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Abstract: The accurate identification of overlapping Agaricus bisporus in a factory environment is
one of the challenges faced by automated picking. In order to better segment the complex adhesion
between Agaricus bisporus, this paper proposes a segmentation recognition algorithm for overlapping
Agaricus bisporus. This algorithm calculates the global gradient threshold and divides the image
according to the image edge gradient feature to obtain the binary image. Then, the binary image is
filtered and morphologically processed, and the contour of the overlapping Agaricus bisporus area is
obtained by edge detection in the Canny operator, the convex hull and concave area are extracted
for polygon simplification, and the vertices are extracted using Harris corner detection to determine
the segmentation point. After dividing the contour fragments by the dividing point, the branch
definition algorithm is used to merge and group all the contours of the same Agaricus bisporus. Finally,
the least squares ellipse fitting algorithm and the minimum distance circle fitting algorithm are
used to reconstruct the outline of Agaricus bisporus, and the demand information of Agaricus bisporus
picking is obtained. The experimental results show that this method can effectively overcome the
influence of uneven illumination during image acquisition and be more adaptive to complex planting
environments. The recognition rate of Agaricus bisporus in overlapping situations is more than 96%,
and the average coordinate deviation rate of the algorithm is less than 1.59%.

Keywords: overlapping; Agaricus bisporus; segmentation recognition algorithm; image edge
gradient feature; contour segmentation; grouping recognition

1. Introduction

The factory production of Agaricus bisporus is relatively mature, and the daily output of
the larger Agaricus bisporus plant can reach more than ten tons [1,2]. Because the background
of the mushroom bed is complex and diverse, the size and shape of the Agaricus bisporus
community vary greatly, and there are more complex adhesions between them, so the
picking and locating becomes difficult [3]. At present, the picking of Agaricus bisporus in
factory production mainly depends on manual labor, but manual picking has the problems
of large labor, low efficiency, high cost and inconsistent standards [4]. With the increase
in mushroom production, mushroom farming is currently facing the problems of labor
shortage and rising costs to maintain sustainability [5]. Therefore, it is an inevitable trend
to realize the automatic picking of Agaricus bisporus. With the development of robotics,
robotic harvesting of Agaricus bisporus has been researched [6–9]. Among them, machine
vision technology is the key technology in the Agaricus bisporus picking robot [10,11].

At present, mushroom recognition and positioning methods based on machine vision
are widely used. Yu Gaohong [12] proposed to start from the central coordinate points of
each central area, search for mushroom boundary points along the radius of different angles,
and store the found mushroom boundary points in the corresponding dynamic linked list to
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achieve the independent division of each mushroom. Yang Yongqiang [13] proposed to use
Harris corners as texture features to filter the background, accurately extract the foreground
targets, search for the regional extreme points in the foreground distance map, and then
use the marker-based watershed algorithm to achieve the adhesion of the mushroom
segmentation, and finally, ellipse fitting achieves positioning. For segmentation recognition
of overlapping target objects, UECS [14] uses a morphological segmentation method to
obtain the label of each object, which can be used to segment particles in all shapes, but if
the degree of overlap is high, the segmentation results may be affected. In [15–18], through
polygon approximation and ellipse fitting, concave point extraction was used to segment
overlapping objects. Although this method is effective for regularly shaped objects, objects
with shapes that deviate from the ellipse are problematic.

In [19,20], a twice-watershed algorithm is proposed to segment Agaricus bisporus dur-
ing size grading, but for overlapping Agaricus bisporus, it seems there are issues in. Sun
Jingwei [21] adopted a submergence algorithm on depth images for mushroom segmenta-
tion, but how to obtain a high-quality depth image in the case of overlapping is a practical
problem. In [22–24], object recognition based on a deep learning framework was developed
for human activity and intention recognition, and the framework demonstrated superior
performance. However, this kind of algorithm has not been widely used in Agaricus bisporus
recognition, which also provides a new idea.

In this paper, the segmentation identification of overlapping Agaricus bisporus is
studied. We highlight the contributions of this paper as follows.

(1) We adopt gradient feature to reduce the influence of illumination variance.
(2) Considering grouping the segmented contours as combinatorial optimization, we

propose a branch definition algorithm to merge and group the dispersed outlines of
the same Agaricus bisporus.

