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Abstract: It is critical to deploy wireless data transmission technologies remotely, in real-time, to
monitor the health state of diesel engines dynamically. The usual approach to data compression is
to collect data first, then compress it; however, we cannot ensure the correctness and efficiency of
the data. Based on sparse Bayesian optimization block learning, this research provides a method
for compression reconstruction and fault diagnostics of diesel engine vibration data. This method’s
essential contribution is combining compressive sensing technology with fault diagnosis. To achieve
a better diagnosis effect, we can effectively improve the wireless transmission efficiency of the
vibration signal. First, the dictionary is dynamically updated by learning the dictionary using
singular value decomposition to produce the ideal sparse form. Second, a block sparse Bayesian
learning boundary optimization approach is utilized to recover structured non-sparse signals rapidly.
A detailed assessment index of the data compression effect is created. Finally, the experimental
findings reveal that the approach provided in this study outperforms standard compression methods
in terms of compression efficiency and accuracy and its ability to produce the desired fault diagnostic
effect, proving the usefulness of the proposed method.

Keywords: diesel engine; data compression; vibration signal; K-SVD; fault diagnosis

1. Introduction

Diesel engines have been widely used in energy, construction machinery, and military
equipment. Vibration signals are transmitted dynamically and synchronously in real-
time, Playing a pivotal role in real-time online monitoring of diesel engine health [1–3]. It
can effectively reduce the incidence of equipment failure, downtime, and management
costs. Compared with traditional wired data transmission, edge computing wireless data
transmission methods can significantly improve the real-time, flexibility, and ease of use
of data, according to the Nyquist sampling theorem [4]. To realize the collection of high-
frequency vibration signals of the equipment, we will inevitably generate a large amount of
data. However, big data is constrained by network bandwidth during wireless transmission.
Whether it can support the problems of massive data, high concurrency, low latency, and
low power consumption is yet to be determined.

Recently, it has become a research hotspot that researchers focus on. For example,
Antonopoulos et al. [5] embedded compression algorithms into hardware systems to
improve the work efficiency of transmitting large amounts of data wirelessly. Ma et al. [6]
used a distributed video codec scheme to enhance the processing power of a single node
for traditional data compression. Yi et al. [7] proposed an adaptive data compression and
transmission range extension scheme to improve the data collection rate of sink nodes.
Hameed et al. [8] used lossless compression technology and Huffman coding encryption
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technology to provide effective means for remote monitoring security and compressibility
of electrocardiography (ECG) data. Therefore, before the data are wirelessly transmitted,
real-time synchronous sampling and compression of the original vibration data is the best
solution to solve the above problems.

Compressive sensing (CS) is a new technical theory that has emerged in recent years [9].
Due to its outstanding performance in data compression and reconstruction, it has been
widely used in the field of image and sound. Use the observation matrix to map the original
vibration signal from the high-dimensional space to the low-dimensional space. Then,
the original signal is recovered with a high probability from fewer observations through
an optimization algorithm. Currently, commonly used compression and re-construction
algorithms include greedy algorithm [10], convex optimization algorithm [11], Bayesian
learning [12], etc. For example, Liu et al. [13] used a low-pass filtering method to optimize
the electrographic signal and used basis pursuit (BP) algorithm to compress and reconstruct
the electrocardiogram signal. Cheng et al. [14] used an improved orthogonal matching
pursuit (OMP) algorithm to improve seismic data’s reconstruction speed and compression
effect. Sajjad et al. [15] used a genetic algorithm to optimize the sparse signal and the
regularized orthogonal matching pursuit (ROMP) algorithm to reconstruct the image
signal. Generally, reciprocating mechanical vibration signals have sparse, non-sparse, and
unique structural features. The traditional compression and reconstruction algorithm is
used to recover sparse signals with high accuracy and versatility in the above research.
However, this type of algorithm only considers its sparsity and is not necessarily suitable
for reconstructing reciprocating mechanical vibration signals. Improving the recovery
accuracy of structured non-sparse signals becomes crucial.

In the existing Bayesian algorithm, the block sparse Bayesian learning bound opti-
mization (BSBL-BO) algorithm [16] has the potential to solve the problem of structured
non-sparse signal reconstruction. The algorithm effectively uses the intra-block correla-
tion of vibration signals to restore structured non-sparse signals. Compared with other
traditional compression and reconstruction algorithms, the BSBL-BO algorithm has the
advantages of high signal recovery accuracy and good compression effect and has been
widely used in electrocardiograms and radar. For example, Mahrous et al. [17] proposed a
space-time sparse Bayesian learning method. By optimizing the BSBL-BO algorithm, the
compression and reconstruction of multi-channel electro-encephalogram (EEG) signals are
realized. Li et al. [18] used an enhanced narrow-band interference separation algorithm for
radar to achieve compression and reconstruction of radar signals through the BSBL frame-
work, proving the feasibility of the BSBL-BO algorithm for data compression. However,
this algorithm has not been studied much in reciprocating mechanical vibration signals in
previous studies. This paper carries out related research based on the BSBL-BO algorithm
to fill the gap.

An essential prerequisite for CS is the sparsity in the original vibration signal. Sparsity
plays a crucial role in the accuracy of the reconstruction of recovered data. Therefore, an
efficient data dictionary is needed to improve the signal’s sparsity. Classical dictionaries
include discrete cosine transform (DCT) [19], discrete Fourier transform (DFT) [20], and
wavelet packet transform (discrete wavelet transform, DWT) [21] are fixed dictionaries.
The ideal sparse representation can only be obtained when the atomic features in this
dictionary type are the same as the original vibration information. There is also a dictionary,
commonly used K-singular value decomposition (K-SVD) [22] and optimal directions
(method of optimal directions, MOD) [23]. The dictionary is dynamically updated through
training to obtain the optimal sparse representation. Compared with the fixed dictionary,
it has the advantage of solid adaptive ability. For example, Li et al. [24] used the K-SVD
algorithm to update the dictionary to improve the sparsity of image signals. Yang et al. [25]
used the K-SVD algorithm to enhance the sparse representation of medical images to obtain
better compression and reconstruction accuracy.

