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Abstract: Convolutional neural networks (CNNs) have been prominent in most hyperspectral image
(HSI) processing applications due to their advantages in extracting local information. Despite their
success, the locality of the convolutional layers within CNNs results in heavyweight models and
time-consuming defects. In this study, inspired by the excellent performance of transformers that
are used for long-range representation learning in computer vision tasks, we built a lightweight
vision transformer for HSI classification that can extract local and global information simultaneously,
thereby facilitating accurate classification. Moreover, as traditional dimensionality reduction methods
are limited in their linear representation ability, a three-dimensional convolutional autoencoder was
adopted to capture the nonlinear characteristics between spectral bands. Based on the aforementioned
three-dimensional convolutional autoencoder and lightweight vision transformer, we designed an HSI
classification network, namely the “convolutional autoencoder meets lightweight vision transformer”
(CAEVT). Finally, we validated the performance of the proposed CAEVT network using four widely
used hyperspectral datasets. Our approach showed superiority, especially in the absence of sufficient
labeled samples, which demonstrates the effectiveness and efficiency of the CAEVT network.

Keywords: convolutional neural network; autoencoder; vision transformer; hyperspectral image
classification

1. Introduction

Remote sensing images contain abundant spectral and spatial information [1]; thus,
numerous studies have been conducted on remote sensing images, such as land cover
mapping [2], water detection [3], and anomaly detection [4]. HSI plays an indispensable role
within the remote sensing community [5] and is widely used in change area detection [6],
atmospheric environment research, vegetation cover detection [7], and mineral mapping [8].
However, the correlation between spectral bands is complex, which causes information
redundancy while forming the curse of dimensionality. In addition, the analysis and
processing of HSI require a large amount of computation; therefore, it is essential to reduce
the computation overloadwhile maintaining processing accuracy.

Principal component analysis (PCA) [9] and linear discriminant analysis (LDA) [10] are
classical dimensionality reduction methods. However, these linear methods cannot handle
the nonlinear distribution of spectral vectors well. Following the successful application of
deep learning in various fields, this technology has also attracted much attention for use
in dimensionality reduction. Deep learning has a strong nonlinear processing ability, in
which the use of autoencoders is a typical unsupervised learning method. Zhang et al. [11]
introduced a basic framework for the application of deep learning to remote sensing
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data processing and proposed a stacked autoencoder for data dimensionality reduction.
To fully extract the rich spatial–spectral information, Ma et al. [12] proposed a spatial
update deep autoencoder, which is based on a deep encoder with added regularization
terms. Ji et al. [13] proposed a three-dimensional (3D) convolutional autoencoder for the
construction of a 3D input using spatial neighborhood information. However, these models
are all followed by a simple classification model after the use of the autoencoder for feature
extraction, which leads to the problem of insufficient feature extraction. Therefore, we
hoped to further explore deep learning methods for HSI classification to fully extract feature
information and finally achieve higher performances.

In recent years, CNNs have been proven to be outstanding for image recognition,
speech recognition, and pattern analysis. However, CNNs are vulnerable to backdoor
attacks. Some outstanding works have endeavored to solve this problem, such as Medical-
Guard [14], BlindNet backdoor [15], the multi-model selective backdoor attack method [16],
and the use of a de-trigger autoencoder against backdoor attacks [17]. CNN-based methods
have been widely used for image processing and also for HSI classification tasks. These
methods have achieved significant breakthroughs due to their local processing and shared
weight properties. According to the extracted features, these models can be divided into
three categories: spectral-based methods, spatial-based methods, and spatial–spectral
cooperative methods. The spectral-based methods classify each pixel by making use of
the rich spectral information. Mu et al. [18] proposed a dual-branch CNN-based method
for multispectral entropy super-pixel segmentation for HSI classification. Yang et al. [19]
proposed a deep similarity network to solve imbalances between the slight intra-category
and large inter-category differences. Moreover, a new pixel similarity measurement method
has been developed using a double-branch neural network to deal with the task of classifi-
cation. In an attempt to ameliorate the problem of mixed pixels destroying the credibility of
original spectral information and the computational efficiency of overly complex models,
Gao et al. [20] proposed a 3D data preprocessing method and designed a new sandwich
CNN that is based on the proposed method. To improve the performance of HSI classifi-
cation that is based on spectral feature learning, a dual-channel attention spectral feature
fusion method was proposed, based on a CNN, which extracts local and inter-block spectral
features simultaneously in a parallel manner after grouping the adjacent spectral bands [21].
The spatial-based methods only use spatial information, which means that the rich spectral
information is not used. A consolidated CNN [22] was proposed to overcome the problem
of insufficient spatial resolution. Fang et al. [23] proposed a 3D asymmetric inception net-
work to overcome this overfitting problem. The third group of methods extracts spatial
and spectral information at the same time and then fuses the extracted information for
HSI classification. Sun et al. [24] developed a method for extracting local features and
then concatenating the spatial and spectral features for classification. Zhao et al. [25]
constructed an architecture that is based on a spatial–spectral residual network for deep
feature extraction.

Although CNNs have achieved efficient performances in HSI classification, two main
problems still exist. On the one hand, HSI classification comprises point-wise prediction,
so the convolutional kernels cannot extract all of the useful information due to different
regional topographies. On the other hand, the size of the convolutional kernels limits the
receptive field of a CNN, which makes it impossible to carry out long-range modeling. The
use of transformers [26] makes up for this deficiency.

