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Abstract: In this paper, we propose an activity detection system using a 24× 32 resolution infrared ar-
ray sensor placed on the ceiling. We first collect the data at different resolutions (i.e., 24 × 32, 12 × 16,
and 6 × 8) and apply the advanced deep learning (DL) techniques of Super-Resolution (SR) and
denoising to enhance the quality of the images. We then classify the images/sequences of images
depending on the activities the subject is performing using a hybrid deep learning model combining
a Convolutional Neural Network (CNN) and a Long Short-Term Memory (LSTM). We use data
augmentation to improve the training of the neural networks by incorporating a wider variety of
samples. The process of data augmentation is performed by a Conditional Generative Adversarial
Network (CGAN). By enhancing the images using SR, removing the noise, and adding more training
samples via data augmentation, our target is to improve the classification accuracy of the neural
network. Through experiments, we show that employing these deep learning techniques to low-
resolution noisy infrared images leads to a noticeable improvement in performance. The classification
accuracy improved from 78.32% to 84.43% (for images with 6 × 8 resolution), and from 90.11% to
94.54% (for images with 12 × 16 resolution) when we used the CNN and CNN + LSTM networks,
respectively.

Keywords: activity detection; deep learning; healthcare; computer vision; low-resolution; infrared
array sensor; denoising; super-resolution; CGAN

1. Introduction
1.1. Background

A new area of research is being explored: human activity recognition for intelligent
healthcare. With the complications of the world’s aging population, this research field
is becoming even more prominent. For instance, the elderly population in Japan in 2020
constituted 28.8% of the total population, with over 36.19 million people [1]. The aged
population is the most likely to develop chronic and long-term illnesses that worsen with
age [2]. Aging with chronic conditions prevents elderly people from living independently.
As a result, they are reliant on social care services, such as living in nursing homes. Al-
though some nursing systems focusing on monitoring and measuring vital signs related
to the physical condition of patients have been developed, some requirements remain
unsatisfied, indicating that this research field has broad application prospects.

For instance, over the last few years, the demand for non-contact monitoring of human
activities has increased steadily. Non-contact activity detection systems have several advantages
over ones that rely on wearable devices. In particular, their non-contact nature allows for
wireless monitoring that reduces the burden on the elderly and the handicap it might cause.
Non-wearable device-based systems, such as ones based on cameras, sensors [3,4], array
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antenna [5], Light Detection and Ranging (LiDAR) [6], Wi-Fi [7], and other similar devices,
require these devices to be strategically placed in certain locations for an effective monitoring
of the elderly’s activities. That being said, non-wearable devices have their own shortcomings
and limitations, including privacy concerns and coverage issues.

With the development of low-cost sensing technologies, several of these issues have been
addressed. For instance, the recent introduction of the wide-angle infrared (IR) array sensor
helped develop device-free monitoring solutions that avoid most of the aforementioned issues.
In the research related to human activity detection, two types of infrared sensors are used:
pyroelectric infrared sensor (PIS) [8] and thermophile infrared array sensor [9,10]. The PIS is
only capable of detecting the motion-type of human activities (i.e., activity where the person or
part of their body is moving). It is not capable of detecting static human activities (e.g., when
they are sitting still, standing, or laying) [11]. The thermophile IR array sensor quantifies the
temperature distribution within the field of view. It is capable of detecting static and dynamic
human activities, providing us with an understanding of the surrounding environment and
pertinent data. Furthermore, low-resolution thermopile infrared sensors have the advantages
of being small in size, low in cost, and simple to install. As a result, numerous studies have
used such sensors for human activity detection, position detection, counting the number of
people [12–16] in a room, etc.

1.2. Related Work

Device-free approaches for activity detection have attracted more attention over the
last few years. Most of them still rely on conventional machine learning techniques. In [3,4],
Mashiyama et al. proposed two similar approaches for activity detection and fall detection,
respectively. In their work, they used a single IR array sensor (8 × 8 pixels) attached to the
ceiling to collect the data with a fixed time window. No processing was performed on the
data. However, they manually engineered four features and used them to train k-nearest
neighbors (k-NN) and Support Vector Machine (SVM) classifiers, allowing them to achieve
94% accuracy. Due to the extremely high noise from the LR sensor used (8 × 8 pixels),
the values for the extracted features present a high level of error. Kobayashi et al. [17]
addressed some of the limitations of these works by introducing a few new features and
using two sensors simultaneously, improving the overall activity detection above 90%.
That being said, in their work, the authors did not address the noise issue and tested their
approach in a single environment.

Javier et al. [18] proposed an approach for fall detection that relies on a single IR array
sensor with a 32 × 31 resolution installed on the ceiling. In their work, the authors used
conventional data augmentation techniques such as rotating and cropping the image to
improve the classification accuracy up to 92%. However, due to how neural networks
process the data, conventional techniques of data augmentation, such as the ones proposed
here, have very little effect, thus leading to poor performance enhancement.

Matthew et al. [19] proposed an unobtrusive pose recognition using five IR array
sensors with a 32 × 31 resolution. The data are collected and classified using a CNN. In
their work, the authors analyzed the performance of classification of data collected by the
individual sensors, as well as their combination. They achieved an overall F1 score equal
to 92%. This work did not perform the classification by taking into account the temporal
changes in the collected frames due to activities. Nevertheless, they used five sensors,
which makes it a relatively expensive solution to justify the marginal improvements in
performance.

Tianfu et al. [20] proposed a human action recognition approach using two IR array
sensors. The collected data go through a set of pre-processing operations, such as quantifi-
cation, time-domain filtering, and background removal. The classification was performed
by a Convolutional Neural Network (CNN) and achieved an accuracy of 96.73%. However,
this method fails to detect the person when (s)he is near the edges of coverage of the sensor.
This is mainly due to the blurriness and noise in the images.
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Miguel et al. [21] proposed a fall detection system using two IR array sensors: one
having a High Resolution (HR) and the other having a Low Resolution (LR). The collected
thermal data are in a fuzzy representation; the activities are classified using CNNs and
the achieved accuracy is equal to 94.3%. In their work, the authors used a traditional data
augmentation method to improve the classification accuracy by rotating and cropping the
images. However, the authors did not combine the data, nor did they perform the sequence
data classification. Furthermore, they did not consider removing the noise or enhancing
the resolution of the images.

Tateno et al. [22] proposed a fall detection system using one IR array sensor placed
on the ceiling. The data was pre-processed by applying noise removal and background
subtraction, and activities were classified using a 3D-CNN and a 3D-Long Short-Term
Memory (LSTM) separately. The highest classification accuracy reached 98.8% and 94.9%,
respectively. Despite its high accuracy, this approach has not been proven to be robust as the
authors did not run classification on unknown test data taken in a different environment.
Furthermore, the authors used Gaussian filtering for noise removal, which is a linear
smoothing filter that results in information loss.

