
����������
�������

Citation: Gao, M.; Chen, H.; Liu, D.

An ASIP for Neural Network

Inference on Embedded Devices with

99% PE Utilization and 100%

Memory Hidden under Low Silicon

Cost. Sensors 2022, 22, 3841. https://

doi.org/10.3390/s22103841

Academic Editor: Mostafa Rahimi

Azghadi

Received: 13 April 2022

Accepted: 17 May 2022

Published: 19 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

An ASIP for Neural Network Inference on Embedded Devices
with 99% PE Utilization and 100% Memory Hidden under Low
Silicon Cost
Muxuan Gao, He Chen * and Dake Liu

School of Information and Electronics, Beijing Institute of Technology, Beijing 100811, China;
gao.muxuan@foxmail.com (M.G.); dake@bit.edu.cn (D.L.)
* Correspondence: chenhe@bit.edu.cn

Abstract: The computation efficiency and flexibility of the accelerator hinder deep neural network
(DNN) implementation in embedded applications. Although there are many publications on deep
neural network (DNN) processors, there is still much room for deep optimization to further improve
results. Multiple dimensions must be simultaneously considered when designing a DNN processor
to reach the performance limit of the architecture, including architecture decision, flexibility, energy
efficiency, and silicon cost minimization. Flexibility is defined as the ability to support as many
multiple networks as possible and to easily adjust the scale. For energy efficiency, there are huge
opportunities for power efficiency optimization, which involves access minimization and memory
latency minimization based on on-chip memory minimization. Therefore, this work focused on
low-power and low-latency data access with minimized silicon cost. This research was implemented
based on an ASIP (application specific instruction set processor) in which an ISA was based on the
caffe2 inference operator and the hardware design was based on a single instruction multiple data
(SIMD) architecture. The scalability and system performance of our SoC extension scheme were
demonstrated. The VLIW was used to execute multiple instructions in parallel. All costs for data
access time were thus eliminated for the convolution layer. Finally, the processor was synthesized
based on TSMC 65 nm technology with a 200 MHz clock, and the Soc extension scheme was analyzed
in an experimental model. Our design was tested on several typical neural networks, achieving 196
GOPS at 200 MHz and 241 GOPS/W on the VGG16Net and AlexNet.

Keywords: deep neural networks; machine learning; deep learning processor; scheduling framework;
instruction set architecture (ISA)

1. Introduction

Neural networks have evolved and become deeper and larger over the last decade.
Due to training based on very large datasets, deep neural networks have a degree of
accuracy vastly superior to that achieved using any other AI technologies in many areas,
such as image recognition, natural language processing, text analysis, etc. [1–3]. Since
accuracy is no longer an obstacle, deep neural network (DNN)-based AI technologies
have become feasible for many applications. However, another challenge appears when
implementing DNNs in embedded applications of Internet of Things (IoT) devices, namely
computation efficiency. DNNs are compute-intensive and data-intensive algorithms that
need to be executed as fast as possible while keeping power consumption as low as possible.
To achieve this, none of the available CPUs and GPUs are appropriate choices. This is
because the CPUs cannot execute DNNs rapidly, whereas GPUs consume excessive power.
Thus, there is a need for a customized programmable accelerator for DNNs [4].

Many customized accelerators for DNNs have been developed. For convolutional
neural networks (CNNs), Yu-Hsin Chen developed Eyeriss [5], Angshuman Parashar devel-
oped SCNN [6], Boming Huang developed IECA [7], and Tu Fengbin developed Evolver [8].

Sensors 2022, 22, 3841. https://doi.org/10.3390/s22103841 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22103841
https://doi.org/10.3390/s22103841
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://doi.org/10.3390/s22103841
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22103841?type=check_update&version=1

Sensors 2022, 22, 3841 2 of 25

Arfan Ghani proposed a hardware-based acceleration method and implemented it on FPGA
for accelerating the diagnosis of novel coronavirus (COVID-19) [9]. For long short-term
memory (LSTM), which is a kind of RNN, Song Han developed ESE [10], Peng Ouyang
developed a specific architecture to parallel LSTM in [11], and Deepak Kadetotad also
developed an accelerator to optimize the memory efficiency for LSTM [12].

All of the abovementioned accelerators could achieve excellent performance for the
specific deep neural network type they were designed for. However, different types of deep
neural networks are often merged together to achieve specific functions in real applications;
for example, Yin Fan proposed video-based emotion recognition using CNN-RNN and
C3D hybrid networks [13] and Vahid Azimirad proposed a consecutive hybrid spiking-
convolutional (CHSC) neural controller by integrating CNN and spiking neural networks
(SNNs) [14]. Thus, flexibility is also an important aspect of accelerator design. A reconfig-
urable heterogeneous array-based architecture was proposed by Shouyi Yin in [15]. In this,
there were two types of PEs: a general PE for convolution and full-connection, and a super
PE for the pooling layer and the RNN. Each PE was reconfigured by a 12-bit configuration
word. Because the reconfiguration word was limited and the PEs were designed for certain
layers, the flexibility was still insufficient. In contrast to the reconfigurable architecture
in [15], Shaoli Liu in [16] provided an instruction-based accelerator, Cambricon. By com-
prehensively analyzing existing deep neural networks, they provided an instruction set,
including scalar, vector, matrix, logical, data transfer, and control instructions. Meanwhile,
an accelerator was co-designed to implement this instruction set with low power consump-
tion. By programming the accelerator with these instructions, the Cambricon could provide
much more flexibility than other DNN accelerators.

From the above analysis, we conclude that the instruction-based accelerators, such
as Cambricon, are power efficient and operation flexible, which is appropriate for DNN
applications. Yet, there are still some aspects of Cambricon that can be improved. Firstly,
Cambricon chooses ten representative, yet distinct, neural networks for its design space.
Although ten neural networks could cover most of the operations, it is still not a convictive
design space. Secondly, Cambricon implements the vector operation and the matrix oper-
ation with two separate functional units. However, the vector operation and the matrix
operation have great similarities, which means that there are opportunities to merge these
two function units together. Thirdly, the data should be loaded into the register file first,
prior to computation, similar to the RISC instruction set. Although the microarchitecture
can be simplified in this kind of design, the clock cycle is wasted. Improving power effi-
ciency and processing speed are also among the most important design objectives. Hence,
there is still room to improve the data preparation strategy in Cambricon.

In this paper, we propose a novel instruction set architecture (ISA) and co-optimized
micro-architecture called the deep learning processor (DLP). Based on comparisons, our
design outperforms general CNN accelerators for the following three reasons:

(1) DLP can flexibly accelerate most CNNs and even common mathematical operations
by designing a dedicated ISA and hardware system based on SIMD architecture.

(2) DLP can be easily expanded at the Soc-level to increase computing power for various
embedded applications.

(3) Based on the hardware system, a scheduling framework is proposed to reduce the
latency of memory access, improve utilization and reduce data access, which can
effectively optimize performance and energy consumption.

The remainder of the paper is organized as follows: Section 2 describes the prereq-
uisites for designing the ISA. Section 3 presents an overview of the ISA and the program
examples for typical layers in the CNN. Section 4 introduces the hardware design of the
DLP and the Soc-level extension scheme. Section 5 presents the details of the schedul-
ing framework. Section 6 provides the experimental results. Section 7 concludes the
whole paper.

Sensors 2022, 22, 3841 3 of 25

2. ISA Design Considerations

To design a flexible, reduced, and efficient instruction set architecture (ISA), several
aspects should be considered, such as the design space, data parallelization, approximation,
and the memory subsystem [17].

2.1. Design Space Exploration

New DNNs are emerging so rapidly that it is barely possible to keep track of them.
Fortunately, most of the DNNs are implemented on deep learning frameworks, such
as tensorflow and caffe2. With the optimized operators provided by the deep learning
framework, algorithm researchers could pay more attention to their innovation point rather
than waste the majority of time on recoding the basic functions. Furthermore, for DNN
hardware accelerator designers, the deep learning framework provides an intermediate
representation gapping the algorithms from the hardware. Thus, the relatively stable deep
learning framework, rather than diverse algorithms, could be chosen as the design space.
By sufficiently supporting the operators in a deep learning framework, the accelerator can
naturally support the majority of DNNs. We chose caffe2 as our design space, since it is
optimized for mobile integration and amenable to supporting specific accelerators.

More than 500 operators are supported by caffe2 [18] and can be classified into several
types: inference operators, training operators, and auxiliary operators. Here, we concern
ourselves with inference operators. The operators for inference can be divided into several
categories (see Figure 1): learnable layer operators, activation layer operators, normaliza-
tion layer operators, pooling layer operators, output layer operators, and mathematical
operators. The first three categories correspond to certain deep learning layers, whereas
the last includes common mathematical tensor operations, such as addition, accumulation,
dot product, logic operation, etc.

bank0 bank1 bank2 bank3

...

Output
OutputOutput

Output

AlexNet，GoogleNet，etc Algorithm

Layer operator

Caffe2

Basic mathematical
function

Learnable
layer

CNN,FC,LS
TM,etc

Activation
layer

Normalization
layer

Pooling
layer

Output
layer

accumulation，

addition，

multiplication，dot
product, logic,etc

Sigmoid,
ReLU,etc

Normalize,
LRN,etc

Normalize,
LRN,etc

Softmax

Data
parallelization

dot product, accumulation, mac,
addition,logic, max, min, etc

sigmoid, tanth, sin, etc

Approximationdot product, accumulation, mac, addition,logic, max, min, threshold, etc

Accelerate
control

mathcontrol
repeat dot product, accumulation, mac, addition, logic, max, min, threshold, etc

Design space

Fetch

DecodeLoop accelerate

AGU

SPM0 SPM1 SPM2 RF

Permutation1Permutation0

ALU(SIMD)

Permutation2

mac&logic array

triangular accumulator

shift

round

saturation

C

R

N

M

W

TN

TM

......

L

L

H

TM
M

TN

N

0

Input

Filter

1-D ALU array

Output
OutputOutput

Output

C

R

N

M

W

TM

......

L
L

H

TM
M

N

0

Input

Filter

2-D ALU array

PM

Fetch

Loop accelerator Decode GRF

AGU

Thread0

SPM0 SPM1 SPM2

Permutation1Permutation0

ALU(SIMD)

Permutation2

TRF0

Thread0

SPM0 SPM1 SPM2

Permutation1Permutation0

ALU(SIMD)

Permutation2

TRF0

Thread1

SPM0 SPM1 SPM2

Permutation1Permutation0

ALU(SIMD)

Permutation2

TRF1

Thread1

SPM0 SPM1 SPM2

Permutation1Permutation0

ALU(SIMD)

Permutation2

TRF1

ThreadN

SPM0 SPM1 SPM2

Permutation1Permutation0

ALU(SIMD)

Permutation2

TRFK

ThreadN

SPM0 SPM1 SPM2

Permutation1Permutation0

ALU(SIMD)

Permutation2

TRFK

...

DMA Interface

add, sub, mul, mac,
max, not, and, or

tacc

shr, shl

mask

lo
gi

c
fl

o
w

su
p

p
o

rted
 in

stru
ctio

n

MTM ...