Diesel engines often have various failures in their daily work. Among them, the loss of
the diesel engine refers to the phenomenon of increased valve clearance, severe deformation
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of a valve seat ring, burning oil, and severe wear of piston rings during operation. As a
result, the diesel engine cannot work normally, and there is a more significant safety hazard.
To reduce the occurrence rate of diesel engine failures and improve stability and safety,
researchers have carried out a great deal of research work and achieved fruitful research
results. Gu et al. [26] applied the multivariate empirical mode decomposition to the fault
diagnosis of diesel engine misfire and achieved good fault classification results by using the
SVM classifier. Chen et al.’s [27] harmony search optimizer is used to set hyper-parameters
of the variational stacked autoencoder. This method has been well applied in the fault
detection of diesel engines. Wang et al. [28] proposed the plan of particle swarm optimiza-
tion probabilistic neural network (probabilistic neural network, PNN) and support vector
machine. Effective diagnosis of common engine failures is achieved. In recent years, the
application of compressed sensing theory to fault diagnosis has gradually attracted the
attention of researchers, and some research results have been completed. Zhang et al. [29]
trained several over-complete dictionaries with a dictionary learning method. Thereby, re-
dundant dictionaries corresponding to different fault categories are obtained. The matching
tracking algorithm is used to determine. The error of the reconstructed signal under various
dictionaries is compared to realize the diagnosis of the fault category. Tang et al. [30] first
obtained the compressed acquisition signal. Then, given the specified sparsity, the matching
pursuit algorithm is used to directly obtain the first few fault characteristic frequencies
with enormous energy. To realize the identification and diagnosis of fault signals, Du
et al. [31] used a dictionary constructed from Fourier transform matrices. The fault features
are directly extracted in the compressed measurement domain to realize fault diagnosis of
vibration signals.

Although compression technology has been widely used, there are still the following
problems or deficiencies:

1. In the process of wireless transmission, due to the limitation of network bandwidth
and low power consumption, massive vibration signals bring considerable challenges
to data storage and wireless network transmission;

2. The problem of the reconstruction accuracy of the structured non-sparse signal of the
reciprocating mechanical vibration signal cannot be satisfied by the traditional data
compression technology;

3. Aiming at the compression and reconstruction effects of reciprocating mechanical
vibration signals, there is a lack of an effective, comprehensive evaluation index for
data compression effects;

4. There is a lack of relevant research on compressive sensing technology and fault
diagnosis methods and their application in fault diagnosis of reciprocating machinery.

Using the BSBL-BO algorithm can effectively solve the problem of structured non-
sparse signal reconstruction. At the same time, the sparsity of the signal can also be
enhanced by the adaptive dynamic updating of the K-SVD dictionary. Combining the two
methods can efficiently and accurately recover structured non-sparse signals. Therefore,
this paper proposes a compression and reconstruction method based on the BSBL-BO
algorithm and the K-SVD dictionary. In addition, this article also establishes an evaluation
index for the effect of data compression. First, divide the original signal into blocks. Use the
K-SVD dictionary to obtain optimal sparse decomposition to train the actual movement to
improve the re-construction performance of the restored signal. Second, use the BSBL-BO
algorithm to restore structured non-sparse signals. Compared with other reconstruction
algorithms, it has the advantages of high accuracy and a good data compression effect.
Finally, the proposed BSBL-KSVD algorithm is verified through a diesel engine valve
clearance experiment and fault classification. The experimental results prove that the BSBL-
KSVD algorithm proposed in this paper is practical and feasible, providing a reference
basis for wireless data transmission of reciprocating mechanical vibration signals.

The main contributions of this paper are summarized as follows:

1. Using the BSBL-KSVD algorithm and exploiting the intra-block correlation of the
vibration signal, we can recover the structured non-sparse signal efficiently. Compared
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with other traditional compression and reconstruction algorithms. We can effectively
improve the reconstruction accuracy and compression effect;

2. A comprehensive evaluation index of compression effect suitable for reciprocat-
ing mechanical vibration signal is constructed, and it has a good engineering
application prospect;

3. We apply compressed sensing technology to fault diagnosis. The wireless trans-
mission efficiency of the vibration signal can be effectively improved to achieve a
better diagnosis effect and has a better reference value.

The second section of this article describes the diesel engine compression reconstruc-
tion method model based on BSBL-KSVD; the third part is the comprehensive evaluation
index of vibration data compression effect; the fourth part verifies the effectiveness of
the compression reconstruction method through preset failure experiments. Finally, this
research is summarized.

2. Model of Diesel Engine Compression Reconstruction Method Based on
BSBL-KSVD
2.1. Compressed Sensing

In traditional data acquisition and transmission, the Nyquist sampling theorem is
used. Usually, the sampling frequency is set to more than twice the highest frequency
in the signal under test. Due to the high sampling frequency, a large amount of data is
generated. This brings considerable challenges to the wireless data transmission, storage,
and remote real-time dynamic monitoring of the operational status of the diesel engine.
The emergence of CS theory breaks through the limitation of the traditional vibration signal
sampling theorem. Combining the acquisition of vibration signals with the compression
process, a small number of signals contains most of the valuable data. Assuming the
original signal x ∈ RN×1 and observation matrix Φ ∈ RM×N (M� N), then the signal x is
linearly projected on the matrix y ∈ RM×1 as a compressed signal. Then, the compressed
observation of the original signal x ∈ RN×1 can be obtained [32]:

y = Φx + v (1)

Among them, v represents the unknown noise vector. The CS algorithm uses the
compressed data y and the measurement matrix Φ to restore the original vibration signal x.

