
Citation: Hwang, S.-H.; Kim, G.-Y.;

Myeong, S.-H.; Yun, T.-S.; Yoon, S.-M.;

Kim, T.-H.; Euom, I.-C. Vulnerabilities

of Live-Streaming Services in Korea.

Sensors 2022, 22, 3766. https://

doi.org/10.3390/s22103766

Academic Editors: Christos Xenakis

and Thanassis Giannetsos

Received: 23 March 2022

Accepted: 11 May 2022

Published: 15 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Vulnerabilities of Live-Streaming Services in Korea
Sun-Hong Hwang 1 , Ga-Yeong Kim 1 , Su-Hwan Myeong 2, Tai-Sic Yun 3, Seung-Min Yoon 3, Tai-Ho Kim 4

and Ieck-Chae Euom 5,*

1 System Security Research Center, Chonnam National University, Gwangju 61186, Korea;
shhwang@nshc.net (S.-H.H.); detaimer@jnu.ac.kr (G.-Y.K.)

2 Computer & Telecommunications Engineering, Mirae Campus, Yonsei University,
Wonju 26493, Gangwon-do, Korea; msh8206@yonsei.ac.kr

3 Department of Cyber Defense, Korea University, Seoul 02841, Korea; yts3097@korea.ac.kr (T.-S.Y.);
smyoon99@korea.ac.kr (S.-M.Y.)

4 ALL IT ONE Inc., Seoul 08390, Korea; kimtaiho5412@naver.com
5 Department of Data Science, Chonnam National University, Gwangju 61186, Korea
* Correspondence: iceuom@jnu.ac.kr

Abstract: Recently, the number of users and the demand for live-streaming services have increased.
This has exponentially increased the traffic to such services, and live-streaming service platforms in
Korea use a grid computing system that distributes traffic to users and reduces traffic loads. However,
ensuring security with a grid computing system is difficult because the system exchanges general
user traffic in a peer-to-peer (P2P) manner instead of receiving data from an authenticated server.
Therefore, in this study, to explore the vulnerabilities of a grid computing system, we investigated
a vulnerability discovery framework that involves a three-step analysis process and eight detailed
activities. Four types of zero-day vulnerabilities, namely video stealing, information disclosure,
denial of service, and remote code execution, were derived by analyzing a live-streaming platform in
Korea, as a representative service, using grid computing.

Keywords: vulnerability analysis; grid computing; live-streaming service; threat modeling; STRIDE

1. Introduction

The fourth industrial revolution has significantly increased activity in the IT industry.
As the use of PCs, smartphones, IoT, etc., increases, the software market continues to
evolve. However, in the past three years, the number of vulnerabilities in systems (i.e.,
applications, services, mobiles, IoT, content management systems (CMSs), and ActiveX)
has also increased. The number of infringement incidents that exploit software vulnerabil-
ities is increasing with the development of the current software market. To prevent this,
we analyzed the exploitation of potential vulnerabilities from an attacker’s perspective.
Preemptively removing these is necessary for the industry to progress.

Social distancing has been implemented because of COVID-19, and live-streaming
services are often used for non-face-to-face events, classes, and conferences by organiza-
tions such as schools and companies. As shown in Figure 1, the most used live-streaming
platforms in Korea are YouTube and Facebook, which have many users worldwide. How-
ever, Naver TV, Kakao TV, and Afreeca TV, developed by Korean companies, also have
many users in Korea [1]. These live-streaming platforms use grid computing technology
to provide high-quality video transmission services to users. Grid computing technology
is a type of distributed parallel computing that can be used as a single supercomputer by
utilizing the resources of multiple user PCs connected to the network. This grid computing
technology is primarily used by platforms that provide peer-to-peer (P2P)-based services.
Grid computing technology, which is a method of sharing internal resources between users,
requires strict security control because data are exchanged without server intervention after
a connection is established between a sender and receiver.

Sensors 2022, 22, 3766. https://doi.org/10.3390/s22103766 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22103766
https://doi.org/10.3390/s22103766
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-7618-4745
https://orcid.org/0000-0002-9034-0257
https://orcid.org/0000-0001-5718-0071
https://orcid.org/0000-0002-8224-1996
https://doi.org/10.3390/s22103766
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22103766?type=check_update&version=2

Sensors 2022, 22, 3766 2 of 26

Sensors 2022, 22, 3766 2 of 30

vices. Grid computing technology, which is a method of sharing internal resources be-
tween users, requires strict security control because data are exchanged without server
intervention after a connection is established between a sender and receiver.

Figure 1. Top 10 video platforms in terms of the number of visitors in Korea.

In this study, we analyzed the technical security vulnerabilities of grid computing, a
technology that has been researched and developed since the early 2000s. A three-step
analysis framework was developed and used to analyze a live-streaming platform that
uses grid computing technology. The goal was to preemptively remove potential vulner-
abilities by replacing them. Although grid computing technology is continuously devel-
oped and used, it does not utilize appropriate security verification, which may put users
at risk. Previous studies have presented the architectural vision of grid computing, em-
phasized security, or reported security factors that should be considered in the P2P data
communication of live-streaming services. However, research has not been conducted to
prove the presence of these vulnerabilities by analyzing the data flow, creating a data flow
diagram, identifying threats, and constructing attack scenarios. To address this, we pro-
pose a three-step vulnerability discovery framework. These three steps consist of a data
flow analysis, threat modeling, and vulnerability analysis. An experiment environment
was configured to control the access of service users, and a local experiment environment
for a direct attack was established. Next, a data flow diagram (DFD) was derived by ana-
lyzing the flow of data based on an analysis of the process characteristics and protocols.
Then, STRIDE threat modeling techniques were applied to identify threats and construct
an attack tree and attack scenarios. The system vulnerability was verified by building it.

Our contributions can be summarized as follows:
• We provide a vulnerability discovery framework that can effectively analyze grid-

computing-based client software;

Figure 1. Top 10 video platforms in terms of the number of visitors in Korea.

In this study, we analyzed the technical security vulnerabilities of grid computing,
a technology that has been researched and developed since the early 2000s. A three-step
analysis framework was developed and used to analyze a live-streaming platform that uses
grid computing technology. The goal was to preemptively remove potential vulnerabilities
by replacing them. Although grid computing technology is continuously developed and
used, it does not utilize appropriate security verification, which may put users at risk.
Previous studies have presented the architectural vision of grid computing, emphasized
security, or reported security factors that should be considered in the P2P data commu-
nication of live-streaming services. However, research has not been conducted to prove
the presence of these vulnerabilities by analyzing the data flow, creating a data flow dia-
gram, identifying threats, and constructing attack scenarios. To address this, we propose
a three-step vulnerability discovery framework. These three steps consist of a data flow
analysis, threat modeling, and vulnerability analysis. An experiment environment was
configured to control the access of service users, and a local experiment environment for a
direct attack was established. Next, a data flow diagram (DFD) was derived by analyzing
the flow of data based on an analysis of the process characteristics and protocols. Then,
STRIDE threat modeling techniques were applied to identify threats and construct an attack
tree and attack scenarios. The system vulnerability was verified by building it.

Our contributions can be summarized as follows:

• We provide a vulnerability discovery framework that can effectively analyze grid-
computing-based client software;

• We analyze the vulnerabilities of actual services, which were not performed in previous
studies, by using our proposed analysis framework. Several zero-day vulnerabilities
were derived, thereby verifying our proposed analysis framework;

• We find four types of zero-day vulnerabilities, namely video stealing, information
disclosure, denial of service, and remote code execution, which were derived by
analyzing a live-streaming platform in Korea.

Sensors 2022, 22, 3766 3 of 26

This paper provides details of the vulnerability analysis of a grid-computing-based
live-streaming service and is structured as follows. Section 2 presents a review of related
studies, the technology trends and security trends of grid computing systems, and the
technical status of live-streaming services, the operational structure of live-streaming
platforms in Korea, and threat modeling. Section 3 describes the three-step vulnerability
discovery framework proposed for the data flow analysis and threat modeling of grid-
computing-based applications. It includes the data flow analysis, threat modeling, and
analysis of vulnerabilities. Section 4 shows the derivation of the zero-day vulnerability
using the framework proposed for a grid-computing-based live-streaming service. Finally,
Section 5 concludes this study.

2. Related Work
2.1. Grid Computing

Grid computing is an infrastructure that provides high computing capacity to dis-
tributed systems using widely distributed resources. The resources in grid computing are
managed through the providers’ policies, calculations, frameworks, and cost and access
models. Although the growth rate of the computing field is accelerating, owing to the
availability of better hardware and software, the engineering and business fields require
more effective handling because of the demand for grid computing. In the case of a ser-
vice with a large quantity of data and numerous numerical calculations, the resources
of a single device are limited, and grid computing is a suitable solution to this problem.
Therefore, this section describes the technology trends of grid computing systems, as well
as security trends.

2.1.1. Technology Trends in Grid Computing Systems

In tree-structured grid computing methods, a user receives data from a parent node
and transmits it to a child node. The overall structure is such that data are transferred
only in this direction, as shown in Figure 2. The most important feature of the tree overlay
grid computing method is that only one path connects any two nodes. Therefore, it has
the advantage of reduced computation compared to mesh overlay grid computing, and
the use of a tree overlay structure has the greatest advantage when calculating properties
using the shortest path. However, from a security point of view, if the user of the parent
node modifies and transmits data to the lower child nodes, all child nodes connected to the
parent node receive the tampered data. Because this can work efficiently, it requires robust
data integrity verification.

Sensors 2022, 22, 3766 4 of 30

Figure 2. Grid computing method in a tree overlay network structure.

In the mesh-structured grid computing method, data are transmitted and received
by different users connected to the same group. As shown in Figure 3, this method is dis-
tinguished from the tree-structure grid computing method in which the parent node
transmits data in one direction. Thus, when data are transmitted and received by users in
the same group instead of one node, the risk of the tree-structured grid computing method
is reduced. However, attacking users may be within the same group through data tam-
pering.

Figure 3. Grid computing method in a mesh overlay network structure.

2.1.2. Research Trends on Grid Computing System Security
This section describes the security research trend for grid computing systems (Table

1). Seven studies were conducted in three main fields, each divided into security over-
view, risks, and security by design.

Table 1. List of the studies on the research trend for grid computing system security.

 Paper Title Year Field
[2] An Overview of Grid Computing 2019 (1) Security overview
[3] Grid and Cloud Computing Security: A Comparative Survey 2019 (2) Risks, Access control
[4] Model Checking Grid Security 2013 (3) Security by design
[5] Grid Computing Security: A taxonomy 2008 (2) Risks, (3) Security by design
[6] Introduction to Grid Computing 2005 (1) Security overview, (3) Security by design
[7] A Gentle Introduction to Grid Computing and Technologies 2005 (1) Security overview
[8] Security Implications of Typical Grid Computing Usage Scenarios 2002 (2) Risks, Scenario

Figure 2. Grid computing method in a tree overlay network structure.

In the mesh-structured grid computing method, data are transmitted and received
by different users connected to the same group. As shown in Figure 3, this method is
distinguished from the tree-structure grid computing method in which the parent node

Sensors 2022, 22, 3766 4 of 26

transmits data in one direction. Thus, when data are transmitted and received by users
in the same group instead of one node, the risk of the tree-structured grid computing
method is reduced. However, attacking users may be within the same group through
data tampering.

Sensors 2022, 22, 3766 4 of 30

Figure 2. Grid computing method in a tree overlay network structure.

In the mesh-structured grid computing method, data are transmitted and received
by different users connected to the same group. As shown in Figure 3, this method is dis-
tinguished from the tree-structure grid computing method in which the parent node
transmits data in one direction. Thus, when data are transmitted and received by users in
the same group instead of one node, the risk of the tree-structured grid computing method
is reduced. However, attacking users may be within the same group through data tam-
pering.

Figure 3. Grid computing method in a mesh overlay network structure.

2.1.2. Research Trends on Grid Computing System Security
This section describes the security research trend for grid computing systems (Table

1). Seven studies were conducted in three main fields, each divided into security over-
view, risks, and security by design.

Table 1. List of the studies on the research trend for grid computing system security.