Along with the rapid development of deep learning, CNNs have always been main-
stream in the computer vision (CV) field and have demonstrated some extraordinary
achievements. Correspondingly, transformers have dominated the natural language pro-
cessing field. Since 2020, transformers have started to be used in the CV field, such as
for image classification (ViT, DeiT, etc.) [27,28], target detection (DETR, deformable DETR,
etc.) [29,30], semantic segmentation (SETR, MedT, etc.) [31,32], and image generation
(GANsformer) [33]. For CV problems, convolution has a number of natural advantages,
such as translation equivalence and locality. Although transformers do not have the
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above-mentioned advantages, they can obtain long-range information and extract global
information that is based on their unique structure. By contrast, CNNs need to continu-
ously accumulate convolutional layers to obtain larger receptive fields. Based on a ViT,
Li et al. [34] proposed a simple yet effective visual transformer (ViT) called SimViT, which
uses multi-head central self-attention and a simple sliding window to concentrate the
spatial structure and local information into the ViT. Simultaneously, multi-scale hierarchi-
cal features can be applied to various intensive visual prediction tasks. Given the wide
application of transformers within the CV field, some studies have introduced ViTs into
HSI classification. Hong et al. [35] examined the problem of HSI classification from the per-
spective of sequencing and proposed SpectralFormer, which applies a transformer to HSI
classification without convolution or cyclic units. He et al. [36] proposed a spatial–spectral
transformer for HSI classification, which uses a well-designed CNN to extract features
and adopts a densely connected transformer to deal with the long-range dependencies.
Qing et al. [37] improved transformers to enable them to extract the spectral–spatial fea-
tures of HSIs by utilizing the spectral attention and self-attention mechanisms. However,
these models are still heavyweight, which leads to low efficiency.

As CNNs use the natural inductive bias advantage to learn visual representation
information, they can only establish local dependencies in the spatial information domain.
A ViT that is based on the self-attention mechanism can capture the global receptive field
of the input feature map and can establish global dependencies in the spatial dimension to
learn the global visual representation information. However, due to the structure of the self-
attention mechanism, network architectures usually have a large number of parameters and
computations. In view of this, we committed to combining the advantages of CNNs and
ViTs into the design of an efficient network architecture. Moreover, the feature destruction
that is caused by the linear dimensionality reduction method was also a point of our
concern. In this study, we adjusted the structure of the MobileViT [38] and constructed a
lightweight, robust, and high-performance framework, which can adapt to HSI processing.
The proposed method combines the advantages of CNNs and ViTs and improves previous
classification performances. Finally, we conducted experiments using four benchmark
hyperspectral datasets to confirm the feasibility and excellence of our method for HSI
classification.

The three significant contributions of this paper are as follows:
(a) According to our review of the literature, this study is the first to attempt to extend

a lightweight ViT (MobileViT) for HSI classification. The MobileViT network can extract
local and global information simultaneously and promote accurate classification;

(b) To preserve the more original information of HSI while reducing computational
costs, we chose an end-to-end 3D convolutional autoencoder (3D-CAE) network for non-
linear feature dimensionality reduction. Moreover, we proposed an efficient end-to-end
CAEVT network, which is based on the MobileViT and the 3D-CAE network;

(c) We evaluated the proposed method using four public datasets and achieved excel-
lent classification results compared to other classification algorithms. In addition, sufficient
ablation experiments demonstrated that the proposed method is efficient and effective
in terms of time consumption, the number of parameters, and floating point operations
(FLOPs). It is worth nothing that our CAEVT network also achieves a competitive perfor-
mance when labeled samples are scarce.

The rest of this article is organized as follows. Section 2 introduces the experimental
datasets and the proposed framework. The experimental results and an analysis of dif-
ferent methods are presented in Sections 3 and 4, respectively. Finally, Section 5 presents
the conclusions.

2. Datasets and Methods

In this section, we introduce the four public HSI datasets that were used in this study
and the proposed CAEVT network in detail.
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2.1. Introduction: Datasets

This study used four common HSI datasets to compare and verify the proposed
method: the Indian Pines (IP) dataset (Table 1), Salinas (SA) dataset (Table 1), Pavia
University (PU) dataset (Table 2), and Houston (HS) dataset (Table 2).

Table 1. Categories and sample numbers of the IP and SA datasets.

IP SA

Classes Samples Classes Samples

1 Alfalfa 46 1 Brocoli_green_weeds_1 2009
2 Corn-notill 1428 2 Brocoli_green_weeds_1 3726
3 Corn-mintill 830 3 Fallow 1976
4 Corn 237 4 Fallow_rough_plow 1394
5 Grass-pasture 483 5 Fallow_smooth 2678
6 Grass-trees 730 6 Stubble 3959
7 Grass-pasture-moved 28 7 Celery 3579
8 Hay-windrowed 478 8 Grapes_untrained 11,271
9 Oats 20 9 Soil_vinyard_develop 6203

10 Soybean-notill 972 10 Corn_senesced_green_weeds 3278
11 Soybean-mintill 2455 11 Lettuce_romaine_4wk 1068
12 Soybean-clean 593 12 Lettuce_romaine_5wk 1927
13 Wheat 205 13 Lettuce_romaine_6wk 916
14 Woods 1265 14 Lettuce_romaine_7wk 1070
15 Buildings-grass-trees-drives 386 15 Vinyard_untrained 7268
16 Stone-steel-towers 93 16 Vinyard_vertical_trellis 1807

Total 10,249 Total 54,129

Table 2. Categories and sample numbers of the HS and PU datasets.

HS PU

Classes Samples Classes Samples

1 Healthy grass 1251 1 Asphalt 6631
2 Stressed grass 1254 2 Meadows 18,649
3 Synthetic grass 697 3 Gravel 2099
4 Tree 1244 4 Trees 3064
5 Soil 1242 5 Painted metal sheets 1345
6 Water 325 6 Bare soil 5029
7 Residential 1268 7 Bitumen 1330
8 Commercial 1244 8 Self-blocking bricks 3682
9 Road 1252 9 Shadows 947

10 Highway 1227
11 Railway 1235
12 Parking lot1 1233
13 Parking lot2 469
14 Tennis court 428
15 Running track 660

Total 15,029 Total 42,776

The PU dataset comprises the continuous imaging of 115 bands within the wavelength
range of 0.43–0.86 µm, of which 12 bands were eliminated due to noise, and the spatial
resolution of the images is 1.3 m. The size of the data points is 610 × 340, including
42,776 feature pixels in total. These pixels contain nine types of ground truths, including
trees, asphalt roads, bricks, pastures, etc.