2.2. Block Sparse Bayesian Learning Reconstruction Algorithm

We were using the block structure characteristics of sparse signals. Based on the block
sparse Bayesian learning framework, data compression can be realized. In actual engi-
neering applications, the signal x has a block structure feature, as shown in the following
equation [16]:

X = [x1, · · · , xd1︸ ︷︷ ︸
XT

1

, · · · , xdg−1+1, · · · , xdg︸ ︷︷ ︸
XT

g

]
T

(2)

The model combined by Equations (1) and (2) is called a block sparse data compression
model. We use the characteristics of intra-block correlation to improve the ability of
compressed data recovery. Therefore, based on the model in the BSBL framework, it is
assumed that the independent xi between each block satisfies a multivariate Gaussian
distribution [16]:

p(xi; γi, Bi) ∼ N(0, γiBi), i = 1, · · · , g (3)

Among them, γi and Bi both represent unknown parameter variables. γi represents
a non-negative parameter variable that controls the block sparsity of the original signal
x. Bi represents a positive definite matrix used to obtain the related structure between
elements in each block. Assuming that the noise vector obeys the Gaussian prior distribution
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p(v; λ) ∼ N(0, λI), use Bayesian principle to obtain the posterior probability of x, as shown
in the following equation [16]:

p(x
∣∣∣y; λ, {γi, Bi}

g
i=1) ∼ N(µx, ∑ x) (4)

Among them, µx = ∑0 ΦT(λI + Φ∑0 ΦT)
−1

y, ∑ x = (∑ −1
0 + 1

λ ΦTΦ)
−1

.
When the parameters λ and {γi, Bi}

g
i=1 are solved, then the maximum posterior

estimate of x can be obtained as x̂. Next, use the second type of maximum likelihood
estimation method to obtain this parameter, as shown in the following equation [16]:

L(Θ) , −2 log
∫

p(y|x; λ) p(x; {γi, Bi}i)dx
= log|λI + Φ∑0 ΦT

∣∣∣+yT(λI + Φ∑0 ΦT)−1y
(5)

where Θ represents the parameters λ, {γi, Bi}
g
i=1.

2.3. K-SVD Adaptive Over-Complete Dictionary

The traditional fixed dictionary has a particular sparse representation when the signal
is sparsely decomposed. Since the sparse representation of the limited dictionary is un-
known, its suitability and flexibility are not strong enough. To further improve the sparsity,
we need to use an adaptive dictionary learning method for optimization. Therefore, the
K-SVD learning dictionary is used as the spare base to obtain a better sparse represen-
tation. The dictionary atom is dynamically updated through training until an adaptive
over-complete dictionary is obtained. To ensure that the atomic scale in the dictionary
is closer to the atomic scale in the original signal, the training process of dictionary D is
expressed as [33]:

minD‖Y−DA‖ 2
F s.t. ‖ ai‖ 0 ≤ T (6)

In the above equation, Y represents the given training dictionary matrix, A represents a
sparse matrix, and T represents the sparsity of the sparse representation vector to be solved.

Initialization D belongs to a super-complete dictionary, and there is a certain degree of
redundancy. Suppose that when we update the j-th column atom in dictionary D, we also
let Ei be the calculation error after removing the i-th atom; dj represents the j-th column of
dictionary D, and ai represents the i-th row of sparse matrix A. Then, the objective function
is as follows [33]:

‖Y−DA‖ 2
F =

∥∥∥∥∥Y−
K

∑
j=1

djai

∥∥∥∥∥
2

F

=

∥∥∥∥∥(Y−∑
j 6=1

djaj)− diai

∥∥∥∥∥
2

F

=
∥∥∥Ei − diai

∥∥∥2

F
(7)

When directly decomposing Ei, the elements in the obtained ai may not be sparse. Therefore,
only the non-zero elements in ai need to be updated, defined as the following equation:

wi =
{

k
∣∣∣ai(k) 6= 0

}
(8)

represents the index collection of the index of the non-zero element in ai. The SVD decompo-
sition method is used to update the atomic vector gradually, and the sparse representation
coefficient matrix A in the dictionary D. Next, we generate a new dictionary through
multiple iterative updates.

2.4. Basic Flow of BSBL-KSVD Algorithm

The algorithm flow of compression and reconstruction of diesel engine vibration
signal based on BSBL-KSVD is shown in Figure 1. The algorithm mainly includes dictionary
training, data compression, and signal reconstruction.
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The specific implementation steps are as follows:
Step 1. The signal is divided into blocks. Customize the collected original vibration

signal x into i blocks and the size of the elements in each block;
Step 2. Dictionary training: Initialize the dictionary parameters, set the number of

training samples, use the K-SVD algorithm to train the examples, and obtain an optimized
dictionary Ψ;

Step 3. Data compression: The vibration signal of reciprocating machinery is more
complicated than that of rotating machinery. To further improve the sparsity of the signal,
the optimized dictionary Ψ can map the signal to the sparse transformation, and the original
signal x = Ψθ can obtain the sparse transformation signal θ. The sensing matrix A = ΦΨ
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(that is, observation matrix × sparse matrix) compresses the sparse signal data and obtains
the data compressed signal observation value y = Aθ;

Step 4. Signal transmission: The block-compressed signals y1, . . . ,yi are successively
transmitted through the data network;

Step 5. Signal reconstruction: After receiving the compressed signal block, using the
BSBL-KSVD reconstruction algorithm proposed in this article through the sensor matrix
A1, . . . , Ai and compressed signal y1, . . . , yi to reconstruct, we obtain the restored sparse
signal θ1, . . . , θi. At the same time, we perform inverse sparse transformation to obtain
reconstructed signal blocks x1, . . . , xi and connect the reconstructed signal blocks one by
one and finally form a complete reconstructed signal x′.

The pseudo code of the algorithm (Algorithm 1) is as follows:

Algorithm 1 BSBL-KSVD algorithm pseudo code

1. Input: x = [ x1, x2, . . . , xi], blkLen, N, M;
2. Initialize dictionary parameters: param. L = 5, param. K = 70, param. numIteration = 20,

param. Initialization Method = ‘Data Elements’; group Start Loc = 1:blkLen:N;
3. K-SVD dictionary training: [Ψ, output] = KSVD(xi, param); the core is to use

Equations (6)–(8) to generate a new dictionary Ψ through multiple iterative updates;
4. Sparse transformation: xi = Ψθ;
5. Sensor matrix: Ai = ΦΨ;
6. Using the combination of Equations (1) and (2), the observation value of the data

compression signal is obtained yi = Aiθ;
7. Signal transmission: The block-compressed signals y1, . . . , yi are successively transmitted

through the data network;
8. For i = 1: size(xi,2)/N (signal reconstruction);
9. θi = BSBL_BO (Ai, yi, groupStartLoc, 0, ‘prune_gamma’, −1, ‘max_iters’, 20); the core is to use

Formula (3)–(5) to solve the reconstructed signal θi;
10. Perform inverse sparse transformation to obtain reconstructed signal blocks: x1, . . . , xi;
11. Connect the reconstructed signal blocks one by one to finally form a complete

reconstructed signal: x′ = x1 + x2, + . . . + xi;
12. End;
13. Output: x′.