 Paper Title Year Field
[2] An Overview of Grid Computing 2019 (1) Security overview
[3] Grid and Cloud Computing Security: A Comparative Survey 2019 (2) Risks, Access control
[4] Model Checking Grid Security 2013 (3) Security by design
[5] Grid Computing Security: A taxonomy 2008 (2) Risks, (3) Security by design
[6] Introduction to Grid Computing 2005 (1) Security overview, (3) Security by design
[7] A Gentle Introduction to Grid Computing and Technologies 2005 (1) Security overview
[8] Security Implications of Typical Grid Computing Usage Scenarios 2002 (2) Risks, Scenario

Figure 3. Grid computing method in a mesh overlay network structure.

2.1.2. Research Trends on Grid Computing System Security

This section describes the security research trend for grid computing systems (Table 1).
Seven studies were conducted in three main fields, each divided into security overview,
risks, and security by design.

Table 1. List of the studies on the research trend for grid computing system security.

Paper Title Year Field

[2] An Overview of Grid Computing 2019 (1) Security overview
[3] Grid and Cloud Computing Security: A Comparative Survey 2019 (2) Risks, Access control
[4] Model Checking Grid Security 2013 (3) Security by design
[5] Grid Computing Security: A taxonomy 2008 (2) Risks, (3) Security by design
[6] Introduction to Grid Computing 2005 (1) Security overview, (3) Security by design
[7] A Gentle Introduction to Grid Computing and Technologies 2005 (1) Security overview
[8] Security Implications of Typical Grid Computing Usage Scenarios 2002 (2) Risks, Scenario

Grid computing is essentially an infrastructure that provides high computational
capacity to distributed systems using widely, geographically distributed resources. As
reported in Reference [2], although the hardware and network performance have improved
over the past 15 years and the growth in computing has been good, problems in science,
engineering, and business areas must be addressed more effectively. Therefore, this paper
explains the need for grid computing technology for industries that require numerous
resources because of the huge amount of numerical calculation and data processing. It
also provides a discussion on different approaches for using distributed resources in a grid
computing manner, such as cluster, cloud, meta-, and distributed computing manners.

In Reference [3], the security requirements and solutions in grid and cloud computing
environments were investigated. Security problems were classified according to authen-
tication, access control, integrity, confidentiality, and multiple security, and comparative
studies were performed between the different technologies presented in each environment
class. The latest technologies were used to solve security problems that can occur in both
grid and cloud computing environments. These were categorized by assigning them to
the areas of authentication, access control, integrity, and confidentiality. The proposed
methods for solving specific problems in a grid environment were compared based on
several important criteria. Access control was identified as the most important factor in
both environments. In Reference [4], the use of a verification technique such as model
checking was proposed to verify the security requirements of a grid system.

As stated in Reference [5], grid computing can assist in overcoming heterogeneity in
terms of computing elements, operating systems, policymaking, and environment, but

Sensors 2022, 22, 3766 5 of 26

security issues hinder the adoption of grids as a broad IT virtualization solution. Thus,
solutions to address these issues must be developed, and the following steps should
be taken.

1. Identify specific vulnerabilities, threats, and policy issues in the current grid implementation.
2. Develop a realistic threat model based on the identified threats.
3. Develop countermeasures based on the developed threat model.
4. Perform quantitative and qualitative evaluations of the developed solution.

This approach was argued to enable the development of more complementary solu-
tions and provide valuable insight into the nature of security attacks, thereby enabling the
continuous development of better solutions.

Grid computing was overviewed in Reference [6]. Chapter 7 (“Security of Part 2. Grid
architecture considerations”) is noteworthy. This chapter describes the security issues,
techniques, and solutions required to provide a secure grid computing environment. In
particular, five requirements are discussed: authentication, access control, data integrity
and confidentiality, and key management.

1. Authentication: This is the process of validating the claimed individual and identify-
ing the user. It is not limited to users, as it also refers to the authentication of services,
applications, and other entities.

2. Access Control: This refers to ensuring each user or computer using the service can
perform the requested action.

3. Data Integrity: This factor prevents unauthorized changes to data.
4. Data Confidentiality: This factor ensures sensitive information is not disclosed to

unintended users and is often referred to as privacy.
5. Key Management: This refers to the secure creation, distribution, authentication, and

storage of keys used for encryption. Based on the above factors, it describes the
technology managed by the server and client when implementing a grid comput-
ing system.

In Reference [7], the forms of grid computing used worldwide were investigated.
Based on this, the operation of grid software and its roles were explained using the grid
software Globus Toolkit as an example. In particular, the necessary components of the
grid software were emphasized and explained to allow the grid to be easily utilized
in industrial applications. Lead computing consists of heterogeneous computers and
resources distributed across multiple administrative domains to provide users with uniform
access to resources. Users can access resources in the grid in multiple manners, each with
unique security requirements and implications for both resource users and providers. In
Reference [8], a comprehensive grid usage scenario was presented with respect to security
requirements, such as authentication, authorization, integrity, and confidentiality. These
scenarios primarily intend to provide the application designer with a library that can be
matched to the system, thereby facilitating the use and development of applications that
consider security in the early stages of design and innovation.

This analysis of the security research trend for grid computing systems included
seven earlier studies, which can be divided into three fields. We derived the research
results with additional factors and explained the potential security factors that should be
strengthened based on the scenario in the case of risk. Finally, for earlier studies from a
design perspective, an analysis was conducted of the security issues to be considered when
designing a system in the development stage. From a security perspective, this means prior
studies have not been conducted on grid computing systems in service or on determining
vulnerabilities based on a systematic analysis framework.

2.2. Live-Streaming Service

This section describes the technology status and security research trends of live-
streaming services and the operation structure of live-streaming platforms in Korea using
grid computing systems.

Sensors 2022, 22, 3766 6 of 26

2.2.1. Research Trends on Grid Computing System Security

Owing to the recent developments in the media content industry, live-streaming
services are changing from one-way communication to multi-way communication. In
addition, the demand for a live-streaming platform with multi-directional communication
is increasing with the number of Internet users and smart devices. A live-streaming service
centrally manages an authentication server and streaming server to apply application layer
multicast, and each user performs a streaming relay to other users. Here, the authentication
server provides only an authentication mechanism for logging in through a web page, and
the generated cookie information of users allows them to broadcast or watch broadcasts.
In addition, as shown in Figure 4, a streaming server exists between the sender and the
receiver, and it properly distributes the streaming data encoded in the PC of the sender to
prevent the load from being concentrated by creating a multicast tree. It also optimizes and
reconstructs trees. Such a server-based method has the advantage of a high creation speed
because the tree is configured based on the server, but the possibility of a single point of
failure still exists [9].

Sensors 2022, 22, 3766 6 of 30

software Globus Toolkit as an example. In particular, the necessary components of the
grid software were emphasized and explained to allow the grid to be easily utilized in
industrial applications. Lead computing consists of heterogeneous computers and re-
sources distributed across multiple administrative domains to provide users with uniform
access to resources. Users can access resources in the grid in multiple manners, each with
unique security requirements and implications for both resource users and providers. In
Reference [8], a comprehensive grid usage scenario was presented with respect to security
requirements, such as authentication, authorization, integrity, and confidentiality. These
scenarios primarily intend to provide the application designer with a library that can be
matched to the system, thereby facilitating the use and development of applications that
consider security in the early stages of design and innovation.

This analysis of the security research trend for grid computing systems included
seven earlier studies, which can be divided into three fields. We derived the research re-
sults with additional factors and explained the potential security factors that should be
strengthened based on the scenario in the case of risk. Finally, for earlier studies from a
design perspective, an analysis was conducted of the security issues to be considered
when designing a system in the development stage. From a security perspective, this
means prior studies have not been conducted on grid computing systems in service or on
determining vulnerabilities based on a systematic analysis framework.

2.2. Live-Streaming Service
This section describes the technology status and security research trends of live-

streaming services and the operation structure of live-streaming platforms in Korea using
grid computing systems.

2.2.1. Research Trends on Grid Computing System Security
Owing to the recent developments in the media content industry, live-streaming ser-

vices are changing from one-way communication to multi-way communication. In addi-
tion, the demand for a live-streaming platform with multi-directional communication is
increasing with the number of Internet users and smart devices. A live-streaming service
centrally manages an authentication server and streaming server to apply application
layer multicast, and each user performs a streaming relay to other users. Here, the authen-
tication server provides only an authentication mechanism for logging in through a web
page, and the generated cookie information of users allows them to broadcast or watch
broadcasts. In addition, as shown in Figure 4, a streaming server exists between the sender
and the receiver, and it properly distributes the streaming data encoded in the PC of the
sender to prevent the load from being concentrated by creating a multicast tree. It also
optimizes and reconstructs trees. Such a server-based method has the advantage of a high
creation speed because the tree is configured based on the server, but the possibility of a
single point of failure still exists [9].

Figure 4. Streaming service data transmission path.

Figure 4. Streaming service data transmission path.

2.2.2. Live-Streaming Platforms in Korea

In this study, as shown in Table 2, three live-streaming platform companies in Korea
using grid computing technology were analyzed. These platforms exchange data in differ-
ent manners depending on the operation structure of the grid computing system, but the
structures of the process operations in the local environment are similar.

Table 2. Live-streaming platforms in Korea using grid computing technology.

No. Platform Name Grid Computing Architecture Main Content

1 Afreeca TV Tree One-person broadcast contents
2 Kakao TV Tree Original contents
3 Naver TV Mesh Sports

For grid computing, three processes are in the local environment of the live-streaming
platform, as shown in Figure 5. The Manager process is responsible for the overall manage-
ment of the three processes. The Updater process checks for file tampering and updates
files. Finally, the Streamer process handles socket connections between clients and transmits
image data to the browser for grid communication.

Sensors 2022, 22, 3766 7 of 30

2.2.2. Live-Streaming Platforms in Korea
In this study, as shown in Table 2, three live-streaming platform companies in Korea

using grid computing technology were analyzed. These platforms exchange data in dif-
ferent manners depending on the operation structure of the grid computing system, but
the structures of the process operations in the local environment are similar.

Table 2. Live-streaming platforms in Korea using grid computing technology.

No. Platform Name Grid Computing Architecture Main Content
1 Afreeca TV Tree One-person broadcast contents
2 Kakao TV Tree Original contents
3 Naver TV Mesh Sports

For grid computing, three processes are in the local environment of the live-stream-
ing platform, as shown in Figure 5. The Manager process is responsible for the overall
management of the three processes. The Updater process checks for file tampering and
updates files. Finally, the Streamer process handles socket connections between clients
and transmits image data to the browser for grid communication.

Figure 5. Client process flow.

Figure 6 presents the operation structure for the grid computing of a live-streaming
platform. When the user uses the Manger process of the live-streaming service, the Update
process is executed by employing the ShellExecute() API. The Update process communi-
cates with the updated server to obtain information about the latest file and checks
whether the file has been forged by verifying the signature on the file. Subsequently, the
Streamer process is executed. It exchanges CPU and RAM availability information with
the main server, and, in grid computing, it determines whether the node has sufficient
resources as the parent node attempts a socket connection. Thereafter, streaming data are
transmitted/received from the connected node, and video data are transmitted to the
browser and application to allow users watching the corresponding channel to view the
received video.

Figure 5. Client process flow.

Sensors 2022, 22, 3766 7 of 26

Figure 6 presents the operation structure for the grid computing of a live-streaming
platform. When the user uses the Manger process of the live-streaming service, the Update
process is executed by employing the ShellExecute() API. The Update process communi-
cates with the updated server to obtain information about the latest file and checks whether
the file has been forged by verifying the signature on the file. Subsequently, the Streamer
process is executed. It exchanges CPU and RAM availability information with the main
server, and, in grid computing, it determines whether the node has sufficient resources
as the parent node attempts a socket connection. Thereafter, streaming data are transmit-
ted/received from the connected node, and video data are transmitted to the browser and
application to allow users watching the corresponding channel to view the received video.

Sensors 2022, 22, 3766 8 of 30

Figure 6. Grid computing operation structure in live-streaming services.

2.2.3. Security Research Trends
Three research topics can be identified in the security research trend for live-stream-

ing services. These studies focused on the security threats that can occur when using P2P.
The researchers in [10] proposed that, although research on the security of P2P streaming
has begun to be actively conducted, a comprehensive security analysis of the current P2P
solution has not been conducted. The best practices are not outlined in studies on system
design, widely accepted attack models, measurement-based security threats in P2P
streaming, and the examination of specific security aspects of these systems. Therefore,
the study investigated these aspects and divided the types of attacks into Forgery, Pollu-
tion, Eclipse, Neighbor, Sybil, DoS, and Omission. Subsequently, it explained the security
threats that can occur in tree- and mesh-based P2P streaming services and emphasized
that user authentication, such as access control, is required.