In [23], Muthukumar et al. proposed an approach for activity detection that makes
use of two IR array sensors attached to the ceiling and to the wall. The two sensors collect
the data simultaneously, and their generated frames are processed together using CNN
and LSTM. The CNN and LSTM were trained to perform a classification task to detect the
subject’s activity. This approach achieved an accuracy of 97%. However, in their work,
the authors used the raw data collected from the sensors for the classification. Such data
include noisy, blurry, and distorted images, from which it is hard to identify the activity
correctly in some extreme cases. While the use of the combination of data and the intensive
experiments were enough to address the image distortion problem, the authors did not
address other issues such as the blurriness and large amount of noise present.

A summary of the approaches described above as well as the merits and shortcomings
of each is given in Table 1. As can be seen, most of the existing work did not address issues
related to the noise in the data collected and works well only in particular environments.
Another common limitation is the high computational and deployment cost required for
some of these approaches. In addition, many of the works use two or more sensors to
achieve the high performance, which, again, is expensive for real-world deployment.

1.3. Motivation

Most of the state-of-the-art work related to the detection of activities relies heavily on a
multitude of sensors and is restricted by environmental conditions. Such activity detection
systems are less effective when deployed in new, unseen environments. Nevertheless,
these works, for the most part, ignore the effect of noise and image distortion on their
performance. This is a key point to address as the noise level in low-resolution IR images
is relatively high. It has a significant impact on the detection of activity. This presents
the motivation for us to conduct this work. The current work is part of a larger project to
develop a fully functional system to monitor activity [13]. In addition, it is a continuation
of the research that was previously published in [12,13,23].
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Table 1. A summary of the existing works that use IR sensors for activity detection, their merits and
shortcomings, and the obtained results.

Study
IR Sensor
(Resolu-

tion)

No.of
Sensors

Position of
Sensor Methods Accuracy Limitations

Mashiyama
et al. [3] 8× 8 1 Ceiling SVM 94%

A few activities in a specific area. No pre-
processing is performed. Data are highly
noisy due to their low resolution.

Mashiyama
et al. [4] 8× 8 1 Ceiling k-NN 94% Due to the noise in the data, feature ex-

traction is less effective.

Kobayashi
et al [17] 8× 8 2 Ceiling,

Wall SVM 90%
No reprocessing is performed. Data are
noisy. Activities are performed in very
specific positions.

Javier
et al. [18] 32× 32 1 Ceiling CNN 92% & 85% Noisy and blurry image. Difficult to de-

tect activities in high-temperature areas.

Matthew
et al. [19] 32× 31 5 Ceiling and

all corners
CNN based
on alexnet

F1-score
92%

Requires multiple sensors. Expensive to
deploy in the real-world.

Tianfu
et al. [20] 24× 32 2 Ceiling,

Wall CNN 96.73%
Fails to detect the position of the human
near the edges of coverage, due to the
blurriness and noise in the images.

Miguel
et al. [21]

32× 31,
80× 60 2 Ceiling,

Wall CNN 72%
No sequence data classification was per-
formed. Noise removal and enhance-
ment of the images were not performed.

Tateno
et al. [22] 24× 32 1 Ceiling 3D-CNN

3D-LSTM 93%
Gaussian filter is used to remove the
noises, which causes a loss of informa-
tion.

Muthukumar
et al. [23] 24× 32 2 Ceiling,

Wall
CNN and

LSTM 97%
Two sensors were used to detect the ac-
tivity. Raw images are used for classifi-
cation with lot of noise.

In this paper, we propose an activity detection system using a wide-angle infrared
array sensor with advanced deep learning (DL) Computer Vision (CV) techniques. We used
a single IR sensor placed on the ceiling and collected data with various resolutions
(i.e., 24 × 32, 12 × 16, and 6 × 8). To faithfully increase the resolution and enhance the
low quality of the collected data, we used two techniques referred to as Super-Resolution
(SR) [24] and image denoising [25]. By enhancing the quality of the collected images, not
only do we improve the activity detection accuracy, but we also make it more robust to
changes in the environment, namely ones related to the temperature and the presence of
noise sources.

We use two mainstream types of DL classifiers, namely a CNN and a combination of a
CNN and an LSTM. The classification process goes as follows. First, all the individual im-
ages are classified using CNN. The CNN learns the appropriate weight in the convolutional
part of the network and performs a rough classification of activities. In the second stage, the
CNN’s output is passed to the LSTM, which performs a more robust classification by taking
into account the temporal component. We apply quantization to the neural network to
optimize the model, allowing it to run on a low-quality computational device. Nonetheless,
since it is difficult to collect the data in many environments, we use a technique referred to
as data augmentation [26] to generate artificial data that mimics real data. For this sake, we
employ a particular type of neural network conceived for this task known as Conditional
Generative Adversarial Networks (CGAN).

The use of the aforementioned DL techniques leads to a noticeable improvement in
detection, as we will demonstrate throughout this paper. The contributions of this paper
can be summarized as follows:
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1. We propose a lightweight DL model for activity classification that is robust to environ-
mental changes. Being lightweight, such a model can run on devices with very low
computation capabilities, making it a base for a cheap solution for activity detection.

2. We apply SR techniques to LR data (i.e., 12 × 16 and 6 × 8) to reconstruct HR images
(i.e., 24 × 32) from lower resolution ones.

3. We use a denoising technique that requires no training to remove noise from the IR
image, which significantly improves classification performance.

4. We use an advanced data augmentation technique known as CGAN to generate
synthetic data. The generated data are used as part of the training set to improve
the training of the networks and generate more accurate models that are robust to
environmental changes.

5. We demonstrate that it is possible to use the LR data to achieve classification performance
that is nearly identical to that of the classification of the HR data, namely 24 × 32.

The remainder of this paper is structured as follows. In Section 2, we describe in detail
our proposed system and its different components, as well as our experimental setup. In
Section 3, we describe the neural network architecture used for the classification, which
allows for the judgment of the contributions of each of the introduced components. In
Section 4, we present the results obtained by running the classification with different com-
binations of pre-processing. In Section 5, the main findings and possible future directions
to further improve the performance of the proposed model are discussed. Finally, we
conclude this work in Section 6.

2. Experiment Specifications
2.1. Device Specifications

We employ the MLX90640 IR array sensor (Designed by Melexis (https://www.
melexis.com/en/product/MLX90640/, accessed on 25 April 2022) and manufactured
by Sparkfun (https://www.sparkfun.com/products/14843, accessed on 25 April 2022))
depicted in Figure 1. This sensor is capable of detecting heat rays emitted by different
thermal sources. The main sensor specifications are displayed in Table 2. The temperature
range of the sensor covers both the typical human body temperature and the temperature
of the surrounding environment. Moreover, the sensor is capable of collecting data at a
variety of frame rates. In terms of the number of pixels, the sensor has a resolution of
24 × 32. The temperature rises in direct proportion to the brightness of the colors in the
generated frames.