3. Comprehensive Evaluation Index of Vibration Data Compression Effect

Reciprocating machinery vibration signal components are complex when compared to
rotating machinery vibration signal components, noise pollution is severe, and a consider-
able amount of redundant data is created. There are numerous techniques in extant research
to solve the data compression challenge. However, innumerable metrics are necessary to
evaluate the data compression effect and performance benefits thoroughly. Although data
compression technologies are widely utilized in the voice and image sectors, no standard-
ized complete evaluation approach exists. As a result, while researching the vibration data
compression method used in reciprocating equipment, it is vital to define a standard for
evaluating the data compression effect. The following thorough assessment index of the
data compression effect is produced by combining the structural properties of reciprocating
equipment vibration data.

3.1. Data Compression Rate Evaluation Index

Data compression rate refers to the ratio of compressed data to the original data. It is
a straightforward, intuitive, and easy-to-understand key indicator. Use CR (compressing
ratio, CR) to represent the data compression ratio, and the range is set to (0, 1); then, the
compression ratio is defined as follows [34]:

CR =
N−M

N
(9)
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N represents the original signal in the above equation, and M represents the com-
pressed signal. The larger the CR value, the higher the data compression rate. When the
data compression rate is higher, it does not mean that the data compression and reconstruc-
tion effect is better. It needs to be combined with the standard mean square error index for
comprehensive evaluation.

3.2. Standard Mean Square Error Evaluation Index

The data compression rate is used to evaluate the ability of data compression. It
shows that the loss rate of the original signal in the data compression process is very high.
The accuracy of the reconstructed original signal is closely related to the compression
rate. When the data compression rate is more significant, we cannot accurately restore
the original signal reconstructed from the compressed signal. Therefore, based on data
compression, MSE (mean square error, MSE) is used to represent the standard mean square
error index, which the following equation can calculate [35]:

MSE =

∥∥Z′ − Z‖2
‖Z‖2

(10)

Z represents the original signal in the equation above, and Z′ represents the recon-
structed signal. The smaller the MSE value, the higher the accuracy of the data compression
reconstructed signal. When the data compression rate is more significant, the MSE value is
smaller, indicating better data compression and reconstruction effect.

3.3. Peak Signal-to-Noise Ratio Evaluation Index

The peak signal-to-noise ratio refers to the ratio of the original signal to the data
com-pressed and reconstructed signal. In data compression, the loss of data information
is reduced, and the quality of retaining the original data is improved as much as possi-
ble. PSNR (peak signal-to-noise ratio, PSNR) is used to express the peak signal-to-noise
ratio [35], which the following equation can calculate:

PSNR = 101g(z2
max/(

1
N

N

∑
j=1

(zj − z′j)
2
)) (11)

z represents the original signal in the equation above, z′ represents the reconstructed
signal, and zmax represents the maximum component. The greater the PSNR value, the
higher the accuracy of the data compression and reconstruction signal, the closer it is to the
original signal. It shows that the data compression and reconstruction effect is better.

3.4. Pearson Correlation Coefficient Evaluation Index

In evaluating the effect of data compression and reconstruction of the signal and using
the two indicators of MSE and PSNR, usually, the Pearson correlation coefficient can also be
used to evaluate the degree of correlation between the reconstructed signal and the original
signal. Use r to represent the Pearson correlation coefficient, and the range is set to (−1,1),
which can be calculated by the following equation [36]:

rz,z′ =
N∑ ZZ′ −∑ Z∑ Z′√

N∑ z2 − (∑ z′)2
√

N∑ (z′)2 − (∑ z′)2
(12)

Z represents the original signal in the equation above, and Z′ represents the recon-
structed signal. When the value of r is closer to 1, the similarity between the compressed
and reconstructed signal and the original signal is higher and, conversely, the lower the
similarity to the actual movement.
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3.5. Comprehensive Evaluation Index in Time Domain

In fault prediction and health management, extracting characteristic parameters from
vibration signals is crucial. Provide input conditions for further relevant analysis. For
compressed data, the compression reconstruction algorithm should be able to recover from
the compressed reconstructed signal similar to the original signal. Furthermore, in theory,
it is identical to the actual feature parameters. Commonly used time-domain characteristic
parameters mainly include mean value, root mean square value, variance and peak value,
and other 12 indicators [37]. Under the same compression ratio, the feature parameters
extracted from the reconstructed signal from compressed data are closer to the feature
parameters extracted from the original signal, indicating that the less loss in the data
compression process, the better the data restoration effect.

To better reflect the compression effect of the reconstructed signal in the time domain
signal, the time domain characteristic index TTi is defined, which can be calculated by the
following equation:

TTi =

∣∣∣∣∣∣ Ti −
∼
Ti

Ti

∣∣∣∣∣∣ , i ∈ {1, 2, 3, · · · , 12} (13)

In the equation, Ti represents the time-domain feature value of the original signal, and
∼
Ti represents the time-domain feature value of the reconstructed signal. The smaller the
TTi value, the closer the time-domain characteristic index of the reconstructed signal and
the original signal and the more accurate the data compression effect and restoration effect.

Similarly, in order to better evaluate the data compression effect of different compres-
sion algorithms, the comprehensive evaluation index KPIt of time domain characteristics is
defined, which can be calculated by the following equation:

KPIt =
12

∑
i=1

ωi · TTi (14)

In the equation, ωi represents the weight coefficient, which satisfies ωi > 0, and
12
∑

i=1
ωi = 1. If there is no special case, the value is set to ωi = 1/12, i = 1,2,3, . . . ,12. The smaller

the KPIt value is, the closer the reconstructed signal data recovery is to the time domain
index of the original signal, and the more accurate the corresponding data compression
effect is.

4. Experimental Data Verification
4.1. Experiment Preparation

Figure 2 is the in-line six-cylinder diesel engine test bench used in the research. The
test bench comprises three parts: diesel engine condition monitoring panel, diesel engine,
and vibration signal data acquisition system. The diesel engine status monitoring panel
can control the ignition, acceleration, and flameout of the diesel engine. The instrument
reflects the engine speed, water temperature, voltage, and remaining oil. Preset 6 intake
valve clearance state modes under different working conditions include one normal status
and five other fault states. The detailed parameters of the dataset are shown in Table 1.
To obtain valid data samples, four vibration sensors are arranged on the cylinder head of
the diesel engine, as shown in Figure 2b. Among them, the sampling frequency of data
acquisition is set to 20 kHz, and the duration of each acquisition is set to 10 s. Each failure
mode collects ten sets of data samples, and each data group contains 200,000 points (20 kHZ
sampling for 10 s), as shown in Figure 3.
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clearance failure.