In Reference [11], the problems established in published studies were reviewed and
approaches for potential solutions to protect P2P-based voice and video streaming appli-
cations were outlined.
1. Authentication: Related studies have determined that fake nodes can be created.

Therefore, authenticating the user ID is an additional task, and an appropriate mech-
anism must exist for this.

2. Live communication availability requirements: Live communication applications re-
quire low latency and a high constant bandwidth for video. Because of these charac-
teristics, real-time communication (RTC) applications are more vulnerable to availa-
bility attacks than other P2P applications. An attacker can severely degrade services
by dropping or delaying messages sent over a P2P network.
As argued in Reference [12], the decentralized nature of P2P live systems makes them

vulnerable to several types of attacks, of which contamination is the most detrimental. The
use of multimedia stream authentication can help detect contaminated content and iden-
tify malicious users, but at a high cost. To this end, we propose a signature mechanism for
application in P2P live streaming. This is the result of a study comparing overhead and
security as evaluation factors.

These three studies indicated common security threats that can occur through data
integrity, access control, and P2P communication and argued that DoS and content con-
tamination attack these systems. Therefore, a live-streaming platform, which was the tar-
get of the vulnerability analysis in this study, can be expected to have the same attack
vector.

Figure 6. Grid computing operation structure in live-streaming services.

2.2.3. Security Research Trends

Three research topics can be identified in the security research trend for live-streaming
services. These studies focused on the security threats that can occur when using P2P.
The researchers in [10] proposed that, although research on the security of P2P streaming
has begun to be actively conducted, a comprehensive security analysis of the current
P2P solution has not been conducted. The best practices are not outlined in studies on
system design, widely accepted attack models, measurement-based security threats in P2P
streaming, and the examination of specific security aspects of these systems. Therefore,
the study investigated these aspects and divided the types of attacks into Forgery, Pollution,
Eclipse, Neighbor, Sybil, DoS, and Omission. Subsequently, it explained the security threats
that can occur in tree- and mesh-based P2P streaming services and emphasized that user
authentication, such as access control, is required.

In Reference [11], the problems established in published studies were reviewed and
approaches for potential solutions to protect P2P-based voice and video streaming applica-
tions were outlined.

1. Authentication: Related studies have determined that fake nodes can be created.
Therefore, authenticating the user ID is an additional task, and an appropriate mecha-
nism must exist for this.

2. Live communication availability requirements: Live communication applications
require low latency and a high constant bandwidth for video. Because of these
characteristics, real-time communication (RTC) applications are more vulnerable to
availability attacks than other P2P applications. An attacker can severely degrade
services by dropping or delaying messages sent over a P2P network.

Sensors 2022, 22, 3766 8 of 26

As argued in Reference [12], the decentralized nature of P2P live systems makes them
vulnerable to several types of attacks, of which contamination is the most detrimental.
The use of multimedia stream authentication can help detect contaminated content and
identify malicious users, but at a high cost. To this end, we propose a signature mechanism
for application in P2P live streaming. This is the result of a study comparing overhead and
security as evaluation factors.

These three studies indicated common security threats that can occur through data
integrity, access control, and P2P communication and argued that DoS and content contam-
ination attack these systems. Therefore, a live-streaming platform, which was the target of
the vulnerability analysis in this study, can be expected to have the same attack vector.

2.3. Threat Modeling Methodology

In this study, we investigated a three-step analysis framework for grid-computing-
based application vulnerability analysis, modeled threats to identify them prior to a vulner-
ability analysis, and created scenarios for each threat to analyze the vulnerabilities. This
section describes the types of threat modeling from a related study, along with Microsoft’s
STRIDE threat modeling, which was adopted and used in this study.

2.3.1. Types of Threat Modeling

A typical threat modeling process includes threat intelligence, asset identification,
and threat mapping. Each of these processes provides different insights and visibility into
the security perimeter. The threat modeling methods include STRIDE, PASTA, Trike, and
LINDDUN. Each of these provides a different manner of assessing threats faced by IT
assets. Threat modeling involves developing tests and procedures to identify potential
threats and respond accordingly. This includes understanding the impact of a threat on a
system and classifying the threat.

1. STRIDE threat modeling: STRIDE is a threat model created by Microsoft to identify
system threats. It is used with a target system model and is the most effective manner
of evaluating individual systems [13–15].

2. Process for Attack Simulation and Threat Analysis (PASTA): PASTA is an attacker-
centered methodology that consists of seven steps. It is designed to correlate business
objectives with technical requirements, guiding organizations to dynamically identify,
calculate, and prioritize threats [16].

3. Trike threat modeling: Trike is an integrated conceptual framework for security
inspection from a risk management security perspective through threat model creation
in a reliable and repeatable manner [17]. This is a threat modeling technique that
identifies users and assets in the data and usage flows and derives risks to the asset
by analyzing the user’s execution frequency for the four elements of the asset: Create,
Read, Update, and Delete. Its features include identifying the vulnerabilities of assets
using Attack Tree and Attack Library and managing assets from a risk management
perspective.

4. LINDDUN Threat Modeling: LINDDUN addresses seven privacy-related threats [18,19]:
linkability, identity, non-repudiation, detectability, information disclosure, unaware-
ness, and non-compliance.

2.3.2. Study on Vulnerability Analysis Using Threat Modeling

Table 3 lists studies in which vulnerabilities were derived by using threat modeling.
Although the target of analysis is diverse, Microsoft’s STRIDE and LINDDUN were pri-
marily used for threat modeling. If all vulnerabilities were not derived using STRIDE, we
confirmed that another threat modeling method was used. We created a DFD to deter-
mine the analysis target and understand the data flow. Subsequently, all possible threats
were derived using the threat modeling method. It creates an attack tree using common
threats and identifies attacks that are likely to occur against the analysis target. Afterwards,
a vulnerability analysis was performed to perform this attack.

Sensors 2022, 22, 3766 9 of 26

Table 3. List of studies in which vulnerabilities were derived by using threat modeling.

Analysis Target Year Used Threat Modeling

[20] Security Requirements of Smart Factory 2017 STRIDE
[21] Security Requirements of Smart Home Hub 2018 LINDDUN
[22] AI Speaker 2018 STRIDE, LINDDUN
[23] Smart Speaker 2019 STRIDE
[24] PS4 Remote Play with PC 2018 STRIDE
[25] Smart Band 2018 STRIDE

[26] Security Requirements of Electric Vehicle
Charging Infrastructure 2017 STRIDE

Based on this, we determined that identifying security threats from a design perspec-
tive and applying STRIDE threat modeling that considers software vulnerabilities would
be most appropriate for the analysis of vulnerabilities in this study, which considered a
grid-computing-based live-streaming service. Therefore, we proposed an analysis frame-
work that utilizes STRIDE’s data flow analysis and threat identification and created an
attack tree based on the derived threats to finally compose an attack scenario.

2.3.3. Microsoft STRIDE Threat Modeling

The types of threat modeling are diversely distributed. In this study, a STRIDE-based
threat modeling methodology was adopted, and threats could be identified from software
and network perspectives, as shown in Table 4, which was advantageous.

Table 4. Attribute classification according to threats.

Threat Desired Property

Spoofing Authenticity
Tampering Integrity

Repudiation Non-repudiation
Information Disclosure Confidentiality

Denial of Service Availability
Elevation of Privilege Authorization

Microsoft proposed the STRIDE method, which considers the properties of six types
of security threats, as listed in Table 4.

(1) Spoofing: legitimate user, process, or system element;
(2) Tampering: legitimate information modification and editing;
(3) Repudiation: refusal or denial of certain actions performed in the system;
(4) Information disclosure: data breach or unauthorized access to confidential informa-

tion;
(5) Denial of Service: suspension of service for legitimate users;
(6) Elevation of Privilege: a user with limited privileges can access system elements with

higher privileges.

STRIDE analyzes the vulnerabilities of each system component that an attacker can ex-
ploit to compromise an entire system, typically in three steps. The first step is to decompose
the system into logical or structural components. A component may be an internal process
element that communicates within the system, or an external element that communicates
with the system. The next step is to draw a DFD to visualize the functions inside or outside
the system. This DFD uses four standard symbols: External Entity (EE), Process (Process, P),
Data Flow (DF), and Data Store (DS). Once the DFD is complete, the threat is identified
through STRIDE. Subsequently, when a threat to each system component is identified,
the vulnerability that causes the threat is investigated, and, as the final step, an effective
mitigation strategy is established based on the discovered vulnerability.

Sensors 2022, 22, 3766 10 of 26

3. Suggested Vulnerability Discovery Framework
3.1. Overview of Vulnerability Discovery Framework

To analyze the vulnerabilities of grid-computing-based live-streaming services, a frame-
work for vulnerability detection was constructed, as shown in Figure 7. Naver TV, Kakao TV,
and Afreeca TV, which utilize grid computing technology and are used for live streaming
in Korea, were selected for analysis.

Sensors 2022, 22, 3766 11 of 30

Figure 7. Vulnerability discovery framework composition.

3.2. Structural Analysis
The structural analysis stage consisted of three detailed activities and was divided

into the identification of major entities, identification of data flow between entities, and
DFD creation. In this step, the framework was configured to identify major entities, such
as processes and external objects, through an initial analysis and the data flow between
entities through a network protocol analysis. The output was then structured by creating
a data flow chart to visualize and identify threats. At this stage, processes, external objects,
data flows, and trust boundaries were abstracted and could be expressed visually. The
DFD was derived in this step and used as input for threat modeling.

3.3. Threat Modeling
In the third stage (the threat modeling stage), the framework was configured to per-

form three tasks. Based on the created data flow chart, STRIDE threat modeling was ap-
plied to identify threats, and the identified threats were analyzed to create an attack tree
as the basis of the attack scenario. Thus, the threat identified in each entity was configured
to allow its use in an attack scenario. At this stage, threats based on STRIDE were identi-
fied. The attack tree, which was the core of the threat modeling stage, was finally derived
by analyzing the identified major threats. In the attack tree, the elements required for each
attack were located based on the identified threats.

3.4. Vulnerability Analysis
In the vulnerability analysis stage, the attack tree constructed based on the previously

derived threats was converted into an attack scenario that can be utilized in an actual grid
computing system. Subsequently, the validity was determined by verifying the derived
scenario to derive the zero-day vulnerability.

4. Experiments
This section describes the results of applying the proposed analysis framework for

the vulnerability analysis of grid-computing-based live-streaming services, along with the
results of establishing the environment configuration, data flow analysis, threat modeling,
and vulnerability analysis.

Figure 7. Vulnerability discovery framework composition.

3.2. Structural Analysis

The structural analysis stage consisted of three detailed activities and was divided
into the identification of major entities, identification of data flow between entities, and
DFD creation. In this step, the framework was configured to identify major entities, such
as processes and external objects, through an initial analysis and the data flow between
entities through a network protocol analysis. The output was then structured by creating a
data flow chart to visualize and identify threats. At this stage, processes, external objects,
data flows, and trust boundaries were abstracted and could be expressed visually. The DFD
was derived in this step and used as input for threat modeling.

3.3. Threat Modeling

In the third stage (the threat modeling stage), the framework was configured to
perform three tasks. Based on the created data flow chart, STRIDE threat modeling was
applied to identify threats, and the identified threats were analyzed to create an attack tree
as the basis of the attack scenario. Thus, the threat identified in each entity was configured
to allow its use in an attack scenario. At this stage, threats based on STRIDE were identified.
The attack tree, which was the core of the threat modeling stage, was finally derived by
analyzing the identified major threats. In the attack tree, the elements required for each
attack were located based on the identified threats.

3.4. Vulnerability Analysis

In the vulnerability analysis stage, the attack tree constructed based on the previously
derived threats was converted into an attack scenario that can be utilized in an actual grid
computing system. Subsequently, the validity was determined by verifying the derived
scenario to derive the zero-day vulnerability.

4. Experiments

This section describes the results of applying the proposed analysis framework for
the vulnerability analysis of grid-computing-based live-streaming services, along with the

Sensors 2022, 22, 3766 11 of 26

results of establishing the environment configuration, data flow analysis, threat modeling,
and vulnerability analysis.