...

L

L

TN

N

0

TN-1

0

N-1
N-TN

...
...

TM-1

M

[TM-1,TN-1,0,0]...[TM-1,0,0,0][0,TN-1,0,0]...[0,0,0,0]

[M,TN-1,0,0]...[M,0,0,0][M-TM,TN-1,0,0]...[M-TM,0,0,0]

...

...

[TM-1,N-1,0,0]...[TM-1,N-TN,0,0][0,N-1,0,0]...[0,N-TN,0,0] ...

[M,N-1,0,0]...[M,N-TN,0,0][M-TM,N-1,0,0]...[M-TM,N-TN,0,0] ...

[TM-1,TN-1,H,0]...[TM-1,0,H,0][0,TN-1,H,0]...[0,0,H,0] ...

[TM-1,TN-1,0,W]...[TM-1,0,0,W][0,TN-1,0,W]...[0,0,0,W] ...

[1,0,0,0] [1,1,0,0]

[0,2,0,0] [0,3,0,0] [1,2,0,0] [1,3,0,0]

[0,0,0,0] [0,1,0,0] [1,0,0,0] [1,1,0,0]

[0,2,0,0] [0,3,0,0] [1,2,0,0] [1,3,0,0]

[0,0,1,0] [0,1,1,0] [1,0,1,0] [1,1,1,0]

[0,0,0,0] [0,1,0,0]

bank0 bank1 bank2 bank3

...

[2,0,0] [3,0,0]

[4,0,0] [5,0,0] [6,0,0] [7,0,0]

[0,1,0] [1,1,0] [2,1,0] [3,1,0]

[4,1,0] [5,1,0] [6,1,0] [7,1,0]

[0,0,0] [1,0,0]

bank0 bank1 bank2 bank3

...

[0,2] [0,3]

[1,0] [1,1] [1,2] [1,3]

[2,0] [2,1] [2,2] [2,3]

[3,0] [3,1] [3,2] [3,3]

[0,0] [0,1]

bank0 bank1 bank2 bank3

...

[2] [3]

[4] [5] [6] [7]

[0] [1]

3-D Tensor

4-D Tensor

2-D Tensor

1-D Tensor

bank0 bank1 ... bankK-1

... K-1

K K+1 ... 2K-1

...

0 1

SIMT-DLP0 SIMT-DLP1 SIMT-DLPM

DMA Interface

...

slide-window element-wisematrix-vertor

CNN, normalization FC, LSTM(part), GRU(part)
activation, LSTM(part), GRU(part),

basic mathematical function

Figure 1. The design space extracted from caffe2.

The input of these operators is always tensors with up to four dimensions. The al-
gorithm kernels of these operators can be further divided into three types: slide-window,
matrix-vector, and element-wise. Slide-window type means that there is a window re-
straining the operated data and the window slides across the tensor. Convolution and
normalization operators belong to the slide-window type. Matrix-vector type means a
matrix multiply vector. This operation is popular for full-connect layer operators, LSTM op-
erators, and GRU operators. The matrix multiply matrix can also reduce to a matrix-vector
type. Element-wise type means the same operation is performed on every element of the

Sensors 2022, 22, 3841 4 of 25

tensor. The activation operators, softmax operators, and most of the basic mathematical
functions, belong to the element-wise type.

Before designing the ISA, the kernels should be analyzed to explore the similarities
and fused to simplify the ISA. We found that all of the three kernel types could be fused
and mapped to the framework shown in Figure 2a. The pre-function(i, j, k, l, m, n) and
post-function(i, j, k, l, m, n) could be at the beginning and end of any one of the loops.
The pre-function(i, j, k, l, m, n) is usually used to reset the temporary variable or prepare data
for function, and the post-function(i, j, k, l, m, n) is usually used to restore the computation
output. The function(i, j, k, l, m, n) implements the mathematical operations, such as
the multiply and accumulate (MAC) operation for the convolution operator, maximum
operation for the normalization operator, and sigmoid operation for the activation operator.
There are six nested loops in Figure 2a, which fit the slide-window type of kernels. For other
kernel types, there may not be that many nested loops. Table 1 shows the framework
components for different kernel types.

According to the inference operators and the framework proposed above, we analyzed
the following aspects to extract a high efficiency ISA.

for(m =0; m <M ; m ++)

 for(n=0; n<N ; n++)

 for(h=0; h<H ; h++)

 for(l=0; l<L; l++)

 pre-function(i, j, k, l, m , n)

 for(i=0; i<K; i++)

 for(j=0; i<K; j++)

 function(i, j, k, l, m , n);

 post-function(i, j, k, l, m , n)

f o r (m = 0 ; m < M ; m + T m)

f o r (n = 0 ; n < N ; n + T n)

 f o r (h = 0 ; h < H ; h + +)

 f o r (l= 0 ; l< L ;

n

 l+ +)

 f o r (i= 0 ; i< K ; i+ +)

 f o r (j= 0 ; i< K ; j+ +)

 p r e - f u n c t io

 p a r a l le le d

n

o n S IM D la n e s

 f o r (t m = m ; t m

(

< m + T m ; t m

)i

+ +)

,l

f

n

o

,

r

(

,

t

j

n

,

=

m

n

, k

; t

)

< n + T n ; t n + +)

 O [m] [h] [l] + = W [m] [n] [i] [j] * I [n] [h

p o s t - f u

*

n c t i

S

o n (i ,

*

[

j

i

,

S

]

k

+

, l

]

,

;

 m

+ j

 , n

l

(a) (b)

Figure 2. Pseudocode for (a) fused algorithm and (b) paralleled convolution.

Table 1. The framework components for different kernel types.

Loop6 Loop5 Loop4 Loop3 Loop2 Loop1 Function1 Function2

window-sweep
√ √ √ √ √ √ √ √

martix-vector mul
√ √ √ √

element-wise
√ √ √ √ √

2.2. Data Parallelization

The essence of acceleration is computing parallelization. By choosing several loop
steps and simultaneously mapping them into the accelerator, the loop iteration number
is reduced and the algorithm is accelerated. We mainly discuss the parallelization for
convolution, which is the most complex algorithm. We also found that other algorithms
could fit the parallelization strategy for convolution precisely.

Some of the CNN accelerators map the convolution across the height and width
dimensions of the data tensor into a 2-D MAC array. The objective of this kind of 2-D
parallelization is to utilize the data reuse opportunities in the height-width plane as much
as possible. This is because when sliding the filter window across the height-width plane of
the input tensor, the overlapped data can be reused. However, this kind of parallelization
has poor flexibility. Since the window size and stride are varied sharply for different CNNs,
and all these variations should be implemented on the 2-D MAC array, it is hard to design
control and data sharing mechanisms across the 2-D PE plane with sufficient flexibility.

Sensors 2022, 22, 3841 5 of 25

Furthermore, this kind of 2-D MAC array is also hard to adapt to other algorithms, such as
full connect and activation.

In contrast to the 2-D MAC array, the 1-D MAC array is more common in processors
and is usually referred to as an SIMD architecture. By carefully choosing the mapping
dimension of the data tensor, we find that, not only are flexibility problems that occurred in
a 2-D MAC array eliminated, but the data can also be reused as much as possible.

We parallel the convolution operation across the channel dimension of the input tensor
and the batch dimension of the filter tensor. The pseudocode of our parallel scheme is
shown in Figure 2b, in which the input tensor with size N × Hi × Ki convolves with the
filter tensor of size M× N × K× K and produces an output tensor of size Mo × Ho × Lo.
We first segment the iteration loops for TM and TN with step Tm and Tn first. Then, we
take TM data from the channel dimension of each of the TM batches of the filter tensor.
After that, the convolutions for these data are computed. Figure 3 shows the details of the
data parallelism. The loop tm and tn in Figure 2b are unrolled onto the 1-D ALU array.
A total of TM× TN operations are simultaneously performed on SIMD, so TM× TN must
be less than the SIMD lane number.

Output
OutputOutput

Output

AlexNet，GoogleNet，etc Algorithm

Layer operator

Caffe2

Basic mathematical
function

Learnable
layer

CNN,FC,LSTM
,GRU,etc

Activation
layer

Normalization
layer

Pooling
layer

Output
layer

accumulation，
addition，

multiplication，dot
product, logic,etc

ReLU,
Sigmoid,etc

Normalize,
LRN,etc

Normalize,
LRN,etc

Softmax

Data parallelization
dot product, accumulation, mac,

addition,logic, etc
sigmoid, tanth, sin, etc

Approximationdot product, accumulation, mac, addition,logic, threshold, etc

accelerate control

mathcontrol

repeat dot product, accumulation, mac, addition, logic, threshold, etc

Design space

Fetch

DecodeLoop accelerate

AGU

SPM0 SPM1 SPM2 RF

Permutation1Permutation0

ALU

Permutation2

counter0
cnt_in cnt_numen

cnt_out
counter1

cnt_in cnt_numen

cnt_out
counter2

cnt_in cnt_numen

cnt_out
counter3

cnt_in cnt_numen

cnt_out
counter4

cnt_in cnt_numen

cnt_out
counter5

cnt_in cnt_numen

cnt_out

sel logic1 sel logic2 sel logic3 sel logic4 sel logic5

pc_cnt0 loop_cnt0 pc_cnt1 loop_cnt1 pc_cnt2 loop_cnt2

cnt0_en ‘1’

PC_CNT0_NUM-1

LOOP_CNT0_NUMcnt0_en cnt1_en
PC_CNT1_NUM-
PC_CNT0_NUM cnt1_en LOOP_CNT1_NUM cnt2_en cnt2_en

PC_CNT2_NUM-
PC_CNT1_NUM-
PC_CNT0_NUM

LOOP_CNT2_NUM

‘0’ LOOP_CNT0_STEP ‘0’ LOOP_CNT1_STEP ‘0’ LOOP_CNT2_STEP‘0’ ‘1’ ‘0’ ‘1’

dim3 dim2 dim1 dimp0

LOOP_CNT3 LOOP_CNT2 LOOP_CNT1 LOOP_CNT0

mux mux mux mux

LOOP_CNT4LOOP_CNT5

src0_dimp0 = dimp0//SRC0_COEF0
src0_dim1 = dim1*SRC0_COEF1 + src0_dim2 – SRC0_COEF2
src0_dim2 = dim3*SRC0_COEF3 + src0_dim4 – SRC0_COEF4

src0_dim2 src0_dim1 src0_dimp0

dim4

mux

src0_lga=src0_dimp0*SRC0_COEF5
 +src0_dim1*SRC0_COEF6
 +src0_dim2*SRC0_COEF7

src0_lga

lacr[9]

src0_lvm_addr_i src0_lga_i

+

src0_lvm_base

src0_bi_r=
(32-src0_bi[0]+[0,1,2,...31])%32

src0_be=[src0_len_i{1},(32-src0_len_i){0}] src0_ba=(base+[0,1,2,…,31]//32

src0_bi=(base+[0,1,2,...31])%32

permutation permutation

src0_be_r_o src0_ba_r_osrc0_bi_o

src0_len_i src0_patt_i

mac array

triangular accumulator

shift

round

saturation

C

R

N

M

W

TN

TM

......