Table 1. Experimental Dataset of Valve Clearance in Different Working Conditions.

No. Dataset State Rotating Speed Inlet Valve Clearance

1 Valve_800_3mm Normal Status 800 0.3 mm
2 Valve_800_7mm Fault 1 800 0.7 mm
3 Valve_1200_3mm Fault 2 1200 0.3 mm
4 Valve_1200_4mm Fault 3 1200 0.4 mm
5 Valve_1200_5mm Fault 4 1200 0.5 mm
6 Valve_1200_7mm Fault 5 1200 0.7 mm
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Figure 3. Experimental dataset: (a) Valve_800_3mm; (b) Valve_800_7mm; (c) Valve_1200_3mm; (d) 
Valve_1200_4mm; (e) Valve_1200_5mm; and (f) Valve_1200_7mm. 

  

Figure 3. Experimental dataset: (a) Valve_800_3mm; (b) Valve_800_7mm; (c) Valve_1200_3mm;
(d) Valve_1200_4mm; (e) Valve_1200_5mm; and (f) Valve_1200_7mm.

4.2. Comparison of BSBL-BO Algorithm with Other Compression and Reconstruction Algorithms
4.2.1. Evaluation Index of Reconstructed Signal MSE under the Same Compression Ratio

Compare and analyze BSBL-BO algorithm with block sparse Bayesian learning-expectation-
maximization (BSBL-EM), compressive sampling matched pursuit (CoSaMP), BP, OMP, and
ROMP algorithm. Use the Valve_1200_7mm dataset to verify and analyze the reconstruction
algorithm, as shown in Figure 4. To ensure the reconstruction performance of the algorithm,
the data compression rate is uniformly set to 0.5, and the sparse dictionary matrix uniformly
uses the K-SVD generation method. From the analysis results in Figure 4, it can be seen that
the smaller the MSE index, the higher the reconstruction accuracy, indicating that under the
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same parameter setting conditions, the proposed BSBL-BO reconstruction algorithm has more
advantages than its reconstruction algorithm. The recovered reconstructed signal is closer to the
original signal, proving that the data compression and reconstruction effect is better.
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Figure 4. Valve_1200_7mm dataset: (a) BP algorithm (MSE = 0.25746); (b) CoSaMP algorithm
(MSE = 0.40583); (c) OMP algorithm (MSE = 0.42143); (d) ROMP algorithm (MSE = 0.29374);
(e) BSBL(EM) algorithm (MSE = 0.28463); and (f) BSBL(BO) algorithm (MSE = 0.084572).

4.2.2. Evaluation Index of Reconstructed Signal MSE under Different Compression Ratios

A comprehensive analysis of the algorithm’s influence on different compression ra-
tio changes is carried out. Six different datasets are used to verify the compression and
reconstruction algorithm. Among them, each dataset sets 13 kinds of compression ratios.
Each compression rate is performed 100 times of MSE calculation. Find the corresponding
variance σ and average µ, and use the 95% confidence interval (µ − 2σ, µ + 2σ) method
to express, as shown in Figure 5. It can be seen from the analysis result of Figure 5, when
CR < 0.6, the MSE index of the BSBL-BO reconstruction algorithm proposed in this paper
is smaller than other reconstruction algorithms. Know the accuracy, superiority, and ef-
fectiveness of the proposed method. When CR > 0.6, all reconstruction algorithms have a
more considerable MSE value as the compression ratio increases. It means that the data lose
essential information during the compression process, resulting in a significant reduction
in the reconstruction accuracy. The ROMP algorithm has the most considerable MSE value
and the lowest reconstruction accuracy. As the compression ratio increases, the reconstruc-
tion accuracy also decreases. Conversely, the lower the compression ratio, the higher the
reconstruction accuracy. Therefore, after being verified by six different datasets, under the
premise of ensuring a specific data compression rate and sure re-construction accuracy,
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when the CR = 0.5, it is confirmed that the method proposed in this paper is the best for
data compression of vibration signals.
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Figure 5. Comparative analysis of MSE 95% confidence intervals of six datasets: (a) Valve_800_3mm;
(b) Valve_800_7mm; (c) Valve_1200_3mm; (d) Valve_1200_4mm; (e) Valve_1200_5mm; and
(f) Valve_1200_7mm.

4.2.3. Peak Signal-to-Noise Ratio Evaluation and Pearson Correlation Coefficient under
Different Compression Ratios

As shown in Figure 6a, the method proposed in this paper has significant advantages
compared with other methods. When the compression ratio increases, the PSNR value
decreases, indicating that more data information is lost during data compression. The
reconstructed signal is different from the original signal and has a low peak signal-to-
noise ratio. Combining them with the MSE metric is recommended when evaluating
data compression results. The larger the PSNR index, the smaller the MSE index and the
better the data compression effect. As shown in Figure 6b, The BSBL-KSVD method also
outperforms other ways and the Pearson correlation coefficient increases as the compression
ratio decreases. The results show that much of the original signal’s information is preserved
in the data when compressed. Therefore, the reconstructed signal has a high similarity with
the original signal. When evaluating the effect of data compression, it is recommended to
combine the MSE indicator. The smaller the MSE index, the higher the Pearson correlation
coefficient, and the better the data compression effect. From a comprehensive analysis,
when CR = 0.5, it is proven that the method proposed in this paper has the best compression
effect and is more suitable for data compression of vibration signals.
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Figure 6. Comparative analysis of different compression and reconstruction methods: (a) peak sig-
nal-to-noise ratio evaluation and (b) Pearson correlation coefficient. 
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Figure 6. Comparative analysis of different compression and reconstruction methods: (a) peak
signal-to-noise ratio evaluation and (b) Pearson correlation coefficient.