4.1. Experimental Environment Configuration

On a live-streaming platform, establishing an analysis environment is essential to avoid
a reduction in the availability of the service to its many users. To this end, an environment
was configured such that the experiment could proceed without reducing the availability by
implementing a “secret room” function provided by the live-streaming service. In addition,
a P2P connection script was created to facilitate the connection between analysis PCs.
Because of the nature of mesh-structured grid computing, two-way communication was
required. Thus, connecting the analysis PCs to each other in a form different from a tree-
structured experimental environment, which communicates in one direction, was necessary.

4.2. Results

This section describes the results of the experiment. The results of the data flow
analysis are explained according to the grid computing structures of Naver TV, Kakao TV,
and Afreeca TV, which were the analysis targets. Table 5 lists the DFD components.

Table 5. Components of DFD.

Components Description Figure

External Entity External objects create data
input and check output

Sensors 2022, 22, 3766 12 of 30

4.1. Experimental Environment Configuration
On a live-streaming platform, establishing an analysis environment is essential to

avoid a reduction in the availability of the service to its many users. To this end, an envi-
ronment was configured such that the experiment could proceed without reducing the
availability by implementing a “secret room” function provided by the live-streaming ser-
vice. In addition, a P2P connection script was created to facilitate the connection between
analysis PCs. Because of the nature of mesh-structured grid computing, two-way commu-
nication was required. Thus, connecting the analysis PCs to each other in a form different
from a tree-structured experimental environment, which communicates in one direction,
was necessary.

4.2. Results
This section describes the results of the experiment. The results of the data flow anal-

ysis are explained according to the grid computing structures of Naver TV, Kakao TV,
and Afreeca TV, which were the analysis targets. Table 5 lists the DFD components.

Table 5. Components of DFD.

Components Description Figure

External Entity
External objects create data input and

check output

Data Store Data stores store data temporarily or
permanently

Process Processes are responsible for taking
data input and generating output

Data Flow Data flow refers to the movement of
data between objects

Trust Boundary Trust boundaries represent changes in
privilege levels

4.2.1. Data Flow Analysis in Tree-Structured Grid Computing Environments
Afreeca TV, which has a high usage rate in Korea, and Kakao TV, which has recently

been in high demand because of its original content, use tree-structured grid computing

Data Store Data stores store data
temporarily or permanently

Sensors 2022, 22, 3766 12 of 30

4.1. Experimental Environment Configuration
On a live-streaming platform, establishing an analysis environment is essential to

avoid a reduction in the availability of the service to its many users. To this end, an envi-
ronment was configured such that the experiment could proceed without reducing the
availability by implementing a “secret room” function provided by the live-streaming ser-
vice. In addition, a P2P connection script was created to facilitate the connection between
analysis PCs. Because of the nature of mesh-structured grid computing, two-way commu-
nication was required. Thus, connecting the analysis PCs to each other in a form different
from a tree-structured experimental environment, which communicates in one direction,
was necessary.

4.2. Results
This section describes the results of the experiment. The results of the data flow anal-

ysis are explained according to the grid computing structures of Naver TV, Kakao TV,
and Afreeca TV, which were the analysis targets. Table 5 lists the DFD components.

Table 5. Components of DFD.

Components Description Figure

External Entity
External objects create data input and

check output

Data Store Data stores store data temporarily or
permanently

Process Processes are responsible for taking
data input and generating output

Data Flow Data flow refers to the movement of
data between objects

Trust Boundary Trust boundaries represent changes in
privilege levels

4.2.1. Data Flow Analysis in Tree-Structured Grid Computing Environments
Afreeca TV, which has a high usage rate in Korea, and Kakao TV, which has recently

been in high demand because of its original content, use tree-structured grid computing

Process
Processes are responsible for

taking data input and
generating output

Sensors 2022, 22, 3766 12 of 30

4.1. Experimental Environment Configuration
On a live-streaming platform, establishing an analysis environment is essential to

avoid a reduction in the availability of the service to its many users. To this end, an envi-
ronment was configured such that the experiment could proceed without reducing the
availability by implementing a “secret room” function provided by the live-streaming ser-
vice. In addition, a P2P connection script was created to facilitate the connection between
analysis PCs. Because of the nature of mesh-structured grid computing, two-way commu-
nication was required. Thus, connecting the analysis PCs to each other in a form different
from a tree-structured experimental environment, which communicates in one direction,
was necessary.

4.2. Results
This section describes the results of the experiment. The results of the data flow anal-

ysis are explained according to the grid computing structures of Naver TV, Kakao TV,
and Afreeca TV, which were the analysis targets. Table 5 lists the DFD components.

Table 5. Components of DFD.

Components Description Figure

External Entity
External objects create data input and

check output

Data Store Data stores store data temporarily or
permanently

Process Processes are responsible for taking
data input and generating output

Data Flow Data flow refers to the movement of
data between objects

Trust Boundary Trust boundaries represent changes in
privilege levels

4.2.1. Data Flow Analysis in Tree-Structured Grid Computing Environments
Afreeca TV, which has a high usage rate in Korea, and Kakao TV, which has recently

been in high demand because of its original content, use tree-structured grid computing

Data Flow
Data flow refers to the

movement of data between
objects

Sensors 2022, 22, 3766 12 of 30

4.1. Experimental Environment Configuration
On a live-streaming platform, establishing an analysis environment is essential to

avoid a reduction in the availability of the service to its many users. To this end, an envi-
ronment was configured such that the experiment could proceed without reducing the
availability by implementing a “secret room” function provided by the live-streaming ser-
vice. In addition, a P2P connection script was created to facilitate the connection between
analysis PCs. Because of the nature of mesh-structured grid computing, two-way commu-
nication was required. Thus, connecting the analysis PCs to each other in a form different
from a tree-structured experimental environment, which communicates in one direction,
was necessary.

4.2. Results
This section describes the results of the experiment. The results of the data flow anal-

ysis are explained according to the grid computing structures of Naver TV, Kakao TV,
and Afreeca TV, which were the analysis targets. Table 5 lists the DFD components.

Table 5. Components of DFD.

Components Description Figure

External Entity
External objects create data input and

check output

Data Store Data stores store data temporarily or
permanently

Process Processes are responsible for taking
data input and generating output

Data Flow Data flow refers to the movement of
data between objects

Trust Boundary Trust boundaries represent changes in
privilege levels

4.2.1. Data Flow Analysis in Tree-Structured Grid Computing Environments
Afreeca TV, which has a high usage rate in Korea, and Kakao TV, which has recently

been in high demand because of its original content, use tree-structured grid computing

Trust Boundary Trust boundaries represent
changes in privilege levels

Sensors 2022, 22, 3766 12 of 30

4.1. Experimental Environment Configuration
On a live-streaming platform, establishing an analysis environment is essential to

avoid a reduction in the availability of the service to its many users. To this end, an envi-
ronment was configured such that the experiment could proceed without reducing the
availability by implementing a “secret room” function provided by the live-streaming ser-
vice. In addition, a P2P connection script was created to facilitate the connection between
analysis PCs. Because of the nature of mesh-structured grid computing, two-way commu-
nication was required. Thus, connecting the analysis PCs to each other in a form different
from a tree-structured experimental environment, which communicates in one direction,
was necessary.

4.2. Results
This section describes the results of the experiment. The results of the data flow anal-

ysis are explained according to the grid computing structures of Naver TV, Kakao TV,
and Afreeca TV, which were the analysis targets. Table 5 lists the DFD components.

Table 5. Components of DFD.

Components Description Figure

External Entity
External objects create data input and

check output

Data Store Data stores store data temporarily or
permanently

Process Processes are responsible for taking
data input and generating output

Data Flow Data flow refers to the movement of
data between objects

Trust Boundary Trust boundaries represent changes in
privilege levels

4.2.1. Data Flow Analysis in Tree-Structured Grid Computing Environments
Afreeca TV, which has a high usage rate in Korea, and Kakao TV, which has recently

been in high demand because of its original content, use tree-structured grid computing

Sensors 2022, 22, 3766 12 of 26

4.2.1. Data Flow Analysis in Tree-Structured Grid Computing Environments

Afreeca TV, which has a high usage rate in Korea, and Kakao TV, which has recently
been in high demand because of its original content, use tree-structured grid computing
systems. In tree-structure-based grid computing, as shown in Figure 8, five trust boundaries
exist, along with two external entities, fifteen data flows, and six processes. Table A4
describes each component of the tree structure DFD.

Sensors 2022, 22, 3766 13 of 30

systems. In tree-structure-based grid computing, as shown in Figure 8, five trust bounda-
ries exist, along with two external entities, fifteen data flows, and six processes. Table A4
describes each component of the tree structure DFD.

Figure 8. DFD of a tree-structure-based grid computing system.

4.2.2. Data Flow Analysis in Mesh-Structured Grid Computing Environment
Among the live-streaming services, Naver TV was the only service using the mesh

structure, and the data flow chart prepared was configured accordingly, as shown in Fig-
ure 9.

Figure 9. DFD of mesh-structure-based grid computing system.

The tree structure formed in grid computing differs significantly from a mesh struc-
ture because the streaming data received from the main server are managed in sequence
and transmitted to the necessary nodes in the group. Therefore, streaming data containing

Figure 8. DFD of a tree-structure-based grid computing system.

4.2.2. Data Flow Analysis in Mesh-Structured Grid Computing Environment

Among the live-streaming services, Naver TV was the only service using the mesh
structure, and the data flow chart prepared was configured accordingly, as shown in
Figure 9.

Sensors 2022, 22, 3766 13 of 30

systems. In tree-structure-based grid computing, as shown in Figure 8, five trust bounda-
ries exist, along with two external entities, fifteen data flows, and six processes. Table A4
describes each component of the tree structure DFD.

Figure 8. DFD of a tree-structure-based grid computing system.

4.2.2. Data Flow Analysis in Mesh-Structured Grid Computing Environment
Among the live-streaming services, Naver TV was the only service using the mesh

structure, and the data flow chart prepared was configured accordingly, as shown in Fig-
ure 9.

Figure 9. DFD of mesh-structure-based grid computing system.

The tree structure formed in grid computing differs significantly from a mesh struc-
ture because the streaming data received from the main server are managed in sequence
and transmitted to the necessary nodes in the group. Therefore, streaming data containing

Figure 9. DFD of mesh-structure-based grid computing system.

Sensors 2022, 22, 3766 13 of 26

The tree structure formed in grid computing differs significantly from a mesh structure
because the streaming data received from the main server are managed in sequence and
transmitted to the necessary nodes in the group. Therefore, streaming data containing
sequences received from the Group A Trust Boundary and main server were added to the
component. Table A5 describes each component of the mesh structure DFD.

4.2.3. Threat Modeling Results

In this study, we used the STRIDE technique for threat modeling. This is a threat
modeling technique proposed by Microsoft, which has six goals to achieve information
protection for each element: the authentication, integrity, non-repudiation, confidential-
ity, availability, authorization, and identification of the symmetrical threats of spoofing,
tampering, denial, information disclosure, denial of service, and elevation of privilege [19].
Table 6 lists the threats according to each component of the data flow chart based on the
tree and mesh structure.

Table 6. Threats available in DFD components based on tree and mesh structures.

Threat S T R I D E

External Entity 4

Process 4 4 4 4 4

Data Flow 4 4 4

The tool used in this study was Microsoft’s Threat Modeling Tool Version 7.3.10801.1,
which allows threats mapped to STRIDE to be automatically identified using the reporting
function. Therefore, an analysis showed that the same types of threats existed in both the
tree and mesh structures, with 134 and 133 threats derived from each, respectively. Thus,
267 threats were identified, which are too many to include in the main text. Table A1 in
Appendix A lists 48 main threats.

Figure 10 shows an attack tree created based on the identified threats. A total of
four attack trees were derived, each of which consisted of remote code execution (RCE),
personal information disclosure, video stealing, and DoS.

Sensors 2022, 22, 3766 14 of 30

sequences received from the Group A Trust Boundary and main server were added to the
component. Table A5 describes each component of the mesh structure DFD.

4.2.3. Threat Modeling Results
In this study, we used the STRIDE technique for threat modeling. This is a threat

modeling technique proposed by Microsoft, which has six goals to achieve information
protection for each element: the authentication, integrity, non-repudiation, confidential-
ity, availability, authorization, and identification of the symmetrical threats of spoofing,
tampering, denial, information disclosure, denial of service, and elevation of privilege
[19]. Table 6 lists the threats according to each component of the data flow chart based on
the tree and mesh structure.