Figure 1. The wide-angle IR array sensor used for our experiments.

As illustrated in Figure 2, the sensor is connected to a Raspberry Pi 3 model B+.
A Raspberry Pi is a single-board computer (SBC) manufactured by the Raspberry Founda-
tion (https://www.raspberrypi.org/, accessed on 25 April 2022). The specifications of the
Raspberry Pi 3 model B+ are given in Table 3. The Raspberry Pi is operated by a System on
a Chip (SoC) with a quad-core ARM Cortex-A53 CPU and 1 GB of RAM. Our proposed
system is meant to run on even lower-end devices. However, for the sake of this work,

https://www.melexis.com/en/product/MLX90640/
https://www.melexis.com/en/product/MLX90640/
https://www.sparkfun.com/products/14843
https://www.raspberrypi.org/
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we run our experiments on the Raspberry Pi for its ease of operation and user-friendly
operating system (OS).

Table 2. The technical specifications of the sensor.

IR Sensor Model Qwiic IR Array MLX90640

Camera 1

Voltage 3.3 V

Temperature range of targets −40 ◦C∼85 ◦C

Number of pixels 24 × 32, 12 × 16, 6 × 8

Viewing angle 110◦ × 75◦

Frame rate 8 frames/second

Table 3. The technical specifications of the SBC used.

Embedded SBC Raspberry Pi 3 Model B+

SoC Broadcom BCM2837B0, Cortex-A53 (ARMv8) 64-bit SoC

CPU 1.4GHz 64-bit quad-core ARM Cortex-A53 CPU

RAM 1GB LPDDR2

OS Ubuntu Mate

Power input 5 V/2.5 A (12.5 W)

Connectivity to the sensor Inter-Integrated Circuit (I2C) serial bus

I2C transmission rate 3.4 Mbps

Figure 2. An image of the Rasberry Pi 3+ with the camera and IR sensors attached, which we used to
collect data.

In addition to the sensor, a camera is connected to the Raspberry Pi to record a video
of the same event as the sensor simultaneously. The videos collected by the camera serve as
the ground truth for the data collected by the sensors, allowing for easy annotation of the
IR frames. While we have made sure to align the camera to the sensors on one axis and have
them away from one another with a distance equal to 3 cm on the other axis using their
respective boards, the alignment is not mandatory for our experiments. This is because
the RGB camera is used only for the annotation of the frames, and the only constraint that
needs to be satisfied is that its coverage is larger or equal to that of the IR sensor, which
is indeed the case. The annotation process goes as follows: The annotator watches the
frames captured by the camera and labels the frames accordingly. Since the IR sensor and
the camera capture the data at the same frame rate, with negligible delay (if any), the IR
sensor frames will have the exact same labels as their RGB counterparts. For example, if
the annotator judges that the participants in RGB frames from 800 to 1000 are walking,



Sensors 2022, 22, 3898 7 of 24

this label (walking) is attributed to the IR frames from 800 to 1000 as well. We assembled
the device and placed it on the ceiling. The sensor and the camera both collect the data
at 8 frames per second (FPS) and store the collected frames on an SD card installed in the
Raspberry Pi.

2.2. Environment

As described above, the system is built and attached to the ceiling at a height h equal
to 2.6 m. The dimensions of the room and the process by which the various measurements
are extracted are depicted in Figure 3.

Detection range 110°× 75° 

  
h =2.60 m 

 

l  =  2 . h . tan (110°/2)
l′  =  α1 . l 

w′   = α2 . w

w  =  2 . h . tan (75°/2)

Infrared Array Sensor

Figure 3. The experiment area and its dimensions.

The sensor has a wide-angle lens covering on one axis 110◦, and on the other, it covers
75◦ (we refer to the two angles as θ1 and θ2, respectively). A rectangular coverage of the
following dimensions l and w was obtained at the floor level as a result.

l = 2 · h · tan
(

θ1

2

)
(1)

w = 2 · h · tan
(

θ2

2

)
(2)

According to the above equations, l and w are equal to 7.00 and 3.90 m, respectively.
Figure 3 depicts a simplified image of a person standing at the edge of the coverage area.
We can clearly see that the upper half of the body is not covered. As a result, identifying the
activity (s)he would be performing when (s)he is near the edge of the measured coverage
area is very difficult. Therefore, we use two coefficients α1 and α2 to obtain a more realistic
coverage area, which is obviously smaller than the theoretical one measured at ground level.
The empirical values of α1 = 0.81 and α2 = 0.75 are used. This practical coverage area’s
length and width are l′= 5.67 and w′= 2.92 m, respectively.

We conducted our experiments in three separate locations.

• The first room is a small, closed space with only one window that lets in little light.
The temperature in the room has been set to 24 ◦C.

• The second room is larger, brighter, and equipped with an air conditioner whose
temperature is set to 22 ◦C.

• In comparison to the other rooms, the third room is a little dark, and its air conditioner
temperature is set to 24 ◦C.

Some samples of the data collected in different environments with different resolutions
are shown in Figure 4.

People of various ages and both males and females, participated in the experiments.
For each experiment, a single subject was asked to engage in a variety of activities for a
total of five minutes in a particular environment. The sensor collects data, which we later
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use for classification. We managed to run several experiments and gathered enough data to
train and evaluate the proposed approach.

First Room Second Room Third Room 

24×32

12×16

6×8

Figure 4. Some samples of the raw data collected in different environments with different resolutions
(The red color in the image shows the human body temperature it represents the person in the room).

2.3. Framework

A flowchart of the overall framework is shown in Figure 5. The data collected by
the sensor have 24 × 32, 12 × 16, and 6 × 8 resolutions. We apply the SR and denoising
techniques to the LR data. The HR data of 24 × 32 was used to generate synthetic data
using CGAN to diversify the samples and cover potentially important missing samples.
The synthetic data are used to train the CNN model. We classify the individual frames
using a CNN. The output of the CNN was passed to the LSTM with a time window size
of five frames to improve the classification accuracy. Finally, we compare all the data
classification performances.

24 ×32 12 ×16 6 ×8

Raw  Sensor Data

Denoising Conditional
GAN

Super
Resolution

CNN Train
Model

LSTM Evaluate
Model

CNN Evaluate
Model

LSTM Train
Model

Figure 5. A flowchart of the proposed system.
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3. Detailed System Architecture and Description
3.1. Data Collection

The experiments were conducted as explained in Section 2.2, and data were collected
for all the experiments run. In total, we collected 12 scenarios of data. Each scenario lasts
for five minutes. The camera and the sensor both collected data at 8 frames per second.