(3) To solve arc segmentation with different curvatures and lengths for reconstruction of
Agaricus bisporus contours, we exploit two algorithms: the least square ellipse fitting
algorithm for high curvature or long length and the minimum distance circle fitting
for low curvature or short length.

2. Segmentation of Overlapping Agaricus bisporus

Due to the large difference in soil height and uneven illumination under the industri-
alized environment of Agaricus bisporus, according to the edge gradient characteristics in
the image, a global gradient threshold is calculated to segment the image to obtain a binary
image. Then, the binary image is filtered and morphologically processed, the contour
is obtained by edge detection in the Canny operator, the convex hull of the overlapping
Agaricus bisporus area is extracted, and the concave area is extracted to simplify the poly-
gon. Finally, Shi-Tomasi corner detection is used to extract the vertices and determine the
segmentation points, and the overlapping outlines of Agaricus bisporus are segmented. The
specific process is shown in Figure 1.

2.1. Segmentation Based on Image Edge Gradient

Due to the complicated and diverse planting environment of Agaricus bisporus, the
difference in soil height and the uneven illumination, the traditional threshold segmentation
cannot fully extract the Agaricus bisporus area, which affects the accuracy of the edge fitting
of Agaricus bisporus. Therefore, combining the image gradient feature to calculate the global
gradient threshold to segment the image can obtain the bisporus area more completely.
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The gradient images of 𝑓(𝑥, 𝑦) , corresponding to the 𝑋  and 𝑌  directions, are 
shown in Figure 2. 
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Figure 1. Flow chart of segmentation of Agaricus bisporus.

Using the gradient characteristics in the image [25,26], the gradients in the X direction
and the Y direction are calculated separately; that is, the first-order differentiation of the
image is obtained. Assuming that the image is f (x, y), the gradients of the X direction and
Y direction of the f (x, y) at the coordinate point (x, y) are:

∂ f (x, y)
∂x

= f (x + 1, y)− f (x, y) (1)

∂ f (x, y)
∂y

= f (x, y + 1)− f (x, y) (2)

The gradient images of f (x, y), corresponding to the X and Y directions, are shown
in Figure 2.
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The maximum value of the gradient M(x, y) is calculated according to the gradient in
the X and Y directions:

M(x, y) = Max
(

∂ f (x, y)
∂x

,
∂ f (x, y)

∂y

)
(3)
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According to the maximum value, the global gradient threshold T is calculated:

T =
∑Rx

x=0 ∑
Ry
y=0 P(x, y)M(x, y)

∑Rx
x=0 ∑

Ry
y=0 M(x, y)

(4)

where P(x, y) is the gray value at (x, y), Rx, Ry are the number of rows and columns of
the image.

The global gradient threshold T is used for image segmentation to extract the Agaricus
bisporus region. The segmented binary image G(x, y) is:

G(x, y) =
{

1 P(x, y) ≥ T
0 P(x, y) < T

(5)

The binary image obtained by this method is shown in Figure 3.
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(b) binary image after segmentation.

The median filter is used to remove impulsive noise from the binary image of Agaricus
bisporus, while retaining the image edge details. The median filter output is:

s(x, y) = med{d(x− k, y− l), (k, l ∈W)} (6)

where d(x, y), s(x, y) are the original image and the processed image, respectively, and W
is a two-dimensional template.

Fill the holes with an area of less than 40 pixels in the Agaricus bisporus area, and then
perform morphological processing, using a 20-pixel diameter circle and the median filtered
area to open the operation to remove impurities, such as mycelium in the soil. The results
are shown in Figure 4a.

Finally, the Canny operator is used to detect the edge of the processed binary image,
the number of pixels in each connected area is counted, and the independent border contour
blackening process with a pixel area of less than 1200 is obtained to obtain the actual contour
of Agaricus bisporus. The result is shown in Figure 4b as follows.
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Figure 4. Agaricus bisporus area and outline. (a) Image after open operation; (b) edge detection.

