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Abstract: The use of unmanned aerial vehicles (UAVs) for different applications has increased tremen-
dously during the past decade. The small size, high maneuverability, ability to fly at predetermined
coordinates, simple construction, and affordable price have made UAVs a popular choice for di-
verse aerial applications. However, the small size and the ability to fly close to the terrain make
the detection and tracking of UAVs challenging. Similarly, unmanned underwater vehicles (UUVs)
have revolutionized underwater operations. UUVs can accomplish numerous tasks that were not
possible with manned underwater vehicles. In this survey paper, we provide features and capabilities
expected from current and future UAVs and UUVs, and review potential challenges and threats due
to use of such UAVs/UUVs. We also overview the countermeasures against such threats, including
approaches for the detection, tracking, and classification of UAVs and UUVs.

Keywords: classification; countermeasures; detection; tracking; unmanned aerial vehicles (UAVs);
unmanned underwater vehicles (UUVs)

1. Introduction

A few decades ago, flying was restricted to a small group of wealthy individuals
and large public- and private-sector entities. Flying was also strictly regulated under
government and international laws. However, unmanned aerial vehicles (UAVs) have
changed the paradigm. Nowadays, different types of UAVs are available commercially
at affordable prices, and anybody with a basic knowledge of flying can operate them.
Therefore, sales of UAVs have seen a surge in the recent decade and are expected to increase
in the future [1]. UAVs are used in numerous applications including search and rescue,
disaster management, surveillance, package delivery, and filming [2]. UAVs are also used
to measure the depth of water channels and to study coastal areas [3–5], where UAVs
are mainly used for remote sensing and imaging, as other methods of data collection in
these terrains are challenging. Moreover, UAV manufacturing is one of the fastest-growing
industries in the world. The advancement of technology in other fields (e.g., smartphone
manufacturing and telecommunications) has greatly benefited the UAV industry. According
to a Research and Markets report [6], the UAV market is estimated to reach USD 58.4 billion
by 2026, from USD 27.4 billion in 2021.

In the recent past, many incidents have been reported with malicious UAVs. There
are also numerous emerging threats from malicious UAVs in the near future [7]. UAVs
have inherent stealth capabilities, mainly due to their small size and ability to fly close to
terrain. Therefore, malicious UAVs are difficult to detect, track, and classify. The current
detection, tracking, classification, and disabling methods for UAVs are not adequate to cover
a wide spectrum of threats [8–10]. A significant investment for finding credible solutions to
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countering malicious UAVs is underway by research communities and organizations all
over the world [11].

Similar to UAVs, unmanned underwater vehicles (UUVs) have revolutionized sea
operations. UUVs can perform many tasks that were not possible with manned underwater
vehicles (MUVs) [12]. For example, UUVs can remain submerged for a very long duration
of time and can operate very deep in the oceans without risking the safety of the crew,
and the initial and maintenance cost of UUVs is significantly smaller compared to MUVs.
Therefore, a large number of UUVs can be used at different locations in the oceans for
different applications. Overall, the detection, tracking, and classification of UUVs are
significantly difficult compared to MUVs [13].

In this work, we will discuss the current and possible future capabilities and features
of UAVs and UUVs, the threats and challenges from malicious UAVs and UUVs at present
and in the future, the limitations of the current countermeasures, and future directions
for countering malicious UAVs and UUVs. The rest of the paper is organized as follows.
Section 2 discusses the features and capabilities of current and expected future UAVs, while
the challenges and threats from malicious UAVs are provided in Section 3. The detection,
tracking, and classification of UAVs with radar-based approaches is discussed in Section 4,
and in Section 5 for methods other than radar systems. Section 6 covers future directions
for the detection, tracking, and classification of UAVs. Section 7 provides characteristics of
UUVs, and discusses the detection, tracking, and classification of UUVs, as well as future
directions for countering malicious UUVs. Section 8 concludes the paper.

2. Current and Future UAVs

In this section, we will discuss current UAVs and their capabilities and provide ideal
features and capabilities that are expected from future UAVs.

2.1. Structure, Flight Characteristics, and Capabilities of Current UAVs

The absence of a pilot in an aerial vehicle helps to change the aerodynamic design and
accommodate more features compared to manned aerial vehicles (e.g., high maneuverabil-
ity, larger payload capacity, and flight endurance). The current design of UAVs focuses
mainly on flight endurance, secured and redundant communication links, and payload
capabilities [14]. However, the speed and cognitive capabilities are limited. The current
UAVs can be multi-rotors or fixed-wings. The flight endurance of fixed-wing UAVs is
larger compared to multi-rotor UAVs for a given amount of input energy. The longer
flight endurance for fixed-wing UAVs compared to multi-rotor UAVs is mainly due to
additional lift and glide from the flat fixed wings. The multi-rotor UAVs have greater
maneuverability compared to fixed-wing UAVs and can hover at a single location. How-
ever, multi-rotor UAVs are inherently unstable and, from a control point of view, highly
non-linear systems [15].

The remotely controlled multi-rotor and fixed-wing UAVs require a radio link [16].
The control radio link exists between the onboard UAV flight controller and the ground
controller either directly, through satellites, or through other aerial vehicles in the vicinity.
The data collected from a given area using onboard UAV sensors (e.g., electro-optical and
infrared (EO/IR) sensors) are sent via a radio link to the ground controller. The control and
data radio links have different bandwidths, and the communications are encrypted. Differ-
ent frequency-hopping sequences are also used to avoid jamming. Moreover, multi-rotor
and fixed-wing UAVs can fly autonomously [17]. In the autonomous mode, either the UAV
follows fixed Global Positioning System (GPS)/Global Navigation Satellite System (GNSS)
way-points or uses data from real-time sensors (e.g., camera, radio sensors, and stored
maps) for navigation to a particular location.

The majority of the currently available UAVs, either fixed-wing or multi-rotor, use
propellers for propulsion. The shape, type, and number of propellers can vary among
different types of UAVs. Moreover, the UAVs can carry different payloads. The maximum
payloads of popular UAVs are provided in Table 1. The payload of fixed-wing UAVs is
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generally larger than that of multi-rotor UAVs. The payload capacity of fixed-wing UAVs
is generally increased by increasing the size of the wings. On the other hand, the payload
capacity of the multi-rotor UAV can be increased by increasing the size and number of
propellers [18]. The maximum speed of a multi-rotor UAV can reach 73 m/s [19], whereas
the maximum speed of a fixed-wing UAV can be close to 278 m/s [20]. The maximum flight
ceiling of currently available UAVs is around 25 km. (Balloons in the Google’s Loon project
were designed to fly in the stratosphere, at an altitude between 18 km and 25 km [21].)
Popular current UAVs, types of sensors installed, and their functionalities and features are
provided in Table 1.

Table 1. Popular categories of UAVs, major types of sensors installed, and their functionalities and
features are provided. All the UAVs are equipped with GPS receivers, internal navigation unit(s),
and control and data communication links.

UAV Name Category Powered by and
Sensors Installed Functionalities

Maximum Payload,
Speed, Flight Altitude

and Duration

Malat Mosquito Micro/nano,
fixed-wing

Battery, camera,
EO sensor

Surveillance and
reconnaissance

0.25 kg, 13 m/s,
0.15 km, 1 h

Aurora Skate Micro/nano,
fixed-wing

Articulating motor
pods, camera,
EO/IR sensors

Surveillance and
reconnaissance,
tracking objects

0.2 kg, 25 m/s, 4.3 km,
1 h

CyberQuad mini Micro/nano,
multi-rotor

Battery, camera,
and multiple sensors
for detecting gases

and pollutants

Urban aerial
reconnaissance,

detection of gases,
industrial and other

pollutants

1.5 kg, 18 m/s, -, 0.67 h

RQ-11 Raven Small/mini, fixed-wing
Battery, camera,
infrared sensor,

miscellaneous sensors

Surveillance, mapping,
imaging and object

detection and
classification

0.2 kg, 22.5 m/s,
4.2 km, 1.5 h

Matrice-600 Small/mini, multi-rotor Battery, camera,
intelligent batteries

Imaging and
surveillance, high data

rate live streaming

6 kg, 18 m/s, 2.5 km,
0.67 h

SkyEye Sierra VTOL Small/mini, fixed-wing
and multi-rotor

Battery/petrol engine,
camera, surveying and
surveillance equipment,

multiple sensors

Imaging, mapping,
inspection,

and surveillance,
and other sensing

applications

3 kg, 30 m/s, 3 km, 5 h

Watchkeeper Medium, fixed-wing
Rotary Wankel engine,
camera, EO/IR sensor,

motion filter

Imaging, surveillance
and reconnaissance

150 kg, 40 m/s, 4.9 km,
14 h

Eagle Eye, Bell HV-911 Medium, tiltrotor

Turboshaft engine,
camera, surveillance

sensors, rescue
equipment

Search and rescue,
surveillance,

reconnaissance (mainly
at sea)

90 kg, 103 m/s, 6 km,
5.5 h

Skyeye-R4E Medium, fixed-wing

Twin rotor rotary
engine, camera,
surveillance and

miscellaneous sensors

Imaging, surveillance,
pesticide spraying,

border patrols

82 kg, 55 m/s, 4.6 km,
8 h
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Table 1. Cont.