L

L

H

TM
M

TN

N

0

Input

Filter

1-D ALU array

Output
OutputOutput

Output

C

R

N

M

W

TM

......

L
L

H

TM
M

N

0

Input

Filter

2-D ALU array

Figure 3. Convolution parallelization along input channel and filter batch dimension on a 1-D
MAC array.

For this kind of 1-D parallelization, there are several advantages. Firstly, the computa-
tion of each paralleled lane is independent. The only interaction is the summation of the
lane results. This can be achieved using a triangular accumulator, which is common in
SIMD micro-architecture.

Secondly, the control of each lane is uniform and consistent. This is because the cases
that cause control divergence in 2-D parallelization, such as window size, stride, padding,
and dilation, all occur in the loop sweep for the height and width dimensions. When we
parallel the computation in the input channel and filter batch dimensions, these variations
are the same for every SIMD lane. The window size is reflected in the loop iteration number
of filter height and width and the stride is reflected in the coefficient of the index calculation
for the input tensor. Thus, there is no control divergence among lanes and the control
logic can be simplified. Because of the above analysis, the flexibility problems caused
by window size and stride in 2-D mapping are eliminated. Furthermore, since the 1-D
SIMD is a common architecture, most other operations can be easily implemented using
the same architecture.

Thirdly, by carefully selecting TM and TN, the data reuse rate for our 1-D paralleliza-
tion can even surpass that for 2-D parallelization. Although the overlapped data in the
height and width dimensions of the input tensor can not be reused, our 1-D parallelization
reuses the input data from the filter batch dimension. The TN data from the channel di-
mension of the input tensor, would compute a convolution with TN data from the channel

Sensors 2022, 22, 3841 6 of 25

dimension of each of the TM bathes of the filter tensor. Thus, every TN data value in
the input tensor can be reused TM times. In this way, the input tensor can be reused in
different MAC operations and calculated using different filter tensors.

All the above discussions are about convolution, but most of the other kernels can
also be computed by a 1-D SIMD in parallel and exhibit good performance. For pooling
kernels, we can parallel the computation along the channel dimension of the input tensor.
Thus, similar to the convolution, the pooling window variation along the height and
width dimensions does not impact the consistency of the computation of the SIMD lanes.
The element-wise type of kernel can be paralleled along any dimension of the input tensor.
Since the channel number of the input tensor is always a power of two and the SIMD lane
number is also usually a power of two, the SIMD utilization is higher when paralleling
the computation along channel dimensions rather than along other dimensions. For the
matrix-vector type of kernels, it is preferable to parallel along the height dimension of the
input tensor such that the element of the vector can be reused.

2.3. Approximation

There are some transcendental functions in activation layer operators, such as sigmoid,
sin, tanh, etc. All require complex hardware to acquire precise results, which is unafford-
able for mobile and embedded applications. Since DNNs can tolerate certain numerical
errors [19], methods such as segmented function, Taylor series expansion, and CORDIC
algorithm can be used to approximate these transcendental functions. Table 2 shows the
typical transcendental functions and their approximated functions. These functions can all
be implemented by basic mathematical operations with condition judging.

Table 2. Approximation functions.

Function Approximation Method Approximation Expression

sigmoid segment Hsigm(x) =

 +1, i f x > 4
x
4 + 0.5, otherwise
0, i f x ≤ −1

tanh segment Ptanh(x) =

+1, i f x > 1
x
4 + 3

8 , i f 0.5 < x ≤ 2.5
x, otherwise
x
4 −

3
8 , i f − 2.5 < x ≤ −0.5

−1, i f x ≤ −2.5

sin Taylor sin(x) = x− x3

6

2.4. Control Acceleration

Figure 2a shows that there are several nested loops in many algorithm kernels. For
traditional ISAs, the loop is implemented by a set of instructions, such as the assembly
code shown in Figure 4. We can see that there are five instructions associated with the
loop control. When several loops are nested and the operation instructions are limited,
these loop control instructions occupy many cycles and decrease the time utilization of
the processor. Hence, there should be a specific repeat instruction to accelerate the nested
loops. We define time utilization as the computation code divided by the overall executed
code, assuming that one repeat instruction could achieve the function of one loop. Figure 5
shows the time utilization comparison between the nested loop code with/without a
specific repeat instruction. We can see that a repeat instruction can significantly enhance
the time utilization ratio.

Sensors 2022, 22, 3841 7 of 25

for(m =0; m <M ; m ++)

 for(n=0; n<N ; n++)

 for(h=0; h<H ; h++)

 for(l=0; l<L; l++)

 pre-function(i, j, k, l, m , n)

 for(i=0; i<K; i++)

 for(j=0; i<K; j++)

 function(i, j, k, l, m , n);

 post-function(i, j, k, l, m , n)

f o r (m = 0 ; m < M ; m + T m)

f o r (n = 0 ; n < N ; n + T n)

 f o r (h = 0 ; h < H ; h + +)

 f o r (l= 0 ; l< L ;

n

 l+ +)

 f o r (i= 0 ; i< K ; i+ +)

 f o r (j= 0 ; i< K ; j+ +)

 p r e - f u n c t io

 p a r a l le le d

n

o n S IM D la n e s

 f o r (t m = m ; t m

(

< m + T m ; t m

)i

+ +)

,l

f

n

o

,

r

(

,

t

j

n

,

=

m

n

, k

; t

)

< n + T n ; t n + +)

 O [m] [h] [l] + = W [m] [n] [i] [j] * I [n] [h

p o s t - f u

*

n c t i

S

o n (i ,

*

[

j

i

,

S

]

k

+

, l

]

,

;

 m

+ j

 , n

l

(a) (b)

 // o

perat

0

i

o

o

n

p

N

i

m

nstructions //

move r L o _ u

 move r1 0

 loop :

 add r1 r1 1

 sub r2 r1 r0

 jump loop

Figure 4. Traditional loop assembly code.

1 2 3 4
Nested loop number

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ti
m

e
ut

iliz
at

io
n

ra
tio

(%
)

without repeat instruction
with repeat instruction

Figure 5. The time utilization ratio comparison between the code with/without repeat instruction.

In this section, we first take the inference operators in caffe2 as our design space.
Then, we discuss the data parallelization mechanism, in which all the algorithm kernels
are efficiently mapped to a 1-D SIMD computing unit. After that, we approximate the
transcendental functions using a segment function and Taylor expansion, which can be
implemented by basic mathematical operators. Lastly, we find that the nested loops in
kernels would reduce the time utilization. Hence, we add a loop operator, and a repeat,
in our design space. Based on all the above discussion, we obtain a more detailed design
space for hardware design in Figure 1, which includes one control operator, a repeat,
and several basic mathematical operators.

3. ISA Overview

According to the design space we established in the last section, we propose our
ISA. The overview of our ISA is shown in Table 3. The ISA is built for a customized
32-lane SIMD datapath. To simplify the instruction decoder logic, the instructions are
arranged into four types of formations shown in Table 4. Except for the common segments,
such as opcode, dst, src0 and src1, we add two customized segments: condition (cdt)
and option (opt) (see Table 5). The condition segment is used to declare whether the
instruction is conditionally executed and what the condition is. The option segment declares
whether the customized functions, such as shift, round, and saturation, are executed in

Sensors 2022, 22, 3841 8 of 25

this instruction. For the operands, dst, src0 and src1, we define four kinds of operands in
Table 6: register, scratchpad memory(SPM) with register-indirect addressing, immediate,
and accumulate register. In addition, we add two customized segments for operands: length
and pattern. The length indicates the length of the operand to be executed. The pattern
indicates the length of the operand extracted from the SPM. When the pattern is less
than the length, the extracted data would be tilted length/pattern times, by which the
reused operand is implemented. This is useful for convolution in achieving input tensor
reuse. Furthermore, the length segment could also control the executed SIMD lanes,
through which our ISA could not only implement the vector operation with variable length,
but also the scalar operation. The scalar operation is convenient for control operations and
register configuration.

Table 3. Overview of the instructions.

Operation Notation Type

compute

add add type1

subtract sub type1

multiply mul type1

multiply and accumulate mac type1

maximum max type1

triangular accumulate tacc type2

logic

not not type2

and and type1

or or type1

shift
shift right shr type1

shift left shl type1

control

no operation nop type4

clear accumulator register car type4

jump jmp type5

repeat repeat type6

data transfer
copy copy type2

load immediate operand ldi type3

Table 4. Instruction type.

Type
Expression

8 bit 4 bit 7 bit 13 bit 16 bit 16 bit

type1 opcode cdt opt dst src0 src1

type2 opcode - - dst src0 -

type3 opcode - - dst - -

type4 opcode - - - - -

Sensors 2022, 22, 3841 9 of 25

Table 5. Option and condition type.

Notation

option
shift shiftr = 0–15/shiftl = 1–15

round rnd

saturation sat

condition
equal eq

not equal neq

Table 6. Address type.

Operand Segment Notation

src0/src1 dst 10 bit addr

reg reg

LVM addr by reg [reg]

imm16 imm16

accumulator register acr

3 bit length i/ii/iii/iv/v/vi

- 3 bit pattern w/d/f/e/h/v

3.1. Instruction Resume

Our ISA contains five types of instructions: computation, logic, shift, control, and data
transfer. The majority of the computation, logic, and shift instructions are executed on
SIMD lanes in parallel. The function of most of these instructions is similar to their
corresponding RISC instructions. Exceptionally, the triangular accumulate instruction (tacc)
is used to accumulate dst operands of several SIMD lanes together, which is necessary
for convolution.

For the control instruction, we define three traditional instructions (not, car, and jump)
and one customized instruction (repeat). The jump instruction combined with the condition
segment can achieve both unconditional and conditional jump operation. The customized
repeat instruction is used to simplify the nested loops. The operands dst, src0, and src1
in the repeat instruction have specific meanings. They indicate the position of the repeat
instruction in the nested loops, repeat number, and number of the following instructions
this repeat instruction has covered.

The data transfer instructions are defined for register updating. The copy instruction
moves the data between the registers, and the ldi instruction loads the immediate operand
into the register. The SPM is prepared for computation, logic, and shift instructions, whose
data read and write is implicit in the instruction operands.

Meanwhile, in order to convert our dedicated ISA instructions into a binary code that
is executable by DLP, we designed an assembler through an open-source YACC library
in Python.

3.2. Program Examples

To illustrate the usage of our proposed ISA, we programmed three representative layer
operators in DNNs, a convolution layer, a pooling layer, and a full connect layer, which are
shown in Algorithm 1.