The IP dataset contains images with a spatial dimension of 145 × 145 pixels and
224 spectral bands within the wavelength range of 0.4–2.5 µm, of which 24 spectral bands
that encompassed water absorption areas were deleted. There are 10,249 accessible ground
truths, which are divided into 16 vegetation classifications.
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The SA dataset comprises the continuous imaging of 224 bands, 20 of which were
eliminated because they could not be reflected by water. The spatial resolution of the
images is 3.7 m. The size of the data points is 512 × 217 and 54,129 pixels can be applied to
the classification. These pixels are divided into 16 categories, including fallow, celery, etc.

The HS dataset was developed for the 2013 IEEE GRSS data fusion competition. The
data point size is 349 × 1905, including 144 bands with a spectral range of 364–1046 nm.
The ground truths are labeled into 15 categories.

2.2. Three-Dimensional Convolutional Autoencoder

The use of an autoencoder is an effective way to extract deep-seated features due to its
hierarchical structure. For a given autoencoder, our goal was to obtain the same output as
the input, as far as possible, by optimizing the parameters. Naturally, we obtained several
different representations of input X (the feature maps of each layer represent the different
representations).

An autoencoder has two parts: an encoder and a decoder. Furthermore, a loss function
is required to measure any loss. The smaller the loss, the closer the obtained features are to
the features of the original input data. The parameters of the encoder and decoder can be
adjusted by optimizing the loss function. In this study, to extract spatial–spectral features
simultaneously, we used a 3D-CAE (Equation (1)) to construct the encoder and decoder:

v = σ(W ∗ X + b) (1)

where W represents the convolutional kernel, X is the input, b is the bias, σ is the activation
function, and v is the extracted features.

The structure of the 3D-CAE is shown in Figure 1. The encoder part comprises con-
volutional and pooling layers: two convolutional layers and an average pooling layer.
Similarly, the decoder consists of two deconvolutional layers. The convolutional layers
are used for local processing and the pooling layer is used for downsampling. The de-
convolutional layers are used to reconstruct information. The results are measured by the
following equation:

L =
∥∥X′ − X

∥∥2 (2)

where X′ represents the reconstructed image, X represents the input image, and L stands
for the loss. The smaller the L value, the closer the reconstructed features are to the features
of the input image.

3D Transposed Convolution

Extracted Features

Decoder

3D Convolution

Global Pooling

Encoder

Figure 1. Structure of the 3D-CAE model.
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In addition, a normalization operation [39] (Equation (3)) and activation function
(Equation (4): PReLU [40]) were added to speed up propagation and alleviate overfitting.

X̄ =
X− E(X)

Var(X)
(3)

PReLU(xi) =

{
xi if xi > 0

aixi if xi ≤ 0
(4)

where ai is the artificial set and xi stands for the input. The activation function can increase
nonlinearity in the lower dimensions, but it may destroy spatial characteristics in the higher
dimensions [41]. We verified this through the experiments that are detailed in Section 4.1.
So, we did not choose to adopt any activation functions in the last deconvolutional layer.

Taking the PU dataset as an example, the parameters of the 3D-CAE that was devel-
oped in this study are listed in Table 3. We used larger cores for the spectral channels to
rapidly reduce the number of bands. The mean squared error (MSE) loss function was
used to measure the deviation between the reconstructed data and the original data. The
adaptive moment estimation (Adam) method was adopted to optimize the network pa-
rameters. In addition, we set the learning rate to 0.001. Finally, the obtained features were
transmitted into the next structure.

Table 3. Parameter settings of the proposed 3D-CAE model when applied to the Pavia Univer-
sity dataset.

Layer (Type) Input Size Kernel Stride Output Size

Conv-3 × 3 (1, 103 × 9 × 9) (24, 11 × 3 × 3) (1 × 1 × 1) (24, 93 × 7 × 7)
BN + PReLU (24, 93 × 7 × 7) (24, 93 × 7 × 7)
Conv-1 × 1 (24, 93 × 7 × 7) (48, 11 × 1 × 1) (1 × 1 × 1) (48, 83 × 7 × 7)

BN + PReLU (48, 83 × 7 × 7) (48, 83 × 7 × 7)
Pooling (48, 83 × 7 × 7) (9 × 1 × 1) (9 × 1 × 1) (48, 9 × 7 × 7)

Deconv-1 × 1 (48, 9 × 7 × 7) (24, 9 × 1 × 1) (10 × 1 × 1) (24, 89 × 7 × 7)
BN + PReLU (24, 89 × 7 × 7) (24, 89 × 7 × 7)
Deconv-3 × 3 (24, 89 × 7 × 7) (1, 15 × 3 × 3) (1 × 1 × 1) (1, 103 × 9 × 9)

BN (1, 103 × 9 × 9) (1, 103 × 9 × 9)

2.3. Vision Transformer

The transformer encoder consists of an alternating multi-head self-attention layer
and a multi-layer perceptron (MLP) block. First, the input feature is mapped into Query
(Q), Key (K), and Value (V) using the MLP. Next, the encoder is gained according to the
following expression:

Attention(Q, K, V) = softmax
(

QKT
√

dk

)
V (5)

MultiHead(Q, K, V) = Concat(head1, . . . , headh)WO (6)

headi = Attention
(

QWQ
i , KWK

i , VWV
i

)
(7)

The headi expression calculates its own attention and then multiplies it by WO to
obtain the aggregate feature representation.