UAV Name Category Powered by and
Sensors Installed Functionalities

Maximum Payload,
Speed, Flight Altitude

and Duration

Global Hawk Large, fixed-wing

Turbofan engine,
camera, EO/IR sensors,

laser and radar
warning receivers,

ECM equipment, MTI
system

Long endurance and
high-altitude and wide

area ground/sea
surveillance and
reconnaissance,

communications

1400 kg, 175 m/s,
18 km, 33 h

Zephyr 8 Large, fixed-wing

Solar-powered,
Amprius lithium-ion

batteries,
communication

systems

Airborne
communications: as a

mobile communication
relay

5 kg, 9.5 m/s, 21.3 km,
26 days

2.2. Expected Structure and Flight Characteristics of the Future UAVs

The structure of the UAV of the future should be simple, lightweight, modular (adapt-
able to different scenario requirements), and cost effective, and should allow safe landings
over harsh terrain and water. New capabilities (e.g., self-healing with the help of artificial
intelligence (AI) and 3D printing on-board the UAVs) can be introduced. Different sensors
and sources of energy can be used. The wing geometry can be varied during different
phases of the flight. The variable wing geometry can provide different speed and payload
options dependent on the scenario. The variable wing geometry and propellers can also
help in vertical take-off and landing, as shown in Figure 1.

RF, EO/IR sensors

Guidance and 
communication 

systems

Solar panels on top of wings

On-board 
computer/flight 
controller

Propellers

Variable wing geometry during flight

Horizontal stabilizer and elevator

Vertical stabilizer
 and rudder

Passive sensors placed on the surface of the UAV

During vertical take-off and landing

 During flight

Figure 1. The high-level design of a futuristic UAV. Multiple sensors and sources of energy can be used.
In particular, variable wing geometry can be used during different modes of flight. The variable wing
geometry can help to obtain different flight speeds and to make vertical take-off and landing possible.

The UAV should be able to carry a large payload without significantly compromising
the flight duration. The long flight duration can be accomplished through the use of smart
fuels, optimum fuel usage, and keeping the weight of the UAV air-frame small. Variable
sources of fuel can also be used during different phases of flight. Some noteworthy fuel
sources are fossil fuel, synthetic fuel, solar, hydrogen, and chargeable batteries. The UAV
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charging stations can be set up in high-up locations (e.g., on top of tall buildings) to save
energy during take-off from the ground. The UAVs can also charge wirelessly by flying
near electricity transmission lines [22]. Wireless charging using transmission lines can help
to achieve a long UAV flight duration without landing.

The UAV should be able to take off and land vertically on any kind of ground surface
and over water. In case of a crash, air balloons can be used to minimize the damage
to the airframe. UAVs should also be able to fly in a fully autonomous mode. In the
fully autonomous mode, the complete UAV flight is controlled by an AI-driven flight
controller and aided by onboard sensors. In the autonomous mode, the UAV should
be equipped with redundant navigation systems, which can help to mitigate external
navigation reference spoofing.

2.3. Expected Radio and Sensing Capabilities of Future UAVs

Radio communications play an important role in UAV operations. Future UAVs are
expected to support broadband radio links that implement frequency hopping to provide
resilience against radio frequency (RF) jamming. There should be redundant and secured
communication channels between the ground station and the UAV for important tasks.
Friendly UAVs, ground stations, satellites, and other airborne platforms should be able to
communicate and share sensor data over a secured link, forming a network. The UAVs
should also support seamless real-time augmented reality through streaming, with UAVs
in the field relaying to UAV operators, for better situational awareness.

The UAV should be equipped with different types of sensors to obtain seamless
real-time information about the surrounding environment. These sensors include EO/IR
sensors, lasers, and other RF sensors. Future UAVs should also be equipped with sensors
to detect radio jamming, hacking, and external navigation spoofing in a given environment.
In addition, countermeasures should be available against radio jamming, hacking, and ex-
ternal navigation spoofing. An overall comparison of current and future UAV features and
capabilities is provided in Table 2.

Table 2. Comparison of current and expected future UAV features and capabilities.

Serial # Current UAV Features and Capabilities Future UAV Features and Capabilities

1 Multi-rotor or fixed-wing Hybrid of multi-rotor and fixed-wing, variable
wing geometry

2 Aerial flying Aerial, over- and underwater,
and on-ground maneuvering

3 Propeller propulsion Jet engine propulsion in addition to
propeller propulsion

4 Battery and fossil fuel Solar, synthetic, hydrogen fuel, and battery charging
while flying

5 Small and medium payloads Large, multi-purpose payloads

6 Limited maneuverability for fixed-wing UAVs High maneuverability for fixed-wing UAVs

7 Cost varies, and dependent on the size of UAV Reduction in price of different sizes of UAVs

8 Flight duration dependent on the payload Long flight duration, and less dependent on
the payload

9 Weather and light affects performance All weather, day and night high performance

10 Small to medium RCS Very small RCS

11 Limited and vulnerable communication links Redundant and secured communication links

12 Semi-autonomous operations Fully autonomous and AI-controlled options available

13 Limited ECM capabilities Enhanced ECM capabilities
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3. Challenges and Threats from Malicious UAVs

In this section, we will discuss current and possible future threats posed by malicious
UAVs and challenges for the detection, tracking, and classification of malicious UAVs.

3.1. Challenging Features of UAVs

One of the major features of UAVs is inherent stealth. The size and the infrared
and acoustic signatures of UAVs are significantly smaller compared to manned aerial
vehicles. Moreover, UAVs can fly at significantly low altitudes compared to manned aerial
vehicles. Therefore, UAVs offer inherent stealth capabilities and are difficult to detect
and track by conventional methods. The shape of small UAVs is also similar to birds.
Therefore, classification of UAVs from birds is challenging [23]. Furthermore, the small
energy requirement for UAVs compared to manned aerial vehicles allows long-duration
non-stop flight missions.

Different types of UAVs offer different features. The features offered by fixed-wing
UAVs are arguably more advantageous compared to multi-rotor UAVs. For example,
the fixed-wing UAVs with delta wing configuration can carry large payloads and fly at
high speeds. Fixed-wing UAVs can be programmed to fly autonomously using electronic
or mechanical procedures. If mechanical procedures are used to fly the UAV autonomously,
then it is immune to all kinds of electronic countermeasures (ECM). Overall, fixed-wing
UAVs flying autonomously and cognitively based on terrain, and using both electronic and
mechanical procedures during different phases of flight, can pose a significant challenge.
On the other hand,multi-rotor UAVs are more agile compared to fixed-wing UAVs and can
hover. However, multi-rotor UAVs cannot be flown only through mechanical controls.

3.2. Autonomous UAVs

The flight controller onboard a UAV can be configured to work autonomously [24].
The autonomous flight mode is possible with the help of onboard sensors and external
navigation references (e.g., GPS, and GNSS). There are two modes of autonomous UAV
flight. Either predetermined waypoints are set for UAV to follow autonomously, or AI
aided by on-board sensors can be used to make real-time decisions [25].