Sensors 2022, 22, 3841 10 of 25

Algorithm 1: Program examples
Convolution code

ldi g0 1
ldi g1 2
ldi g2 32
ldi g3 3
ldi g4 3
ldi lacr2 0
loop5: ldi lacr1 0
loop4: ldi lacr0 0
loop3: car
repeat 2 3 4

repeat 1 2 3
repeat 0 1 3

mac acr.vi [0].ii.d [0].v.h
tacc<shl15> [0].v acr.ii.d
add lacr0 lacr0.i.v g1.i.w
sub g8 lacr0.i.v g2.i.w
jmp.ne loop3
add lacr1 lacr1.i.v g0.i.w
sub g8 lacr1.i.v g3.i.w
jmp.ne loop4
add lacr2 lacr2.i.v g0.i.w
sub g8 lacr2.i.v g4.i.w
jmp.ne loop5

Maximum pooling code
ldi g0 1
ldi g1 2
ldi g2 32
ldi g3 3
ldi lacr1 0
loop4: ldi lacr0 0
loop3:
repeat 2 5 4

car
repeat 1 2 3

repeat 0 1 3
max acr.vi [0].vi.w

tacc<shl15> [0].v acr.vi.w
add lacr0 lacr0.i.v g1.i.w
sub g8 lacr0.i.v g2.i.w
jmp.ne loop3
add lacr1 lacr1.i.v g0.i.w
sub g8 lacr1.i.v g3.i.w
jmp.ne loop4

full connect code
repeat 1 3 3

car
repeat 0 1 3

mac acr.vi [0].vi.v [0].vi.w
tacc<shl15> [0].v acr.vi.w

Sensors 2022, 22, 3841 11 of 25

4. The Hardware Design

For CNN acceleration, we propose a hardware design that includes DLP, based on the
instruction set of the previous section and the Soc-level scheme for computing power ex-
pansion.

4.1. DLP Micro-Architecture Implementation

The micro-architecture of our DLP is presented in this section, which is shown in
Figure 6a. Our DLP is composed of seven major pipeline stages: instruction fetching, in-
struction decoding/loop accelerating, register/SPM reading, front permutation, execution,
back permutation, and register/SPM writing. To simplify the architecture, we apply the
in-order execution pattern in our DLP. The loop accelerator is used to achieve the repeat
instruction. The SPM is actually an SRAM, and it is used to store the tensor data. Ev-
ery operand of src0, src1, and dst has its private SPM, which is independently addressed.
The operands for the vector instructions are vectors with up to 32 elements which need to be
simultaneously provided. Thus, the SPM is composed of 32 banks, which means that each
SPM can simultaneously load/store a maximum of 32 operands. We insert the SPM reading
stage for the src0 and src1 and SPM writing stage for dst into the DLP pipeline, by which
the data read/write process can be hidden into the computing process. Although SPM
reading/writing back would extend the pipeline and increase the latency, it is affordable
since the latency caused by a long pipeline is ignorable compared with the latency caused
by a separate load/store instruction. In order to make the data read/write flexible, we also
add two permutation stages to reorder the data. In general, DNNs can tolerate numerical
errors. For neural network inference, 8-bit or even 4-bit fixed-point computing units are
enough to perform as well as floating-point numbers [20]. Thus, the ALU is an SIMD
structure with a 32 8-bit fixed-point MAC. All the functions of the algorithm instructions
are merged into one single ALU architecture in which the silicon utilization ratio is high
and the control strategy is simple.

0

Subtask1 of DLP0

15

0

DLP0

Subtask1 group

Subtask1 of DLP1DLP1

Subtask1 of DLP15DLP15

...

1
...

1
...

15

0

Subtask2

15

0

Subtask2 group

Subtask2

Subtask2

...

1
...

1
...

15

SRAM of DLP0
<->DRAM

Output of subtask0
from SRAM to DRAM

Input and weight of
subtask1 from

DRAM to SRAM

SRAM of DLP15
<->DRAM

Output of subtask1
from SRAM to DRAM

Input and weight of
subtask3 from

DRAM to SRAM

...

Fetch

DecoderFSM &
Loop accelerate

AGU

SPM0 SPM1 SPM2 RF

Permutation1Permutation0

ALU(SIMD)

Permutation2

DRAM

Master

DMA

Sram
0

Sram
1

Sram
2

DLP0 ...

Sram
3

Sram
4

Sram
5

Sram
0

Sram
1

Sram
2

DLP1

Sram
3

Sram
4

Sram
5

DLP15

Off-chip

On-chip

(a) (b)

Figure 6. The hardware design. (a) PE micro-architecture. (b) Soc-level extension scheme.

4.2. Extension of the DLP Compute Capability

From now on, we describe our DLP with 32 lane SIMD architecture, whose compute
capability is limited, and needs to be extended according to the DNN applications. We
propose the SoC-level extension scheme, which is shown in Figure 6b. The master pro-
cessor and 16 DLP can get together to compose a heterogeneous multi-core architecture.
The master processor has custom VLIW instructions that can dispatch the computation of

Sensors 2022, 22, 3841 12 of 25

the layers into different DLP cores and control direct memory access (DMA) to transfer data.
Each DLP has six independent SRAMs for storing input, weight, output, and ping-pang
operations for hiding the latency of data moving between DRAM and SRAM. In order
to reduce the power consumption of memory access, the system supports data broadcast
operations from DARM to SRAM, which are controlled by DMA.

Because of the area and cost constraints of embedded devices, the SRAM size is
limited by silicon cost. The whole data of CNN are stored in DRAM and only part of the
data to be immediately calculated are stored in SRAM. It is tricky to choose the SRAM
area size. If it is large enough, all the data of one convolutional layer are stored in the
SRAM. There is no data wait caused by memory access, so the performance is completely
dependent on the number of MACs. If it is too small, DLP needs to frequently access
DRAM. The computing unit cannot be fully loaded, and the performance basically depends
on the data access latency. Therefore, we need to balance performance and cost in choosing
the appropriate SRAM.

Considering some real-time embedded applications, we used the ping-pang memory
structure to minimize data access latency. As shown in Figure 7, while DLPs are running,
the output tensor of the previous group of subtasks (blue blocks in the figure) can be stored
in DRAM, and the weight and input tensor of the next group of subtasks (purple blocks
in the figure) can be loaded to SRAM. To simplify the analysis, we assume that adjacent
subtasks have the same amount of computation and data. If the total access latency is
less than the computation latency, DLPs cannot perceive the data transition. This can be
quantified as follows:

BW ·Ubus
NDLP ·DA

≥ NMAC ·Freq·UPE
Nop

(1)

where BW and Ubus are the bandwidth and utilization of the bus. NDLP, NMAC, and UPE
are the number of DLP and MAC units, and the utilization of DLP, which represents the
computing power of the system. DA and Nop are the amounts of access and operation of the
subtask. We assume the off-chip memory is DDR4, and its bandwidth is 42.6 GBPS (Gbyte
Per Second). Therefore, we define compute density and its requirements as

Compute desity =
Nop

DA
≥ NMAC ·Freq·UPE ·NDLP

BW ·Ubus
=

(32× 16× 0.2× 16)GMPS
(42.6GB/s)GBPS

= 38 (2)

We traversed many possible subtasks to calculate their storage and compute density.
Taking K = 3 and S = 1 as an example, the relationship between the storage and compute
density is shown in the Figure 8. Each point represents a subtask [Th/Tl/Tn/Tm]. It can be
seen that the compute density and memory size are positively correlated within a certain
range of values. Therefore, when the compute density of the subtask is exactly 38, its
storage requirement is the potential minimum on-chip storage. After the typical parameters
are filtered, the memory sizes with the ping-pang operation of input, weight, and output
tensor are 10 K, 14 K, and 8 K.

0

Subtask1 of DLP0

15

0

DLP0

Subtask1 group

Subtask1 of DLP1DLP1

Subtask1 of DLP15DLP15

...

1
...

1
...

15

0

Subtask2

15

0

Subtask2 group

Subtask2

Subtask2

...

1
...

1
...

15

SRAM of DLP0
<->DRAM

Output of subtask0
from SRAM to DRAM

Input and weight of
subtask1 from

DRAM to SRAM

SRAM of DLP15
<->DRAM

Output of subtask1
from SRAM to DRAM

Input and weight of
subtask3 from

DRAM to SRAM

...

Figure 7. The relationship between the latency of access and the computing time.

Sensors 2022, 22, 3841 13 of 25

0 5 10 15 20 25 30 35 40 45 50

compute density

0

20

40

60

80

100

120

m
em

or
y

si
ze

K=3, S=1

Figure 8. The relationship between memory and compute density.

5. Scheduling Framework

Based on the hardware design proposed in the previous chapters, we analyzed the
scheduling framework through software-hardware collaboration in this chapter.

5.1. The Main Challenges of CNN Acceleration

In the embedded inference acceleration of CNN, a great challenge is to trade off flexi-
bility, performance, power efficiency, and area. For flexibility, by designing the application
specific instruction set based on the interface operator of caffe2, our system naturally
supports most CNN applications. For the area of this system, we choose the appropriate
storage to balance performance and area cost as covered in the previous section.

Performance depends on the number of MACs, utilization, and memory access latency.
In the previous section, we proposed a data-parallel scheme and DLP with 512 8-bit
fixed-point MAC units, which illustrates that computing power is constant. Therefore,
the opportunity to optimize performance involves improving utilization and reducing
memory access latency.

Since the computing power is increased by expanding multiple processors, the utiliza-
tion includes DLP’s PE utilization and DLP-level utilization. Because the execution of DLPs
starts at the same time and the next subtask is not issued until all DLPs have completed
execution, waiting between DLPs will reduce DLP-level utilization. Subtasks should be
issued as evenly as possible on multiple DLPs to obtain higher utilization. Memory access
latency is the main bottleneck for performance [21]. The latency of data access, especially
DRAM, should be minimized to achieve high performance.

Energy consumption consists of energy consumed by data access and computation.
For a certain CNN, the power of the computing operations is constant. The energy con-
sumption of memory access is the sum of SRAM and DRAM access energy consumption.
Because 32-bit DRAM access uses about a hundred times more energy than that of SRAM
access [22], the main challenge in reducing power consumption is to reduce DRAM access.

5.2. The Mapping of CNN

There are two levels of mapping corresponding to three types of storage units,
as shown in Figure 9a. The first level is task scheduling, also known as scheduling frame-
work, which converts the convolutional layer stored in DRAM to subtasks stored in SRAM
of DLPs. The data of one convolutional layer (H × L × N and R × C × M) is tiled into
several subtasks (Th × Tl × Tn and Tr × Tc × Tm) that satisfy memory and other con-

Sensors 2022, 22, 3841 14 of 25

straints. The pseudocode of the task scheduling is shown in Figure 9b. The for loop is the
pseudocode of one convolution layer. The for loop unrolling and sequencing are assigned
as subtasks to each DLP. The different unrolling and order of for loops will affect power
consumption and performance. The second layer is the SIMD mapping, which transforms
subtasks into instructions executed in DLPs. As shown in the pseudocode, Tn/Tm con-
tinues to expand to Tn_p/Tm_p for parallel computing. SIMD mapping mainly affects
the parallelism of the datapath of DLP, which is not the focus of this article. Therefore, we
mainly introduce task scheduling in the next section.

Output

Output

Input Output

L_i
H_i

N

N

K

K

OutputOutput

M

H

L

M ..
.

Input
Output

Tl_i
Th_i

Tn K

K

OutputOutput
Tm ..