Inspired by the successful scaling of the transformer in NLP, we developed a ViT that
tries to directly explore the standard transformer in the image and reduces the amount of
modification as much as possible. To this end, the image is split into patches and the linear
embedding sequence of these image blocks is then used as the input for the transformer.

The standard transformer accepts a one-dimensional sequence of token embedding
as its input. In order to process 2D images, the ViT reshapes the image X ∈ RH×W×C into

a flattened 2D sequence xp ∈ RN×(P2·C), where (H, W) is the resolution of the original
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image, C is the number of channels (RGB image, C = 3), (P, P) is the resolution of each
image block, N = HW/P2 is the number of generated image blocks, and N is the effective
input sequence length of the transformer. Later, we demonstrate how we developed this
transformer for HSI processing (Figure 2).

T

SS
Division

Input Value Query Key Attention Map Output

T SSTranspose Scale+Softmax Matrix Multiple

Figure 2. Structure of the self-attention mechanism.

2.4. MobileViT Block

In CNNs, locality, 2D neighborhood structures, and translation equivalences exist
within each layer of the model; however, ViTs have much less image-specific inductive
bias than CNNs. In ViTs, the MLP layers are local and equivariant, yet the self-attention
layers are global. As an alternative to the original image blocks, the input sequences can
be composed of CNN feature maps. Based on the above considerations, this model was
proposed in the literature [38].

Conv-3×3

Conv-1×1
Transformer Conv-1×1

Conv-3×3

W

C

H

WWW

WW

HHH

H
H

2C C

d Cd

dd

P P

N N

Fusion

MobileViT block

Local
representations

Global
representations

Figure 3. Structure of the MobileViT block.

The MobileViT block is shown in Figure 3. It is assumed that the input character is
X0 ∈ RH×W×C. Then, the local expression can be obtained using convolution. At this
stage, a separable convolutional structure with convolutional kernels of 3 × 3 and 1 × 1
is used to replace the normal convolution. The separable structure can easily change the
number of channels and speed up the operation. The resulting characteristic is recorded
as X1 ∈ RH×W×d (d < C). Due to the heavyweight peculiarity of the ViT, we reduced
the input features to a lower d dimension. As the ViT operates, the input feature map is
divided into a series of disjointed blocks, which are recorded as X3 ∈ RN×P×d. Under these
conditions, h and w were the input parameters, which were to 2, and P = hw.

For each p ∈ {1, · · · , P}, the transformer is used to achieve global processing and the
relationship between each patch is also obtained. The expression is as follows:

X4(p) = Trans f ormer(X3(p)), 1 ≤ p ≤ P (8)

Then, the size of the feature, which is recorded as X5 ∈ RH×W×C, is reconstructed to
be the same as that of the initial image. Low-level features X1 and high-level features X5 are
combined in the third dimension. Next, the dimension is reduced to C using a convolution
with a kernel of 3 × 3. In addition, the parameters of the MobileViT block are listed in
Table 4. This contains all of the details about the MobileViT block.
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Table 4. Parameter settings of the MobileViT block when applied to the Pavia University dataset.

Layer (Type) Input Size Output Size

Conv-3 × 3 (32 × 4 × 4) (32 × 4 × 4)
BN + SiLU (32 × 4 × 4) (32 × 4 × 4)
Conv-1 × 1 (32 × 4 × 4) (8 × 4 × 4)
BN + SiLU (8 × 4 × 4) (8 × 4 × 4)
Rearrange (8 × 4 × 4) (4 × 4 × 8)

Transformer (4 × 4 × 8) (4 × 4 × 8)
Rearrange (4 × 4 × 8) (8 × 4 × 4)

Conv-1 × 1 (8 × 4 × 4) (32 × 4 × 4)
BN + SiLU (32 × 4 × 4) (32 × 4 × 4)

Fusion (2, 32 × 4 × 4) (64 × 4 × 4)
Conv-3 × 3 (64 × 4 × 4) (32 × 4 × 4)
BN + SiLU (32 × 4 × 4) (32 × 4 × 4)

2.5. The Framework of the Proposed CAEVT

The framework contains three steps: dataset generation, training and validation, and
prediction, which can be seen in Figure 4. First of all, the dataset is randomly divided into
a training set, validation set, and testing set. For the training set, four channels (C, B, H,
and W) are reshaped into three channels (CB, H, and W) (C stands for the channel and
B stands for the band) after using the 3D-CAE model to reduce the dimensions. Next, a
convolutional layer is adopted and the features are input into the MobileViT block for the
extraction of local and global features. Before the features are input into the classification
network, another convolutional layer, an average pooling layer, and a dropout rate of 0.2
are adopted. Afterward, the features are reshaped into one dimension for classification.
The classification network consists of a fully connected layer. Finally, a cross-entropy loss
function is adopted to calculate the error.

Randomly
division

Trained
Model

Training
end

Best
Model

Y

N

CAEVT network

Step 1:
Nonlinear
dimensionality
reduction by
3D-CAE

Step 3:
classification

Step 2:
Local and global features extraction

CNN

Transformer
Fusion

PredictionCorresponding
Labels

Conv-3x3 Linear ClassificationMobileViT3D-CAE
Reshape Reshape

Input Conv-1x1

Figure 4. Flowchart of the proposed procedure.

Taking the PU dataset as an example, the CAEVT network is shown in Figure 4 and the
parameters are listed in Table 5. In addition, all strides and paddings in the convolutions
were set to 1.