Table 6. Threats available in DFD components based on tree and mesh structures.

Threat S T R I D E
External Entity ✓

Process ✓ ✓ ✓ ✓ ✓
Data Flow ✓ ✓ ✓

The tool used in this study was Microsoft’s Threat Modeling Tool Version 7.3.10801.1,
which allows threats mapped to STRIDE to be automatically identified using the reporting
function. Therefore, an analysis showed that the same types of threats existed in both the
tree and mesh structures, with 134 and 133 threats derived from each, respectively. Thus,
267 threats were identified, which are too many to include in the main text. Table A1 in
Appendix A lists 48 main threats.

Figure 10 shows an attack tree created based on the identified threats. A total of four
attack trees were derived, each of which consisted of remote code execution (RCE), per-
sonal information disclosure, video stealing, and DoS.

Figure 10. Derived attack tree. Figure 10. Derived attack tree.

Sensors 2022, 22, 3766 14 of 26

4.2.4. Attack Scenario Configuration

This section describes the attack surface discovered based on the threats derived above,
and the attack scenarios that can be exploited. Figure 11 shows the attack surface discovered
based on the identified threats. It comprises four attack vectors, each of which provides
communication with the main server, communication with the update server, initial data
in the client P2P connection process, video request data in the client P2P communication
process, and video request data in the client P2P communication process. The attack
scenarios included key information exposure during communication with the main server,
update file tampering and remote code execution through DNS spoofing, image theft by
data tampering at the beginning of a connection, DoS attacks through request-based index
access, and pirate broadcasting through video data tampering.

Sensors 2022, 22, 3766 15 of 30

4.2.4. Attack Scenario Configuration
This section describes the attack surface discovered based on the threats derived

above, and the attack scenarios that can be exploited. Figure 11 shows the attack surface
discovered based on the identified threats. It comprises four attack vectors, each of which
provides communication with the main server, communication with the update server,
initial data in the client P2P connection process, video request data in the client P2P com-
munication process, and video request data in the client P2P communication process. The
attack scenarios included key information exposure during communication with the main
server, update file tampering and remote code execution through DNS spoofing, image
theft by data tampering at the beginning of a connection, DoS attacks through request-
based index access, and pirate broadcasting through video data tampering.

Figure 11. Attack surface discovered based on identified threats.

The main server provides information about the node to be connected to in the grid
computing processor transmitting the streaming data requested by the user. To this end,
the streamer process delivers information about its CPU speed and RAM availability to
the main server, and then the main server delivers information about the IP and port of
the node connected to the streamer process. In this process, the possibility of exposing
information on the IP list was confirmed, which occurred during grid computing with a
mesh structure, and was analyzed as unnecessary work such that the private IP of the
group was transmitted to form a group. Therefore, because a private IP can specify an
individual, specifying a user watching a specific channel is possible when abused. The
update server communicates with the local updater process. This confirms that the up-
dater requests the file version from the server to obtain the latest file information, and the
server uses the HTTP protocol. Therefore, in the LAN environment, an RCE attack is ex-
pected to be possible by tampering with the DNS.

The initial data of the client P2P connection process is connected to sub-nodes or
grouped nodes to share streaming data in both tree- and mesh-structured grid computing.
To this end, the initial data are used to identify each other between streamer clients. If a
mechanism does not exist to authenticate this, attacks such as memory corruption and
image stealing are expected through data tampering. When a P2P connection is estab-
lished between clients through the previous initial data, in a grid computing environment
with a mesh structure, a group is formed, and the sender and receiver broadcast the se-
quence number of the image data possessed by each client without distinction to request

Figure 11. Attack surface discovered based on identified threats.

The main server provides information about the node to be connected to in the grid
computing processor transmitting the streaming data requested by the user. To this end,
the streamer process delivers information about its CPU speed and RAM availability to
the main server, and then the main server delivers information about the IP and port of
the node connected to the streamer process. In this process, the possibility of exposing
information on the IP list was confirmed, which occurred during grid computing with a
mesh structure, and was analyzed as unnecessary work such that the private IP of the group
was transmitted to form a group. Therefore, because a private IP can specify an individual,
specifying a user watching a specific channel is possible when abused. The update server
communicates with the local updater process. This confirms that the updater requests
the file version from the server to obtain the latest file information, and the server uses
the HTTP protocol. Therefore, in the LAN environment, an RCE attack is expected to be
possible by tampering with the DNS.

The initial data of the client P2P connection process is connected to sub-nodes or
grouped nodes to share streaming data in both tree- and mesh-structured grid computing.
To this end, the initial data are used to identify each other between streamer clients. If
a mechanism does not exist to authenticate this, attacks such as memory corruption and
image stealing are expected through data tampering. When a P2P connection is established
between clients through the previous initial data, in a grid computing environment with
a mesh structure, a group is formed, and the sender and receiver broadcast the sequence
number of the image data possessed by each client without distinction to request the
necessary data. In this process, if the corresponding sequence number is tampered, the

Sensors 2022, 22, 3766 15 of 26

attacker can receive the video data of the desired frame or cause memory corruption. Thus,
a DoS attack can occur.

In the grid computing used by live-streaming platforms, most of the packets are video
data. However, if these are shared between sub-nodes and groups through grid computing
communication, they can operate similar to a network worm even if the tampering is
confined to only one data stream. Thus, maintaining integrity is an important factor.
However, the analysis confirmed that the logic to verify the integrity does not exist, and
if this is abused, pirate broadcasting can occur, allowing a user to watch unauthorized
images through image data modulation, with the expectation that the largest part of the
data exchanged would be available. Memory corruption is also an expected attack scenario.

4.2.5. Proof-Of-Concept

This section describes the results of verifying the validity of the previously written
scenario. Also, the tools used in the proof-of-concept experiment are described in detail
in Appendix B. In this process, a number of vulnerabilities were derived, and depending
on the configuration of the scenario, screen tampering, pirate broadcasting, and memory
contamination vulnerabilities, including video stealing, personal information disclosure,
and DoS and RCE attacks, were possible. As shown in Figure 12, video stealing and personal
information disclosure threaten availability, while DoS and RCE threaten confidentiality.

Sensors 2022, 22, 3766 16 of 30

the necessary data. In this process, if the corresponding sequence number is tampered, the
attacker can receive the video data of the desired frame or cause memory corruption.
Thus, a DoS attack can occur.

In the grid computing used by live-streaming platforms, most of the packets are
video data. However, if these are shared between sub-nodes and groups through grid
computing communication, they can operate similar to a network worm even if the tam-
pering is confined to only one data stream. Thus, maintaining integrity is an important
factor. However, the analysis confirmed that the logic to verify the integrity does not exist,
and if this is abused, pirate broadcasting can occur, allowing a user to watch unauthorized
images through image data modulation, with the expectation that the largest part of the
data exchanged would be available. Memory corruption is also an expected attack sce-
nario.

4.2.5. Proof-of-Concept
This section describes the results of verifying the validity of the previously written

scenario. Also, the tools used in the proof-of-concept experiment are described in detail in
Appendix B. In this process, a number of vulnerabilities were derived, and depending on
the configuration of the scenario, screen tampering, pirate broadcasting, and memory con-
tamination vulnerabilities, including video stealing, personal information disclosure, and
DoS and RCE attacks, were possible. As shown in Figure 12, video stealing and personal
information disclosure threaten availability, while DoS and RCE threaten confidentiality.

Figure 12. Security’s fundamental principles (CIA) that each attack violates.

 Video Stealing
Screen tampering vulnerabilities occurred when transmitting image data during P2P

communication between clients. It is a vulnerability that occurred equally on all platforms.
It is a serious vulnerability that leads to pirate broadcasting, which allows a receiver to
control the screen being viewed on a specific platform. This occurs because of the absence
of a routine for verifying the integrity of image data. Because the integrity is unverified,
when the sender located in the parent node modulates data, the modulated image can be
confirmed to have been transmitted to the child node and other nodes without filtering.
After the receiving client sends the initial data to the sending client, the video and audio
data receiving process occurs. At this time, the initial data are unverified. Thus, although
the Streamer process is not running, it is a secret room without permission and age re-
strictions. We were able to steal images of rooms, etc. Figures A2 and A3 show the
memory dump results of the sending process of the initial data from the receiving client
to the sending client and received streaming data. As shown in Figure A4, none of the

Figure 12. Security’s fundamental principles (CIA) that each attack violates.

• Video Stealing

Screen tampering vulnerabilities occurred when transmitting image data during P2P
communication between clients. It is a vulnerability that occurred equally on all platforms.
It is a serious vulnerability that leads to pirate broadcasting, which allows a receiver to
control the screen being viewed on a specific platform. This occurs because of the absence
of a routine for verifying the integrity of image data. Because the integrity is unverified,
when the sender located in the parent node modulates data, the modulated image can be
confirmed to have been transmitted to the child node and other nodes without filtering.
After the receiving client sends the initial data to the sending client, the video and audio data
receiving process occurs. At this time, the initial data are unverified. Thus, although the
Streamer process is not running, it is a secret room without permission and age restrictions.
We were able to steal images of rooms, etc. Figures A2 and A3 show the memory dump
results of the sending process of the initial data from the receiving client to the sending
client and received streaming data. As shown in Figure A4, none of the processing or
verification processes are performed after receiving the streaming data from the sender
with the recv() function or before sending it to another node with the send() function.

• Personal Information Disclosure

Sensors 2022, 22, 3766 16 of 26

A python script was written to steal data, and it proved that stealing video data
from an unauthorized channel is possible by transmitting the initial data about the IP
and targeted port. The code in Figure A5 is part of a function that executes a file in the
Management process. The file name is received as an argument to the Buffer variable,
and the Updater process is executed through the creatProcessW or ShellExecuteExW()
function. Therefore, the address of the update server can be set as the address of the
attacker server through DNS Spoofing, and malicious code can be executed on the user’s
PC, watching the same channel in the LAN environment. This vulnerability occurred in
the nodes constituting a group in the mesh structure. This was derived through a packet
analysis using Wireshark and designed to receive private IP information when trying to
connect to the same public IP band. In this case, because it can refer to a specific person,
this can be said to expose personal information. As shown in Figure A6, a verification script
is written to collect the private IP watching the channel, thereby proving the vulnerability.

• DoS and RCE

In the DoS attack depicted in Figure A7, among the attack vectors, the attack occurred
during the initial data transmission process of the client P2P connection, image request
data transmission, and image data transmission processes.

1. DoS attack through connection and initial data tampering: A packet analysis con-
firmed that the user was authenticated using the ticket value received from the server.
In addition, if the ticket length value was altered to make it larger than the length
defined in the ticket-related structure, the process was confirmed to terminate without
exception, and the availability reduced. Therefore, this corresponded to a DoS attack.

2. DoS attack through request-based index access: The mesh-structured grid computing
environment forms a group to transmit and receive data. As a result of modulating the
sequence number according to the attack scenario configured, a crash was confirmed
to occur outside the packet range, and the process terminated.

3. DoS attack through video data tampering: In the case of image data, a DoS attack was
confirmed to be possible in the tree structure. When modulating the header and video
data of the protocol, a field responsible for the length of the corresponding packet
data existed.

If the vulnerabilities occurring in these three vectors are exploited, users cannot use
high-definition services while using live-streaming services. In particular, DoS attacks
caused by memory corruption were prevalent. This was classified as a fatal vulnerability
because of the possibility of RCE. All vulnerabilities verified earlier occurred because grid
computing was utilized and demand an improvement because they affect all connected
nodes. Table 7 summarizes the problems that can occur through the vulnerabilities proven
through proof of concept and the countermeasures to the vulnerabilities.

Table 7. Issue caused by vulnerability and countermeasure to vulnerability.

Vulnerability Issue Caused by Vulnerability Countermeasure

Video Stealing Stealing video data from unauthorized channels An authentication process for the sender who sends data and encryption
of the data sent by the sender are required.

A procedure is required to verify the data that the sender node sends to
the lower node through the checksum.

DoS
During the live-streaming service, the process is
abnormally terminated, or the high-definition

service cannot be used

Personal Information Disclosure Collect private IPs watching a specific channel Deletes the logic of providing private IP during communication with the
main server.