There are many challenging features offered by autonomous UAVs compared to
remote-controlled UAVs. Long-range terrain-hugging flight is possible with autonomous
UAVs [26]. The terrain hugging can be performed with the help of different types of RF and
EO/IR sensors. In case of terrain hugging, the detection and tracking of the aerial vehicle
becomes difficult. Autonomous UAVs can also be equipped to move over land and water
autonomously. The ability to maneuver over land and water can provide an alternate route
in case it is not possible to continue flight in a given area. Moreover, autonomous UAVs that
do not require an external navigation reference like GPS are immune to the majority of ECM.
Autonomous UAVs can change shapes by integration and disintegration of parts/UAVs
based on the scenario. The integration and disintegration allows UAVs to perform diverse
tasks in the air and on the ground. In the future, components of autonomous UAVs, and
subsequently their shape, will be capable of being modified in real time using onboard
3D printing.

3.3. UAV Swarms

At present, a major challenge from UAVs is when they fly in swarms. In a UAV swarm,
a large number of different sizes of autonomous UAVs can be used [27,28]. The rapidly
and randomly time-varying trajectories of the UAVs in the swarm make their tracking
difficult. A well-coordinated UAV swarm can outperform large, expensive, and complex
UAVs/manned aerial vehicles. In general, there are many possibilities where UAV swarms
can be used. Some example use case scenarios are as follows:

• Each UAV in the swarm can be assigned a specific task [29], (e.g., EO/IR imaging, ECM,
RF sensing). Moreover, if the payload is large, then it can be divided into modules and



Sensors 2022, 22, 3896 7 of 30

carried separately by individual UAVs in the swarm and can be combined during the
flight when required.

• In a UAV swarm, each UAV can either fly autonomously [30] following a pre-planned
trajectory or cognitively adopt a trajectory [31] based on the real-time scenario using
on-board sensors. AI algorithms can be used by each UAV in the swarm to coordinate
with each other and/or the central controller. The central controller can be on the
ground, a UAV in the swarm, or a manned aerial vehicle.

• UAV swarms can adopt different shapes in the air [32] and can be equipped with the
ability to integrate and disintegrate in the air when required.

• UAV swarms can be used as airborne assets that can provide better situational aware-
ness [33].

• A swarm of UAVs in the air can also be used to create an antenna array [34]. Each
UAV can carry an antenna element. The antenna array and subsequently the radiation
pattern can be reconfigured by changing the position of the UAVs.

• Miniaturized UAVs that have dimensions of a few inches can also be used in swarms [35].
The miniaturized UAVs in a swarm can work similarly to honey bees. There is a small
effect of the environment on the flight of miniaturized UAVs (e.g., wind gusts). Minia-
turized UAVs can also integrate to form large devices in the air in real time (e.g.,
to display patterns or to form a mobile phased array antenna in the air).

3.4. Electronic Countermeasures

Offensive and defensive electronic countermeasures (ECM) can pose a significant
challenge to the detection, tracking, and classification of malicious UAVs. The UAVs can be
equipped with various offensive and defensive ECM. Popular offensive ECM are jamming,
spoofing, hacking, and high-energy radiation burst. The defensive ECM helps to shield
against offensive ECM. Some popular defensive ECM are as follows:

• The RF link between the UAV and the remote controller is vulnerable to jamming [36]
and hacking [37]. The jamming can be avoided by spread-spectrum techniques and
high frequency-hopping rates. The hacking attempts can be thwarted by using multi-
layered authentication and encryption. The threat of jamming and hacking can also be
reduced by using redundant RF links.

• RF cognitive techniques can be used to analyze the energy distribution and hopping
patterns of the RF jammer [38]. The analysis can help to adjust the RF parameters
onboard the UAV accordingly to avoid jamming.

• GPS spoofing can be eliminated by identifying the spoofed GPS signals [39]. The com-
parison of signals from multiple navigation references (both internal and external) can
help to identify the spoofed GPS signal.

• To save UAV onboard electronic equipment from high-energy electromagnetic (EM)
radiation burst, metallic shielding can be used. Metallic and lead shielding can offer
protection for the onboard electronic equipment against the EM radiation burst.

3.5. Types of Threats from Malicious UAVs

Conventional threats were perceived mainly from ground-based targets, and security
measures were designed accordingly. However, UAVs have added another dimension to
the conventional threats spectrum. Many threat scenarios can arise using UAVs. The major
threats that involve malicious UAVs include [40–43]:

• Hazardous payloads that can be carried by mischievous UAVs for long distances.
• Surveillance and intelligence gathering by malicious UAVs (e.g., UAVs can be used to

gather information near sensitive locations like police stations, borders, etc.).
• Illegal activities using UAVs. Numerous activities can be carried out by using mis-

chievous UAVs (eavesdropping, stealing personal data, unauthorized imaging, iden-
tity theft, and starting a fire, etc.).
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• Threats to governmental authorities, vehicles, and infrastructure. In particular, mali-
cious UAVs can present a significant threat to sensitive infrastructure (e.g., nuclear
power plants and chemical plants).

• Threats to crowded areas.
• Threats to the civil aviation industry. In the recent past, there were many reported

incidents of mischievous UAVs interfering with the civilian flight operations [44].
• UAV swarms. At present, the threat of UAV swarms is difficult to counter.
• Unauthorized control of UAVs while flying. Hacking UAVs and flying them for

malicious purposes.

4. Radar Systems for UAV Detection, Tracking, and Classification

Radar systems are mainly used for the detection, tracking, and classification of UAVs.
In this section, we describe the detection, tracking, and classification of UAVs using radar
systems. The limitations of the radar systems for the detection, tracking, and classification
of UAVs are also discussed.

4.1. Conventional and Advanced Radar Systems

The performance of a radar system in a given terrain and for a given scenario (e.g., the
type and number of aerial vehicles) depends on many factors including center frequency,
bandwidth, modulation, sounding signal, pulse repetition frequency, receiver sensitivity,
antenna beam characteristics, and clutter rejection ability [45]. The two main types of radar
systems are pulse and continuous wave. Pulse and continuous wave radars are further
sub-categorized as shown in Figure 2. Radar systems are generally configured/calibrated
for conventional manned aerial vehicles, and modifications are required to detect, track,
and classify small UAVs. Conventional radar systems use popular frequency bands in-
cluding very high frequency (VHF), ultra high frequency (UHF), L, S, C, X, Ku, K, Ka,
and millimeter wave.

Primary Secondary

Pulse

MTI radar Doppler radarModulated radar Unmodulated
radar

Continuous wave

Radars

Figure 2. Different types of radars for detection, identification, and tracking of aerial vehicles. Primary
radars are used for detection of aerial objects, whereas secondary radars are used for identification.
Primary radars are sub-categorized into continuous wave and pulse radar.

In addition to conventional radar systems, there are advanced radar systems for
detection, tracking, and classification of UAVs. Among the advanced radar systems, ac-
tive electronically scanned array (AESA) radars are popular for the detection of small
UAVs [46]. Advanced radar systems include passive, hybrid, multiple-input and multiple-
output (MIMO), and cognitive radars. Passive radar systems can use different indirect illu-
minations (e.g., TV and FM radio broadcasting) for detection and tracking of UAVs [47–50].
Hybrid radar systems can also be used for precise positioning, detection, and tracking
of aerial vehicles. In [51], a hybrid radar system using frequency-modulated continu-
ous waves (FMCW) and interferometry is used for precise positioning. Similarly, in [52],
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a hybrid radar system consisting of active and passive radars is described. The hybrid
active and passive radars in [52] provide better detection performance compared to single
active/passive radar systems.

MIMO and cognitive radar systems can also be used for the detection and tracking
of UAVs [53–56]. MIMO radars can provide better detection and tracking of small UAVs
due to spatial diversity, which helps to improve ground clutter rejection. A 60 GHz FMCW
MIMO radar [57] is shown in Figure 3. The FMCW MIMO radar in [57] is capable of
detecting hovering and moving aerial vehicles simultaneously at tens of meters of range;
however, UAV detection is not the main application of this radar, and it is included here
rather for demonstration purpose. The main advantages of MIMO radar are high frame
rate and ability to collect micro-Doppler data from multiple aerial vehicles simultaneously.
Cognitive radars are also helpful in the detection and tracking of modern aerial threats.
The parameters of the cognitive radar can be selected to be adaptively dependent on the
aerial vehicle and the scenario. Adaptive parameter selection greatly helps in the detection,
tracking, and classification of UAVs [58]. In addition, light detection and ranging (lidar) can
also be used for the detection and tracking of UAVs [59]. Lidars can separate the background
scene from a desired UAV easily compared to EO/IR imaging. The performance of UAV
detection using lidar is better compared to other detection techniques in urban and cluttered
environments. However, scanning using lidar takes a significant amount of time.