One scenario is defined as 5 min of continuous activities. Each scenario includes all
the activities (i.e., walking, falling, standing, sitting, lying, and the action change referred
to as transition between the activities). Out of the 12 scenarios, we used 8 for training and
the remaining 4 to test the model of our proposed approach. Table 4 shows the distribution
of frames showing the different activities in the training and test data sets. Throughout
our experiments, the scenarios chosen for the training and those chosen for testing were
collected in different environments. We opted for this choice to ensure that there was no
data leakage and to avoid potential problems of overfitting during the classification. In
addition, for similar purposes, we made sure the activities were performed in random
places rather than having them occur at the same position every time.

Table 4. The frame counts for each activity in the training and the testing data sets.

S.No. Activity Training Data
Frames Testing Data Frames

1 Walking 5456 2351

2 Standing 1959 882

3 Sitting 3102 1566

4 Lying 2486 647

5 Action change 1961 939

6 Falling 613 264

3.2. Super-Resolution

The SR technique was used on the LR data (6 × 8, 12 × 16) to learn how to upscale
them back to the HR resolution of 24 × 32. By doing so, we can use low-end cheaper
sensors that collect the data naively at these low resolutions (i.e., 6 × 8 and 12 × 16) and
apply the trained SR model to upscale them faithfully to a higher resolution then perform
the classification. By doing so, it is possible to improve the classification accuracy of frames
collected by the low-end sensor to match (or get as close as possible to) the HR 24× 32 pixel
frames collected by higher-end, more expensive ones.

In our work, we use the Fast Super-Resolution Convolutional Neural Network (FSR-
CNN) [24] to improve image quality. The architecture of the neural network is depicted
in Figure 6. It is based on a shallow network design that reproduces images faster and
more clearly. The FSRCNN neural network is made up of five components:

• Feature extraction
• Shrinking
• Non-linear mapping
• Expanding
• Deconvolution
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Conv2D (5×5)
[n1 filters]

Input Output

Conv2D (5×5)
[n5 filters]

Conv2D (1×1)
[n2 filters]

Conv2D (3×3)
[n3 filters]

Conv2D (1×1)
[n4 filters]

Figure 6. The architecture of the neural network used for Super-Resolution.

3.2.1. Feature Extraction

The low-resolution image’s overlapping patches were extracted and represented as a
high-dimensional feature vector. It is accomplished through the use of n1 convolutional
filters with kernel sizes equal to 5 × 5.

3.2.2. Shrinking

To reduce the feature dimension, a shrinking layer was added after the feature extrac-
tion layer. This helped reduce the computational complexity. In this convolutional layer, a
set of n2 filters of size 1 × 1 was used to linearly combine the low-resolution features.

3.2.3. Non-Linear Mapping

Non-linear mapping is one of the vital parts of the SR process. The purpose of non-
linear mapping is to map the feature vector to a higher dimensional space. This higher
dimensional space contains richer information that could be mapped to the expected
output vector. In other words, it is responsible for generating enough context to reconstruct
the high-resolution image. The number of sub-blocks in the non-linear mapping block and
the filter size used highly influence the neural network’s performance. In our current work,
we adopted a convolution layer with n3 filters of size 3 × 3. The total number of sub-blocks
is represented as m = 3.

3.2.4. Expanding

The shrinking layer reduces the dimension of the low-resolution feature. The quality
will be poor if we generate an HR image directly from the low-resolution feature dimension.
This is why we add the expanding layer after the mapping block. We used a convolution
layer with n4 filters of size 1 × 1 to maintain consistency with the shrinking layer.

3.2.5. Deconvolution

A deconvolution layer was used to upscale and aggregate the previous layer’s output,
resulting in a more accurate representation of the data. Unlike the convolution layer, the
deconvolution layer expands the low-resolution into higher dimension data. More precisely,
this is determined by the stride size, as a stride of size 1 with padding would yield
information of the same size, whereas a stride of size k will yield condensed information of
size 1/k. Deconvolution with stride expands the input data so that the output image can
reach the 24 × 32 resolution.

3.2.6. Activations Functions and Hyperparameters

In FSRCNN, a new activation function was introduced called Parametric Rectified
Linear Unit (PReLU) for better learning. The activation threshold of PReLU is different
from that of conventional ReLU. PReLU’s threshold is learned through training, whereas
ReLU uses a fixed 0 as the threshold, mapping all negative values to zero. This is essential
for both training and later estimating the architecture’s complexity.

We use our neural network’s total number of parameters as an indicator to estimate
its complexity. To recall, our network is basically composed of a set of convolutions followed
by a single deconvolution. In addition to that, we include the number of PReLU parameters.
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To measure the total number of parameters of the neural network, we use the following
equations that measure the total number of parameters in a convolution layer (Csr), and the
parameter in the PReLU layer (Asr):

Csr = ((m · n · p) + 1) · k, (3)

Asr = h · w · k, (4)

where m and n are the width and height of each filter, respectively, p is the number of
channels, k is the number of filters used in the layer, and h and w are the input image’s
height and width, respectively.

As a result, the total number of parameters in the network is 21,745 for the 8 × 6 input
images and 47,089 for the 16 × 12 input images.

An example of a 24 × 32 image, its low-resolution version of 12 × 16 (resp. 6 × 8), and
the reconstructed Super-Resolution one are given in Figure 7.

LR (12×16) SR (24×32)

LR (6×8) SR (24×32)

Figure 7. The output of the SR technique applied to a 12 × 16 frame and a 6 × 8 frame.

3.3. Denoising

Denoising refers to the process of restoring an image that has been contaminated by
additive noise. Due to their ability to learn very fine patterns in an image, deep convolution
networks have proven to be highly effective in denoising images in recent years. One of the
image restoration techniques is the Deep Image Prior (DIP) [25]. This technique demonstrates
that the network structure is adequate for restoring the original image from the degraded
image. Pretrained networks or large image datasets are not required for this technique. It
operates directly on the degraded images and learns internally what makes noise and what
makes useful pixels.

Generally speaking, the most commonly used methods for image restoration in computer
vision are learned prior [27] and explicit prior [28]. Learned-prior is a simple method for
training a deep convolution network to learn how to denoise images by training on a data set.
It takes noisy images as training data and clean images as ground truth and trains the network
to reconstruct the clean image from the noisy one. In the explicit prior method, noises are
mathematically calculated and removed. DIP bridges the gap between these two popular
methods by constructing a new explicit prior using a convolutional neural network.

The DIP structure is based on the U-Net [29] type neural network shown in Figure 8
with multiple downstream and upstream steps and skip connections, each of which consists
of a batch normalization and an activation layer. Random noise is fed into the network.
The target is the image that has been tainted by the use of a mask. The loss is calculated by
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applying the same mask to the output image x∗ and comparing it to the noisy image. This
implies that the loss function does not explicitly drive the noise/corruption repair (as it is
re-applied before computing the loss). This is due to the neural network’s implicit behavior.
When the network attempts to optimize toward the corrupted image. The neural network
contains the parametrized weight θ. Using this θ, the network finds the optimized weight
θk+1 based on gradient descent optimization.

