
κ = 0.0974; τD = 5.0837; τi = 11.9603; Ms = 1.80
κ = 0.1215; τD = 4.6796; τi = 11.2708; Ms = 2.00

(50)

To avoid overshooting of the setpoint step responses, the prefilter (42) with the numerator
parameter b = 0 is used, whereas the output derivative signal is taken from the plant model.
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The corresponding transients in Figure 6 show these responses yet much slower than for the
QRDP tuning. If the reason for slowing down the responses should be the argument that it is
necessary to increase the robustness in case of uncertainty of the model, the answer is that in that
case, it is possible to search for other controller tuning using PPM. However, it does not make
sense every time, even if the parameters of the model are supposed to be known well enough.
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Figure 7. Cross-sections of PP (41) corresponding to setpoint responses (above) and disturbance
responses (below) from Figure 6 for the optimal parameters (49) fulfilling the constraints (46) with
ε = 0.001 (red), ε = 0.01 (blue), and ε = 0.1 (green).

4.4. Example 4: Optimal Nominal Tuning of the Series PID Controller

It is well known (see for example [33,44]) that higher dynamics can be achieved with
parallel PID controllers than with series controllers. As mentioned in Remark 2, even
a parallel QRDP PID controller cannot be converted to an equivalent series controller.
However, the parallel controllers only contain the disturbance observer implicitly [27,28].
If we need to explicitly monitor the disturbance for some reason, the controller must be
supplemented with an additional block of low-pass filter (as in Figure 5) with the time
constant Ti. From the point of view of disturbance reconstruction, but also with regard to
the impact of control signal limitations, it is therefore more advantageous to work with a
series PID controller, including an explicit disturbance observer.
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Although the specification of the PP (41) calculation was designed with regard to
the calculation of the parallel controller, the obtained PP can also be used to calculate
the parameters of the series PID controller. At the same time, it can be expected that the
fastest achievable transients will correspond to the borderline case in terms of parameter
conversion (20), when:

Tip = 4TDp; Kcs = Kcp/2; Tis = TDs = Tip/2. (51)

When we search in PP (41) using these constraints, we find that for sw = 0.5 and
si = 1− sw = 0.5, it is not possible to find an optimal series PID controller that would
provide transients with a deviation from ideal shapes ε ≤ 0.001.

Remark 4 (Influence of rounding errors). We have already pointed out the small areas of
permissible TV2(u) values in Remark 3. Due to κ and δ quantization in the τD = δ/κ calculation
and in further conversion steps, the situation will worsen further. The problems could be eliminated
by generating another PP for the series PID design, which would work directly with κ, τD, τi, and
bs corresponding to the prefilter:

Fps(s) =
bTiss + 1
Tiss + 1

; Tis = Tip/2 (52)

However, it is also possible to use the PP calculated for the parallel PID, but the values of the
permissible values of TV2(u) need to be increased slightly.

Figure 8, therefore, shows the optimal transients corresponding to the optimal series
PID when selecting a modified vector of admissible shape deviations:

ε = εyw = εyi = εuw = εui ∈ {0.002, 0.01, 0.1} (53)

Then, the search over the stored PP with performance measures satisfying the above
requirements yields vectors of optimal controller tuning parameters (the indices “p” and “s”
are used to distinguish the primarily found dimensionless values of the parallel controller
and the recalculated values of the serial PID):

ε = 0.002 : κp = 0.13; δp = 0.57; τip = 18; κs = 0.065; τDs = 9; τis = 9; bp = 0.7;
ε = 0.01 : κp = 0.15; δp = 0.60; τip = 16; κs = 0.075; τDs = 8; τis = 8; bp = 0.7;
ε = 0.1 : κp = 0.20; δp = 0.69; τip = 14; κs = 0.100; τDs = 7; τis = 7; bp = 0.7.

(54)

The responses were obtained using a series PID scheme with the output derivative
available in Figure 9.

A detailed look at the location of the corresponding operating points in the PP (see
Figure 10) shows that, in terms of the size of the dimensionless gains, influencing strongly
the speed of transients, the limits on the permissible value of TV2(u) are decisive.

If, in order to accelerate the transients, we keep the allowable shape limits of the
output εyw and εyi according to (53) and increase the allowable input (controller output)
restrictions in all three cases to the value:

εu = εuw = εui = 0.3. (55)

Another way to accelerate transients would be to accept transients with a higher
number of monotonic control intervals at the controller output.
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Figure 8. Unit setpoint step responses (left) and unit input disturbance step responses (right)
achieved with the parallel QRDP PID controller (black) and responses corresponding to series PID
controller (see Figure 9) with the optimal tuning calculated by the PPM over the parameter grid (41)
under the performance specifications (53) and (44); Tm = 1; Ks = 1; Ts = 0.001.