RCE Executes malicious code on the user’s PC
watching the same channel in a LAN environment

HTTPS (HTTP Secure) must be used so that DNS spoofing is not possible.
A procedure for verifying local files is necessary by introducing file

verification and signatures.

5. Conclusions

In this study, we analyzed the grid computing systems of live-streaming platforms that
can be easily accessed in Korea to determine their technical security. To this end, a three-step
vulnerability discovery framework was proposed. In an experiment, system threats were

Sensors 2022, 22, 3766 17 of 26

identified by configuring the experiment environment, data flow analysis, and STRIDE-
based threat modeling, and an analysis was conducted to identify the vulnerabilities.
The availability was secured by opening a secret room and using an automatic P2P connec-
tion script, and four attack scenarios were created using STRIDE and attack tree methods
to identify the security threats in grid computing systems. After these were validated,
deriving more than 10 zero-day vulnerabilities was possible in the grid-computing-based
live-streaming services. The vulnerabilities identified can cause economic damage and
leak users’ personal information. Moreover, when an attack occurs, these were proved
to act similar to a network worm that affects an individual user and all nodes. Therefore,
using a grid computing system requires authentication between users and data integrity
verification. We analyzed the vulnerabilities of the most accessible live-streaming platform
in Korea to determine the security in grid computing systems.

However, we did not analyze all services using different grid computing systems.
Thus, our proposed vulnerability detection framework cannot be a standard of vulnera-
bility detection for services using grid computing systems. To compensate for this, we
are investigating services that use overseas grid computing systems. In future research,
the proposed vulnerability detection framework will be validated for overseas services.

Author Contributions: kakaoTV vulnerability analysis, S.-H.H., T.-H.K. and T.-S.Y.; naverTV vu-
lenrability analysis, S.-H.M. and S.-M.Y.; afreecaTV vulnerability analysis, S.-H.H., S.-H.M., T.-S.Y.,
S.-M.Y. and T.-H.K.; protocol analysis, S.-H.H., S.-H.M., T.-S.Y., S.-M.Y. and T.-H.K.; identify data
flow, S.-H.H., S.-H.M., T.-S.Y., S.-M.Y. and T.-H.K.; proof of concept, S.-H.H., S.-H.M., T.-S.Y., S.-M.Y.
and T.-H.K.; conceptualization, S.-H.H., G.-Y.K., S.-H.M., T.-S.Y., S.-M.Y. and T.-H.K.; methodology,
S.-H.H., G.-Y.K., S.-H.M., T.-S.Y., S.-M.Y. and T.-H.K.; software, S.-H.H., S.-H.M., T.-S.Y., S.-M.Y. and
T.-H.K.; validation, S.-H.H., S.-H.M., T.-S.Y., S.-M.Y., T.-H.K. and I.-C.E.; formal analysis, S.-H.H. and
I.-C.E.; investigation, S.-H.H., G.-Y.K., S.-H.M., T.-S.Y., S.-M.Y. and T.-H.K.; resources, T.-H.K.; data
curation, S.-H.H.; writing—original; draft preparation, S.-H.H.; writing—review and editing, S.-H.H.,
G.-Y.K. and I.-C.E.; visualization, S.-H.H. and S.-H.M.; methodology, S.-H.H., G.-Y.K., S.-H.M., T.-S.Y.,
S.-M.Y. and T.-H.K.; supervision, I.-C.E.; project administration, T.-S.Y. and I.-C.E.; and funding
acquisition, I.-C.E. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by Nuclear Safety Research Program through the Korea Foun-
dation of Nuclear Safety (KoFONS) using the financial resource granted by the Nuclear Safety and
Security Commission(NSSC) of the Republic of Korea. (No.2106061) also the results of a study on the
supported by Institute for Information & Communications Technology Planning & Evaluation (IITP)
grant funded by the Korea government (MSIT) under grant no. 2019-0- 01343, regional strategic
industry convergence security core talent training business.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The funders had no role in the design of the study; in the collection, analysis,
or interpretation of data; in the writing of the manuscript; or in the decision to publish the results.

Appendix A

Table A1. Main threats of grid-computing-based live-streaming services.

Element Element Name STRIDE Threat Analysis Threat Number

External Entity Browser

S
The browser may be spoofed by an attacker, which may lead to unauthorized
access to the Management Process. Consider using a standard authentication

mechanism to identify the external entity.
T1

E

Cross-site request forgery (CSRF or XSRF) is a type of attack in which an
attacker forces a user’s browser to forge requests to a vulnerable site by

exploiting an existing trusted relationship between the browser and
vulnerable website.

T2

Sensors 2022, 22, 3766 18 of 26

Table A1. Cont.

Element Element Name STRIDE Threat Analysis Threat Number

Process

Management Process

S The Management Process may impersonate the context of the browser to
obtain additional privilege. T3

E The Management Process may impersonate the context of the browser to
obtain additional privilege. T4

Update Process

S
The Update Process may be spoofed by an attacker, which may lead to

unauthorized access to the Update Server Process. Consider using a standard
authentication mechanism to identify the source/destination process.

T5

R
The Update Process claims it did not receive data from a source outside the

trust boundary. Consider using logging or auditing to record the source, time,
and summary of the received data.

T6

D The Update Process crashes, halts, stops, or runs slowly, which violates an
availability metric in all cases. T7

E The Update Process may impersonate the context of the Management Process
to obtain additional privilege. T8

Streaming Process

S
The Streaming Process may be spoofed by an attacker, which may lead to
information disclosure through the Streaming Process. Consider using a

standard authentication mechanism to identify the source/destination process.
T9

R
The Streaming Process claims it did not receive data from a source outside the
trust boundary. Consider using logging or auditing to record the source, time,

and summary of the received data.
T10

D The Streaming Process crashes, halts, stops, or runs slowly, which violates an
availability metric in all cases. T11

E The Streaming Process may impersonate the context of the Update Process to
obtain additional privilege. T12

E The Streaming Process may remotely execute code for the Streaming Process. T13

E An attacker may pass data to the Streaming Process to change the flow of
program execution within the Streaming Process to the attacker’s choosing. T14

Update Server

S
The Update Server Process may be spoofed by an attacker, which may lead to

information disclosure through the Update Process. Consider using a standard
authentication mechanism to identify the source/destination process.

T15

R
The Update Server Process claims it did not receive data from a source outside

the trust boundary. Consider using logging or auditing to record the source,
time, and summary of the received data.

T16

D The Update Server Process crashes, halts, stops, or runs slowly, which violates
an availability metric in all cases. T17

E The Update Server Process may impersonate the context of the Update Process
to obtain additional privilege. T18

E Update Process may be able to remotely execute code for Update
Server Process. T19

E An attacker may pass data to the Update Server Process to change the flow of
program execution within the Update Server Process to the attacker’s choosing. T20

Main Server

S
The Main Server Process may be spoofed by an attacker, which may lead to

unauthorized access through the Streaming Process. Consider using a standard
authentication mechanism to identify the source/destination process.

T21

E The Streaming Process may impersonate the context of the Main Server Process
to obtain additional privilege. T22

E The Main Server Process may remotely execute code for the Streaming Process. T23

E An attacker may pass data to the Streaming Process to change the flow of
program execution within the Streaming Process to the attacker’s choosing. T24

Data Flow Update File

T

Data flowing through the Update File may be tampered by an attacker. This
may lead to a denial-of-service attack against the Update Process, an

elevation-of-privilege attack against the Update Process, or information
disclosure through the Update Process.

T25

I

Data flowing through the Update File may be sniffed by an attacker.
Depending on the type of data an attacker can read, it may be used to attack

other parts of the system or simply disclose information, which leads to
compliance violations. Consider encrypting the data flow.

T26

D An external agent interrupts data flowing across a trust boundary in
either direction. T27

Sensors 2022, 22, 3766 19 of 26

Table A1. Cont.

Element Element Name STRIDE Threat Analysis Threat Number

Data Flow

Process Version Info

T

Data flowing across the Process Version Info may be tampered by an attacker.
This may lead to a denial-of-service attack against the Update Server Process,

an elevation-of-privilege attack against the Update Server Process, or
information disclosure through the Update Server Process.

T28

I

Data flowing across the Process Version info may be sniffed by an attacker.
Depending on the type of data an attacker can read, it may be used to attack

other parts of the system or simply disclose information, which leads to
compliance violations. Consider encrypting the data flow.

T29

D An external agent interrupts data flowing across a trust boundary in
either direction. T30

Streaming Data

T

Data flowing across the Streaming Data (sequence) may be tampered by an
attacker. This may lead to a denial-of-service attack against the Streaming
Process, an elevation-of-privilege attack against the Streaming Process, or

information disclosure through the Streaming Process.

T31

I

Data flowing across the Streaming Data (sequence) may be sniffed by an
attacker. Depending on the type of data an attacker can read, it may be used to
attack other parts of the system or simply disclose information, which leads to

compliance violations. Consider encrypting the data flow.

T32

D An external agent interrupts data flowing across a trust boundary in
either direction. T33

Resource Data

T

Data flowing across the Resource Data may be tampered by an attacker. This
may lead to a denial-of-service attack against the Main Server Process, an

elevation-of-privilege attack against the Main Server Process, or information
disclosure through the Main Server Process.

T34

I Data flowing across the Resource Data may be sniffed by an attacker. T35

D An external agent interrupts data flowing across a trust boundary in
either direction. T36

IP List Info

T

Data flowing across the IP List Info may be tampered by an attacker. This may
lead to a denial-of-service attack against the Streaming Process, an

elevation-of-privilege attack against the Streaming Process, or information
disclosure through the Streaming Process.

T37

I

Data flowing across the IP List Info may be sniffed by an attacker. Depending
on the type of data an attacker can read, it may be used to attack other parts of

the system or simply disclose information, which leads to
compliance violations.

T38

D An external agent interrupts data flowing across a trust boundary in
either direction. T39

Request
Streaming Data

T

Data flowing across the Request Streaming Data may be tampered by an
attacker. This may lead to a denial-of-service attack against the Main Server
Process, an elevation-of-privilege attack against the Main Server Process, or

information disclosure through the Main Server Process.

T40

I

Data flowing across the Request Streaming Data may be sniffed by an attacker.
Depending on the type of data an attacker can read, it may be used to attack

other parts of the system or simply disclose information, which leads to
compliance violations. Consider encrypting the data flow.

T41

D An external agent interrupts data flowing across a trust boundary in
either direction. T42

Response
Streaming Data

T

Data flowing across the Response Streaming Data may be tampered by an
attacker. This may lead to a denial-of-service attack against the Streaming

Process, an elevation-of-privilege attack against Streaming Process, or
information disclosure through the Streaming Process.

T43

I

Data flowing across the Response Streaming Data may be sniffed by an
attacker. Depending on the type of data an attacker can read, it may be used to
attack other parts of the system or simply disclose information, which leads to

compliance violations. Consider encrypting the data flow.

T44

D An external agent interrupts data flowing across a trust boundary in
either direction. T45

Initial Data

T

Data flowing across the Initial Data may be tampered by an attacker. This may
lead to a denial-of-service attack against the Streaming Process, an

elevation-of-privilege attack against the Streaming Process, or information
disclosure through the Streaming Process.

T46

I

Data flowing across the Initial Data may be sniffed by an attacker. Depending
on the type of data an attacker can read, it may be used to attack other parts of

the system or simply disclose information, which leads to
compliance violations.

T47

D An external agent interrupts data flowing across a trust boundary in
either direction. T48

Sensors 2022, 22, 3766 20 of 26

Appendix B. Tools Used in the Experiment

The tools used for vulnerability analysis are described below. Table A2 describes the
tools used for the vulnerability analysis in the Proof-of-Concept. A disassembler was used
for static code analysis, and tools such as windbg, x64dbg, and Cheat Engine were used for
debugging. Subsequently, hooking was performed through frida for data modification, and
Wireshark and API Monitor were used to analyze network traffic and APIs that process
calls. Finally, lighthouse was used to check code coverage.

Table A2. List of tools used in the experiment.