4.2.4. Comprehensive Evaluation Index of Reconstructed Signal in Time Domain under
Different Compression Ratios

Next, to better evaluate the pros and cons of the recovered reconstructed signal, Using
the same compression and reconstruction algorithm and data in Section 4.2.1 and combined
with the time domain comprehensive evaluation index KPIt for comparative analysis, the
KPIt index weights are all set to 1/12, and the analysis results are shown in Figure 7. It
can be seen from Figure 7 that the smaller the KPIt index is, it means that the restored
reconstructed signal retains most of the original signal. The time-domain characteristics of
the reconstructed signal are closer to the frequency domain characteristics of the original
signal, which proves that the proposed method has the best data compression effect. In a
comprehensive analysis, the corresponding KPIt index is more minor when the compression
rate is lower, indicating that the data compression effect is better. Therefore, it is proven that
when the compression ratio CR = 0.5, the compression effect of the BSBL-KSVD algorithm
proposed in this paper is optimal, which is more suitable for data compression.
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Figure 7. Time-domain comprehensive evaluation index of reconstructed signal under different
compression ratios.

4.3. K-SVD Dictionary and Other Dictionary Effect Verification Comparison

In data compression, the sparse representation of the signal is critical since the sparse
representation of the static dictionary has relatively low complexity. Assuming that the
signal feature information is consistent with the atomic data in the dictionary, a more
accurate and effective sparse representation can be obtained. Commonly used classic fixed
dictionaries to obtain the sparse dictionary matrix include DFT, DWT, DCT, etc.
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Therefore, the K-SVD dictionary is compared and analyzed with the DCT, DFT, and
DWT dictionaries. Use the Valve_1200_7mm dataset to verify and scrutinize the recon-
struction algorithm. First, the 200,000 sampling points of the original signal only select
the first 64,000 sampling points for block compression. The length of each signal block
is set to 80 sampling points, which are divided into 800 blocks. A Gaussian random
matrix uniformly generates the observation matrix. Secondly, for the K-SVD dictionary,
the number of atoms is set to 50, the number of iterations is set to 20, and 300 blocks of
signals are trained each time. The remaining 500 pieces of signs are used to verify the
validity of the dictionary. Finally, the single variable principle is adopted, and the BSBL-BO
compression and reconstruction algorithm is uniformly adopted. It is applied to different
sparse dictionaries and verified from the MSE evaluation index, peak signal-to-noise ratio
evaluation index, and Pearson correlation coefficient evaluation index.

4.3.1. Evaluation Index of Reconstructed Signal MSE under Different Compression Ratios

As shown in Figure 8a, the compression effect of vibration data based on the K-SVD
dictionary is better than that of other dictionaries. The blue lines represents the original signal,
and the red lines represents the reconstructed signal in Figure 8b. Observing Figure 8b, we
can find that when CR = 0.5, the waveform of the reconstructed signal based on the K-SVD
dictionary is closer to the original signal than in other dictionaries. When CR > 0.7, the greater
the MSE index, and the data reconstruction effect is worse. Therefore, it is proven that the
proposed method is more suitable for data compression when CR = 0.5.
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4.3.2. Peak Signal-to-Noise Ratio of Reconstructed Signal under Different
Compression Ratios

In Figure 9b, the blue lines represents the original signal, and the red lines represents
the reconstructed signal. As can be seen from Figure 9, The data compression effect based on
the K-SVD dictionary is better than other dictionaries. When CR > 0.7, the PSNR indicator
becomes smaller as the compression rate increases. It shows that a great deal of data
information is lost in data compression. The recovered reconstructed signal is quite different
from the original signal, and the peak signal-to-noise ratio will naturally become smaller.
It needs to be evaluated in combination with MSE indicators. When the MSE index of the
reconstructed signal is smaller, and the PSNR index is more extensive, it proves that the
performance of the proposed method is better. Therefore, when CR = 0.5, it is more suitable
for data compression.



Sensors 2022, 22, 3884 15 of 20

Sensors 2022, 22, x FOR PEER REVIEW 15 of 21 
 

 

(a) (b)

0 100 200 300

Sampling points

-0.04

-0.02

0

0.02

0.04

A
m

pl
itu

de
/m

s
2

 BSBL-DCT 

0 100 200 300

Sampling points

-0.05

0

0.05

A
m

pl
itu

de
/m

s
2

 BSBL-DFT 

0 100 200 300

Sampling points

-0.04

-0.02

0

0.02

0.04

A
m

pl
itu

de
/m

s
2

 BSBL-DWT 

0 100 200 300

Sampling points

-0.04

-0.02

0

0.02

0.04

A
m

pl
itu

de
/m

s
2

 BSBL-KSVD 

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Compression ratio

0

0.2

0.4

0.6

0.8

1

M
SE

BSBL-KSVD
BSBL-DCT
BSBL-DFT
BSBL-DWT

 
Figure 8. (a) Comparison of MSE indicators of different sparse dictionaries; (b) when CR = 0.5, the 
reconstruction signal comparison of different dictionaries. 

4.3.2. Peak Signal-to-Noise Ratio of Reconstructed Signal under Different Compression 
Ratios 

In Figure 9b,the blue lines represents the original signal, and the red lines represents 
the reconstructed signal. As can be seen from Figure 9, The data compression effect based 
on the K-SVD dictionary is better than other dictionaries. When CR > 0.7, the PSNR indi-
cator becomes smaller as the compression rate increases. It shows that a great deal of data 
information is lost in data compression. The recovered reconstructed signal is quite dif-
ferent from the original signal, and the peak signal-to-noise ratio will naturally become 
smaller. It needs to be evaluated in combination with MSE indicators. When the MSE in-
dex of the reconstructed signal is smaller, and the PSNR index is more extensive, it proves 
that the performance of the proposed method is better. Therefore, when CR = 0.5, it is 
more suitable for data compression. 

(b)(a)

0 100 200 300

Sampling points

-0.04

-0.02

0

0.02

0.04

A
m

pl
itu

de
/m

s
2

 BSBL-DCT 

0 100 200 300

Sampling points

-0.04

-0.02

0

0.02

0.04

A
m

pl
itu

de
/m

s
2

 BSBL-DFT 

0 100 200 300

Sampling points

-0.04

-0.02

0

0.02

0.04

A
m

pl
itu

de
/m

s
2

 BSBL-DWT 

0 100 200 300

Sampling points

-0.04

-0.02

0

0.02

0.04

A
m

pl
itu

de
/m

s
2

 BSBL-KSVD 

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Compression ratio

5

10

15

20

25

PS
N

R
/d

B

BSBL-KSVD
BSBL-DCT
BSBL-DFT
BSBL-DWT

 
Figure 9. (a) Comparison of PSNR indicators for different sparse dictionaries; (b) when CR = 0.7, the 
reconstruction signal comparison of different dictionaries. 