2.2. Extraction of Convex and Concave Areas

The convex hull of the overlapping Agaricus bisporus area is obtained by the volume
wrapped convex hull algorithm [27,28], and the outermost points of the point set in the
connected area are connected to form a convex hull, as shown in Figure 5a. The convex
hull curve completely encloses the Agaricus bisporus area and obtains the area enclosed by
the convex hull curve. The result is shown in Figure 5b.
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Figure 5. Overlapping Agaricus bisporus convex shell. (a) Convex hull curve extraction; (b) convex
hull enclosed area.

The pixel area of the area enclosed by the convex hull curve and the overlapping spore
mushroom area can be obtained as a concave area:{

h(x, y) = 255 i f (p(x, y) = q(x, y))
h(x, y) = 0 i f (p(x, y) 6= q(x, y))

(7)

where p(x, y), q(x, y), h(x, y), respectively, represent the overlapping Agaricus bisporus area,
convex hull area and the requested concave area. The results are shown in Figure 6a.

Convex polygon simplification for each acquired concave region and the result of
polygon simplification are shown in Figure 6b.
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2.3. Corner Detection and Contour Segmentation

Harris corner detection is used to extract the vertices of the simplified polygons in the
concave area. The basic idea of Harris corner detection is to move in all directions on the
image through a sliding window and compare the gray changes in pixels before and after
moving. If there is a large gray change, there must be corners in the window [29].

The extracted vertices are shown in Figure 7a, and the extracted vertices are displayed
on the outline, as shown in Figure 7b. The eigenvalue analysis of the autocorrelation matrix
M produces two eigenvalues (λ1λ2) and two feature direction vectors. The response
function R used by Harris is:

R = λ1λ2 − k(λ1 + λ2)
2 (8)
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Figure 7. Vertex detection. (a) Corner detection; (b) corner display on the outline.

In order to obtain the segmentation points of the overlapping Agaricus bisporus con-
tours, by analyzing the distance relationship between each vertex and the convex shell
contour of Agaricus bisporus, the vertices with a contour distance greater than 2 pixels
are screened to determine the segmentation points. The segmentation point is shown in
Figure 8a, and finally, the segmentation of the overlapping Agaricus bisporus outline is
completed, as shown in Figure 8b.
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3. Overlapping Agaricus bisporus Outline Grouping

After the outline of the overlapping Agaricus bisporus is divided, the single Agaricus
bisporus may produce multiple contour fragments, so it is necessary to merge all the contours
of the same Agaricus bisporus. The contour merging and grouping are abstracted into a
combinatorial optimization problem, which is solved using a branch-defining algorithm [30–
32] to obtain the optimal solution for the overlapping grouping of Agaricus bisporus.

3.1. Problem Description

Let X = {X1, X2, · · · , XD} be the set of D segmented segments after segmentation,
and group the contours in this set into d subsets (d ≤ D), so that the contours belonging
to the same Agaricus bisporus merge. Let ϕi be the index number of the group to which
the contour segment Xi belongs, then use φ = {ϕ1, ϕ2, · · · , ϕD} to represent the set of all
group index numbers.

The set of index numbers of all possible groupings in the contour segment is included
in the real number set R. The grouping criterion is given by the evaluation function J of
φ. The evaluation function J will measure the similarity between the group φ and the real
Agaricus bisporus contour segment group, so this grouping problem is to find the optimal
solution set φ∗, so that the evaluation value of the grouping criterion is the smallest:

φ∗ = argmin
φ

J(φ, X) (9)

3.2. Branch Definition Algorithm Grouping

CONTOUR grouping is a combinatorial optimization problem. There can be at most

∑D
i=1

iD

i! solutions, and the optimal solution is determined by evaluation criterion J. How-
ever, such optimization problems will become very difficult because the number of solutions
will increase exponentially [33]. The branch definition algorithm can avoid exhaustive
search using the optimal solution set and can define the boundary for the evaluation
function.