Function Tools Description

Disassembler

IDA Pro Disassembler for computer software

Ghidra Disassembler framework developed by the U.S. National Security Agency

Binary Ninja Reverse engineering platform developed by Vector 35 Inc

Debugging

windbg Versatile debugger for Microsoft Windows

x64dbg
Provides a UI (User Interface) that allows step-by-step debugging through the

code running as an open-source debugger for Windows and check exactly
what you are doing

Cheat Engine An open-source memory scanner and debugger primarily used for
recompilation on Windows operating systems

Hooking frida
Dynamic Binary Instrumentation (DBI) tool to run and analyze binaries
dynamically with a dynamic instrumentation toolkit for developers and

reverse engineering and security researchers

Network traffic analysis

wireshark Used to analyze network traffic with an open-source packet analysis program

API Monitor Provides a function to monitor APIs called by programs written in C and C++
and check API call stacks, parameter values, and hex dumps.

Code coverage analysis lighthouse Code inspection explorer for IDA Pro and Binary Ninja, it can analyze the
execution flow of code and provide it to analysts

Appendix B.1. Disassembler

A disassembler is a computer program that converts machine language into assembly
language. It is a tool that converts an analyst’s written program to be easy to read. In this
experiment, it was used to analyze the executable files and DLL (Dynamic Link Library) of
the software of the three companies analyzed.

Appendix B.2. Debugging

A debugger is a computer program used to test and debug programs. In our experi-
ment, to analyze the execution flow of the target program, we followed the input and output
values and checked how the program operates according to the corresponding values.

Appendix B.3. Hooking

Hooking refers to a command, method, technique, or action that intercepts function
calls and events occurring between software components in various computer programs,
such as operating systems and applications. In our experiment, because input values
cannot be arbitrarily given owing to the nature of real-time streaming services, modifying
the transmitted data is possible by hooking the send()/WSASend()or recv() APIs to prevent
the crash that occurs when data is tampered in the local environment. Table A3 was written
to modify the input value in the local environment by hooking the recv() API.

Sensors 2022, 22, 3766 21 of 26

Table A3. Example of writing a hooking script using frida.

Process.enumerateModules();
var recv_address = Module.getExportByName('ws2_32.dll','recv');

var target_ip = ‘10.10.1.X’;
var tmp = 1;

Interceptor.attach(ptr(recv_address), {
onEnter: function(args) {

this.fd = args[0];
this.buf = args[1];

var address = Socket.peerAddress(parseInt(this.fd));
var header = Memory.readByteArray(ptr(parseInt(this.buf)), 0x4);
var data = new Uint8Array(header);

if (address.ip == target_ip && this.len != 0x40000 && this.len >= 0x40) {
console.log('========= onEnter =========');
console.log('buf : '+this.buf);
console.log('len : '+this.len);
console.log(Memory.readByteArray(ptr(parseInt(this.buf)), parseInt(0x40)));

}
},

onLeave: function(ret) {
var address = Socket.peerAddress(parseInt(this.fd));
if (address.ip == target_ip && this.len != 0x40000 && this.len >= 0x40) {

console.log('========= onLeave =========');
console.log('buf : '+this.buf);
console.log('len : '+this.len);
// var mutaion = [0xad, 0xde, 0xef, 0xbe];
var mutaion = [0x41, 0x41];
var mutaion2 = [0x42, 0x42];
if(tmp == 1) {

tmp = 0;
Memory.writeByteArray(ptr(parseInt(this.buf)).add(0x35), mutaion);

}
else {

tmp = 1;
Memory.writeByteArray(ptr(parseInt(this.buf)).add(0x35), mutaion2);

}
console.log(Memory.readByteArray(ptr(parseInt(this.buf)), 0x40));

}
}

});

Appendix B.4. Network Traffic Analysis

In the case of a real-time streaming service, data in a specific format is not transmitted, but
a different protocol for each manufacturer is used. Therefore, in this experiment, tools such as
Wireshark and API Monitor were used to understand the protocol structure and analyze it.

Appendix B.5. Code Coverage Analysis

The code coverage was analyzed by modulating data through the hooking described
in the application program analysis of the real-time streaming platform and then checking
it. Representatively, lighthouse, a plug-in that can be used in IDA Pro and Binary Ninja,
was used. As shown in Figure A1, lighthouse provides a function to indicate whether the
code has been executed and check whether it has passed through the corresponding block.
This was used to compare the process execution flow before data modification and the
execution flow after modification, and it was used to derive vulnerabilities.

Sensors 2022, 22, 3766 22 of 26Sensors 2022, 22, 3766 25 of 30

Figure A1. Example of DoS attack through video data tampering (picture distortion).

Appendix C. Components of the DFD

Table A4. Components of a tree-structure-based grid computing system.

Group Components Description

External Entity
Browser

A medium that expresses encoded
streaming data for users of streaming ser-

vices

High-definition Service User
Users who want to use high-quality

streaming services

Process

Main Server Process

The server that selects a parent node
based on the resource information of a

user watching on a streaming channel and
connects child nodes

Update Server Process

The server where the latest files exist, and
is in charge of version management of the
three locally existing processes: Stream-

ing, Update, and Management

Management Process The process responsible for running and
managing a process that exists locally

Update Process
When running, the process that communi-
cates with the update server and receives

the latest files

Streaming Process

The process that shares data between
nodes and transmits the received stream-
ing data through a websocket connection

to the browser

Data Flow

Process Start
Data used to execute a process using the

ShellExecute() API

Update File Information about the latest file version
since connecting to the update server

Process Version Info Version information of local files sent to
the server

Figure A1. Example of DoS attack through video data tampering (picture distortion).

Appendix C. Components of the DFD

Table A4. Components of a tree-structure-based grid computing system.

Group Components Description

External Entity Browser A medium that expresses encoded streaming data for users of streaming services

High-definition Service User Users who want to use high-quality streaming services

Process

Main Server Process The server that selects a parent node based on the resource information of a user watching on a
streaming channel and connects child nodes

Update Server Process The server where the latest files exist, and is in charge of version management of the three locally
existing processes: Streaming, Update, and Management

Management Process The process responsible for running and managing a process that exists locally

Update Process When running, the process that communicates with the update server and receives the latest files

Streaming Process The process that shares data between nodes and transmits the received streaming data through a
websocket connection to the browser

Data Flow

Process Start Data used to execute a process using the ShellExecute() API

Update File Information about the latest file version since connecting to the update server

Process Version Info Version information of local files sent to the server

Streaming Data (encrypted) Streaming data encrypted using DTLS when delivered to the browser through a websocket connection

Request High-definition Service High-definition service request data that the user passes to the browser to receive high-definition
streaming data

Resource Data Resource data transmitted to the main server during node selection process by checking the remaining
amount of RAM and CPU

Request Streaming Data Streaming request data sent to the server or parent node when connecting to a channel

Response Streaming Data Response streaming data sent from the parent node or server to the child node in response to the
streaming data request

Initial Data Initial data used for the initial connection between nodes

IP List Info Data about the IP to connect to, which the main server sends to the node

Trust Boundary

Update Server The boundary where the update server is located

Admin Permission Boundary where processes with administrator privileges, instead of regular user privileges, are located
in the local environment

Parent Node Parent node boundary that receives data from the server or parent node in the streaming process and
transmits streaming data to lower nodes

Main Server Boundary where the main server is located

Internal Node Child node boundary that receives streaming data through the parent node during streaming

Sensors 2022, 22, 3766 23 of 26

Table A5. Components of mesh-structure-based grid computing system.

Group Components Description

External Entity
Browser A medium that expresses encoded streaming data to users of

streaming services

High-definition Service User Users who want to use high-quality streaming services

Process

Main Server Process
The server that selects a parent node based on the resource

information of a user watching a streaming channel and connects
child nodes

Update Server Process
The server where the latest files exist, and is in charge of version
management of the three locally existing processes: Streaming,

Update, and Management

Management Process The process responsible for running and managing a process that
exists locally.

Update Process When running, the process that communicates with the update server
and receives the latest files

Streaming Process
The process that shares data between nodes and transmits the

received streaming data through a websocket connection to
the browser

Data Flow

Start Process Data used to execute a process using the ShellExecute() API

Update File Information about the latest file version since connecting to the
update server

Process Version Info Version information of local files sent to the server

Streaming Data (encrypted) Streaming data encrypted using DTLS when delivered to the browser
through a websocket connection

Request High-definition Service High-definition service request data that the user passes to the
browser to receive high-definition streaming data

Streaming Data (sequence) Streaming data with a sequence for sharing streaming data within
a group

Trust Boundary

Update Server The boundary where the update server is located

Admin Permission The boundary where processes with administrator privileges, instead
of regular user privileges, are located in the local environment

Nodes 1, 2, 3 The boundary where each connected node in the group is located

Group A The group boundary where each node is connected based on the IP
information received from the main server for streaming data sharing

Appendix D. Capturing the Results of the Proof-Of-Concept

Sensors 2022, 22, 3766 27 of 30

three locally existing processes: Stream-
ing, Update, and Management

Management Process
The process responsible for running and
managing a process that exists locally.

Update Process
When running, the process that communi-
cates with the update server and receives

the latest files

Streaming Process

The process that shares data between
nodes and transmits the received stream-
ing data through a websocket connection

to the browser

Data Flow

Start Process Data used to execute a process using the
ShellExecute() API

Update File Information about the latest file version
since connecting to the update server

Process Version Info Version information of local files sent to
the server

Streaming Data (encrypted)
Streaming data encrypted using DTLS

when delivered to the browser through a
websocket connection

Request High-definition Service
High-definition service request data that
the user passes to the browser to receive

high-definition streaming data

Streaming Data (sequence) Streaming data with a sequence for shar-
ing streaming data within a group

Trust Boundary

Update Server The boundary where the update server is
located

Admin Permission

The boundary where processes with ad-
ministrator privileges, instead of regular

user privileges, are located in the local en-
vironment

Nodes 1, 2, 3 The boundary where each connected node
in the group is located

Group A

The group boundary where each node is
connected based on the IP information re-
ceived from the main server for streaming

data sharing

Appendix D. Capturing the Results of the Proof-of-Concept

Figure A2. Initial data sent by the receiving client to the sending client. Figure A2. Initial data sent by the receiving client to the sending client.

Sensors 2022, 22, 3766 24 of 26Sensors 2022, 22, 3766 28 of 30

Figure A3. Process of receiving streaming data by connecting after sending all initial data.

Figure A4. Data processing after calling recv().

Figure A5. Code of process execution.

Figure A3. Process of receiving streaming data by connecting after sending all initial data.

Sensors 2022, 22, 3766 28 of 30

Figure A3. Process of receiving streaming data by connecting after sending all initial data.

Figure A4. Data processing after calling recv().

Figure A5. Code of process execution.

Figure A4. Data processing after calling recv().

Sensors 2022, 22, 3766 28 of 30

Figure A3. Process of receiving streaming data by connecting after sending all initial data.

Figure A4. Data processing after calling recv().

Figure A5. Code of process execution. Figure A5. Code of process execution.

Sensors 2022, 22, 3766 25 of 26Sensors 2022, 22, 3766 29 of 30

Figure A6. Verification script execution result.

Figure A7. Example of DoS attack through video data tempering (picture distortion)

References
1. Incross, Media Data Clipping-Video Platform Edition. 2020. Available online: https://www.incross.com/in-

sight/?pageid=1&mod=document&key-
word=%EB%8F%99%EC%98%81%EC%83%81%20%ED%94%8C%EB%9E%AB%ED%8F%BC&uid=210 (accessed on 11 March
2022).

2. Singh, M. An overview of grid computing. In Proceedings of the 2019 International Conference on Computing, Communication,
and Intelligent Systems (ICCCIS), Greater Noida, India, 18–19 October 2019; pp. 194–198.

3. Namane, S.; Goualmi, N. Grid and Cloud Computing Security: A Comparative Survey. Int. J. Comput. Netw. Appl. 2019, 6, 1–12
4. Pagliarecci, F.; Spalazzi, L.; Spegni, F. Model checking grid security. Future Gener. Comput. Syst. 2013, 29, 811–827.
5. Chakrabarti, A.; Damodaran, A.; Sengupta, S. Grid Computing Security: A Taxonomy. IEEE Secur. Priv. 2008, 6, 44–51.
6. Bart, J.; Michael, B.; Kentaro, F.; Nihar, T. Introduction to Grid Computing, An IBM Redbooks Publication. 2005. Available

online: http://www.redbooks.ibm.com/abstracts/sg246778.html?Open (accessed on 11 March 2022).
7. Rajkumar, B.; Srikumar, V. A gentle introduction to grid computing and technologies. CSI Commun. 2005, 29. Available online:

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.67.4243&rep=rep1&type=pdf (accessed on 20 March 2022).
8. Marty. H.; Mary, R.T. Security implications of typical grid computing usage scenarios. Clust. Comput. 2002, 5, 257–264.
9. Lee, I.W.; Park, H.J. A Trend of P2P-Based Service and Charging Technics. Electron. Telecommun. Trends 2007, 22, 121–129.
10. Gheorghe, G.; Renato, L.C.; Alberto, M. Security and privacy issues in P2P streaming systems: A survey. Peer-Peer Netw. Appl.