FMCW MIMO radar

Detected UAVs on 
the radar display

Figure 3. Detection and tracking of multiple UAVs with the help of 60 GHz FMCW frequency-division
multiplexing MIMO radar [57].

4.2. Detection of UAVs Using Radar Systems

The detection of an aerial vehicle by a radar system depends on the radar cross-
section (RCS) of the aerial vehicle. The RCS of an aerial vehicle depends mainly on
the frequency, polarization, and aspect angle. The RCS also depends on the physical
characteristics of the aerial vehicle. The physical characteristics include the geometry
and material of the aerial vehicle [60]. UAVs have significantly small RCS mainly due
to their small size and largely non-metallic bodies. Small-RCS and low- and slow-flying
UAVs are difficult for conventional radar systems to detect at long ranges without system
calibrations [61]. The maximum range Rmax obtained using a radar after detection is
given by the following:

Rmax = 4

√
PTG2λ2σ

PR,min(4π)3L
, (1)

where PT and PR,min are the transmit power and the minimum received power, respectively;
G is the antenna gain; λ is the wavelength; σ is the RCS; and L represents the internal losses
of the radar.

Detection using radar systems can be broadly classified as active or passive. Active
radar systems are mainly used. Active radars have longer detection ranges and better
tracking and classification compared to passive radars. Long-range detection is carried
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out using active search radars. The range and angular resolution of search radars are
generally low compared to tracking/guidance radars. High-range and high-angular-
resolution (but limited-range) active search radars using AESA or passive electronically
scanned array (PESA) [62] can also be used. In comparison to active radars, passive
radars/receivers use radio emissions from other radars or communications sources in the
vicinity to detect the presence of an aerial vehicle. Passive radars are also popular for the
detection of stealth aerial vehicles [63].

There are different radar systems for the detection of UAVs available at present [64,65].
FMCW, pulse-Doppler, ultra-wide-band, and phase interferometry radars are popular for
the detection of UAVs [66–69]. AI techniques are also used for the detection of multiple
UAVs simultaneously [70]. Similar to radar, lidar is helpful for the detection of UAVs [59].

4.3. Tracking of UAVs Using Radar Systems

Tracking of aerial vehicles can be performed either by a search radar or by a separate
tracking radar [71]. A dedicated tracking radar is generally used to obtain continuous
information of the aerial vehicle using narrow illumination beams [71]. Tracking radars
have higher range and angular resolution beams compared to search radars. The tracking
equation of radar is as follows:

S/N =
PtG2λ2σ

(4π)3R4kTsBnL
, (2)

where S/N is the signal-to-noise ratio, R is the slant range between the radar and the aerial
vehicle, k is the Boltzmann constant, Ts is the total system temperature, and Bn is the RX
noise bandwidth. During tracking, the position coordinates, in 2D or 3D, and motion char-
acteristics (velocity and trajectory) of the aerial vehicle are stored. The position coordinates
includes range, azimuth, and elevation angles of the aerial vehicle from the radar reference.

Numerous techniques for UAV tracking are available in the literature [72,73]. The track-
ing of UAVs is challenging compared to manned aerial vehicles at long distances, mainly
due to the small size of UAVs [74]. Trajectory tracking of highly maneuverable UAVs is dis-
cussed in [75], where a filtration algorithm is used for UAV trajectory tracking. The tracking
using filtration algorithm in [75] provides better tracking of highly maneuverable UAVs
in noisy environments compared to other techniques for tracking. Moreover, tracking
of multiple aerial vehicles is complicated compared to single aerial vehicle tracking [76].
For example, the tracking becomes difficult for a large swarm of UAVs [77].

Based on the tracking information, future trajectory estimates are made using esti-
mation algorithms [78]. The trajectory estimation helps in: (1) estimation of the point of
the origin of the desired aerial vehicle; (2) estimation of the terminal point; (3) guidance
towards an aerial vehicle; (4) target classification based on the trajectory features; and
(5) predicting the intent of the aerial vehicle. AI algorithms are mainly used to forecast
the trajectory of UAVs [79,80]. In addition to AI algorithms for trajectory estimation, other
algorithms are available in the literature. In [81], dynamic Bayesian filters are used for
tracking and estimation of UAV trajectory.

4.4. Classification of UAVs Using Radar Systems

Classification of aerial vehicles using conventional radar systems was not very refined.
For example, the RCS and velocity of aerial vehicles were used for classification of different
types of aerial vehicles. However, the exact classification of the type of aerial vehicle was
not always made. Nowadays, aerial vehicles have grown in complexity and types, and new
classification methods are available using radar systems [82]. In particular, the classification
of UAVs compared to birds is challenging due to similar features [83]. Many techniques are
available in the literature for the differentiation of small UAVs from birds [84,85].
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The features of different types of UAVs also differ significantly [86]. These features
are used for classification. For example, micro-Doppler radar signatures are used for en-
hanced detection of multi-rotor UAVs [87] and to differentiate small UAVs from birds [23].
In [88], experimental micro-Doppler signatures are studied to classify payload and intent.
A micro-Doppler setup scenario for a four-blade helicopter and monostatic radar is shown
in Figure 4. Range-velocity, micro-Doppler modulation plots are shown in Figures 5 and 6,
respectively. From Figures 5 and 6, it can be observed that there are distinct contribu-
tions from the rotating blades and rotating central body (where the blades are attached).
The micro-Doppler signatures in Figures 5 and 6 help to classify the aerial vehicle.

The classification of UAVs using radar systems is greatly aided by AI algorithms [64].
In [89], laser mesh in the air is simulated to obtain the parameters of aerial vehicles.
Different classification models are generated based on the AI classifiers, training data,
and aerial vehicle classes in [89], given as follows:

M1 = f (NB)
(

M(Tr), C(Tr)
)

, M2 = f (LDA)

(
M(Tr), C(Tr)

)
, M3 = f (KNN)

(
M(Tr), C(Tr)

)
, (3)

where Mi for i = 1, 2, 3 are the classification models based on the naive Bayes, linear
discriminant analysis, and K-nearest neighbor classifiers; f (NB), f (LDA), and f (KNN) are the
classifier functions for naive Bayes, linear discriminant analysis, and K-nearest neighbor,
respectively; M(Tr) is the training matrix containing training data; and C(Tr) is the array
containing the aerial vehicle classes in [89]. The estimation of a particular class using the
predict function is given as follows:

C(est,Mi) = predict
(
Mi, M(eval)

)
, (4)

where M(eval) is the matrix containing the feature data of the aerial vehicle for evaluation.

x

y

z

700 m

700 m

(0,0,0)

(700,0,700)

Monostatic Radar 
at origin

Helicopter with 
four blades

Figure 4. A micro-Doppler simulation scenario using a monostatic radar and four-blade heli-
copter [90]. The monostatic radar is immovable and is placed at the origin. The initial helicopter
coordinates are (700, 0, 700). The blades of the helicopter rotate at four revolutions per second, and the
velocity of the helicopter is 80 m/s.
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Figure 5. The range-velocity plot of the setup is shown in Figure 4 (reprinted from [90]). The major
power concentration is centered at (66.6 m/s, 975 m) due to the central rotation part of the helicopter.
The other two minor concentrations are due to the radar returns from the tips of the blades.
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Figure 6. Micro-Doppler modulation due to (1) rotating blades and (2) a constant Doppler shift from
the central rotating part of the helicopter (reprinted from [90]). The sinusoidal behavior is due to the
rotation of the blades.

4.5. Limitations of Radar Systems

There are various limitations of the radar systems for detecting and tracking modern
aerial threats [91], mainly from UAVs. Similarly, offensive ECMs applied by UAVs provide a
major challenge to any modern radar system. Limitations of radar systems are summarized
as follows:

• Radar systems are generally inefficient in terms of the energy transmitted and received.
A large amount of transmit energy is required for the detection of small UAVs.