In the previous literature, spatial information is captured by learning the linear re-
lationship between patches and considering that CNNs can extract local properties and
transformers can obtain global properties. The CAEVT network adopts convolutions and
a transformer to capture spatial information. The steps of the proposed CAEVT network
are summarized in Algorithm 1. Within this framework, the MobileViT can be iterated to
improve accuracy at the cost of computation time; however, the block was only adopted
once in this study for the sake of efficiency. In addition, we illustrate the lightweight
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nature of the CAEVT network by comparing the FLOPs and the number of parameters in
Section 4.2.

Table 5. Parameter settings of the CAEVT network when applied to the Pavia University dataset.

Layer (Type) Input Size Output Size

3D-CAE (1, 103 × 9 × 9) (48, 9 × 7 × 7)
Reshape (48, 9 × 7 × 7) (432 × 7 × 7)

Conv-3 × 3 (432 × 7 × 7) (32 × 4 × 4)
BN + SiLU (32 × 4 × 4) (32 × 4 × 4)
MobileViT (32 × 4 × 4) (32 × 4 × 4)
Conv-1 × 1 (32 × 4 × 4) (16 × 4 × 4)
BN + SiLU (16 × 4 × 4) (16 × 4 × 4)

Reshape (16 × 4 × 4) (1 × 256)
Linear (1 × 256) (1 × 9)

Algorithm 1 The proposed method.
Input: HSI original data X and label Y;
Output: The evaluation index.
(1) Divide randomly the input data X and annotated label Y into training set (Xtrain, Ytrain),
validation set (Xval , Yval), and test set (Xtest,Ytest).
(2) Optimize CAEVT network using training set (Xtrain, Ytrain).
(3) Estimate the model using validation set (Xval , Yval).
(4) Judge whether the training is over. If yes, output the optimal model; if not, continue the
training.
(5) Save the optimal model after training 50 epochs.
(6) Input Xtest to obtain the predicted result and calculate the evaluation index.

2.6. Experimental Settings

The following four methods were compared to the proposed method.
SSRN [42]: Based on the 3D convolutional classification models that were proposed

by our predecessors, the idea of a skip connection for ResNet [43] was introduced. This
network uses spectral residual blocks and spatial residual blocks to extract rich spectral
and spatial features.

FDSSC [44]: Using different convolutional kernel sizes to extract spectral and spatial
features and using an effective convolutional method to reduce the high dimensions,
an end-to-end fast dense spectral–spatial convolutional network for HSI classification
was proposed.

DBMA [45]: A double-branch multi-attention mechanism network for HSI classifica-
tion was proposed. The network uses two branches, which adopt attention mechanisms, to
extract spectral and spatial features and reduce the interference between the two types of
features. Finally, the extracted features are fused for classification.

DBDA [46]: Based on DBMA, a network was designed, namely a double-branch dual-
attention mechanism network, for HSI classification. This method further enhances the
ability of the network to extract spectral and spatial features and has a better performance
when there are limited training samples.

We executed the public code of these algorithms to obtain our results. The accuracy
was measured using the three metrics of overall accuracy (OA), average accuracy (AA),
and kappa coefficient. OA represents the proportion of correctly predicted samples out
of the total number of samples. The average accuracy of all categories is denoted by AA.
The consistency between the ground truth and a result is shown by the kappa coefficient.
The better the categorization results, the higher the three metric values. Additionally,
all experiments were carried out within the framework of Pytorch 1.10.2 using the RTX
Titan GPU.
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3. Results

In this section, experiments on four popular datasets were executed to compare the
accuracy and efficiency of the proposed algorithm to those of the other methods. We
divided the dataset into three parts: the training set, validation set, and testing set. Due
to the limited number of annotated samples in the IP and HS datasets, 5% of the samples
were randomly selected each for training and validation. For the PU and SA datasets,
the proportion of samples for training and validation was set to 1%. Furthermore, in the
proposed algorithm, the learning rate was set to 0.001 and the weight decay was set to
0.0005. The parameters of the algorithms for comparison were based on their best settings,
which were provided by the relevant authors. Finally, the number of training epochs for all
algorithms was set to 50.

3.1. Results for the IP Dataset

The classification results of all methods when using 5% of the data for training samples
are shown in Table 6 and the best results are shown in bold. The ground truth and prediction
maps of the methods are shown in Figure 5.

Table 6. Categorized results for the IP dataset.

Class SSRN FDSSC DBMA DBDA Proposed

1 0.00 0.00 0.00 0.00 100.00
2 96.02 44.92 68.70 47.98 89.86
3 77.44 61.43 23.22 86.89 87.82
4 100.00 0.00 0.00 100.00 77.90
5 95.67 87.05 62.93 92.04 99.29
6 99.85 77.45 62.96 86.15 94.97
7 0.00 0.00 0.00 0.00 100.00
8 91.88 90.34 93.38 89.40 90.66
9 0.00 0.00 0.00 0.00 87.50

10 82.47 79.55 91.57 82.56 86.98
11 89.89 91.54 43.81 60.94 90.02
12 72.54 74.55 75.00 85.86 84.65
13 92.46 0.00 63.83 96.81 88.29
14 95.52 88.04 80.29 89.35 95.27
15 90.45 48.28 62.42 93.38 95.22
16 100.00 100.00 98.73 93.90 100.00