2011, 4, 75–91.
11. Jan, S. Security issues for P2P-based voice-and video-streaming applications. In Proceedings of the International Workshop on

Open Problems in Network Security, Zurich, Switzerland, 23–24 April 2009; pp. 95–110.
12. Rafael, V.C.; Jonata, T.P.; Rodolfo, S.A.; Marinho, P.B.; Ingrid, J.P.; Luciano, P.G. Challenging the feasibility of authentication

mechanisms for P2P live streaming. In Proceedings of the 6th Latin America Networking Conference, New York, NY, USA, 12–
13 October 2011; pp. 55–63.

13. Torr, P. Demystifying the threat-modeling process. IEEE Secur. Priv. 2005, 3, 66–70.
14. Howard, M.; Lipner, S. The Security Development Lifecycle; Microsoft Press: Redmond, WA, USA, 2006.

Figure A6. Verification script execution result.

Sensors 2022, 22, 3766 29 of 30

Figure A6. Verification script execution result.

Figure A7. Example of DoS attack through video data tempering (picture distortion)

References
1. Incross, Media Data Clipping-Video Platform Edition. 2020. Available online: https://www.incross.com/in-

sight/?pageid=1&mod=document&key-
word=%EB%8F%99%EC%98%81%EC%83%81%20%ED%94%8C%EB%9E%AB%ED%8F%BC&uid=210 (accessed on 11 March
2022).

2. Singh, M. An overview of grid computing. In Proceedings of the 2019 International Conference on Computing, Communication,
and Intelligent Systems (ICCCIS), Greater Noida, India, 18–19 October 2019; pp. 194–198.

3. Namane, S.; Goualmi, N. Grid and Cloud Computing Security: A Comparative Survey. Int. J. Comput. Netw. Appl. 2019, 6, 1–12
4. Pagliarecci, F.; Spalazzi, L.; Spegni, F. Model checking grid security. Future Gener. Comput. Syst. 2013, 29, 811–827.
5. Chakrabarti, A.; Damodaran, A.; Sengupta, S. Grid Computing Security: A Taxonomy. IEEE Secur. Priv. 2008, 6, 44–51.
6. Bart, J.; Michael, B.; Kentaro, F.; Nihar, T. Introduction to Grid Computing, An IBM Redbooks Publication. 2005. Available

online: http://www.redbooks.ibm.com/abstracts/sg246778.html?Open (accessed on 11 March 2022).
7. Rajkumar, B.; Srikumar, V. A gentle introduction to grid computing and technologies. CSI Commun. 2005, 29. Available online:

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.67.4243&rep=rep1&type=pdf (accessed on 20 March 2022).
8. Marty. H.; Mary, R.T. Security implications of typical grid computing usage scenarios. Clust. Comput. 2002, 5, 257–264.
9. Lee, I.W.; Park, H.J. A Trend of P2P-Based Service and Charging Technics. Electron. Telecommun. Trends 2007, 22, 121–129.
10. Gheorghe, G.; Renato, L.C.; Alberto, M. Security and privacy issues in P2P streaming systems: A survey. Peer-Peer Netw. Appl.

2011, 4, 75–91.
11. Jan, S. Security issues for P2P-based voice-and video-streaming applications. In Proceedings of the International Workshop on

Open Problems in Network Security, Zurich, Switzerland, 23–24 April 2009; pp. 95–110.
12. Rafael, V.C.; Jonata, T.P.; Rodolfo, S.A.; Marinho, P.B.; Ingrid, J.P.; Luciano, P.G. Challenging the feasibility of authentication

mechanisms for P2P live streaming. In Proceedings of the 6th Latin America Networking Conference, New York, NY, USA, 12–
13 October 2011; pp. 55–63.

13. Torr, P. Demystifying the threat-modeling process. IEEE Secur. Priv. 2005, 3, 66–70.
14. Howard, M.; Lipner, S. The Security Development Lifecycle; Microsoft Press: Redmond, WA, USA, 2006.

Figure A7. Example of DoS attack through video data tempering (picture distortion).

References
1. Incross, Media Data Clipping-Video Platform Edition. 2020. Available online: https://www.incross.com/insight/?pageid=1&

mod=document&keyword=%EB%8F%99%EC%98%81%EC%83%81%20%ED%94%8C%EB%9E%AB%ED%8F%BC&uid=210
(accessed on 11 March 2022).

2. Singh, M. An overview of grid computing. In Proceedings of the 2019 International Conference on Computing, Communication,
and Intelligent Systems (ICCCIS), Greater Noida, India, 18–19 October 2019; pp. 194–198.

3. Namane, S.; Goualmi, N. Grid and Cloud Computing Security: A Comparative Survey. Int. J. Comput. Netw. Appl. 2019, 6, 1–12.
[CrossRef] [PubMed]

4. Pagliarecci, F.; Spalazzi, L.; Spegni, F. Model checking grid security. Future Gener. Comput. Syst. 2013, 29, 811–827. [CrossRef]
5. Chakrabarti, A.; Damodaran, A.; Sengupta, S. Grid Computing Security: A Taxonomy. IEEE Secur. Priv. 2008, 6, 44–51. [CrossRef]
6. Bart, J.; Michael, B.; Kentaro, F.; Nihar, T. Introduction to Grid Computing, An IBM Redbooks Publication. 2005. Available online:

http://www.redbooks.ibm.com/abstracts/sg246778.html?Open (accessed on 11 March 2022).
7. Rajkumar, B.; Srikumar, V. A gentle introduction to grid computing and technologies. CSI Commun. 2005, 29. Available online:

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.67.4243&rep=rep1&type=pdf (accessed on 20 March 2022).
8. Marty, H.; Mary, R.T. Security implications of typical grid computing usage scenarios. Clust. Comput. 2002, 5, 257–264. [CrossRef]
9. Lee, I.W.; Park, H.J. A Trend of P2P-Based Service and Charging Technics. Electron. Telecommun. Trends 2007, 22, 121–129.
10. Gheorghe, G.; Renato, L.C.; Alberto, M. Security and privacy issues in P2P streaming systems: A survey. Peer-Peer Netw. Appl.

2011, 4, 75–91. [CrossRef]
11. Jan, S. Security issues for P2P-based voice-and video-streaming applications. In Proceedings of the International Workshop on

Open Problems in Network Security, Zurich, Switzerland, 23–24 April 2009; pp. 95–110.
12. Rafael, V.C.; Jonata, T.P.; Rodolfo, S.A.; Marinho, P.B.; Ingrid, J.P.; Luciano, P.G. Challenging the feasibility of authentication

mechanisms for P2P live streaming. In Proceedings of the 6th Latin America Networking Conference, New York, NY, USA,
12–13 October 2011; pp. 55–63.

13. Torr, P. Demystifying the threat-modeling process. IEEE Secur. Priv. 2005, 3, 66–70. [CrossRef]
14. Howard, M.; Lipner, S. The Security Development Lifecycle; Microsoft Press: Redmond, WA, USA, 2006.
15. Adam, S. Threat Modeling: Designing for Security; Wiley: Hoboken, NJ, USA, 2014; ISBN 978-1-118-80999-0.

https://www.incross.com/insight/?pageid=1&mod=document&keyword=%EB%8F%99%EC%98%81%EC%83%81%20%ED%94%8C%EB%9E%AB%ED%8F%BC&uid=210
https://www.incross.com/insight/?pageid=1&mod=document&keyword=%EB%8F%99%EC%98%81%EC%83%81%20%ED%94%8C%EB%9E%AB%ED%8F%BC&uid=210
http://doi.org/10.22247/ijcna/2019/49572
http://www.ncbi.nlm.nih.gov/pubmed/31647410
http://doi.org/10.1016/j.future.2011.11.010
http://doi.org/10.1109/MSP.2008.12
http://www.redbooks.ibm.com/abstracts/sg246778.html?Open
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.67.4243&rep=rep1&type=pdf
http://doi.org/10.1023/A:1015621120332
http://doi.org/10.1007/s12083-010-0070-6
http://doi.org/10.1109/MSP.2005.119

Sensors 2022, 22, 3766 26 of 26

16. Tony, U.; Marco, M.M. Risk Centric Threat Modeling: Process for Attack Simulation and Threat Analysis; Wiley: Hoboken, NJ, USA,
2015; ISBN 978-0-470-50096-5.

17. Paul, S.; Brenda, L.; Michael, E. Trike v.1 Methodology Document [Draft]. 2005. Available online: https://www.octotrike.org/
papers/Trike_v1_Methodology_Document-draft.pdf (accessed on 11 March 2022).

18. Deng, M.; Wuyts, K.; Scandariato, R.; Bart, P.; Wouter, J. A privacy threat analysis framework: Supporting the elicitation and
fulfillment of privacy requirements. Requir. Eng. 2011, 16, 3–32. [CrossRef]

19. Wuyts, K. Privacy Threats in Software Architectures. Ph.D. Thesis, KU Leuven, Leuven, Belgium, 2015.
20. Park, E.J. A Study on Smart Factory Security Requirements Based on STRIDE Threat Modeling. Master’s Thesis, Korea University,

Seoul, Korea, 2017.
21. Park, J.H.; Kang, S.Y.; Kim, S.J. Study of Security Requirement of Smart Home Hub through Threat Modeling Analysis and

Common Criteria. J. Korea Inst. Inf. Secur. Cryptol. 2018, 28, 513–528.
22. Lee, J.S.; Kang, S.Y.; Kim, S.J. Study on the AI Speaker Security Evaluations and Countermeasure. J. Korea Inst. Inf. Secur. Cryptol.

2018, 28, 1523–1537.
23. Lee, J.S.; Kang, S.Y.; Kim, S.J. Study on the Smart Speaker Evaluations and Countermeasures. Adv. Multimed. Ubiquitous Eng.

2019, 590, 50–70.
24. Kim, H.M.; Kim, H.K. Threat Modeling and Risk Analysis: PS4 Remote Play with PC. J. Korea Inst. Inf. Secur. Cryptol. 2018, 28,

135–143.
25. Kang, S.I.; Kim, H.M.; Kim, H.K. Trustworthy Smart Band: Security Requirements Analysis with Threat Modeling. J. Korea Inst.

Inf. Secur. Cryptol. 2018, 28, 1355–1369.
26. Cha, Y.S.; Kim, S.J. A Study on Security Requirements of Electric Vehicle Charging Infrastructure Using Threat Modeling. J. Korea

Inst. Inf. Secur. Cryptol. 2017, 27, 1441–1455.

https://www.octotrike.org/papers/Trike_v1_Methodology_Document-draft.pdf
https://www.octotrike.org/papers/Trike_v1_Methodology_Document-draft.pdf
http://doi.org/10.1007/s00766-010-0115-7

	Introduction
	Related Work
	Grid Computing
	Technology Trends in Grid Computing Systems
	Research Trends on Grid Computing System Security

	Live-Streaming Service
	Research Trends on Grid Computing System Security
	Live-Streaming Platforms in Korea
	Security Research Trends

	Threat Modeling Methodology
	Types of Threat Modeling
	Study on Vulnerability Analysis Using Threat Modeling
	Microsoft STRIDE Threat Modeling

	Suggested Vulnerability Discovery Framework
	Overview of Vulnerability Discovery Framework
	Structural Analysis
	Threat Modeling
	Vulnerability Analysis

	Experiments
	Experimental Environment Configuration
	Results
	Data Flow Analysis in Tree-Structured Grid Computing Environments
	Data Flow Analysis in Mesh-Structured Grid Computing Environment
	Threat Modeling Results
	Attack Scenario Configuration
	Proof-Of-Concept

	Conclusions
	Appendix A
	Appendix B
	Disassembler
	Debugging
	Hooking
	Network Traffic Analysis
	Code Coverage Analysis

	Appendix C
	Appendix D
	References