• Active radar systems have the risk of detection due to energy emission.
• There are limitations of the radar systems for detecting, tracking, and classifying small,

low-flying UAVs in cluttered scenarios [92].
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• The detection of small RCS aerial vehicles (e.g., UAVs) requires careful calibration
of the radar system and constant adjustment of the detection threshold. The pfa for
small-RCS aerial vehicles in cluttered environments generally increases [93].

• A large swarm of UAVs can overwhelm the majority of radar systems. The individual
UAVs in a swarm are difficult to track by radar systems. Range and Doppler ambi-
guities are expected to increase for a given radar system detecting a large swarm of
UAVs.

• Offensive ECMs used by UAVs can jam and spoof radar systems.

5. Methods Other than Radar Systems for UAV Detection, Tracking, and Classification

Due to limitations of the radar systems, as discussed in Section 4.5, there are numerous
methods proposed in the literature for countering malicious UAVs. In this section, current
methods of detection, tracking, and classification of UAVs other than radar systems are
discussed. Current methods of disabling UAVs are also provided.

5.1. EO/IR

The popularity of EO/IR methods has increased in the recent decade [94]. The EO/IR
imaging technologies can operate at different frequency bands. The selection of the fre-
quency bands is dependent on the type of aerial vehicle and operating environment. EO/IR
sensors can provide excellent detection, tracking, and classification of small UAVs in
day/night conditions [95,96]. However, the performance of EO/IR sensors is dependent
on the complexity of the background of the aerial vehicle and the thermal image satura-
tion. Haze, fog, rain, and snow can also affect the performance of EO/IR imaging sensors.
The EO/IR imaging technique has limitations in detecting small UAVs in highly cluttered
environments. Moreover, the range of EO/IR imaging is limited by the horizon. The range
of EO/IR imaging can be increased with the height of the sensors above the ground.

5.2. RF Analysis

The RF signature of signals between the UAV ground controller and the UAV onboard
receiver is different for different types of controllers [97,98]. The particular signature
or fingerprint of the RF link between the UAV ground controller and the onboard UAV
receiver can be sensed passively to detect the presence of a UAV. The RF fingerprint of the
communication link between the UAV ground controller and the UAV receiver is unique
compared to other wireless communication devices. RF fingerprinting can also be used
to determine the type of the UAV [99]. In [97], the RF link between the UAV and ground
controller is analyzed, and machine learning methods are used for the classification of a
particular type of ground controller. The RF analysis setup in [97] is shown in Figure 7. RF
fingerprinting for the detection and classification of UAVs is only effective if there is an
active RF link between the UAV ground controller and the UAV receiver. Autonomous
UAVs that have no external RF link can fly in radio silence and cannot be detected by
RF fingerprinting.
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UAV remote controller

UAV

Antenna with a 
parabolic reflector

Keysight DSOS604A 
Oscilloscope

Captured waveform 
from UAV controller

×10−6

Figure 7. Setup for detection of a UAV using RF analysis. The RF link is between the ground
controller and flight controller. Based on the energy detection of the RF link, a UAV can be detected
and subsequently classified (reproduced from [97]).

5.3. Acoustic Analysis

Different types of UAVs have different acoustic signatures. The acoustic signals from
the propellers, engine, and motors are used to detect the presence of a UAV [100,101].
Microphones are used to collect the sound/noise from the flying UAV. The acoustic signals
and AI algorithms can also be used to determine the type of a UAV [102]. Similar to RF fin-
gerprinting, acoustic sensing works in a passive mode for the detection of UAVs. The major
limitations of the acoustic approach are limited range and performance dependence on
ambient noise.

5.4. Sensor Fusion

A combination of different sensors discussed above can be used for the detection,
tracking, and classification of UAVs [103]. Sensor fusion can help to provide layered
security around a given parameter. A network of different sensors placed at different
locations can provide better spatial coverage compared to a single-location placement of a
large sensor. The sensors can be placed on the ground or mounted on an airborne platform
(e.g., a UAV or satellite). Airborne sensors have better visibility and coverage compared
to ground-based sensors. Airborne sensors can also move to optimum locations based on
the scenario.

5.5. Current Methods for Disabling UAVs

The current methods for disabling UAVs are divided into kinetic and non-kinetic
methods [104]. The kinetic methods mainly use nets, prey birds, and guided or unguided
projectiles. There are limitations of using nets and prey birds for countering UAVs. Nets
have a limited range and require a precise tracking system to determine the exact coordi-
nates of the desired UAV in space. The use of a net may not be effective against several
spatially spaced UAVs. Countering UAVs with large prey birds is also challenging. The ini-
tial cost, training, and maintenance cost of prey birds is large. Prey birds are not effective
in certain weather and light conditions. The prey birds also have limited efficacy against
UAV swarms.

The non-kinetic methods include (1) GPS spoofing [39], (2) hacking RF control commu-
nications between the ground controller and the UAV [105], (3) high-energy EM radiation
burst [106], and (4) high-energy laser [107]. There are limitations of non-kinetic methods
also in disabling UAVs. GPS spoofing and hacking RF communications are not effective
against autonomous UAVs that have no external RF link and require no external navigation
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reference. The high-energy EM radiation method also has limitations. High-energy EM
radiation may be ineffective against electronic equipment that is shielded. In addition,
the range of high-energy EM radiations is limited, and the cost is high. High-energy lasers
may not be effective against a wide spectrum of UAV threats. A high-energy laser is less
effective against highly mobile UAVs equipped with heat sensors. High-energy laser beams
may also be ineffective against UAV swarms. Moreover, the initial cost and energy required
for the laser beams are high.

6. Future Research Directions for UAV utilization and their Detection, Tracking,
and Classification

The current countermeasures are not always effective against a broad spectrum of
threats from UAVs. There are various research efforts to find novel methods to counter
malicious UAVs. In this section, future directions for the potential uses of UAVs and their
detection, tracking, and classification are discussed. A comparison of current and possible
future countermeasures against malicious UAVs is provided in Table 3.

Table 3. Comparison of current and future research directions for countering malicious UAVs.

Current Countermeasures Cgainst UAVs Future Cirections of Countermeasures against UAVs

• Radars
• Acoustic analysis
• RF analysis
• EO/IR imaging
• RF jamming, remote hacking, and GPS spoofing
• High-power laser and EM radiation
• Nets and prey birds

• Modifications to current radar systems specifically for
UAVs

• Mesh of laser beams
• Distributed sensors at different locations
• AI-aided cognitive analysis of the threat using multiple

sensors
• Regulating legitimate UAV aerial traffic through tagging
• Use of satellite networks for UAV detection and tracking

6.1. Potential Uses of UAVs

Smart UAVs are expected to revolutionize the evolving UAV technology and potential
future applications. A major application of smart UAVs is in the field of civil infrastructure.
The civil infrastructure market is expected to cover more than USD 45 billion of the UAV
market share [108]. In particular, laser power beaming is envisaged to provide supplemen-
tal energy to smart UAVs when the solar energy is not adequate. Laser power beaming
can allow smart UAVs to fly for weeks and months without landing [108]. In [109], use of
intelligent UAVs to enhance the economic growth of a specific world region is discussed.
The major sectors of the economy where intelligent UAVs can be used include precision
agriculture, environmental pollution monitoring, geophysical processes monitoring, explo-
ration of minerals, and monitoring of traffic and cattle/wild animals. The possibilities of
UAVs used as remote sensing nodes for solving urban area issues are discussed in [110].
The use of UAVs as remote sensing nodes can provide solutions to different urban area is-
sues, such as collection of data for urban planning, disaster management, and infrastructure
monitoring. UAVs are also envisioned as an integral part of future smart cities [111]. UAVs
in future smart cities can be used for traffic management, environmental and pollution
monitoring, civil security management, and goods delivery.

6.2. Modern Radar Systems

There are new radar systems available in the literature for the detection of UAVs,
such as MIMO radars with narrow beams and high angular resolution that are effective
against small UAVs [53]. MIMO radar systems can be mounted on airborne platforms that
can provide better spatial diversity and situational awareness. Moreover, reconfigurable
antennas can be used for MIMO radars for better adaptability to a given scenario. Cognitive
radars can also be effective against UAV threats [58]. Cognitive radars can select the transmit
signal characteristics, illumination of the aerial vehicle, and receiver characteristics based
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on feedback from the environment and aerial vehicle. Cognitive radar systems are expected
to gain significant attention in the future for detection, tracking, and classification of UAVs.
Future cognitive radar systems are expected to have reconfigurable antennas and AI-driven
cognitive engines.