The partial solution calculated by the branch definition algorithm is φg =
{

ϕ1, ϕ2, · · · , ϕg
}

,
1 < g < D. Assuming that the lower bound of the value of the objective evaluation function
is b1, b2, · · · , bD, then:

bg = φg
{

ϕ1, ϕ2, · · · , ϕg
}
≤ J(φ, X) (10)

Suppose φi and φj are two sets of solutions. If the lower bound of φi is greater than
the lower bound of φj, and the new lower bound is bi, then:

b1 ≤ b2 ≤ . . . ≤ bD = J(φ, X) (11)
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Assuming that B is the upper bound of the optimal solution of evaluation function J, then:

J(φ∗, X) ≤ B (12)

Therefore, given the restricted ranges in Equations (10) and (12), the suboptimal
solution set can be removed. As shown in Figure 9, the contour segment is represented as
X = {X1, X2, · · · , X10}.
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The branch definition algorithm process is represented by the search tree, as shown
in Figure 10. The root of the search tree represents the starting state, i.e., the 10 contour
segments are all a separate group. The roots are then combined to obtain other groups by
X, and each node at level d of the search tree represents a different grouping of d groups.

Sensors 2022, 22, x FOR PEER REVIEW 8 of 18 
 

 

𝑏ଵ ≤ 𝑏ଶ ≤ ⋯  ≤ 𝑏஽ = 𝐽(𝜙, 𝑋) (11)

Assuming that 𝐵 is the upper bound of the optimal solution of evaluation function 𝐽, then: 𝐽(𝜙∗, 𝑋) ≤ 𝐵  (12)

Therefore, given the restricted ranges in Equations (10) and (12), the suboptimal so-
lution set can be removed. As shown in Figure 9, the contour segment is represented as 𝑋 = {𝑋ଵ, 𝑋ଶ, ⋯ , 𝑋ଵ଴}. 

 
Figure 9. The contour representation after segmentation. 

The branch definition algorithm process is represented by the search tree, as shown 
in Figure 10. The root of the search tree represents the starting state, i.e., the 10 contour 
segments are all a separate group. The roots are then combined to obtain other groups by 𝑋, and each node at level 𝑑 of the search tree represents a different grouping of 𝑑 groups. 

 
Figure 10. Contour fragment search tree. 

  

Figure 10. Contour fragment search tree.

3.3. Grouping Criteria

The selection of grouping criteria greatly affects the effect of branch definition algo-
rithm. Define the evaluation function J as:

J = δJc + εJs (13)
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where Jc, Js are, respectively, roundness and symmetry, δ, ε are the weight coefficients of
the two parts.

Roundness represents the degree of conformity between the circle fitted by the contour
and the actual contour. The contour segment Xi consists of n points, and the coordinates of
each point are (xm, ym) (m = 1, 2, . . . , n). Their corresponding points of the fitted circle are(

xj,m, yj,m
)

(m = 1, 2, . . . , n), then the roundness can be expressed as:

Jc =
1
n

n

∑
m=1

√(
xm − xj,m

)2
+
(
ym − yj,m

)2 (14)

By collecting the normal vectors of the contour segments, the symmetry centers of the
contour segments Xi and Xj can be obtained as Pi and Pj. As with the fast radial symmetric
transformation [34], the gradient vector is replaced with the normal vector of the contour
segment. The degree of symmetry Js can be regarded as the value of the distance between
Pi and Pj normalized by the maximum size σ:

Js =

∣∣PiPj
∣∣

σ
(15)

The expansion of the search tree is controlled by the grouping criteria, and the best
grouping is the node with the lowest evaluation value. As shown in Figure 11, the upper
bound of the optimal group is formed after the first node is generated. If the node enters
the best group, the upper bound is determined by the evaluation value of the best group.
On the contrary, the upper bound is determined by the evaluation value of the node itself.
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Figure 11. Search tree grouping expansion process.

The initial upper bounds of X1, X3, X4, X6, X7, X8, X9, X10 are set to their section review
value, because these nodes do not enter the best grouping. The initial definition of X2 is
J(X1X2), because X2 is already part of the optimal solution {X1X2}. When the expanded
node J(φ, X) > B, it will stop expanding. When the value of the section reviews is less
than the upper bound, the new upper bound B will be replaced. When the weighting
coefficients δ and ε of roundness and symmetry are both set to 0.5, the outline grouping of
the overlapping Agaricus bisporus is shown in Figure 12.
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4. Reconstruction and Recognition of Overlapping Agaricus bisporus