  

Figure 9. (a) Comparison of PSNR indicators for different sparse dictionaries; (b) when CR = 0.7, the
reconstruction signal comparison of different dictionaries.

4.3.3. Pearson Correlation Coefficient of Reconstructed Signal under Different
Compression Ratios

In Figure 10b, the blue lines represents the original signal, and the red lines represents
the reconstructed signal. As can be seen from Figure 10, The data compression effect
based on the K-SVD dictionary is also better than other dictionaries. When CR < 0.6, as
the compression rate gradually decreases, the more significant the Pearson correlation
coefficient, and the data retains a large amount of original signal information during the
compression process. The similarity between the restored reconstructed signal and the
original signal becomes higher. Therefore, it needs to be used in conjunction with the MSE
indicator. When the MSE indicator is more minor, and the Pearson correlation coefficient is
more significant, it is proven that the compression effect of this method is the best. When
CR = 0.5, it is more suitable for data compression.
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5. Application of Compressed and Reconstructed Signal in Fault Diagnosis

To further verify the effectiveness of the BSBL-KSVD compression reconstruction method
proposed in this paper in fault diagnosis, two forms of fault classification accuracy are adopted:
naive Bayes classifier (NBC) and support vector machines (SVM). A comprehensive evaluation
is performed to check the quality of the compressed and reconstructed signal. The higher the
classification accuracy, the closer the reconstructed signal is to the original signal. The fault test
dataset in Table 1 is used for fault diagnosis, and ten sets of samples are taken for each fault
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state. There are 200,000 sampling points in each group, with 5500 sampling points as a group,
divided into 360 groups of samples and six failure states, a total of 6 × 360 = 2160 samples.
Each sensor’s fault state is extracted from the time and frequency domains, including 22 char-
acteristic parameters such as mean values, root mean square values, variance, and peak
values [37,38]. Each sensor forms a 22 × 2160 feature matrix.

5.1. Comparative Analysis of Fault Classification under Different Compression Ratios

Therefore, select sensor 1–4# data to form a feature matrix of 88 × 2160. After dimen-
sionality reduction by the stacked sparse autoencoder (SSAE) method, SSAE input nodes
are set to 88, and the hidden layer parameters are 50 and 22, respectively. The sparsity
ratio is set to 0.1, the weight adjustment coefficient is set to 0.000002, and the sparsity
penalty weight is set to 0.0002. A new 22 × 2160 feature matrix is obtained, divided into
1800 training samples and 360 test samples. Using the built-in classification learning tool
of Matlab 2020. Among them, 1800 training samples adopt the K-fold cross-validation
method and take K = 10. Input to the classifier method: NBC and SVM are trained, and the
optimal training model is obtained. Then, input 360 test samples into the trained model for
fault identification. Obtain the results of fault diagnosis accuracy, as shown in Table 2. The
confusion matrix of the fault diagnosis results is shown in Figure 11. It can be seen from
the effects that the higher the compression rate CR value, the lower the fault classification
accuracy rate. SVM has an accuracy rate of 96.39% for the original signal fault diagnosis,
while NBC has an accuracy rate of 90.83%. When CR = 0.25, the classification accuracy of
SVM reaches 95.56%, while that of NBC is 89.72%. It is very close to the classification result
of the original signal. We obtain the same conclusion as in Section 4.2: The BSBL-KSVD
compression reconstruction method is suitable for high data compression.

Table 2. Comparative analysis of fault classification under different compression ratios.

State
Original Signal CR = 0.25 CR = 0.5 CR = 0.75

SVM NBC SVM NBC SVM NBC SVM NBC

Normal Status 96.67% 91.67% 95.00% 91.67% 93.33% 96.67% 85.00% 88.33%
Fault 1 95.00% 90.00% 91.67% 88.33% 88.33% 81.67% 86.67% 78.33%
Fault 2 93.33% 86.67% 93.33% 78.33% 86.67% 75.00% 88.33% 80.00%
Fault 3 93.33% 88.33% 95.00% 86.67% 93.33% 86.67% 98.33% 91.67%
Fault 4 100.0% 95.00% 100.0% 95.00% 100.0% 95.00% 98.33% 86.67%
Fault 5 100.0% 93.33% 98.33% 98.33% 96.67% 96.67% 100.0% 96.67%

Total Accuracy 96.39% 90.83% 95.56% 89.72% 93.06% 88.61% 92.78% 86.95%

As shown in Figure 11, whether it is the original signal or different compressed
signals, the fault recognition rates for fault 1, fault 2, and fault 3 are relatively low. Among
them, the classification result of defect one increases with the increase of compression
rate, while the accuracy rate gradually decreases. Therefore, the BSBL-KSVD compression
reconstruction method proposed in this paper hopes to find the optimal balance between the
fault diagnosis accuracy and the wireless network transmission. It shows that this kind of
fault signal contains fewer fault features, which increases the difficulty of fault classification.
It can be recognized if the fault diagnosis accuracy rate is more than 90%. Then, when
CR = 0.5, the compressed vibration signal during wireless transmission will significantly
reduce the constraint of network bandwidth and improve the transmission efficiency.
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Figure 11. Comparative analysis of fault classification under different compression ratios: (a) Orig-
inal signal SVM classification; (b) original signal NBC classification; (c) CR = 0.25, SVM classifica-
tion; (d) CR = 0.25, NBC classification; (e) CR = 0.5, SVM classification; (f) CR = 0.5, NBC classifica-
tion; (g) CR = 0.75, SVM classification; and (h) CR = 0.75, NBC classification. 

Table 2. Comparative analysis of fault classification under different compression ratios. 