Figure 9. Matlab/Simulink simulation scheme with series PID controller used to verify controller
tuning calculated from the PP (41) derived for the parallel PID control; the prefilter Fp(s) =

(1 + bTips)/(1 + Tips) (42) still corresponds to the parallel PID tuning.

The resulting waveforms of the individual circuit responses are presented in Figure 11.
Even without numerical quantification of the obtained responses, there is an evident
significant increase in speed, especially in terms of compensation of disturbance steps,
but also in terms of the speed of reconstruction of the input disturbance. Since this can
already be noticed in the series PID controller in Figure 9 compared to the reactions of the
parallel PID controller Figure 5, it can be stated that while the parallel PID controller allows
faster transients in terms of output, a series PID controller with an explicit disturbance
observer is faster in terms of disturbance reconstruction.
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Figure 10. Cross-sections of PP (41) corresponding to setpoint responses (left) and disturbance
responses (right) from Figure 8 for the optimal parameters (54) fulfilling the constraints (53) with
ε = 0.002 (red, above), ε = 0.01 (blue, middle), and ε = 0.1 (green, below).
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Remark 5 (Limitations on Ti selection ). Understanding PID functionality, which is based on
disturbance reconstruction from the controller output steady-state values, is crucial to understanding
why it is not possible to arbitrarily reduce the integral time constant Ti with respect to the transients
of the loop stabilised by the PD controller. The existence of Ti size limitations, mentioned already in
Remark 1, is obvious from all the above analytical and numerical calculations of the optimal PID
controller settings. Therefore, countless attempts to overcome this handicap by applying AI methods
cannot be considered intelligent.

4.5. Example 5: Considering the Pareto-Front in Setpoint Tracking and Disturbance Rejection

It is well known that a PID controller designed with the best setpoint tracking in mind
may not provide optimal disturbance rejection and vice versa [33,38,51]. Depending on the
specific requirements of the considered application, it may therefore be interesting to look
for the optimal setting of the controller at variable values of the weight parameters sw and
si = 1− sw of the cost function (30).

Figure 11. Unit setpoint step responses (left) and unit input disturbance step responses (right)
achieved with the parallel QRDP PID controller (black) and responses corresponding to series PID
controller (see Figure 9) with the optimal tuning calculated by the PPM over the parameter grid (41)
under the output performance specifications (53) and (44) and the input admissible deviations (55);
Tm = 1; Ks = 1; Ts = 0.001.

The admissible shape deviations will again be chosen as a mix of the allowable shape
limits of the output εyw = εyi = 0.001 and the allowable input deviations (55) with
εuw = εui = 0.3. PP search with sw = 1 and sw = 0, whereby si = 1− sw, then provides
controller parameters in Table 2.

Table 2. Parameters of parallel (pPID) and series PID controllers (sPID) found for εyw = εyi = 0.001
and εuw = εui = 0.3 in PP (41); κp = KsKcpT2

d , δp = KsKdpTd, τip = Tip/Td, bp, κs = κp/2,τis = τip/2
and τDs = τip/2.

2DoF PID sw κp δp τip bp κs τis τDs

Parallel 1 0.1700 0.6300 22 0.8 - - -
0 0.2700 0.7200 8 0.1 - - -

Series 1 0.2100 0.7200 14 0.6 0.1050 7 7
0 0.2500 0.7500 12 0.1 0.1250 6 6
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The setpoint and disturbance step responses corresponding to the specified parallel
and series PID controllers are in Figure 12. As expected, with both controllers, setpoint
step responses with sw = 1 are faster than with sw = 0. Here, too, the input disturbance is
reconstructed more quickly in the case of series PIDs. However, it may come as a surprise
that the optimal parallel PID with sw = 1 has a significantly worse disturbance response
than both series PID controllers.

Figure 12. Unit setpoint step responses (left) and unit input disturbance step responses (right)
achieved with the parallel (p) and series (s) PID controllers (black) with the optimal tuning calculated
by the PPM over the parameter grid (41) under the output performance specifications (55) and (44)
and the cost function weights sw = 1 and sw = 0, si = 1− sw; Tm = 1; Ks = 1; Ts = 0.001.