Since the grouped Agaricus bisporus contour fragments are still not closed, in order to
truly restore the Agaricus bisporus target, least squares ellipse fitting and minimum distance
circle fitting are used to reconstruct the Agaricus bisporus target contour. The specific process
is shown in Figure 13.
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4.1. Least Square Ellipse Fitting Reconstruction Contour

Since the outline fragments of Agaricus bisporus after grouping are still scattered, if
the outline is determined to be an arc, the arc height at any point on the search curve is
traversed, and the height H is calculated according to the Helen formula:

S =
√

p(p− z)(p− v)(p− n) (16)

H =
S ∗ 2

z
(17)

where z, v, n are the three sides of the triangle formed by the points at the two ends of
the contour and any point on the curve, p is the half circumference, and S is the area of
the triangle.

According to the calculated bow height, the chord length of the arc is calculated, so
the bow curvature Curvity can be obtained:

R = 0.5 ∗
(

IArc2

hArc
+ hArc

)
(18)

Curvity =
1
R

(19)

where R is the bow radius of curvature, IArc is the chord length, and hArc is the bow height.
Calculate the curvature and length of each contour, and then select the contour with a

curvature greater than 0.9 and a contour length greater than 200 pixels, and take N mea-
surement points for each contour as Pi(xi, yi) (i = 1, 2, . . . , N). According to the principle
of least squares, the fitting objective function is:

F(A, B, C, D, E) =
N

∑
i=1

(x2
i + Axiyi + By2

i + Cxi + Dyi + E)
2

(20)

To minimize F, you need to:

∂F
∂A

=
∂F
∂B

=
∂F
∂C

=
∂F
∂D

=
∂F
∂E

= 0 (21)

The values of A, B, C, D and E can be solved. According to the characteristics of
the ellipse, the ellipse position parameters (θ, x0, y0) and shape parameters (a, b) can be
calculated to reconstruct the elliptical profile of Agaricus bisporus. The results are shown in
Figure 14.

4.2. Minimum Distance Circle Fitting Contour Reconstruction

For some arc segments with low curvature or short length, if least square ellipse fitting
is adopted, the center point deviation may be large, and the fitting contour deviates greatly
from the actual. For the grouped and merged contours, the short-segment contours are
more discrete, so for the contours of the above two cases, the circle fitting method is used
to reconstruct the contours.

Least squares circle fitting is widely used, and it is very effective for data points whose
errors conform to the normal distribution, but in practical applications, some interference
points are often encountered. These interference points tend to deflect in a certain direction,
which causes the fitted circle to deviate more. Therefore, next, the minimum distance circle
fitting is used to reconstruct the Agaricus bisporus target.
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Select n points
(
xj, yj

)
on the contour, and determine the parameters of the circle

according to the sum of the absolute values of the distances from the data points to the
circle, which is the following formula:

f = ∑
∣∣∣∣√(xj − xc

)2
+
(
yj − yc

)2 − r
∣∣∣∣ (22)

The xc, yc and r that make f achieve the minimum value are the best fitting parameters.
The fitting result is shown in Figure 15.
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Calculate the center coordinates, long axis size and short axis size of the elliptical
outline of the constructed Agaricus bisporus. Calculate the center coordinates and radius
of the circular outline of the constructed Agaricus bisporus. The final recognition result of
Agaricus bisporus is shown in Figure 16.
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5. Experiment and Result Analysis

The experimental hardware system mainly includes a camera, lens, light source,
industrial computer and so on. Among them, the industrial computer adopts Advantech
embedded ARK-3500P, the operating system is Windows 7, and we use OpenCV3.4.8
library to process images in real time to obtain the picking information of Agaricus bisporus.

In order to verify the effectiveness of the method in this paper, sample images of Agar-
icus bisporus are all captured from the actual factory environment by the Agaricus bisporus
multi-arm intelligent picking robot, developed by our team, as shown in Figure 17. Over-
lapping segmentation identification experiments of Agaricus bisporus were then conducted.
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We used the research method in this paper, the watershed algorithm based on distance
transform, and the Hough circle transform algorithm to segment and identify overlapping
Agaricus bisporus, with the comparison results shown in Figure 18. Using the research
method in this paper can not only improve the adaptability to complex planting environ-
ments and overcome the influence of uneven illumination, but also accurately segment
Agaricus bisporus, accurately reconstruct Agaricus bisporus contours, and meet the automatic
identification and picking needs of the spore mushroom picking robot.
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Figure 18. Comparison of the recognition effects of overlapping Agaricus bisporus.