.

Tn

Tm

Tl

MAC

MAC

MAC

MAC

+

+
+

Conv
Layer

Subtasks

Task
Scheduling

SIMD
Instruct

SIMD
Mapping

DRAM

SRAM

ACR/
SRAM

for 0:H for 0:L
 for 0:M

 for 0:N
 for 0:K for 0:K

 function

h=0, l=0
 for h:h+Th
 for l:l+Tl

 for 0:K,0:K
 for 0:Tm
 for 0:Tn

 func

Output

Output

OutputOutputOutput

..
.

Input
Output

Tn

OutputOutput

..
.

Tn

Tm

Th

h=Th, l=Tl
 for h:h+Th
 for l:l+Tl

 for 0:K,0:K
 for 0:Tm
 for 0:Tn
 func

…

h=0, l=0
for h:h+Th
 for l:l+Tl
 for 0:K, 0:K

 for 0:Tm_b
 for 0:Tn_b
 for 0:Tm_p
 for 0:Tm_p

h=Th, l=Tl
for h:h+Th
 for l:l+Tl
 for 0:K, 0:K

 for 0:Tm_b
 for 0:Tn_b
 for 0:Tm_p
 for 0:Tm_p

(a) (b)

Figure 9. Mapping of convolution layer. (a) Mapping from convolution layer to DLPs. (b) Corre-
sponding pseudocode

In the scheduling framework, we define the optimization objective to optimize uti-
lization and power consumption. The computational power consumption is constant for
certain applications, and DRAM accesses generate a major portion of the remaining power
consumption. Therefore, the objective is defined as

objective=
UPE

EDRAM
(3)

where EDRAM is the energy consumption for DRAM access. UPE is the system-level
utilization.

UPE= ∑ UMAC
PE UMAC= mod(Tn·Tm

parallelism) (4)

where UMAC reflects the MAC unit utilization of one DLP. The DRAM access can be
quantified as follows:

DADRAM=DAtile+DAextra−DAreduced (5)

DAtile is the data access of each subtask. DAextra refers to the additional data access
generated by the partial output being accumulated as the final output. DAreduced is the
memory access reduced by optimization.

Sensors 2022, 22, 3841 15 of 25

If there is a large enough on-chip memory, the data of the neural network only need
to be loaded once, achieving minimal memory access. Considering the area overhead of
mobile applications, this is not realistic. Therefore, the layer of the neural network is tiled
into several subtasks to satisfy practical memory constraints, while causing redundant
data access.

However, these subtasks have data dependencies, and the way subtasks are mapped
provides opportunities to reuse and broadcast data. Data reuse is data sharing between
multiple subtasks. The same data of chronological subtasks of one DLP can remain stored
in SRAM, which can reduce memory access by not loading these data again from DRAM.
The data broadcast is bus sharing between multiple DLPs. The subtask data of different
DLPs can be stored in the dedicated SRAM at one time when these data are the same.
Hence, data broadcast can reduce memory access by avoiding the bus to repeatedly load
the same data.

The reduced data access resulting from data reuse and data broadcast can be ex-
pressed as

DAreduced = DAreused + DAbroad
DAbroad = pebroad · tbroad · Tbroad

DAreuse =

{
pereuse ·treuse ·Treuse, reuse others
2pereuse ·treuse ·Treuse, reuse output

(6)

where pereuse and pebroad are the number of DLPs whose data can be reused and broadcasted.
Treuse and Tbroad refer to the data access of each subtask reduced by data reuse and broadcast.
treuse and tbroad are the times of reuse and broadcast. If the output is reused, DAextra can
also be reduced. Hence, its memory access reduction is twice that of others.

5.3. Reuse and Broadcast Pattern

In this section, several different data reuse and broadcast patterns are proposed, as
shown in the Figure 10. The X-axes of (a,c,e,g) refer to the execution time of a subtask,
and Y represents each slave processor. The blue blocks, such as K1, illustrate subtasks
executed by each slave core. Figure 10b,d,f,h refer to the pseudocode of different reuse and
broadcast patterns. The dashed lines are the pseudocode of one subtask, corresponding to
blue blocks, such as K1.

(1) Output Reuse/Input Broadcast: As shown in Figure 10a, we propose a pattern
called output reuse and input broadcast. The DMA needs to load input and weight data
from DRAM to SRAM before accumulation. Following the computing of the subtasks,
the DMA sends partial output data to DRAM. Finally, all partial results are accumulated to
obtain the output.

The OR/IB can be transformed as the pseudocode in Figure 10b, and the whole
pseudocode represents all subtasks of one convolution layer. The dashed box is one such
subtask that is executed in the DLP. The loops C, R, M are the outer loops of Loop N,
meaning the output is reused. A loop is expanded into multiple loops at the Tm level,
and presents input that is broadcasted. The reduced data access of OR/IB is expressed as
follows

pereuse = pebroad ·
⌊

H
Tl

⌋
·
⌊

L
Tl

⌋
× 16

15 treuse =
⌊

N
Tn

⌋
− 1

pebroad =

⌊
b M

Tm c
16

⌋
× (16− 1) tbroad =

⌊
N
Tn

⌋
·
⌊

H
Th

⌋
·
⌊

L
Tl

⌋
Treuse = Th · Tl · Tm Tbroad = Thin · Tlin · Tn

(7)

In order to simplify the design of the DMA, pe reuse and pe broad of the subtask are
the integer times of the DLPs, otherwise, it will cause some DLP idleness and reduce the
overall system utilization.

Sensors 2022, 22, 3841 16 of 25

broad
weight

reuse
input

for(h = Th;) / /Loop H

 for(l = Tl;)

 for(n = 0; n < Tn; n+ = Tn

)

/

o p L/ o

L

/ /Loop N

 for(m = 0; m < M; m+ = Tm) / /Loop M

 SIMD Loop...

f

for(h = 0;) / /Loop H

 for(l = 0;)

 for(n = 0; n < Tn; n+ = Tn)

/ L o o L

 / /Lo

p

op N

/

 or(m = 0; m < M; m+ = Tm) / /Loop M

 for(th = h; th < h + Th; th + +)

 for(tl = l; tl < l + Tl; tl + +)

 for(tm = m; tm < m + Tm; tm + +)

 for(tn = n; tn < n + Tn; tn + +)

(W[m][n][i][j]
O[m][th][tl]+ =

K-1 K-1

i=0 i=0 *I[n][th* S + i][tl* S + i]);

 for(n = 0; n < Tn; n+ = Tn) / /Loop N

 for(h = 0; h < C; h+ = Th) / /Loop H

 for(l = 0; l <R; l+ =

for(m= 0;) / /Loop M

Tl) / /Loop L

 for(th = h; th < th+ Th; th+ +)

 for(tl= l; tl < l+ Tl; tl+ +)

 for(tm= m; tm <m+ Tm; tm+ +)

 for(tn = n; tn <n+ Tn; tn+ +)

(W[m][n][i][j]
 O[m][th][tl]+ =

*I[
K-1 K-1

i=0 i=0 n][th*S + i][tl*S + i]);

 for(n = 0; n < Tn; n+ = Tn) / /Loop N

 for(h = 0; h < H; h+ = Th) / /Loop H

 for(l = 0; l < L; l+ = Tl)

for(m = Tm;) / /Loop M

/ /Loop L

 SIMD Loop...

broad
input

DLP0

DLP1

DLP2

…

t1 t2 t3

K3

K2

K1

Kx

Kx

Kx

Kx

Kx

broad
weight

reuse
output

Kx

for(h = Th;) / /Loop H

 for(l = Tl;) / /Lo

 for(m = 0; m < M; m+ = Tm

o

)

p L

 / /Loop M

 for(n = 0; n < Tn; n+ = Tn) / /Loop N

 SIMD Loop...

0

for(h = 0;) / /Loop H

 for(l = 0;)

 for(m = 0; m < Tm; m+ = Tm)

/ L o

 /

/

o

L

L

oop M

p

 for

/

(n = ; n < N; n+ = Tn) / /Loop N

 for(th = h; th < h + Th; th + +)

 for(tl = r; tl < l + Tl; tl + +)

 for(tm = m; tm < m + Tm; tm + +)

 for(tn = n; tn < n + Tn; tn + +)

(W[m][n][i][j]
O[m][th][tl]+ =

K-1 K-1

i=0 i=0 *I[n][th* S + i][tl* S + i]);

broad
input

reuse
output

 for(h = 0; h < H; h+ = Th) / /Loop H

 for(l = 0; l < L; l+ = Tl) / /Loo

for(m = Tm;) / /Loop M

p L

 for(n = 0; n < N; n+ = Tn) / /Loop N

 SIMD Loop...

 for(h = 0; h < H; h+ = Th) / /Loop H

 for(l = 0; l < L; l+ = Tl) / /Loop L

for(m = 0;) / /Loop M

for(n = 0; n < N; n+ = Tn) / /Loop N

 for(th = h; th < h + Th; th + +)

 for(tl = l; tl < l + Tl; tl + +)

 for(tm = m; tm < m + Tm; tm + +)

 for(tn = n; tn < n + Tn; tn + +)

(W[m
O[m][th][tl]+ =

K-1 K-1

i=0 i=0

][n][i][j]

I[n][th S + i][tl* S + i]);

(a) (b) (c) (d)

(e) (f) (g) (h)

reuse
weight

DLP0

DLP1

DLP2

t1 t2 t3

K3

K2

K1

Kx

Kx

Kx

Kx

Kx

Kx

DLP0

DLP1

DLP2

t1 t2 t3

K3

K2

K1

Kx

Kx

Kx

Kx

Kx

Kx

DLP0

DLP1

DLP2

t1 t2 t3

K3

K2

K1

Kx

Kx

Kx

Kx

Kx

Kx

Figure 10. Data reuse and broadcast pattern: OR/IB, OR/WB, IR/WB, WR/IB (a,c,e,g) refer to their
execution. (b,d,f,h) refer to their pseudocode.