5. Discussion

In terms of the need for the laborious initial generation of PP, required for its further
use in the design of controllers, PPM represents an approach with high initial computational
demands. However, the control design is, by nature, an interactive activity in which we
frequently step-by-step strive to achieve the best possible performance by taking into
account the often conflicting requirements arising from an infinitely diverse range of
demands for real applications. Furthermore, with regard to very simple optimization
options based on searching the stored properties of the waveforms corresponding to the
individual settings, this is extremely advantageous with the use of PPM. Moreover, this
method is also advantageous in terms of the support provided in improving the features of
interactive designs (for example, it shows which constraints are dominant in the effort to
improve dynamics). In terms of time savings compared to traditional optimization, whose
processes must be repeated for each change in the cost function and given constraints, it is
significantly more advantageous for interactive PPM design.

We have mentioned several times that the DOB contained in PID controllers is based
on the properties of ultra-local integral models of the system. However, we will return to
their importance once again. In the design, we try to approximate the practically unlimited
range of various dynamical systems using suitably selected mathematical models, for which
we implement the design of optional parameters of the controller. From the point of
view of the universal applicability of the results achieved by means of individual models,
ultra-local integral models [38,56] have proved to be important since the first known
method [57] for setting controllers. Although over time it has become possible to achieve
a significant improvement in the dynamic properties of the circuit with more complex
structures (as, for example, [58]), due to their simplicity, PID controllers still maintain an



Sensors 2022, 22, 3753 22 of 25

exceptional place in practice. As mentioned in Section 2, in [33–35,44], and in many other
ADRC [31,32] or MFC publications [29,30], the use of ultra-local models to approximate
different dynamical processes is an important robust control tool in which the system’s
internal feedback is included in an equivalent disturbance compensated by an integral
action of the controller. Their optimal setting for the control of DIPDT models using PPM
thus naturally complements the work [38,39] devoted to the optimal and robust setting of
PI controllers for IPDT models.

The digitization of the automatic control design, which is the mainstay of the Industry
4.0–5.0 campaigns, is of course also reflected in the design of the controllers themselves.
From this point of view, it is far more advantageous to work with various computer-support
systems of the PPM type than with traditional text overviews of optimal settings of [59]
controllers. Although analytical methods as [33,49] provide a free parameter to take into
account application requirements, the impact of that parameter may not be predictable
enough to allow effective design. The optimization method with sensitivity constraints are,
in general, not effectively and consistently applicable to unstable systems.

Regarding the development trends in the field of automatic control, we should note
the increase in open solutions, in which the designer does not have to rely on a relatively
narrow offer of industrially manufactured controllers with a relatively fixed structure,
but implements its own solution using a far more universal base of programmable em-
bedded controllers. This is also related to the development of ever new regulators and
structures [58,60], which significantly push the boundaries of achievable circuit character-
istics. It follows from this statement that the PPM will also need to be developed for the
design of additional controllers with more advanced and efficient disturbance observers.

6. Conclusions

The paper discussed the optimal design of series and parallel PID controllers for a dou-
ble integrator plus dead-time process using the performance portrait method. The proposed
design imitates an expert who selects the most suitable solution based on appropriate crite-
ria (performance measures) from a database of known solutions. The database of relevant
responses, referred to as the “performance portrait”, is evaluated in terms of the weighted
sum of the IAE criterion in closed-loop tracking and disturbance rejection, and the shape of
the input and output signals of the process (compared to their ideal shapes). This new in-
telligent control method has no convergence problems and allows interactive multi-criteria
optimization of the control according to the required performance and robustness.
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Abbreviations
The following abbreviations are used in this manuscript:

1P One-Pulse, response with 2 monotonic segments (1 extreme point)
2P Two-Pulse, response with 3 monotonic segments (2 extreme points)
3P Three-Pulse, response with 4 monotonic segments (3 extreme points)
3D Three-Dimensional
ADRC Active Disturbance Rejection Control
AI Artificial Intelligence
DIPDT Double Integrator Plus Dead-Time
IAE Integral Absolute Error
IPDT Integrator Plus Dead-Time
MFC Model-Free Control
MFRP Modified sets of Four Real Poles
MRDP Multiple Real Dominant Pole
PD Proportional-Derivative
PID Proportional-Integral-Derivative
PP Performance Portrait
PPM Performance Portrait Method
QRDP Quadruple Real Dominant Pole
TRDP Triple Real Dominant Pole
TV Total Variation
TV0 Deviation from Monotonicity
TV1 Deviation from 1P Shape
TV2 Deviation from 2P Shape
TV3 Deviation from 3P Shape
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