OA (%) 89.27 70.43 53.49 71.66 90.71
AA (%) 68.56 50.65 40.92 57.14 78.61

Kappa × 100 87.73 66.29 44.91 66.84 89.37

The main characteristic of the IP dataset is that the number of labeled samples is small
and the data distribution is imbalanced. In particular, the number of samples in class 1,
class 7, class 9, and class 16 is less than 100, which is far less than that in the other classes.
The SSRN algorithm absorbed the characteristics of the ResNet algorithm and performed
the best out of the four algorithms that were adopted for comparison. This algorithm
achieved optimal results for class 2, class 4, class 6, class 8, class 13, class 14, and class 16.
Notably, the accuracy of class 4 and class 16 was 100%. The DBMA algorithm achieved the
worst results, with 53.49% OA, 40.92% AA, and 44.91% Kappa. For the DBDA algorithms
with the attention mechanism, the results were not satisfactory. The DBDA algorithm used
more attention mechanisms than the DBMA algorithm, so the former performed better than
the latter. The results increased by 18.17% for OA, 16.22% for AA, and 21.93% for Kappa.
The FDSSC and DBMA algorithms showed the best performance for class 16 and class 10,
respectively. Additionally, the classification results from the other methods for class 1, class
7, and class 9 were 0, which we speculate was caused by the insufficient number of labeled
samples. Similar to the SSRN algorithm, the proposed method obtained the best results
for seven categories and surpassed the SSRN algorithm by a slim margin. Moreover, the
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network that we designed showed the best performance, with 90.71% OA, 78.61% AA,
and 89.37% Kappa. It can also be observed from the prediction maps that the category
boundaries that were obtained using the proposed method were more obvious and that the
edges were clearer.

(a) (b) (c) (d)

(e) (f)

Figure 5. Classification maps for the IP dataset: (a) ground truth (GT); (b–f) results from the different
algorithms. (a) GT; (b) SSRN; (c) FDSSC; (d) DBMA; (e) DBDA; (f) Proposed.

3.2. Results for the SA Dataset

The classification results of all methods when using 1% of the data for training samples
are listed in Table 7 and the best results are shown in bold. The ground truth and prediction
maps of the methods are shown in Figure 6.

The main characteristics of the SA dataset are a large number of labeled samples and
the balanced distribution of classes. For the SA dataset, the SSRN algorithm was error-free
for class 6, class 13, and class 16. Similarly, the FDSSC algorithm was error-free for class 1,
class 13, and class 16. In addition, a zero error was achieved by the DBMA algorithm for
class 1 and by the DBDA algorithm for class 2, class 6, class 14, and class 16. Moreover, the
proposed method achieved the best performance for class 3, class 4, class 5, class 7, class 9,
class 10, class 11, class 12, and class 15. Compared to the FDSSC algorithm, which achieved
the worst results, our proposed method improved by 27.45% for OA, 39.46% for AA, and
31.18% for Kappa. As shown in Table 7, the results from the CAEVT network were optimal,
according to the three selected indexes, and the accuracy of each category that was classified
using our method exceeded 89%. It can be observed from the prediction maps that the
four methods that were adopted for comparison had some obvious misclassifications. The
results that were obtained by the CAEVT network were consistent with the ground truth.
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Table 7. Categorized results for the SA dataset.

Class SSRN FDSSC DBMA DBDA Proposed

1 98.85 100.00 100.00 98.75 97.50
2 92.65 58.25 91.03 100.00 99.65
3 91.90 44.86 85.79 88.86 96.37
4 93.94 93.67 96.93 97.58 98.77
5 91.56 68.54 88.42 68.59 100.00
6 100.00 99.95 99.92 100.00 99.87
7 96.43 98.73 95.61 98.59 99.94
8 93.75 61.22 60.16 73.16 91.83
9 78.42 63.30 93.62 83.51 99.22
10 53.75 60.52 87.43 93.10 99.06
11 0.00 0.00 54.99 0.00 99.51
12 0.00 92.75 87.62 65.96 96.47
13 100.00 100.00 95.33 99.49 99.78
14 84.90 61.46 85.69 100.00 99.23
15 80.54 31.70 52.62 67.36 89.14
16 100.00 100.00 94.87 100.00 99.61

OA (%) 85.77 68.77 79.84 83.11 96.22
AA (%) 75.31 58.31 83.98 80.05 97.77

Kappa × 100 84.10 64.61 77.37 81.06 95.79

(a) (b) (c) (d)

(e) (f)

Figure 6. Classification maps for the SA dataset: (a) ground truth (GT); (b–f) results from the different
algorithms. (a) GT; (b) SSRN; (c) FDSSC; (d) DBMA; (e) DBDA; (f) Proposed.

3.3. Results for the PU Dataset

The classification results of all methods when using 1% of the data for training samples
are listed in Table 8 and the best results are in bold. The ground truth and prediction maps
of the methods are shown in Figure 7.
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Table 8. Categorized results for the PU dataset.

Class SSRN FDSSC DBMA DBDA Proposed

1 97.38 77.93 89.85 82.00 97.02
2 97.22 97.84 92.99 96.26 95.22
3 79.69 100.00 80.56 100.00 87.03
4 99.83 98.07 97.52 98.54 99.92
5 100.00 99.62 99.84 100.00 100.00
6 98.46 96.47 93.79 96.70 99.79
7 87.44 100.00 93.37 99.69 99.52
8 93.19 67.20 87.49 80.04 95.93
9 95.96 99.32 79.04 99.02 97.89

OA (%) 96.01 90.00 91.68 92.41 96.25
AA (%) 94.47 75.61 87.32 82.95 94.60

Kappa × 100 94.69 86.61 88.83 89.83 94.98

In the PU dataset, the SSRN algorithm demonstrated certain advantages and per-
formed the best for class 1, class 2, and class 5. The performances of the FDSSC, DBMA,
and DBDA algorithms were similar and were inferior to that of the SSRN algorithm. The
proposed algorithm performed the best for class 4, class 5, class 6, and class 8. In addition,
the proposed algorithm exceeded the SSRN algorithm by 0.24% for OA, 0.13% for AA, and
0.29% for Kappa. The other methods showed satisfactory accuracies for every category due
to the sufficient number of samples. Moreover, we had difficulty observing any obvious
differences between the prediction maps, which was a phenomenon that we speculate
occurred due to the similar OAs.