Input

Output

Upsample block

Downsample block Convolution [n filters+LeakyReLU+  
Bilinear interpoletion]

Downsample

Upsample Convolution [n filters+LeakyReLU+  
Bilinear interpoletion]

Skip Block Convolution [n filters+LeakyReLU+  
Bilinear interpoletion]

Figure 8. The architecture of the neural network used for denoising.

θ = argmin
θ

E( fθ(z); x0), (5)

θk+1 = θk − α
δE( fθ(z); x0)

δθ
, (6)

x∗ = fθ(z), (7)

where x0 is the noisy image and z is random noise. Here E( fθ (z); x0) is a data term usually
used in the denoising problem. fθ() is a convolutional neural network-based encoder-
decorder parametrized by the weight θ. The resulting denoised images are shown in the
Figure 9. In our work, we applied the denoising DIP technique on 24 × 32, 12 × 16, and
6 × 8 data.



Sensors 2022, 22, 3898 13 of 24

Original image Original imageOriginal image

Denoised imageDenoised image Denoised image

Figure 9. The output of denoising technique applied to 24 × 32, 12 × 16, and 6 × 8 frames.

3.4. Conditional Generative Adversarial Network (CGAN)

When training neural networks, a common technique referred to as “data augmentation”
is used to address some of the issues related to the nature and amount of data used for training.
Data augmentation refers to the process of generating artificial (or synthetic) data to enlarge the
size of the training set. The synthetic data improve the classification result and strengthen the
system’s ability to work in various environments. The most advanced deep learning technique
for data augmentation is the Conditional Generative Adversarial Neural Network (CGAN) [26].
CGAN is a generative model for supervised learning. The labeled data are used to train and
generate synthetic data based on the number of classes. The CGAN structure is comprised
of two neural networks: a generator G and a discriminator D, as depicted in Figure 10. x is
the real image, and pdata(x) and pz(z) denote the distribution of the real and the synthetic
samples, respectively. A random noise z is taken from prior distributions with the label y
and is used as an input to the generator known as a latent vector ((z | y) ∼ pz(z | y)). The
generator aims to create, out of the input noise, samples with a more complex distribution
G(z | y) that are similar to that of the real ones (i.e., x) for the given class y. (x | y) and (z | y)
are the real image with label and random noise with label, respectively. In the meantime,
the discriminator should distinguish between real samples ((x | y) ∼ pdata(x | y)) and the
generated samples (G(z | y) ∼ pz(z | y)). Backpropagation optimizations are used to train
both networks, and they are completely independent of one another. The optimization of the
generator is performed using the discriminator’s predictions about the samples it generated.
The discriminator is trained using the generator’s synthetic data. This optimization uses
CGANs’ training cost function, min–max loss, as shown in the equation below.

minGmaxD = Ex∼pdata(x)[log(D(x|y))] + Ez∼pz(z)[log(1− D(z|y))] (8)

Training
data

Real data

Prior
distribution

Generator 
(G) 

Synthetic
data

G(z|y)

Latent 
 vector

Discriminiator 
(D) 

Cost  
function

Real  
(Probability)

Logistic 
 function

Class label

x~pdata (x)

z~pz (z)

D(x|y)

Figure 10. The architecture of data augmentation technique (CGAN).
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After several iterations of the two training techniques described above, the generator
learns to generate more sophisticated samples that do resemble the real ones, and the
discriminator learns how to identify the slight variation between the real and synthetic data.
To reduce the cost function of each network and optimize its internal weights, a gradient
step with backpropagation is performed at each iteration.

3.5. CNN and LSTM Classification

The classification neural network’s architecture is illustrated in Figures 11 and 12.
The classification consists of two stages:

• In the first stage, the sensor’s raw data are given as an input to the CNN that classifies
the individual frames and produces the first output.

• In the second stage, we perform the sequence classification using the LSTM. The output
of the CNN is given as an input to the LSTM with a window size equal to five frames.
The LSTM produces the sequence classification output.

Convolution Block Maxpooling layern Filters+ReLU

Flatten layer

Input

-
 
-
 
-
 
-
 

Dense layer Output

Figure 11. The architecture of the CNN used for classification.

CNN CNNCNN CNN CNN

LSTM cell LSTM cell LSTM cell LSTM cell LSTM cell

Input 

Output 

Figure 12. The architecture of the CNN + LSTM network used for classification.

Our neural network architecture consists of six 2D-convolution layers and two fully
connected layers. Each convolution layer uses filters with a kernel size equal to 3 and has
a Rectified Linear Unit (ReLu) activation function. Every two 2D-convolution layers are
followed by a 2D-Maxpooling layer whose kernel size is set to 2. The output of the sixth
convolution layer is flattened and is connected to a dense layer with a ReLU activation
function. In the final dense layer, the activation function is sigmoid. The output of the CNN
is given as an input to the LSTM network. The identical copies of CNN weights are frozen,
and the trainable parameters are set to false.
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To evaluate the complexity of the neural network, we measure the total number of
parameters of the neural network. We use the following equations that measure the total
number of parameters in a convolution layer (Cp), in a dense layer (Dp), and in an LSTM
layer (Lp):

Cp = ((w f · h f · p) + 1) · c, (9)

Dp = ((s · n) + 1), (10)

Lp = 4× ((il + 1) · dl + d2
l ), (11)

where w f , h f , and c represent the width, height, and the number of channels of each filter,
respectively, f represents the number of filters in the convolution layer, s represents the
size of the dense layer, and n represents the number of neurons in the previous layer. The il
and dl are the input and output sizes of the LSTM neural network, respectively. The total
number of parameters is about 189K in the CNN and about 568 K in the LSTM network.
Compared to the existing pre-trained models, such as ResNet [30] (21M parameters) and
VGG16 [31] (138 M parameters), our model is lightweight and can easily run on low-end
computational devices, such as the Raspberry Pi. The total number of parameters in the
neural networks proposed in this work is shown in Table 5, along with that of some of
the state-of-the-art neural network architectures. For its size and weight, the proposed
architecture provides a very good classification performance.

Table 5. A comparison between the total number of parameters of the neural networks used in the
current work and those of the state-of-the-art neural networks used for image classification.

Model Parameters

ResNET [30] 21 Million
VGG16 [31] 138 Million

CNN 189 Thousand
CNN + LSTM 568 Thousand

3.6. Further Model Optimization Using Quantization

In the realm of deep learning, quantization [32] refers to the concept of using low
bit-width (conventionally 8-bits) numbers to represent the weights within the neural
network, rather than using floating numbers, which occupy much more space, and are
more computationally costly. Operations with low bit-width numbers, such as integers, are
the lightest from a computer’s perspective.