Passive radars have also gained popularity for the detection of small UAVs and stealth
aerial vehicles [112–115]. Different sources of illumination (e.g., TV, FM, and telecommu-
nications signals) can be used. Passive radars in bi-static and multi-static configurations
can also be used for early warning against UAVs [48,116]. A bi-static radar system with
one emitter and four receivers/sensors is shown in Figure 8 (from [117]). In Figure 8, four
ellipsoids indicate the coverage of the bi-static sensors. The fuse detection lies close to the
intersection region of the ellipsoids and close to the actual position of the aerial vehicle.
The estimated range Rb using bi-static radar is given as follows [118]:

Rb =
2

∑
j=−2

Rc(d + j).z(d + j)2, (5)

where Rc(x) is the range at the range bin center; x, z(x) is the range cell voltage at cell x;
and d is the range cell where detection is declared. Multiple antennas and polarization can
be used for future passive radars for reception of scattered signals from UAVs. Moreover,
beam steering can be used for passive radars that can help to receive weak aerial vehicle
signals from a given direction.

Figure 8. Bi-static sensors placed at different locations are shown as inverted triangles for aerial
vehicle detection (reprinted from [117]). Four ellipsoids indicate the coverage of the respective
bi-static sensors. A single emitter is shown as a purple circle at the origin. The aerial vehicle is
shown as a white diamond wrapped around by a yellow circle indicating fused detections. The fused
detections due to the overlapping of the ellipsoids are close to the actual position of the aerial vehicle.
The trajectory is shown as a grey line.

Other modern radars include interferometry radars [69,119] for detection and tracking
of UAVs. A combination of different radar techniques can also be used for the detection
of modern aerial threats [51,52,85]. Micro-Doppler radars are popular for UAV classifi-
cation [88]. The micro-Doppler radar returns are processed using various AI algorithms
for the classification of UAVs [120]. A major limitation of micro-Doppler radars is their
short range, high sampling rate requirement, and long post-processing time [82]. These
limitations need to be overcome in future UAV classification applications.

6.3. AI Techniques

AI algorithms can help in the detection, tracking, and classification of UAVs using
popular approaches, such as radar [121], EO/IR [122,123], acoustics [70], and RF anal-
ysis [98]. The detection and classification of UAVs using AI algorithms require a large
database of training data. The training database can consist of size, shape, payload, flight
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characteristics, micro-Doppler, RF, infrared, and acoustic signatures of different types of
UAVs. Major limitations of the AI techniques for detection, tracking, and classification
of UAVs are the large training data and processing time requirements [124]. Future AI
techniques for detection, tracking, and classification of UAVs are required to overcome
these limitations by using smart training data and efficient AI algorithms.

Different types of UAVs follow specific trajectories for different flight trips. The trajec-
tory of a UAV can be used to forecast the future track and intent of the UAV. A database
of the trajectories of different types of UAVs for different flight operations can be created.
The database and AI algorithms can be used to forecast the trajectory and intent of a
detected UAV in real time. Moreover, the UAV trajectory estimates can be improved by
combining trajectory estimates collected from multiple sensors at different spatial locations.

6.4. Laser Beams

The concept of using laser beams to detect, track, and classify different types of aerial
vehicles is new. It was introduced in [89]. A mesh of laser beams can be created using
at least two of the airborne platforms described in [89] and shown in Figure 9. The laser
beams extend from the airborne platform to the ground. Any aerial vehicle that blocks
the path of the laser beams will be detected and subsequently localized and classified.
A major benefit of the laser mesh is that an aerial vehicle will be detected independent of
the size, shape, and material. Moreover, the tracking and classification will be significantly
simplified compared to radar systems. However, a major limitation of the laser beams
setup is the large initial deployment cost. A possible solution to large initial cost is to use
airborne infrastructure (e.g., satellite constellations) for dual purposes.

Approaching aerial 
vehicle

UAV1 UAV2

Figure 9. A mesh of laser beams was created using two airborne UAVs (reprinted from [89]). Each
airborne UAV produces a uniformly spaced array of laser beams. A mesh is formed by the appropriate
positioning of the airborne UAVs. The laser mesh can be used to detect, track, and classify different
types of targets [89].

6.5. Space and Airborne Assets

Space and airborne assets (e.g., satellites, high-altitude tethered UAVs) can be used for
long-range surveillance and can provide large area coverage and early warning against
low-flying aerial vehicles. Different types of sensors can be used on space and airborne
assets. For example, cameras and RF sensors can be used on tethered UAVs placed at
different locations of important areas (e.g., airports) for additional visibility and better
situational awareness. A major bottleneck for the operations of the airborne sensors is the
wireless link between the airborne sensor and other communicating nodes. The wireless
link between the airborne sensor and other communicating nodes is vulnerable to ECM
(e.g., jamming and hacking). The operational cost of sensors onboard airborne platforms is
also high compared to ground platforms. In the future, large satellite constellations could
be used for remote UAV localization, in addition to other tasks.
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6.6. Distributed Sensors

A layer of distributed sensors can be used for the early detection, tracking, and classifi-
cation of UAVs. Small, simple, and off-the-shelf sensors can be used over a large area for the
detection, tracking, and classification of UAVs. Small and off-the-shelf sensors distributed
over a large area can compensate for large, complex, and expensive sensors installed at
single or limited locations. For example, microphones and/or low-cost cameras can be
installed on the rooftops of tall buildings, cellular towers, electricity transmission poles,
and signboards for early detection, tracking, and classification of passing UAVs. A possible
scenario using layers of distributed sensors is shown in Figure 10. In Figure 10, the sensors
are used at three layers. The output of the first-layer sensors is fed to a central network that
can provide early warning to the subsequent layers of sensors. A major limitation of using
a distributed sensors network for UAV detection and tracking is the relay of information
from distributed points to a central location. A possible solution to this limitation is to use
already available telecommunication networks for information relaying.

Detecting and tracking non-registered traffic by 
installing simple distributed sensors on:
• New UAV observation towers
• Poles of electricity transmission lines
• Telecommunication base station towers
• Signboards and signaling poles of railways
• Road and street light poles
• Buildings and infrastructure top
• Top of mountains
• Satellites and airborne platforms
• Tethered UAVs and tethered hot air balloons
• Ships

Layer 1

Central Unit

Information transfer through 
different communication channels

AI aided cognitive 
detection, tracking, and 
classification using:
• Different types of radar 
systems
• Laser mesh 
• EO/IR, acoustic, RF 
analyzer sensors

Layer 2

Disabling malicious UAVs
using:
• ECM (jamming, 
hacking, and spoofing)
• High energy laser and 
EM waves 
•  Nets, prey birds
• UAVs

Layer 3

Figure 10. In addition to conventional layers for countering UAVs (layers 2 and 3), we have introduced
layer 1 sensors. The first layer sensors are placed at different locations. The first layer can help in the
early detection, tracking, and classification of intruding UAVs.

6.7. Countering UAV Swarms

Radars can be more effective in the detection of UAV swarms at a large distance
compared to other methods. However, radar systems have difficulty in tracking a large
swarm of spatially spaced aerial vehicles simultaneously. In addition to current techniques
available in the literature for detecting and tracking UAV swarms, a possible solution is
to use area-based tracking. Multiple steerable antenna beams can be used for area-based
tracking. Each beam can track a 3D area occupied by a cluster of UAVs instead of tracking
individual UAVs. Each 3D area will contain a different number of UAVs at different
scanning instances. Area-based tracking can better assist in tracking individual UAVs in
a swarm.

6.8. Regulating UAV Traffic

In addition to the techniques available in the literature for UAV traffic manage-
ment [125], in the future, aerial highways for UAVs can be envisioned. The UAVs can
only pass through the aerial highways and will be tagged and registered. The tagged
and registered UAVs will be considered legitimate traffic. An IP address is assigned dy-
namically to the UAV, and its international identification address will be registered before
entering the aerial highway. Any UAV that does not follow the route can be fined and taken
away from the air. A new base-station-like structure and available telecommunication
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base stations can be used as checkpoints. As the UAV moves across the aerial highways,
its correspondence will be handed over to multiple checkpoints. In addition, every UAV
should have a mandatory transponder installed for identification during the flight.