(a) (b) (c) (d)

(e) (f)

Figure 7. Classification maps for the PU dataset: (a) ground truth (GT); (b–f) results from the different
algorithms. (a) GT; (b) SSRN; (c) FDSSC; (d) DBMA; (e) DBDA; (f) Proposed.

The overall sample size of the PU dataset is large and basically balanced. Among
them, class 1 and class 8 are the two classes with the largest number of samples, which far
exceed the other classes.
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3.4. Results for the HS Dataset

The classification results of all methods when using 5% of the data for training samples
are listed in Table 9 and the best results are shown in bold. The ground truth and prediction
maps of the methods are shown in Figure 8.

Table 9. Categorized results for the HS dataset.

Class SSRN FDSSC DBMA DBDA Proposed

1 87.89 83.23 84.86 81.74 96.42
2 86.05 69.23 59.81 70.95 91.61
3 98.89 81.24 68.20 80.48 99.36
4 95.82 86.18 68.89 76.68 94.01
5 97.69 96.31 95.81 97.23 98.48
6 92.99 92.49 60.47 100.00 96.76
7 83.05 69.64 64.82 70.36 86.76
8 89.69 94.14 73.59 91.51 88.67
9 76.62 67.84 54.73 68.51 84.04
10 95.67 74.01 67.21 84.31 95.26
11 95.02 66.52 42.28 86.62 92.92
12 88.60 88.29 64.00 82.27 91.83
13 92.90 77.69 80.00 89.53 85.81
14 99.47 95.01 68.31 88.57 99.73
15 98.40 94.39 71.43 81.42 97.97

OA (%) 90.33 79.17 65.33 80.99 92.67
AA (%) 88.92 78.47 63.65 80.62 90.78

Kappa × 100 89.54 77.46 62.48 79.43 92.06

(a) (b)

(c) (d)

(e) (f)

Figure 8. Classification maps for the HS dataset: (a) ground truth (GT); (b–f) results from the different
algorithms. (a) GT; (b) SSRN; (c) FDSSC; (d) DBMA; (e) DBDA; (f) Proposed.

The overall sample size of the HS dataset is small and slightly imbalanced. Similar to
the results from the SA dataset, the CAEVT network performed the best for nine classes.
There was no problem of sample size imbalance and all methods performed well using this
dataset. Among the contrast algorithms, the OA, AA, and Kappa of the SSRN algorithm
were higher than those of the others but our proposed algorithm obtained the best results
with 92.67% for OA, 90.78% for AA, and 92.06% for Kappa, as seen in Table 9. As seen in
Figure 8, the proposed algorithm performed the best.

4. Discussion

In this section, a further analysis of the CAEVT network is provided. First, we com-
pared the training and testing times, FLOPs, and the number of parameters to illustrate
the lightweight nature of the proposed network. Second, the results of the ablation experi-
ments confirmed the effectiveness of the 3D-CAE and MobileViT model. Finally, different
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proportions of training samples were input into the network and the results showed that
the proposed algorithm could maintain its effectiveness, especially when the number of
labeled samples was severely limited.

4.1. Selection of Activation Function

We proposed not to adopt any activation functions in the last layer in order to achieve
better results, as described in Section 2.2. Taking the PU dataset as an example, we
compared the results from using the PReLU, tanh, and sigmoid functions (Table 10).
The data showed that an excellent performance could be obtained without using any
activation functions.

Table 10. Influence of different activation functions.

PReLU Tanh Sigmoid Proposed

OA (%) 94.40 94.85 95.53 96.25
AA (%) 90.61 92.06 92.98 94.60

Kappa × 100 92.54 93.15 94.04 94.98

4.2. Lightweight and Low-Latency Network

The aforementioned experiments showed that our algorithm could achieve a higher
accuracy than the other algorithms that were compared in this study. Nevertheless, a good
algorithm should balance accuracy with efficiency.

Our proposed method adopts convolution and a transformer to learn local and global
representations. However, the transformer architecture usually has a large number of
parameters, which results in a slow calculation speed, and the CNN also consumes a lot of
time for the local processing. Thus, we counted the training times for 50 epochs and testing
times of the algorithms (Tables 11–14). Meanwhile, the forward–backward pass sizes of the
five algorithms are shown in Figure 9.

For comparison, we added a further four recently published methods that are commit-
ted to building lightweight networks. These four networks were: S3EResBoF [47], LDN [48],
LDWN [49], and S2FEF [50]. The comparisons of the number of parameters and FLOPs
are presented in Figures 10 and 11. Out of the compared algorithms, the FDSSC had the
most parameters and the number of parameters was approximately eight times that of
our proposed method. The S2FEF possessed the lowest number of parameters out of the
compared algorithms and the number of parameters was one fifth of that of the CAEVT
network. Among the nine algorithms, our proposed algorithm had the smallest FLOP
values. In comparison, the FDSSC algorithm took the longest time for training, followed
by the SSRN algorithm. The time consumption of the DBMA and DBDA algorithms was
similar, which was approximately twice that of the proposed method. As previously men-
tioned, the network that we built is lightweight and contains fewer parameters than other
algorithms in the training process, so the training time was the shortest. However, the
model parameters were not optimized in the testing process, so the testing time became the
longest. Considering the training and testing times simultaneously, we consider the delay
to be feasible. To sum up, the CAEVT is a lightweight network.

Table 11. Training and testing time consumption for the IP dataset.

Dataset Algorithm Training Time(s) Testing Time(s)

IP

SSRN 219.51 1.63
FDSSC 526.31 1.89
DBMA 67.89 1.42
DBDA 63.36 2.00

Proposed 28.43 2.84
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Table 12. Training and testing time consumption for the PU dataset.

Dataset Algorithm Training Time(s) Testing Time(s)

PU

SSRN 181.45 4.00
FDSSC 386.93 4.75
DBMA 51.24 5.11
DBDA 43.34 4.74

Proposed 24.70 9.35

Table 13. Training and testing time consumption for the SA dataset.