(2) Output Reuse/Weight Broadcast: Similar to OR/IB, the output reuse and weight
broadcast pattern is presented, as shown in Figure 10c. The Ci layer and Hi layer of the
convolutional layer are tiled together. The same weight of each subtask can be broadcasted
from DRAM to SRAM. The pseudocode of OR/IB is shown as Figure 10d. Loop H and
L are expanded to broadcast weight. Loop M is the outer loop of Loop N to reuse input.
Because some convolution layers are difficult to reuse and broadcast data at the same time,
we also propose a mode that only reuses the output.

pereuse =

⌊
b H

Th c·b L
Tl c·b M

Tm c
16

⌋
× 16, OR/NB

pebroad ·
⌊

M
Tm

⌋
× 16

15 , OR/WB
treuse =

⌊
N
Tn

⌋
− 1

pebroad =

 0, OR/NB⌊
b H

Th c·b L
Tl c

16

⌋
× (16− 1), OR/WB

tbroad =
⌊

M
Tm

⌋
×
⌊

N
Tn

⌋
Treuse = Th · Tl · Tm Tbroad = K2 · Tm · Tn

(8)

(3) Input Reuse/Weight Broadcast: In order to reduce the memory access of the input
map and weight, we introduce the input reuse and weight broadcast pattern. The IR/WB
can be transformed into a pseudocode shown in Figure 10e,f. Compared to Loop H, L,

Sensors 2022, 22, 3841 17 of 25

and M, Loop N is the innermost loop to reuse the input. Meanwhile, we also consider the
reuse-only pattern.

pereuse =

⌊
b H

Th c×b L
Tl c×b N

Tn c
16

⌋
× 16, IR/NB

pebroad ·
⌊

N
Tn

⌋
× 16

15 , IR/WB
treuse =

⌊
M

Tm

⌋
− 1

pebroad =

 0, IR/NB⌊
b H

Th c×b L
Tl c

16

⌋
× (16− 1), IR/WB

tbroad =
⌊

M
Tm

⌋
×
⌊

N
Tn

⌋
Treuse = Thin · Tlin · Tn Tbroad = K2 × Tm× Tn

(9)

(4) Weight Reuse/Input Broadcast: We present the weight reuse and input broadcast
pattern as shown in Figure 10g; the pseudocode is shown in Figure 10h. A loop is split at
the M level and assigned to each DLP to the broadcast input. Loop H and L are the inner
loops of Loop N to reuse weights.

pereuse =

⌊
b N

Tn c·b M
Tm c

16

⌋
× 16, WR/NB

pebroad ·
⌊

N
Tn

⌋
× 16

15 , WR/IB
treuse =

⌊
H
Th

⌋
·
⌊

L
Tl

⌋
− 1

pebroad =

 0, WR/NB⌊
b M

Tm c
16

⌋
× (16− 1), WR/IB

tbroad =
⌊

H
Th

⌋
·
⌊

L
Tl

⌋
·
⌊

N
Tn

⌋
Treuse = K2 · Tm · Tn Tbroad = Thin · Tlin · Tn

(10)

5.4. Workflow

The workflow of the scheduling framework is shown in Figure 11. In this paper, we
have multiple optimization objectives and, therefore, a multi-objective optimization prob-
lem. However, our performance is only a function of utilization and energy consumption,
without considering memory access latency. To simplify the analysis, we transform the
multi-objective problem into a single-objective optimization problem.

Since access delay is the performance bottleneck, it is prioritized over power consump-
tion and utilization during optimization. In the section covering extension of the DLP
compute capability, we proposed the compute density. Under the computing power and
bandwidth of this paper, when the compute density of the subtask is greater than 38, there
is no memory access delay due to hiding memory access delay in the calculation. In the
previous analysis, the compute density did not take into account the bandwidth saved by
data reuse and broadcasting. Therefore, the compute density is reduced to obtain more
possible subtasks for optimization. These subtasks can also completely hide the memory
access latency. The subtask ([Tn, Tl, Tn, Tm]) with the smallest access latency is selected as
the selected pool, and the goal is then optimized based on the selected pool. In addition,
the subtasks of the selected pool need to satisfy two constraints. The SIMD is parallel in the
Tn and Tm dimensions. Hence, Tn × Tm should be a multiple of the number of MAC units
such that the MAC utilization is 100%. The amount of data in the subtasks also needs to be
smaller than the actual memory size.

For each layer, our framework acquires the final task scheduling scheme through
data partition based on the selected pool, as shown in Figure 11. This scheduling scheme
includes subtasks and data reuse and broadcast patterns. After tiling by [Th, Tl, Tn, Tm]
from the selected pool, there may be epilogues in the H, L, N, and M dimensions. If the
epilogue does not meet the memory size limits, it will be iteratively split until the amount
of data of the epilogue is less than the memory capacity.

Sensors 2022, 22, 3841 18 of 25

V2.1V2.1

Epilogue Partition based
on selected pool

selected pool

selected pool

Data Partition based on
selected pool

satisfy density and
mem requirement:

<Th,Tl,Tn,Tm>
Data Partition based on

selected pool

epilogue satisfy
memory limits?

No

Data reuse/broadcast:
<IRWB/WRIB/ORWB/ORIB,Th,Tl,Tm

,Tn,Th_epi,Tl_epi,Tm_epi,Tn_epi>

Yes

epilogue?

Yes

Hardware
Constraints

Initialize

CNN Model
Layers

No

2

.

30

((1,2,3,...))

in in i

w

o

st

Compute density

Th Tl Tn Sram

K Tn Tm Sram

Th Tl Tm Sram

Tn Tm Q para Q

Th H

Tl L

Tn N

Tm M

 =

2

max

.

, , , { }

_ _ _

_ _

_ _ _

{ / / / }

{ / / }

in in i

w

o

objective

st

objective Equation

Th Tl Tn Tm selected pool

Th epi Tl epi Tn epi Sram

K Tn epi Tm epi Sram

Th epi Tl epi Tm epi Sram

reuse IR WR OR None

broad IB WB None

= ()

Figure 11. The workflow of the schedule framework.

6. Experiment

In the previous section, we implemented the acceleration system through the co-design
of software and hardware, including the Soc-level extension scheme, DLP, and scheduling
framework. DLP is synthesized based on TSMC 65 nm LP technology using the Synopsys
design compiler, until a machine clock speed of 200 M is reached. The compilation of RTL
code in Verilog and functional simulation are conducted on Synopsys VCS, and the core
power consumption is estimated by PrimeTime PX. Note that the Soc-level scheme is an
experimental model without synthesizing. In this model, the off-chip memory is assumed
to be DDR4, and its bandwidth is 42.6 GBPS (Gbyte Per Second).

We chose some typical convolutional neural networks, such as AlexNet, VGG,
and GoogleNet for experiments. Since the time for computation of the convolutional layers
occupies most of the total computation time [23], we mainly analyzed the convolutional
layer of these CNN models. The Conv and FC layers are translated to subtasks that DLP
can perform using the scheduling framework. These subtasks are manually translated into
assembly code, and the assembly code is translated into a binary file using an assembler
for our dedicated ISA. DLP is configured to run binary files, which are custom instructions
corresponding to subtasks. We evaluate the whole network running on the acceleration
system based on these subtasks.

6.1. Characteristics

The basic characteristics of the DLP and Soc-level scheme are shown in Table 7. The
DLP is an AISP processor for the neural network proposed in this paper with 32 MAC units
in SIMD parallel and 32 KB SRAM. The Soc-level scheme system includes 16 DLPs with 512
MACs and 512 KB SoC SRAM. The data precision of the MAC unit is 8-bit fixed point. If the
PE utilization is 100%, the maximum performances of the DLP and Soc-level schemes are
12.8GOPS and 204.8GOPs. The average performance and computing power consumption

Sensors 2022, 22, 3841 19 of 25

of DLP are 12.25GOPS and 25.75 mW, measured on DNA’s netlist with the subtasks’
simulation wave files. The average result of the Soc-level scheme system is measured based
on DLP, the experimental model, and the scheduling scheme of benchmarks.

Table 7. The characteristics of DLP and Soc-level schemes.

DLP Soc-Level Scheme

Technology TSMC 65 nm LP None

SRAM 32 KB 512 KB

Frequency 200 Mhz 200 Mhz

MAC unit 32 512

Peak Performance 12.8GOPS 204.8GOPS

Average Performance 12.25GOPS 196GOPS

Average Power 25.75 mW 813 mW

Precision 8-bit Fixed Point 8-bit Fixed Point

6.2. Flexibility

Unlike other designs based on several concrete CNN models, our application-specific
ISA is designed based on the inference and basic operators of caffe2. Therefore, we can sup-
port all networks using these operators. It makes perfect sense that algorithm researchers
focus more attention on their innovation points rather than waste the majority of the time
on adapting the accelerators.

In addition, due to our independent hardware design of memory and DLP, the comput-
ing power can be easily extended at the Soc-level for different applications. Our scheduling
framework is also flexible enough to support these.

6.3. Results of Scheduling Framework

Each Conv layer of AlexNet is mapped to DLP using the scheduling framework.
The results of the scheduling framework in the AlexNet Conv layer include subtasks ([Th,
Tl, Tn, Tm]), reuse, and a broadcast pattern as shown in Table 8. For the Conv1 layer,
the IR/WB pattern is used to reduce memory access. This is because H and L are large
enough to broadcast weight and appropriate M to reuse the input tensor, while N is too
small to optimize memory access for other patterns. The Conv2 layer uses a WR/IB pattern.
The remaining Conv layers of AlexNet use an OR/IB pattern. Without OR, the partial sums
of subtasks need to be stored in and loaded from DRAM to compute the final output before
finishing the computation. Because OR can reduce the memory access of the output tensor
twofold, the outputs of the Conv3-5 layers are reused to optimize power consumption.
Note that the power consumption, utilization, and performance on AlexNet, VGGNet,
and GoogleNet are analyzed based on this type of scheduling scheme.

Figure 12 shows the simulation waveform of an AlexNet Conv3 subtask. The red
cursor 1 indicates the start of the calculation and the configuration of subtask parameters,
such as base address and fixed-point number format. The red cursors 2 and 3 indicate the
start and end of the calculation. When mac_vld is 1, the data is calculated in the MAC units
of the SIMD lane. Considering the design complexity, the repeat instruction supports up to
three layers of loops. There are traditional conditional jump instructions in the program
to support the convolution layer, which will cause flush. Therefore, during the operation,
mac_vld became 0 at some point. The operation of DLP accessing data from SRAM is
not shown in the simulation waveform. This is because we insert the SRAM reading and
writing stages into the DLP pipeline, by which the reading/writing process of data can
be hidden into the computing process. Although the pipeline is extended in this way, it
is affordable since the latency caused by a long pipeline is ignorable compared with the
latency caused by a separate load/store instruction.

Sensors 2022, 22, 3841 20 of 25

Table 8. The scheduling scheme of AlexNet Conv layers.

AlexNet <Th, Tl, Tn, Tm> <Reuse, Broad> Compute Density

Conv1 <27, 79, 2, 16> <IR, WB> 37

Conv2 <7, 13, 48, 4> <WR, IB> 45

Conv3 <13, 13, 16, 12> <OR, IB> 39

Conv4 <13, 13, 16, 12> <OR, IB> 39

Conv5 <13, 13, 16, 12> <OR, IB> 39

for(m =0; m <M ; m ++)

 for(n=0; n<N ; n++)

 for(h=0; h<H ; h++)

 for(l=0; l<L; l++)

 pre-function(i, j, k, l, m , n)

 for(i=0; i<K; i++)

 for(j=0; i<K; j++)

 function(i, j, k, l, m , n);

 post-function(i, j, k, l, m , n)

f o r (m = 0 ; m < M ; m + T m)

f o r (n = 0 ; n < N ; n + T n)

 f o r (h = 0 ; h < H ; h + +)

 f o r (l= 0 ; l< L ;

n

 l+ +)

 f o r (i= 0 ; i< K ; i+ +)

 f o r (j= 0 ; i< K ; j+ +)

 p r e - f u n c t io

 p a r a l le le d

n

o n S IM D la n e s

 f o r (t m = m ; t m

(

< m + T m ; t m

)i

+ +)

,l

f

n

o

,

r

(

,

t

j

n

,

=

m

n

, k

; t

)

< n + T n ; t n + +)

 O [m] [h] [l] + = W [m] [n] [i] [j] * I [n] [h

p o s t - f u

*

n c t i

S

o n (i ,

*

[

j

i

,

S

]

k

+

, l

]

,

;

 m

+ j

 , n

l

(a) (b)

 // o

perat

0

i

o

o

n

p

N

i

m

nstructions //

move r L o _ u

 move r1 0

 loop :

 add r1 r1 1

 sub r2 r1 r0

 jump loop

Cursor1 0.1us Cursor2 0.605us Cursor3 75.275us

Cursor1 0.1us Cursor2 0.605us Cursor3 75.275us

Figure 12. Simulation waveform of a subtask.