6.9. Terrain-Specific Countermeasures

The countermeasures effective in one terrain may not be effective in another. For ex-
ample, in an urban environment, the acoustic detection method may not work efficiently.
Similarly, short-range radar systems using the higher end of the spectral band may have
difficulty detecting aerial vehicles in a mountainous area. Therefore, the countermeasures
for UAVs can be adopted based on the specific terrain. In addition, long-range detection,
tracking, and classification of UAVs in different terrains can be performed using assets in
space. An example is a satellite multi-static radar system. The transmitter of the satellite
multi-static radar can be located on the satellite, and the receivers can be placed at dis-
tributed locations on the ground to collect the reflected signals from UAVs. Terrain-specific
countermeasures may work better compared to multi-terrain countermeasures; however,
a specific countermeasure in a given terrain may not be fully effective in another terrain.

7. Unmanned Underwater Vehicles

In this section, the current and expected future capabilities of UUVs are described.
The challenges and threats from intruding UUVs, and the detection, tracking, and classifi-
cation of UUVs using active and passive sonar are also covered in this section.

7.1. Capabilities of Current and Future Unmanned Underwater Vehicles

The long duration and low-cost deepwater missions possible using UUVs have
changed the paradigm of sea operations in favor of UUVs [126]. UUVs are similar to
MUVs in shape and capabilities. However, the absence of humans allows a smaller size;
higher maneuverability; low initial, operational, and maintenance costs; larger payload;
higher maneuverability and speed; deepwater operations; longer duration; and quieter
operation compared to MUVs. The small cost of UUVs compared to MUVs allows using
multiple UUVs at different locations. The UUVs at different locations can form a network
for sharing information. For example, the UUVs can be used in swarms [127] that can
work as a distributed sensor network covering vast areas and various depths undersea.
UUVs in a swarm can be used for different applications, such as underwater communi-
cations, surveillance, decoys, and escorts for underwater and surface vehicles. Moreover,
simple sails can be used to convert UUVs into overwater unmanned vehicles. In Table 4,
popular autonomous UUVs, types of sensors installed, dimensions, maximum endurance,
and operating depths are provided.

UUVs can either be controlled remotely or work autonomously using AI. However, the
communication link for remote control of UUVs has many challenges underwater. Radio
waves cannot travel deep into the water, and acoustic communications have small band-
width and large delays. Therefore, the majority of UUV operations are autonomous [128].
Autonomous UUVs face difficulties in transferring real-time information remotely while
submerged. In addition, in the case of a robotic failure (e.g., due to a sudden change in the
sea conditions), the UUV is lost in the majority of cases.

Another limitation of UUVs is the choice of energy source. Currently, battery-powered
UUVs are used that have limited time duration underwater. Glider UUVs, on the other
hand, requires a small amount of energy and can be used for long-duration operations [129].
However, glider UUVs are required to follow a specific up and down motion. Navigation
reference for positioning is also challenging for UUVs underwater. Long baseline [130]
and ultra-short baseline [131] are commonly used for positioning reference underwater.
However, a UUV needs to be in the coverage area of the long and ultra-short baseline
position systems, and the accuracy is dependent on the underwater position of the UUV.
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Future UUVs are expected to have the following capabilities: (1) multiple commu-
nication links operating at different spectral bands to transfer real-time underwater data;
(2) energy-efficient long-duration operations; (3) multiple sensors installed and controlled
cognitively; (4) high positioning accuracy; (5) ability to communicate with nearby UUVs,
forming a network; and (6) ability to operate underwater and overwater.

Table 4. Popular UUVs, types of sensors installed, dimensions of the UUVs, and maximum endurance
and depths underwater are provided. All the UUVs provided here are autonomous and are used for
deepwater and seafloor imaging/mapping and oceanography research.

Sr. # UUAV Name Powered by and Sensors
Installed

Dimensions, Endurance and
Depth

1 MBARI’s Dorado-class
Battery, 200 kHz multibeam
sonar, 100 kHz and 410 kHz

chirp sidescan sonars

0.5 m diameter, 6.4 m length,
20 h endurance, 6 km depth

2 Sentry

Battery, conductivity,
temperature and depth

sensors, digital camera, reodx
potential probe

1.8 m height, 2.2 m width,
2.9 m length, 24 h endurance,

6 km depth

3 Qianlong-1
Battery, camera, obstacle

avoidance sonar, side-scan
sonar

0.8 m diameter, 4.6 m length,
24 h endurance, 6 km depth

4 SeaBED Class Battery, Imagenex Delta-T
imaging sonar, camera

2 m length, 1.5 m height, 1.2 m
width, 24 h endurance, depth

5 km

5 Urashima (hybrid)

Battery, multi-beam echo
sounder, Niskin water

sampler, interferometric
synthetic aperture sonar,

gravimeter system

1.3 m width, 10 m length, 24 h
endurance, depth 3.5 km

6 Aster x/Idef x

Battery, multi-beam echo
sounders, multiple sensors,

sub-bottom profilers,
spectrometers

0.7 m diameter, 4.5 m length,
16 h endurance, depth 3 km

7 BlueROV2

Battery, gyroscope,
accelerometer, magnetometer,

pressure/depth and
temperature sensor

457 mm × 338 mm × 254 mm,
4.5 m, 4 h endurance, depth

300 m

7.2. Challenges and Threats from Malicious UUVs

Compared to manned underwater vehicles, UUVs are difficult to detect, track, and clas-
sify undersea. The challenges in the detection, tracking, and classification of UUVs are
mainly due to their small size (similar to common marine animals), deepwater operations,
small noise generation while moving underwater, and the ability to remain submerged
for a long period of time. Furthermore, UUVs coated with sound-absorbing material, able
to move both over and under the sea, and equipped with autonomous cognitive abilities,
present additional challenges to detection, tracking, and classification. The mischievous
UUVs that work autonomously present major threats, and the threats can be categorized
as follows:

• Threat of unauthorized surveillance using malicious UUVs [132]. For example, UUVs
can move close to coastal areas comparatively easily compared to manned underwater
vehicles. While near the coastal areas, the UUVs can eavesdrop on the surroundings.
Similarly, mischievous UUVs can be used to gather surveillance information while at
sea by attaching to a large ship as a parasite.
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• Threat of unauthorized smuggling using malicious UUVs [133]. Malicious UUVs can
be used to carry contraband items undersea without detection.

• Threat of spoofing and jamming using mischievous UUVs. Malicious UUVs can
be used to produce spoofed GPS signals that can divert ships. Malicious UUVs
can also be used to hack/deny information between ships or between ship and
air/ground transceivers.

• Threat from a swarm of malicious UUVs. UUVs can operate autonomously in a swarm
underwater [134,135]). A swarm of malicious UUVs can present a major threat to
overseas and undersea vehicles. The countering of a swarm of UUVs is significantly
challenging to date.

• Threat to undersea infrastructure. Mischievous UUVs can present a threat to undersea
infrastructure (e.g., optical fiber cables [136], and oil/gas pipelines undersea [137]).

7.3. Detection, Tracking, and Classification Using Active Sonar and Passive Sonar

Common EM waves cannot travel deep underwater due to high attenuation. Extremely
low frequency (ELF) EM waves can be used for deepwater propagation [138]. However,
ELF requires extremely large antennas. Compared to EM waves, the sound waves (acoustic
signals) travel deeper and faster underwater. In addition, the intensity of the sound waves
is higher underwater than in the air. Therefore, sound waves are well suited for underwater
propagation [139]. However, compared to EM waves in the air, the speed of sound is not
constant underwater. The speed and range of sound waves depend on the pressure, salinity,
and temperature under the water.

Moreover, a thermocline layer is formed under seawater due to changes in water
temperatures at certain depths [140]. The thermocline layer can affect sound wave signaling.
In general, if the sound waves emitter/receiver and underwater vehicle are above and
below the thermocline layer, then the probability of detecting the underwater vehicle is
significantly low due to refraction (bending) of the sound waves from the thermocline
layer. There are multipath sound signals due to refraction from the thermocline layer,
refraction at large depths (before the bottom of the sea), reflection from the bottom of the
sea, and reflections from different objects underwater. Multipath sound signals underwater
make the detection and classification of underwater vehicles difficult.