With that in mind, to achieve high accuracy for our models while keeping their com-
putational demands as low as possible, we use this concept of quantization as introduced
in [32] to reduce the size of our model. The purpose of weight quantization is to replace
high weights with low weights without modifying the network’s architecture. As a result,
approximated weights are used for compression. There is a trade-off between weight
quantization and classification accuracy because precise weight is given up for low memory
space. Weight sharing typically utilizes the same weight rather than retraining parameters.
This significantly reduces computational costs. We use a quantization aware training [33,34],
which has a lower loss in quantization. However, it is important to emphasize that de-
spite its contribution to the minimization of the model size and the computation cost, the
accuracy of the model when using quantization drops compared to that when using the
original weights in the model after training. Quantization aware training (QAT) [34] works
by applying a fake quantized 8-bit weight float to the input. The training is then operated
normally as it deals with floating-point numbers, even though it emulates operations with
low bit-width numbers. Once the training is complete, the information stored during the
fake quantization is used to convert the floating-point model to an 8-bit quantized model.
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4. Experimental Results
4.1. Computer Vision Techniques Results

To evaluate the network model’s performance in image SR and denoising, this paper
utilizes a widely used image quality metric, namely the Peak Signal-to-Noise Ratio (PSNR).
PSNR is commonly used to objectively evaluate image quality. It is defined as the ratio
between the maximum power of the effective signal and the power of the noise in the signal.
PSNR is measured in decibels (dB), and its mathematical expression is

PSNR = 10× log10

(
2n − 1
MSE

)
, (12)

MSE =
1

mn

n

∑
i=0

m

∑
j=0

∣∣Xij −Yij
∣∣2. (13)

Here, MSE stands for the mean squared error between the original image and the
generated image, which means that Xij and Yij are the values of the pixels in the i-th row
and the j-th column in the original image and the generated image, respectively. The m
represents the numbers of rows of pixels, and n represents the number of columns of pixels.
In general, the higher the MSE, the less similar the generated image is compared to the original;
thus the PSNR decreases. In other words, a higher PSNR indicates a higher quality image.

Table 6 lists the results of Super-Resolution and denoising. As can be seen, the
PSNR of the 12 × 16 frames reaches 32.62 dB. As for 6 × 8 frames, the PSNR reaches
20.47 dB. The denoising result performs well for the 24 × 32 frames; the PSNR reaches
34.62 dB. This means that the denoised frames have good quality, allowing for improving
the predictions. As for the low-resolution 12 × 16 and 6 × 8 frames, the PSNR has also
been improved. However, it is not enough to generate as good quality images as the
HR24 × 32 ones.

Table 6. The performance of SR and Denoising technique.

Method Input-Output PSNR(dB)

Super-Resolution Image12×16→Image24×32 32.62
Image6×8→Image24×32 20.47

Denoising
Image24×32 34.12
Image12×16 30.52
Image6×8 23.74

4.2. Classification Results

We use accuracy as the metric for evaluating the efficiency of activity detection classi-
fication. Using the True Positive (TP), False Positive (FP), True Negative (TN), and False
Negative (FN) values, the accuracy is calculated based on the following formula:

Accuracy =
TP + TN

TP + FN + FP + TN
. (14)

First, we report the overall classification accuracy of various techniques. Table 7 il-
lustrates the classification accuracy achieved using the CNN. As evident, the individual
applications of SR, denoising, and CGAN have helped obtain better results. The accuracy
of classification using the raw data is high, it has been observed that the SR technique has
further enhanced the accuracy of the result. The denoising technique has also generated
better results, though the accuracy of classification of the denoised frames is less than
that of SR. Furthermore, the combined application of CGAN and raw data has notice-
ably improved the classification accuracy from 93.12% to 95.24%. Besides experimenting
with each technique aside, we applied a combination of the pre-processing techniques
to the low-resolution data. As shown in Table 7, three specific combinations have been
applied, namely,
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1. Super-Resolution→ Denoising,
2. Denoising→ SR,
3. Denoising and CGAN.

Clearly, the classification accuracy of the frames enhanced using all these combina-
tions has improved further. We further combined the pre-processing techniques with the
augmented data, wherein the derived results reflect improved classification results, which
are as high as that of the original HR (i.e., 24 × 32) frames. For the 6 × 8 low-resolution
data, the classification results reached 83.58%, while for the 12 × 16 low-resolution data,
it reached 94.44%. Remarkably, the maximum accuracy of classification of the original
data with the HR (i.e., 24 × 32) has been obtained through the combined application of
‘Denoising and CGAN’ , and reached 96.54%.

Table 7. The overall activity classification results using CNN

Method Image6×8 Image12×16 Image24×32

Raw data 76.57% 88.22% 93.12%
SR 77.72% 89.24 % –
Denoising 76.88% 88.30% 93.71%
CGAN+Raw data – – 95.24%

Denoising→ SR 78.25% 89.31% –
SR→ Denoising 80.47% 91.72% –
Denoising + CGAN – – 96.54%

Denoising→ SR + CGAN 81.12% 92.66% –
SR→ Denoising + CGAN 83.58% 94.44% –

Further, Table 8 presents the results of sequential classification, wherein the output
from the CNN is utilized as an input to the LSTM, with a time window size of five frames.
Here, we observe that the sequential classification of the raw data and low-resolution
data has improved considerably. By applying the Super-Resolution and denoising (both
independently and collectively), the data classification results have further been improved.
Further, using data augmentation techniques, we found that the sequential classification
accuracy has increased.

Table 8. The overall activity classification results using CNN + LSTM.

S.No. Image6×8 Image12×16 Image24×32

Raw data 78.32% 90.11% 95.73%
SR 79.07% 90.89% –
Denoising 78.55% 90.33% 96.14%
CGAN+Raw data – – 96.42%

Denoising→ SR 80.18% 92.38% –
SR→ Denoising 82.76% 92.91% –
Denoising + CGAN – – 98.12%

Denoising→ SR + CGAN 80.41% 93.43% –
SR→ Denoising + CGAN 84.43% 94.52% –

For a fairer evaluation of our approach, we ran it against some existing approaches,
namely ones that employ SVM, CNN, and 3D-CNN classifier. Table 9 compares the classi-
fication accuracy for these models with the highest accuracy of our approach. As can be
seen from the table, the highest accuracy are reported in bold, our proposed approach
outperforms the existing ones.
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Table 9. A comparison between the results achieved with our proposed approach and those achieved
by employing some of the existing methods in the literature.