State 
Original Signal CR = 0.25 CR = 0.5 CR = 0.75 

SVM NBC SVM NBC SVM NBC SVM NBC 
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Fault 2 93.33% 86.67% 93.33% 78.33% 86.67% 75.00% 88.33% 80.00% 

Figure 11. Comparative analysis of fault classification under different compression ratios: (a) Original
signal SVM classification; (b) original signal NBC classification; (c) CR = 0.25, SVM classification;
(d) CR = 0.25, NBC classification; (e) CR = 0.5, SVM classification; (f) CR = 0.5, NBC classification;
(g) CR = 0.75, SVM classification; and (h) CR = 0.75, NBC classification.

5.2. Comparative Analysis of Fault Diagnosis Results of Different Compression and
Reconstruction Methods

We compare and analyze BSBL-KSVD with other compression and reconstruction
algorithms and use the experimental data in Section 4.1 to verify the method’s effectiveness.
First, use five compression and reconstruction algorithms to process the original data in
Table 1 with three compression ratios (i.e., CR = 0.25, CR = 0.50, CR = 0.75). Then, using
the feature extraction method in Section 5, different fault feature matrices of 88 × 2160 are
extracted from the other reconstructed signals of the four sensors. The SSAE method is
also used for dimensionality reduction where the SSAE parameter settings are the same
as in Section 5.1. Finally, for the three compression ratios under each compression and
reconstruction method. We can obtain a new 22 × 2160 feature matrix after dimension
reduction, respectively, and divide it into 1800 training samples and 360 testing samples. In
addition, use the built-in SVM classification tool of Matlab 2020 for fault diagnosis. The
relevant parameter settings are the same as those in Section 5.1, and the final diagnosis
results under different compression ratios are shown in Tables 3–5.

Table 3. When CR = 0.25, the comparative analysis of fault classification of different compression and
reconstruction methods.

State BSBL(BO)-KSVD BSBL(EM)-KSVD BP-KSVD ROMP-KSVD OMP-KSVD

Normal Status 95.00% 91.33% 83.33% 86.67% 85.33%
Fault 1 91.67% 85.00% 95.00% 86.67% 90.00%
Fault 2 93.33% 83.33% 81.67% 83.33% 82.67%
Fault 3 95.00% 93.33% 88.33% 81.67% 80.67%
Fault 4 100.0% 95.67% 85.00% 95.00% 90.33%
Fault 5 98.33% 100.0% 95.00% 91.33% 92.00%

Total Accuracy 95.56% 91.44% 88.06% 87.45% 86.83%



Sensors 2022, 22, 3884 18 of 20

Table 4. When CR = 0.5, the comparative analysis of fault classification of different compression and
reconstruction methods.

State BSBL(BO)-KSVD BSBL(EM)-KSVD BP-KSVD ROMP-KSVD OMP-KSVD

Normal Status 93.33% 87.67% 78.33% 80.67% 83.67%
Fault 1 88.33% 83.33% 80.00% 82.33% 72.00%
Fault 2 86.67% 85.00% 75.00% 70.33% 72.33%
Fault 3 93.33% 88.33% 81.67% 76.00% 68.00%
Fault 4 100.0% 95.00% 92.33% 87.67% 82.33%
Fault 5 96.67% 90.67% 88.33% 88.00% 85.67%

Total Accuracy 93.06% 88.33% 82.61% 80.83% 77.33%

Table 5. When CR = 0.75, the comparative analysis of fault classification of different compression and
reconstruction methods.

State BSBL(BO)-KSVD BSBL(EM)-KSVD BP-KSVD ROMP-KSVD OMP-KSVD

Normal Status 85.00% 81.00% 72.67% 76.67% 65.00%
Fault 1 86.67% 77.33% 75.00% 65.00% 74.67%
Fault 2 88.33% 77.33% 71.33% 73.67% 67.33%
Fault 3 98.33% 89.00% 83.33% 67.33% 67.33%
Fault 4 98.33% 82.67% 75.67% 70.00% 72.00%
Fault 5 100.0% 85.33% 80.00% 75.67% 63.67%

Total Accuracy 92.78% 82.11% 76.33% 71.39% 68.33%

From the diagnostic results in Table 3, it can be seen that when CR = 0.25, the diagnostic
results of the BSBL-KSVD method are better than other compression and reconstruction
methods. The diagnostic results of BP, ROMP, and OMP algorithms are less than 90%,
indicating that the reconstruction accuracy of these three types of strategies is not high.
Some critical data information is lost during data compression.

From the analysis of the diagnostic results in Table 4, when CR = 0.5, only the diag-
nostic results of the BSBL-KSVD method are > 90%, The diagnostic results of the other
four compression methods were lower than 90%, and the lowest diagnostic result of the
OMP method was only 77.33%. It shows that with the increase of compression ratio, the
diagnosis result gradually decreases.

From the results in Table 5, when CR = 0.75, the diagnostic results of BP, ROMP, and
OMP methods are all below 80%, while the BSBL-KSVD method can reach more than 90%.
Compared with other compression methods, the method proposed in this paper has good
robustness and superiority.

To sum up, the diagnosis results of the BSBL-KSVD method are better than other
compression and reconstruction methods under different compression ratios. In the case of
weighing various pros and cons, it is assumed that the diagnostic result is >90% and has
a high data compression rate. This is a good reference for applying data compression to
mechanical fault diagnosis.

6. Conclusions

This paper proposes a method of compression and reconstruction of diesel engine
vibration signal based on BSBL-KSVD, which is practical and feasible, and compared with
other methods, there are advantages. To effectively verify the pros and cons of the BSBL-
KSVD algorithm proposed in this study regarding data compression effects, use the CR
indicator, MSE indicator, PSNR indicator, r indicator, and KPIs indicator for verification
and, finally, compressed and reconstructed signals for fault diagnosis case analysis. The
experimental results show that the compression effect of the BSBL-KSVD algorithm is
optimal when the compression rate CR = 0.5. The recovered reconstructed signal is closer
to the original signal, and good classification accuracy is obtained, which has a good
engineering application prospect.
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Although the proposed method has achieved good results, we can still improve it in
the following aspects: First, this research did not focus on using the reconstructed signal to
perform signal repair and noise reduction preprocessing in the follow-up. We will conduct
detailed research using methods such as double sparse dictionary learning; second, it
did not consider integrating the algorithm with the data acquisition hardware. In the
subsequent investigation, embedding the algorithm into FPGA improves front-end data
acquisition, transmission performance, and efficiency.
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