Sonar is based on the transmission and reception of sound signals and is used for two
major purposes. One is underwater environment mapping and imaging [141], and the other
is underwater vehicle detection, tracking, and classification. The detection of an underwater
vehicle can be performed using sonar in the active or passive mode [142]. Active sonar
sends out particular frequency sound pulses into the water. The reflected sound waves from
different objects are collected to determine the presence of an underwater vehicle. A signal
processing diagram of active sonar is shown in Figure 11a. The selection of the frequency
of the active sonar depends on the requirement. For example, low-frequency sound pulses
can be used for long-range detection, whereas high frequency is used for high-resolution
imaging. The different frequencies used by sonar and corresponding applications are
shown in Table 5. The active sonar equation [143] is given as follows:

(S/N)a (dB) = SL− 2TL− (NL− DI) + TS, (6)

where SL is the source level, TL is the transmission loss, NL is the noise level, DI is the
directivity index of the receiver or array gain, and TS is the target strength. An active towed
sonar array scenario is shown in Figure 12. An active sonar setup for the detection of UUV
is shown in Figure 13, where the sonar is mounted on a remotely operated vehicle (ROV) or
UUV. Active sonar is used to detect another ROV underwater. Imaging of the measurement
environment is also obtained using the sonar in Figure 13.
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Figure 11. Block diagram of signal processing for (a) active sonar, (b) passive sonar.

Table 5. Different frequencies and applications of sonar.

Serial # Frequencies Application

1 3–30 Hz, ELF band Underwater communications
and pinging

2 30–300 Hz, super low frequency
(SLF) band Underwater submarine communications

3 300 Hz–3 kHz, ultra low frequency
(ULF) band

Underwater communications through
dirt and rocks

4 3 kHz–30 kHz, very low frequency
(VLF) band

Near-sea-surface communications,
navigation beacons

5 30 kHz–300 kHz, low frequency
(LF) band

Near-sea-surface communications,
navigation beacons

6 3 kHz–30 kHz, VLF band Near sea surface communications,
navigation beacons

7 Less than 1 kHz, 1 kHz–10 kHz, greater
than 10 kHz, and less than 30 kHz Active sonar operation

8 50 kHz, 120 kHz, 200 kHz, and 455 kHz Sport fishing

9 120 kHz, and 200 kHz
Sea floor imaging using deep towed

sonar, and swath
phase-bathymetric mapping

10 100 kHz–1 MHz Side-scan sonar

A major limitation of active sonar is counter-detection [144]. Counter-detection is
the detection of the originating source. Compared to active sonar, passive sonar only
listens to the sound/noise from surrounding objects. A block diagram of signal processing
using passive sonar is shown in Figure 11b. Differentiation of the sound of an underwater
vehicle from the surroundings is a challenging task for passive sonar systems. Spectral
analysis of the sounds/noise from various objects in the surroundings is generally carried
out. The spectral analysis and a training database of possible underwater objects are used
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for underwater vehicle identification by passive sonar. The performance of the passive
sonar depends mainly on the noise floor of the underwater environment. For example,
near busy shipping lanes or fishing areas, the environment is noisy and cluttered; therefore,
the detection of underwater vehicles becomes challenging. A possible solution to improve
the detection performance in a noisy environment is to use a network of passive sonar.
In the case of passive sonar, the target strength TS in (6) will be absent, so the equation will
be as follows:

(S/N)p (dB) = SL− TL− (NL− DI). (7)

Tow cable

Active source

Neutrally buoyant cable
Digital receive array

Noise level (NL)
Source level (SL)

Target strength
(TS)

Target

Surface ship

Figure 12. A towed active sonar carried by a surface ship for detection of a submerged UUV/MUV.
The sonar is towed to avoid noise (sound) from the carried vessel.

The conventional detection, tracking, and classification methods using sonar are cur-
rently not able to cover a wide spectrum of modern underwater threats. The conventional
techniques to detect and track MUVs using sonar [145,146] may not be effective for UUVs,
and new innovative techniques are required. In [147], narrowband and broadband acoustic
passive signal processing is used for the detection, localization, and tracking of UUVs.
In [148], an active non-imaging sonar is used for underwater detection and localization,
which could be used for UUV. The active sonar in [148] uses consecutive transmission of ref-
erence and spiral signals. Bearing, range, radial velocities, and tracking of the underwater
objects were also carried out in [148]. The classification of underwater objects is carried out
using a convolutional neural network applied on sonar images in [149]. The classification
is applied on sonar images obtained through a platform mounted on a UUV. The results
show that deep learning provides better performance compared to other feature extraction
methods in [149].

Figure 13. Sonar-based detection of a remotely operated underwater vehicle. Active sonar equipment
is mounted on a remotely operated underwater vehicle. Detection is highlighted in yellow in the
sonar scan.

Target motion analysis (TMA) is a popular method for passive sonar systems to find
and track underwater objects [150]. TMA provides the position, course, and speed of an
underwater moving object. TMA uses standard geometric techniques for location estima-
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tion. However, TMA has limitations in simultaneously detecting multiple objects that are
moving randomly (e.g., UUVs at different depths). Another popular approach for finding
the location of an underwater moving object is by using an array of hydrophones [151].
The array of hydrophones can be mounted on the surface of MUVs or UUVs or towed away
from the surface by underwater vehicles [152]. The spatially spaced array elements are
used to capture sounds from different directions to find the location of the desired object.
The hydrophone arrays can be one dimensional, two dimensional, or three dimensional.
A one-dimensional array can only provide the range information, whereas azimuth angle
information can be obtained by a two-dimensional array. A three-dimensional array can
provide both azimuth angle information and the depth of the desired object underwater.

7.4. Future UUV Uses and Directions for Countering Malicious UUVs

There are many potential uses of UUVs in the future. In particular, autonomous
UUVs are expected to dominate major future applications at sea. Major applications of
UUVs include the following:

• High-resolution underwater mapping of the seafloor, sea condition monitoring in a
given area, and predicting turbulence and other unexpected changes in the water,
similar to a weather forecast.

• Monitoring of marine flora and fauna.
• Navigation system similar to GPS using UUVs underwater.
• UUVs can be used for search and rescue and to help in disaster management. UUVs

can also be used by law enforcement departments at sea.
• UUVs on the sea surface can provide radio beacons that can assist in long-distance

communications in case the satellite link is down/not available. The radio beacons
from UUVs can ensure that the ships move in designated lines and avoid collision.

• An underwater network of sensor nodes using UUVs can be created that can assist in
different remote sensing applications.

• Monitoring and maintenance of underwater infrastructure, such as oil rigs and under-
water oil and gas pipelines, power generation stations at sea, and optical fiber.

The detection, tracking, and classification of malicious UAVs over oceans can be per-
formed with a network of UUVs. A network of mobile UUV sensor nodes can be established
that covers vast areas of the oceans. The mobile sensor nodes can work autonomously to
position themselves optimally for data collection and analysis. The UUVs in the sensor
network can be assigned different tasks. For example, one group of UUVs can be assigned
the task of communications with the infrastructure above the water, while another group of
UUVs in the network can be assigned the task of positioning reference, and other members
of the network can be equipped with hydrophones for detection and tracking.

Distributed sensors (e.g., submerged tethered hydrophones) can be installed on oil
rigs, large cargo ships, fishing vessels, and so on. The distributed sensors can help to detect
suspicious UUVs in the vicinity. The data from the distributed sensors can be relayed
via satellite links to a central point for analysis. Satellite imaging specifically focused on
detecting and tracking malicious UUVs when they surface over water can also be used.
Furthermore, cognitive acoustic and software-defined sonar networks can be used for the
detection and tracking of UUVs. The cognitive adjustment of sonar parameters can increase
detection and tracking accuracy against malicious UUVs.

8. Conclusions

The challenges posed by UAVs and UUVs have significantly increased in the recent
decade. However, there are limited capabilities at present to defend against these challenges.
In this study, we have covered some of the key features and capabilities of UAVs and UUVs;
the threats and challenges from UAVs and UUVs; and different detection, tracking, and clas-
sification methods currently available against malicious UAVs and UUVs. The limitations
of the current methods and future directions for detection, tracking, and classification of
UAVs and UUVs are also provided.
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