6.4. Energy Consumption and DRAM Access

Energy consumption consists of energy consumed by data access and computation. We
measure the energy consumption of the network based on the synthesizing result of DLP
and the experimental model of the Soc-level scheme. The estimated power consumption
results can be quantified as

Etotal = EDRAM · DADRAM + PDLP · Time · NDLP (11)

where Etotal and EDRAM are the energy consumption of the system and per data access of
DRAM. EDRAM is estimated as 50 pJ/bit [24]. PDLP is the computing power of the core.
PDLP and time are measured based on the DLP’s simulation wave files of the convolutional
layer subtask with PrimeTime PX and Synopsys VCS. NDLP is the number of DLP in the
Soc-level scheme, which is 16 in this paper. DADRAM is DRAM access and is counted with
Equation (5) based on the task scheduling scheme of the benchmarks.

There are three dimensions to analyze DRAM access, all Conv layers of AlexNet, one
Conv layer of AlexNet, and different CNN models.

First, according to the task scheduling scheme of each layer, the DRAM access is shown
in Figure 13a, where R/B illustrates that there is data reuse and broadcast. NR/NB has the
opposite meaning. It can be seen that R/B can effectively reduce memory access. For the
Conv1 layer, the memory access of NB is 1.24 times that of B. As for the Conv2-4 layers,
R/B reduced the DRAM access by 60.9%, 28%, 37.5%, and 37.5%, respectively, compared
with NB.

Second, the breakdown analysis on the Conv2 layer of AlexNet for different data reuse
and broadcast patterns is shown in Figure 13b. It can be seen that the memory access of
WR/IB is the smallest. The memory access of OR/IB and WR/IB are 21% and 46% lower
than that of OR/NB and WR/NB, meaning the data broadcast is effective in reducing
memory access.

Lastly, to demonstrate the superiority of our layer-based task scheduling over network-
based task scheduling, we analyzed the memory access of several networks, such as
AlexNet, VGG, and GoogleNet. There are two modes, hybrid (corresponding to layer-
based) and single (corresponding to network-based). The hybrid mode is that each layer
of neural networks can use different data reuse and broadcast patterns. The single mode
is that all layers of neural networks only use the same data reuse pattern, including IR,
OR, and WR. The easiest way is single mode, because it only needs to configure the data
reuse and broadcast pattern once at the beginning of the network, while the hybrid mode
requires additional configuration at each layer.

Sensors 2022, 22, 3841 21 of 25

0

2

4

6

8

10

12

WR/IB IR/NB OR/NB WR/NB IR/WB IR/WB IR/WB IR/WB

D
R

A
M

 A
cc

e
ss

 (
M

B
)

AlexNet Conv2

0

1

2

3

4

5

6

7

8

9

10

Alex
Conv1

Alex
Conv2

Alex
Conv3

Alex
Conv4

Alex
Conv5

D
R

A
M

 A
cc

e
ss

(M
B

)

AlexNet Conv

NR & NB

R & B

(b) (c)(a)

4.4

5.5
5.9

4.8

9.7

7.9

2.2

6.8

3.1

0

2

4

6

8

10

AlexNet VGG GoogleNet

D
R

A
M

 A
cc

es
s

re
d

u
ct

io
n

Hybrid vs IR Hybrid vs OR Hybrid vs WR

(a) (b)
(a)

0

0.5

1

1.5

2

2.5

3

3.5

WR/IB IR/NB OR/NB WR/NB IR/WB OR/WB OR/IB NR/NB

D
R

A
M

 A
cc

e
ss

 (
M

B
)

AlexNet Conv2

0

1

2

3

4

5

Alex
Conv1

Alex
Conv2

Alex
Conv3

Alex
Conv4

Alex
Conv5

D
R

A
M

 A
cc

e
ss

(M
B

)

AlexNet Conv

NR&NB

R&B

Figure 13. The DRAM access of convolution layers of AlexNet. (a) AlexNet Conv1-5 . (b) AlexNet
Conv2.

However, the hybrid mode can minimize memory access. As shown in Figure 14, the
hybrid mode achieves a memory access reduction of 5.5 times greater than for IR, 9.7 times
greater than OR, and 6.8 times greater than WR on VGG16Net. The hybrid pattern also
optimizes memory access well in the AlexNet and GoogleNet, as shown in Figure 14.

0

2

4

6

8

10

12

WR/IB IR/NB OR/NB WR/NB IR/WB IR/WB IR/WB IR/WB

D
R

A
M

 A
cc

e
ss

 (
M

B
)

AlexNet Conv2

0

1

2

3

4

5

6

7

8

9

10

Alex
Conv1

Alex
Conv2

Alex
Conv3

Alex
Conv4

Alex
Conv5

D
R

A
M

 A
cc

e
ss

(M
B

)

AlexNet Conv

NR & NB

R & B

(b) (c)(a)

4.4

5.5
5.9

4.8

9.7

7.9

2.2

6.8

3.1

0

2

4

6

8

10

AlexNet VGG GoogleNet

D
R

A
M

 A
cc

es
s

re
d

u
ct

io
n

Hybrid vs IR Hybrid vs OR Hybrid vs WR

Figure 14. The memory access reduction: hybrid mode over single mode (IR/OR/WR).

6.5. Performance

There are many factors affecting performance, such as memory access latency, the num-
ber of MAC units, control latency, and utilization. However, for a certain system, the num-
ber of computational units is constant. Other factors are analyzed as follows.

(1) Control latency
The repeat instruction in our ISA can significantly reduce control latency. In Figure 9b,

[Tn, Tm] is tiled into [Tn_p, Tn_b, Tm_p, Tm_b] for parallel computation. Loop Tn_p
and Tm_p can be implemented by one SIMD instruction. Loop Tn_b, Tm_b, and K can
be simplified to a repeat instruction for acceleration. In this way, the repeat instruction
reduces the control latency by 97%.

(2) Utilization
The PE utilization ratio on the benchmarks is defined as 1 = 100%; the hardware is

fully used/activated when running the algorithm. The PE utilization of our design on
benchmarks is shown in Figure 15. The datapath of DLP is 1-D parallelization in N and

Sensors 2022, 22, 3841 22 of 25

M dimensions. Therefore, if the N dimension times the M dimension of a subtask is a
multiple of the parallelism, the PE utilization is 1. In order to pursue higher utilization,
the subtasks whose Tn × Tm is not a multiple of 32 will be discarded in the scheduling
framework. Note that the utilization of the first layer of this network is 94%. The N of the
AlexNet Conv1 is only 3, which makes it difficult to efficiently map to DLP. Finally, our
design achieves an average utilization of 98.75%, 99.8%, and 98.7% in AlexNet, VGGNet,
and GoogleNet, respectively.

94%

100% 100% 100% 100% 98.75% 99.80% 98.70%

50%

60%

70%

80%

90%

100%

Alex
Conv1

Alex
Conv2

Alex
Conv3

Alex
Conv4

Alex
Conv5

AlexNet
Conv

VGGNet
Conv

GoogleNet

P
E

U
ti

liz
at

io
n

Figure 15. PE utilization.

(3) Memory access latency
The compute density is proposed to quantify the reduction in memory access latency in

Section 4. In our experimental model, when the computing density of the subtask is greater
than 38, the latency of total DRAM access is less than the computation latency of DLPs.
With ping-pong memory, DLPs cannot perceive the data transition. The compute density of
the convolutional layers of AlexNet are 37, 45, 39, 39, and 39. Note that the compute density
of Conv1 is 37. The computing density did not take into account the bandwidth saved by
data multiplexing and broadcasting in the previous analysis. Therefore, our scheme can
hide total memory access latency in AlexNet Conv1.

6.6. Design Comparison

As shown in Table 9, we compare our design with several state-of-the-art implementa-
tions, such as GPU and Eyeriss, [25,26] on benchmarks.

GTX 1080 Ti is selected as the GPU for evaluation. Its clock frequency and memory
are 1582 MHz and 11 GB. It has high performance, but its high power consumption means
it is not appropriate for embedded applications. The examples in [5,25,26] are accelerators
for deep learning, working at 250, 1500, and 400 MHz, respectively. The c and s in the table
represent chip-only power and system-level power considering off-chip memory.

The architecture in [25] and our work are the most flexible to implement neural
network applications because their architecture is ASIP, whose ISA is customized for
deep learning. The [25] architecture is designed for deep learning training and inference
However, it consists of a 2-D compute array, which leads to complex design and control
separation. DLP is designed with a 1-D MAC array, which has simpler control logic and is
more conducive to accelerating element-wise type operations. The DLP has only 32 MAC
units, which can be expanded more flexibly to support different applications.

Sensors 2022, 22, 3841 23 of 25

Table 9. Comparison with state-of-the-art designs.

GTX 1080 Ti ISSCC16 [5] VLSI18 [25] ISSCC22 [26] This Work

Process 16 nm 65 nm 14 nm 65 nm 65 nm

Architecture GPU CNN ASIP CPU+CNN ASIP

Benchmark - AlexNet ResNet18
ResNet50

VGG16
ResNet18

VGG16
AlexNet

Frequency 1582 MHz 250 MHz 1500 MHz 400 MHz 200 MHz

MAC Number 1582 Core 168 500 100 512

Bit Frequency FP32 INT16 FP16/32 INT8 FXP8

SRAM 11 GB 181 KB 2048 KB 150 KB 512 KB

MAC/SRAM - 0.93 0.24 0.67 1

PE Utilization - 68.70% 92 98% 95% 99%

Efficiency (TOPS/W) 0.041 c: 0.166 s: 0.08 - c: 0.66(CNN) c: 0.475 s: 0.241

Our performance reached 196 GOPS considering DRAM access latency, unlike most
designs that do not consider it. The performance is almost at its limit because of our
optimization in utilization and memory latency. The hardware design of DLP is 1-D paral-
lelization, which is flexible enough to issue subtasks for the highest utilization. Therefore,
the utilization of our design reaches 99%, which is 30%, 6%, and 4% higher than [5,25,26],
respectively. Other designs, such as [25], use the large on-chip memory to minimize the
access delay between DRAM and on-chip memory. However, our work can reduce all
DRAM access latency in convolution with smaller on-chip memory, through ping-pang
memory, as well as the scheduling framework. We define memory efficiency as the number
of MAC units divided by the on-chip storage. Our design achieves a memory efficiency of 1,
which is 1.1, 4.2, 1.5 times that of [5,25,26], respectively. Since the scheduling framework is
proposed to reduce memory access through data reuse and broadcast, our design achieves
813 mW on benchmarks. Although our energy efficiency ratio is slightly worse than [26], we
consider the DRAM access latency and have higher efficiency per MAC/memory. Finally,
while achieving high flexibility, the power efficiency of our design for our benchmarks is
241 GOPS/W.