Approach Image6×8 Image12×16 Image24×32

SVM [17] 61.45% 68.52% 88.16%
CNN [21] 67.11% 82.97% 90.14%

3D-CNN [22] 72.42% 90.89% 93.28%
CNN + LSTMSR→ DE + CGAN 84.43% 94.52% –

CNN + LSTMDE + CGAN – – 98.12%

Further experiments were run to evaluate the contribution of the different image
enhancement techniques. We report the activity classification accuracy using various com-
binations of these techniques. For simplification, and since we used different techniques,
we use the following terminology for each of the resolutions or techniques used:

• The raw sensor data with various resolutions are referred to as R(24×32), R(12×16), and R(6×8).
• The SR technique applied to LR data is referred to as SR(12×16), and SR(6×8).
• The denoising technique applied to the HR and LR data is referred to as DE(24×32),

DE(12×16), and DE(6×8).
• The combination of raw data with CGAN techniques is referred to as R + CG(24×32).
• The denoising and CGAN techniques applied to HR data are referred to as

DE + CG(24×32).
• The combination of denoising and SR techniques applied to LR data are referred to as

DE→ SR(12×16), DE→ SR(6×8), SR→ DE(12×16), and SR→ DE(6×8).
• The combination of SR, denoising, and CGAN techniques applied to LR data are

referred to as DE → SR + CG(12×16), DE → SR + CG(6×8), SR → DE + CG(12×16),
and SR→ DE + CG(6×8).

The results of activity classification accuracy of CNN using the LR 6 × 8 data are
shown in Table 10. We can see that each technique improved the activity classification
performance. Walking and sitting, for example, present high accuracy in the DE→ SR(6×8)
technique, both reaching 86%. Further, the falling accuracy is 71% in SR→ DE(6×8). Data
augmentation aids in the improvement of activity detection in SR → DE + CG(6×8) for
other activities, such as standing, lying, and action change, which reach high accuracies of
84%, 81%, and 80%, respectively.

The results of the activity classification accuracy of CNN using LR 12 × 16 are shown
in Table 11. Here, for the particular case of the falling activity, the SR → DE(12×16) tech-
nique reaches a high accuracy of 94%. Similarly, the standing accuracy is 94% in the
DE→ SR + CG(12×16) technique. The performance of detection of other activities im-
proved using the SR→ DE + CG(12×16) technique, reaching a maximum of 93% accuracy
in the action change activity and 92% accuracy in standing and lying.

We infer from these CNN classification results that performing SR followed by denois-
ing and then adding CGAN data improves performance.

Table 12 shows the results of the HR data classification using CNN. Here, the
DE + CG(24×32) technique performs well for the majority of the activities. Walking reaches
an accuracy of 96%, sitting reaches an accuracy of 95%, and lying reaches an accuracy of
94%. The performance boost provided by denoising, which creates a clear image, aids in
detecting activity.
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Table 10. The results of activity classification using CNN on 6 × 8 data.

Method Walking Standing Sitting Lying Action
Change Falling

R(6×8) 80% 68% 77% 68% 57% 55%
SR(6×8) 86% 73% 86% 76% 60% 63%
DE(6×8) 85% 86% 82% 68% 62% 64%

DE→ SR(6×8) 86% 78% 86% 70% 70% 62%
SR→ DE(6×8) 84% 82% 84% 72% 73% 71%

DE→ SR + CG(6×8) 82% 80% 79% 75% 78% 70%
SR→ DE + CG(6×8) 80% 84% 83% 81% 80% 68%

Table 11. The results of activity classification using CNN on 12 × 16 data.

Method Walking Standing Sitting Lying Action
Change Falling

R(12×16) 80% 88% 86% 75% 82% 81%
SR(12×16) 84% 86% 81% 85% 84% 83%
DE(12×16) 83% 85% 86% 85% 84% 79%

DE→ SR(12×16) 84% 85% 89% 90% 82% 84%
SR→ DE(12×16) 90% 92% 88% 91% 90% 94%

DE→ SR + CG(12×16) 89% 94% 90% 85% 84% 88%
SR→ DE + CG(12×16) 91% 92% 89% 92% 93% 91%

Table 12. The results of activity classification using CNN on 24 × 32 data.

Method Walking Standing Sitting Lying Action
Change Falling

R(24×32) 88% 90% 87% 93% 90% 91%
DE(24×32) 92% 84% 92% 90% 91% 89%
R + CG(24×32) 90% 95% 90% 94% 92% 92%
DE + CG(24×32) 96% 92% 95% 94% 87% 93%

Table 13 shows the activity classification results using CNN + LSTM on the LR
6 × 8 data. Here, again we can see that each technique improves the activity classifi-
cation performance. For example, SR → DE(6×8) has a high lying and action change
accuracy of 82%. The classification accuracy of walking, standing, and sitting activities in
SR→ DE + CG(6×8) is 84%, 82%, and 84%, respectively. This is thanks to the image qualify
improvement after applying SR, then DE.

Table 14 shows the activity classification results using CNN + LSTM on the LR
12 × 16 data. Here, sitting and lying activities, after applying DE → SR + CG(12×16),
reached a high accuracy of 93% and 94%, respectively. Other activities, such as walking and
action changes, reached 93% accuracy in SR(12×16) and SR→ DE + CG(12×16) techniques,
respectively. This is thanks to the fact that the 12 × 16 resolution data contains significantly
more information than the 6 × 8 resolution data. By applying the denoising technique
after SR, the images are smoothed and enhanced, making it easier to detect sitting and
lying activities.

The results of activity classification using CNN + LSTM applied to HR data are shown
in Table 15. In most activities, the DE + CG(24×32) technique performs well. Walking has a
high classification accuracy of 96%, action change has that of 97%, lying has that of 94%,
and falling has that of 96%. Denoising further improves the performance by making the
image clearer, which makes it easier to recognize the activity.
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Table 13. The results of activity classification using CNN + LSTM on 6 × 8 data.

Method Walking Standing Sitting Lying Action
Change Falling

R(6×8) 75% 78% 74% 77% 70% 74%
SR(6×8) 77% 74% 73% 78% 73% 76%
DE(6×8) 76% 72% 78% 70% 75% 72%

DE→ SR(6×8) 81% 78% 78% 75% 77% 73%
SR→ DE(6×8) 78% 81% 73% 82% 82% 75%

DE→ SR + CG(6×8) 80% 74% 70% 76% 78% 75%
SR→ DE + CG(6×8) 84% 82% 84% 78% 81% 80%

Table 14. The results of activity classification using CNN + LSTM on 12 × 16 data.

Method Walking Standing Sitting Lying Action
Change Falling

R(12×16) 88% 90% 76% 77% 80% 82%
SR(12×16) 85% 88% 82% 90% 86% 79%
DE(12×16) 82% 86% 78% 89% 90% 83%

DE→ SR(12×16) 92% 84% 77% 89% 91% 86%
SR→ DE(12×16) 93% 90% 88% 84% 91% 88%

DE→ SR + CG(12×16) 87% 90% 93% 94% 82% 90%
SR→ DE + CG(12×16) 90% 92% 90% 86% 93% 92%

Table 15. The results of activity classification using CNN + LSTM on 24 × 32 data.