Dataset Algorithm Training Time(s) Testing Time(s)

SA

SSRN 270.78 9.25
FDSSC 540.10 9.82
DBMA 95.87 7.77
DBDA 82.24 10.56

Proposed 30.53 13.19

Table 14. Training and testing time consumption for the HS dataset.

Dataset Algorithm Training Time(s) Testing Time(s)

HS

SSRN 314.31 1.87
FDSSC 61.63 2.16
DBMA 64.12 1.39
DBDA 59.86 2.06

Proposed 40.53 3.61
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Figure 9. Size comparison of the models.
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4.3. Effectiveness of the 3D-CAE

To prove the effectiveness of the 3D-CAE model for HSI classification, we processed
the data using PCA and LDA as a comparative study. Next, the extracted features were
classified by the MobileViT. The results are shown in Figure 12.

Figure 12. Effectiveness of the 3D-CAE.

We used different methods to reduce the dimensions to lower levels. For the IP and
PU datasets, the LDA method was better than the PCA method, whereas for the HS and SA
datasets, the results were the opposite. However, these results were not as good as those
that were obtained by the 3D-CAE model. In addition, the experimental results using the
PCA method were closest to those that were obtained by the 3D-CAE using the IP dataset.
It can be observed from Figure 12 that the 3D-CAE method improved the classification
accuracy for the four datasets and we can infer that the 3D-CAE adopts a nonlinear strategy
to reduce the dimensions of the initial data and retain more of the original information.

4.4. Effectiveness of the MobileViT

Figure 13 shows the impact of using the MobileViT for performance improvement. We
also tested a CNN without a MobileViT structure for comparison.

Figure 13. Effectiveness of the ViT.

We observed that the global representation ability of the MobileViT enabled the
model to learn more features than the other algorithms (Figure 13). For the IP dataset, the
performance improvement was the most obvious, with the OA increasing by 12.27%, which
was 1.94%, 3.55%, and 2.87% higher compared to the other three datasets. The experimental
results of the four datasets showed that adding a MobileViT block to the network improved
their performance.

4.5. Exploration of the Sample Proportions

Although deep learning-based algorithms have shown excellent HSI classification per-
formances, they usually need a large number of training samples and network parameters
and also have higher computational costs. For HSI classification, the number of available
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labeled pixels is usually very limited due to the difficulty of collection and the cost of
labeling. Therefore, we explored the impact of the training ratios of the samples on the
experimental results.

Figures 14–17 show these experimental results. The accuracy increased with the
number of samples. After the number of samples reached a certain point, the accuracy of
several methods became similar. For the PU and SA datasets, we used 0.5%, 1%, 3%, and 5%
of the data for the training samples. For the IP and HS datasets, we used 1%, 3%, 5%, and
10% of the data for the training samples. The DBMA method performed the worst. When
the proportion of samples that was used for training was 1%, a 38% accuracy was achieved
for the IP dataset. For the SA, PU, and HS datasets, the performances of the DBDA and
FDSSC methods were almost equal. Overall, our proposed method demonstrated obvious
advantages, especially when using a limited number of annotated samples.

Figure 14. OA results of the different methods from various proportions of training samples using
the IP dataset.

Figure 15. OA results of the different methods from various proportions of training samples using
the PU dataset.

Figure 16. OA results of the different methods from various proportions of training samples using
the SA dataset.
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Figure 17. OA results of the different methods from various proportions of training samples using
the HS dataset.

5. Conclusions

Considering the limitations of the local characteristics of CNNs, we employed a
transformer for HSI classification, which possessed the ability to perform long-range
modeling. To overcome the time-consuming defects of the transformer, we committed
to constructing a lightweight vision transformer, which was based on the MobileViT.
Furthermore, we established a 3D-CAE model to reduce the data dimensionality and
address the spectral redundancy of HSIs. Based on the above-mentioned structures, we
proposed a lightweight HSI classification model named CAEVT. First, we carried out
comparative experiments using four commonly used datasets and the proposed method
achieved the best performance. Compared to the traditional PCA and LDA dimensionality
reduction methods, the experimental results showed that 3D-CAE could extract features
from the original HSIs more effectively by obtaining the nonlinear relationship between
the bands. In addition, we conducted ablation studies and proved the effectiveness of the
MobileViT structure in improving classification accuracy. Then, we compared and analyzed
the number of parameters and the memory occupation of each method, which proved
the lightweight nature and computational efficiency of the CAEVT network. Finally, we
analyzed the impact of different proportions of training samples on the performance of
the proposed method and the performance was better than that of the other methods for
the different proportions of training samples, especially with a limited number of labeled
training samples. Overall, the CAEVT network is effective and efficient. In the future, we
plan to further explore the application of transformers in HSI classification.

Author Contributions: Z.Z. and X.T. implemented the algorithms, designed the experiments, and
wrote the paper; X.H. performed the experiments; Y.P. and T.L. guided the research. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was partially supported by the National Natural Science Foundation of
China (grant numbers 91948303-1 and 61803375) and the Postgraduate Scientific Research Innovation
Project of Hunan Province (grant number QL20210018).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The datasets that are involved in this paper are all public datasets.

Acknowledgments: The authors would like to acknowledge the State Key Laboratory of High-
Performance Computing, College of Computing, National University of Defense Technology, China.

Conflicts of Interest: The authors declare no conflict of interest.



Sensors 2022, 22, 3902 20 of 21

Abbreviations

The following abbreviations are used in this manuscript:
SSRN Spectral–spatial residual network
FDSSC Fast dense spectral–spatial convolution
DBMA Double-branch multi-attention mechanism network
DBDA Double-branch dual-attention mechanism network
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