7. Conclusions

In this paper, we proposed an application-specific ISA based on the caffe2 inference
operator, which can flexibly accelerate the inference of most neural networks. The cor-
responding deep learning processor is synthesized in TSMC 65 nm LP technology. The
DLP works at 200 MHz with 32 8-bit fixed-point MAC units and 32K SRAM. Because the
compute capability of one DLP is limited to DNN accelerations, we proposed the Soc-level
extension scheme with the scheduling framework to optimize the performance and energy
consumption. The bottleneck of power consumption and performance is mainly due to
the power consumption and delay generated by memory access. To improve performance,
the VLIW and ping-pang memory architecture were used to eliminate all data access time
costs for the convolution layer. To reduce power, the data access was reduced by reusing
and broadcasting data. Finally, our design achieved 196 GOPS at 200 MHz and the power
efficiency was 241 GOPS/W on the VGG16Net and AlexNet. Our future work includes the
complete implementation of the Soc expansion scheme, the final chip layout and tape-out of
the prototype design, and trade-off between the bus bandwidth and parallelism to reduce
memory access latency for different applications.

Sensors 2022, 22, 3841 24 of 25

Author Contributions: Conceptualization, M.G., H.C. and D.L.; methodology, M.G.; software, M.G.;
validation, M.G., D.L. and H.C.; formal analysis, M.G. and H.C.; investigation, M.G.; resources,
M.G.; data curation, H.C. and D.L.; writing—original draft preparation, M.G.; writing—review and
editing, H.C. and D.L.; visualization, M.G.; supervision, H.C.; project administration, H.C.; funding
acquisition, H.C. All authors have read and agreed to the published version of the manuscript.

Funding: This work was funded by the China Civil Aviation Program under Grant B0201.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Chenarlogh, V.A.; Razzazi, F.; Mohammadyahya, N. A multi-view human action recognition system in limited data case using

multi-stream CNN. In Proceedings of the 2019 5th Iranian Conference on Signal Processing and Intelligent Systems (ICSPIS),
Shahrood, Iran, 18–19 December 2019; pp. 1–11.

2. Roshani, M.; Sattari, M.A.; Ali, P.J.M.; Roshani, G.H.; Nazemi, B.; Corniani, E.; Nazemi, E. Application of GMDH neural network
technique to improve measuring precision of a simplified photon attenuation based two-phase flowmeter. Flow Meas. Instrum.
2020, 75, 101804. [CrossRef]

3. Jafari Gukeh, M.; Moitra, S.; Ibrahim, A.N.; Derrible, S.; Megaridis, C.M. Machine Learning Prediction of TiO2-Coating Wettability
Tuned via UV Exposure. ACS Appl. Mater. Interfaces 2021, 13, 46171–46179. [CrossRef] [PubMed]

4. Sze, V.; Chen, Y.H.; Yang, T.J.; Emer, J.S. Efficient processing of deep neural networks: A tutorial and survey. Proc. IEEE 2017,
105, 2295–2329. [CrossRef]

5. Chen, Y.H.; Krishna, T.; Emer, J.S.; Sze, V. Eyeriss: An energy-efficient reconfigurable accelerator for deep convolutional neural
networks. IEEE J. Solid-State Circuits 2016, 52, 127–138. [CrossRef]

6. Parashar, A.; Rhu, M.; Mukkara, A.; Puglielli, A.; Dally, W.J. SCNN: An Accelerator for Compressed-sparse Convolutional Neural
Networks. Int. Symp. 2017, 45, 27–40.

7. Huang, B.; Huan, Y.; Chu, H.; Xu, J.; Liu, L.; Zheng, L.; Zou, Z. IECA: An In-Execution Configuration CNN Accelerator With
30.55 GOPS/mm2 Area Efficiency. IEEE Trans. Circuits Syst. I Regul. Pap. 2021, 68, 4672–4685. [CrossRef]

8. Tu, F.; Wu, W.; Wang, Y.; Chen, H.; Xiong, F.; Shi, M.; Li, N.; Deng, J.; Chen, T.; Liu, L.; et al. Evolver: A deep learning processor
with on-device quantization–voltage–frequency tuning. IEEE J. Solid-State Circuits 2020, 56, 658–673. [CrossRef]

9. Ghani, A.; Aina, A.; See, C.H.; Yu, H.; Keates, S. Accelerated Diagnosis of Novel Coronavirus (COVID-19)—Computer Vision
with Convolutional Neural Networks (CNNs). Electronics 2022, 11, 1148. [CrossRef]

10. Han, S.; Kang, J.; Mao, H.; Hu, Y.; Li, X.; Li, Y.; Xie, D.; Luo, H.; Yao, S.; Wang, Y.; et al. Ese: Efficient speech recognition engine
with sparse lstm on fpga. In Proceedings of the 2017 ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays, Monterey, CA, USA, 22–24 February 2017; pp. 75–84.

11. Ouyang, P.; Yin, S.; Wei, S. A fast and power efficient architecture to parallelize LSTM based RNN for cognitive intelligence
applications. In Proceedings of the 54th Annual Design Automation Conference 2017, Austin, TX, USA, 18–22 June 2017; pp. 1–6.

12. Kadetotad, D.; Yin, S.; Berisha, V.; Chakrabarti, C.; Seo, J.s. An 8.93 TOPS/W LSTM recurrent neural network accelerator featuring
hierarchical coarse-grain sparsity for on-device speech recognition. IEEE J. Solid-State Circuits 2020, 55, 1877–1887. [CrossRef]

13. Fan, Y.; Lu, X.; Li, D.; Liu, Y. Video-based emotion recognition using CNN-RNN and C3D hybrid networks. In Proceedings of the
18th ACM international conference on multimodal interaction, Tokyo, Japan, 12–16 November 2016; pp. 445–450.

14. Azimirad, V.; Ramezanlou, M.T.; Sotubadi, S.V.; Janabi-Sharifi, F. A consecutive hybrid spiking-convolutional (CHSC) neural
controller for sequential decision making in robots. Neurocomputing 2022, 490, 319–336. [CrossRef]

15. Yin, S.; Ouyang, P.; Tang, S.; Tu, F.; Li, X.; Zheng, S.; Lu, T.; Gu, J.; Liu, L.; Wei, S. A high energy efficient reconfigurable hybrid
neural network processor for deep learning applications. IEEE J. Solid-State Circuits 2017, 53, 968–982. [CrossRef]

16. Liu, S.; Du, Z.; Tao, J.; Dong, H.; Tao, L.; Yuan, X.; Chen, Y.; Chen, T. Cambricon: An Instruction Set Architecture for Neural
Networks. In Proceedings of the ACM/IEEE International Symposium on Computer Architecture, Seoul, Korea, 18–22 June 2016.

17. Liu, D. Embedded DSP Processor Design: Application Specific Instruction Set Processors; Morgan Kaufmann: Burlington, MA, USA,
2008.

18. Markham, A.; Jia, Y. Caffe2: Portable High-Performance Deep Learning Framework from Facebook; NVIDIA Corporation: Santa Clara,
CA, USA, 2017.

19. Gupta, S.; Agrawal, A.; Gopalakrishnan, K.; Narayanan, P. Deep learning with limited numerical precision. In Proceedings of the
International Conference on Machine Learning, Hong Kong, China, 20–22 November 2015; pp. 1737–1746.

20. Gysel, P. Ristretto: Hardware-oriented approximation of convolutional neural networks. arXiv 2016, arXiv:1605.06402.

http://doi.org/10.1016/j.flowmeasinst.2020.101804
http://dx.doi.org/10.1021/acsami.1c13262
http://www.ncbi.nlm.nih.gov/pubmed/34523902
http://dx.doi.org/10.1109/JPROC.2017.2761740
http://dx.doi.org/10.1109/JSSC.2016.2616357
http://dx.doi.org/10.1109/TCSI.2021.3108762
http://dx.doi.org/10.1109/JSSC.2020.3021661
http://dx.doi.org/10.3390/electronics11071148
http://dx.doi.org/10.1109/JSSC.2020.2992900
http://dx.doi.org/10.1016/j.neucom.2021.11.097
http://dx.doi.org/10.1109/JSSC.2017.2778281

Sensors 2022, 22, 3841 25 of 25

21. Amdahl, G.M. Validity of the single processor approach to achieving large scale computing capabilities, reprinted from the afips
conference proceedings, vol. 30 (atlantic city, nj, apr. 18–20), afips press, reston, va., 1967, pp. 483–485. when dr. amdahl was at
international business machines corporation, sunnyvale, california. IEEE Solid-State Circuits Soc. Newsl. 2007, 12, 19–20.

22. Horowitz, M. Energy Table for 45 nm Process, Stanford VLSI Wiki. Available online: https://sites.google.com/site/seecproject
(accessed on 27 February 2020).

23. Cong, J.; Xiao, B. Minimizing computation in convolutional neural networks. In International Conference on Artificial Neural
Networks; Springer: Heidelberg, Germany, 2014; pp. 281–290.

24. Gao, M. Scalable Near-Data Processing Systems for Data-Intensive Applications; Stanford University: Stanford, CA, USA, 2018.
25. Shukla, S.; Fleischer, B.; Ziegler, M.; Silberman, J.; Oh, J.; Srinivasan, V.; Choi, J.; Mueller, S.; Agrawal, A.; Babinsky, T.; et al. A

scalable multi-TeraOPS core for AI training and inference. IEEE Solid-State Circuits Lett. 2018, 1, 217–220. [CrossRef]
26. Ju, Y.; Gu, J. A 65nm Systolic Neural CPU Processor for Combined Deep Learning and General-Purpose Computing with 95% PE

Utilization, High Data Locality and Enhanced End-to-End Performance. In Proceedings of the 2022 IEEE International Solid-State
Circuits Conference (ISSCC), San Francisco, CA, USA, 20–26 February 2022; Volume 65, pp. 1–3.

https://sites.google.com/site/seecproject
http://dx.doi.org/10.1109/LSSC.2019.2902738

	Introduction
	ISA Design Considerations
	Design Space Exploration
	Data Parallelization
	Approximation
	Control Acceleration

	ISA Overview
	Instruction Resume
	Program Examples

	The Hardware Design
	DLP Micro-Architecture Implementation
	Extension of the DLP Compute Capability

	Scheduling Framework
	The Main Challenges of CNN Acceleration
	The Mapping of CNN
	Reuse and Broadcast Pattern
	Workflow

	Experiment
	Characteristics
	Flexibility
	Results of Scheduling Framework
	Energy Consumption and DRAM Access
	Performance
	Design Comparison

	Conclusions
	References