Method Walking Standing Sitting Lying Action
Change Falling

R(24×32) 92% 91% 93% 90% 94% 89%
DE(24×32) 93% 95% 96% 91% 94% 92%
R + CG(24×32) 95% 94% 95% 93% 92% 90%
DE + CG(24×32) 96% 94% 93% 96% 97% 96%

4.3. Neural Network Quantization

As previously stated, we used quantization on our neural network because one of
our primary objectives is to have the proposed approach running on low-powered devices.
Although the process of quantization, generally speaking, reduces the accuracy, it can still
be used given flexibility for a trade-off between performance and optimization. In a first
step, we compare the classification accuracy of our models with and without quantization
when using the raw data (i.e., no image enhancement or data augmentation is used).
Table 16 compares the performance of classification of such raw data with and without
quantization. As can be seen, the accuracy is reduced, but not significantly. The accuracy
drops range from 0.06% for images of resolution 12 × 16 to 2.09% for images of resolution
6 × 8. However, to recall, our main goal is to optimize the proposed deployment approach
both in terms of performance and complexity. Given the different techniques proposed
in this work, we compare the results of the best performing techniques with and without
quantization in Table 17. As can be seen, the table shows a degradation in accuracy to some
extent compared to when quantization is not used. However, this does not negate the many
advantages of quantization; model sizes are reduced, and inference times are reduced to
the point where they are more beneficial in low-end devices. All these results are generated
using 8-bit integer data on our computer.
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Table 16. The performance comparison of raw data with quantization aware training.

Resolution With Quantization Accuracy 100 Epochs Training
Time (s) Inference Time (ms) Model Size (MB)

6 × 8 Yes 76.23% 17 0.003 0.3
No 78.32% 54 0.048 1.4

12 × 16 Yes 90.05% 36 0.007 0.8
No 90.11% 88 0.078 2.4

24 × 32 Yes 94.20% 44 0.009 1.1
No 95.73% 132 0.093 3.2

Table 17. A comparison between the performance of classification with and without quantization
applied to the pre-processed and enhanced images using the techniques proposed above.

Resolution With Quantization Accuracy 100 Epochs Training
Time (s) Inference Time (ms) Model Size (MB)

6 × 8SR→ DE + CGAN
Yes 82.27% 145 0.38 4.18
No 84.43% 321 2.57 10.20

12 × 16SR→ DE + CGAN
Yes 93.18% 164 0.60 5.43
No 94.52% 352 3.21 14.68

24 × 32DE + CGAN
Yes 97.53% 136 0.43 4.37
No 98.12% 291 2.82 11.20

5. Discussion

In our previous work [23], we used two sensors to combine the raw data and improve
activity detection. However, in the current research, we go a step further to enhance the
activity detection by using a single sensor positioned on the ceiling. Utilizing a wide-angle
IR array sensor with advanced deep learning computer vision techniques, we mainly aimed
to develop a robust activity detection system. Describing our step-by-step approach, the
previous section has presented the details of our experimental results. Herein, we observe
that after applying the deep learning computer vision techniques (SR/denoising/CGAN)
on the low-resolution data, we are able to generate good classification results, which are
compared to the raw data classification. However, the current approach still has a few
constraints to be considered and that require solutions to further enhance the activity detec-
tion ability and allow for a more general application of the proposed model. Taking into
account the identified shortcomings, four key areas of improvement have been identified,
as stated below:

• The SR technique considerably enhances the quality of the image; however, it is still
challenging to detect any activity at the edge of the defined coverage area. One ap-
proach to overcome this issue is to combine SR with more advanced feature extraction
methods or use a deeper neural network, for that matter.

• IR sensors generate the frames by collecting the IR heat rays and mapping them to
a matrix. These rays are noisy by nature, which is exacerbated by the sensor’s receivers,
which have a large uncertainty. This makes it hard for the IR sensors to generate high-
quality data. In light of that, we used the deep learning denoising technique (DIP)
to reduce the amount of noise in the image. However, the derived study results are
still not up to the mark. Since this method works without any prescribed training and
reduces the training cost, there is still a huge room for improvement in this direction.

• CGAN, one of the widely recognized advanced data augmentation techniques, was
used in this research to generate synthetic data. The CGAN technique generates
data based on the number of classes available and is a supervised learning technique.
However, despite the use of CGAN, we found that the extraction of the features from
the IR data is still very difficult, likely due to the image distortion in the raw data.
It is inferred that less distortion in the raw data allows for the generation of more
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realistic and useful synthetic data that could contribute to much better classification
performance through advanced feature extraction methods.

• One specific shortcoming of this research is that the only main source of heat present
in the room during the experiments is the participants themselves. This means that
the current model is trained for the case where there is a single person and no other
heat-emitting devices, such as a stove or a computer, are present. Thus, even though
the developed model performs well for the current experimental setup, it is not meant
to simultaneously detect the activities of multiple persons and obstacles. A potential
alternative to address this constraint could be the generation of three-dimensional
data, as it could help to estimate the precise height/depth of any target individual
and can also simultaneously differentiate between the activities of multiple people
and objects.

6. Conclusions

In this paper, we have proposed an activity detection system using a low-resolution
IR array sensor with advanced computer vision deep learning techniques. Using a single
sensor placed on the ceiling, we have conducted a variety of experiments (primarily six
human activities: walking, falling, sitting, standing, lying, and action change) in which we
collected data under different conditions for a continuous period of time with different
resolutions (i.e., 24 × 32, 12 × 16, and 6 × 8). To identify the activity of the participants,
we ran a classification task that takes the frames generated by the sensor as the input and
predicts the activity. To further enhance the classification, we applied three advanced deep
learning techniques: SR, denoising, and CGAN. Herein, the key purpose was to enhance
the classification accuracy of the low-resolution data. Through the results, we observed
that the application of these techniques has helped improve the classification accuracy of
low-resolution images from 78.32% to 84.43% (6 × 8 resolution) and from 90.11% to 94.54%
(12 × 16 resolution).
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Abbreviations
The following abbreviations are used in this manuscript:

IR Infrared
DL Deep Learing
SR Super-Resolution
LR Low Resolution
HR High Resolution
DIP Deep Image Prior
CNN Convolutional Neural Network
SVM Support Vector Machine
LSTM Long Short-Term Memory
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CGAN Conditional Generative Adversarial Network
FSRCNN Fast Super-Resolution Convolutional Neural Network
PSNR Peak Signal-to-Noise Ratio
MSE Mean Squared Error
TP True Positive
TN True Negative
FP False Positive
FN False Negative
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