In the experiment, 200 sets of overlapping Agaricus bisporus image samples were selected
for segmentation and identification and the actual number of Agaricus bisporus was 6109.

The research methods in this paper, the watershed algorithm based on distance trans-
formation and the Hough circle transformation algorithm to achieve segmentation recogni-
tion, corresponding to the number of effective recognition and recognition rate comparison
results, are shown in Table 1. The average recognition rate of the research method in this
paper is 98.81%, which is obviously higher than the watershed algorithm and Hough circle
transform algorithm based on distance transformation. It shows that the research method
in this paper is effective for segmentation recognition of overlapping Agaricus bisporus.
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Table 1. Comparison of different methods for segmentation and identification of overlapping Agaricus
bisporus.

Method Number of
Samples

Effective
Identification

Number
Recogniton Reate

Hough circle transform algorithm 6109 4338 71.01%
Watershed algorithm based on

distance transformation 6109 5319 87.07%

The algorithm proposed in this article 6109 6036 98.81%

In order to better evaluate the accuracy of this research method in segmentation and
reconstruction of overlapping Agaricus bisporus, two indexes, namely, two-dimensional
coordinate deviation rate E and recognition success rate R, are defined to evaluate the recog-
nition accuracy of overlapping Agaricus bisporus under this research method, watershed
algorithm based on distance transformation and Hough circular transformation method.

E =

(∣∣∣∣ cj − ci

w

∣∣∣∣+ ∣∣∣∣ rj − ri

h

∣∣∣∣)× 100% (23)

where, rj, cj are the row and column coordinates of the center point of Agaricus bisporus,
measured manually, ri, ci are the row and column coordinates of the central point of
Agaricus bisporus obtained by the research method in this paper, and W and H are the width
and height of the image of Agaricus bisporus, respectively.

If the two-dimensional coordinate deviation rate is less than 3%, it is judged that this
Agaricus bisporus is a successful recognition, so the recognition success rate r of overlapping
Agaricus bisporus can be calculated by Equation (24).

R =
N3

N
× 100% (24)

where N3 is the number of Agaricus bisporus whose deviation rate of center point coordinate
recognized in the sample image is less than 3%, and N is the total number of Agaricus
bisporus recognized.

In addition, the influence degree of overlapping Agaricus bisporus clustered can be
measured by the overlapping rate F, which is expressed by Equation (25).

F =

1−

√
(c2 − c1)

2 + (r2 − r1)
2

l1 + l2

× 100% (25)

where, c2, c1, r2, r1 are the manually measured row and column coordinates of two
overlapping Agaricus bisporus, l1, l2 are the pixel coordinates of the manually measured
radius of the corresponding two Agaricus bisporus.

For the Agaricus bisporus segmented and identified by the three methods in Table 1,
the average deviation rate of coordinates is counted. The statistics also count the Agaricus
bisporus with different overlap rates. The statistical results are shown in Figure 19. Hough’s
circular transformation method has the largest average coordinate deviation rate when
the overlap rate of Agaricus bisporus is 20–50%. The average deviation rate of coordinates
obtained by the algorithm in this paper is the smallest in three different intervals of Agaricus
bisporus overlap rate.
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Table 2 shows the recognition success rate (the proportion of coordinate deviation rate
less than 3%) and the overall recognition success rate (the ratio of the number of successful
recognitions to the total number of Agaricus bisporus in the original sample image) under
different methods.

Table 2. Comparison of different algorithms for recognition of overlapping Agaricus bisporus.

Methods

Number of
Segmentation

and
Recognition

Number of
Successfully
Recognited

Average
Deviation

Rate of
Coordinates

Recognition
Success Rate

Overall
Recognition
Success Rate

Average Time
(ms)

Hough circle transform algorithm 4338 3363 2.29% 77.52% 55.05% 358
Watershed algorithm based on

distance transformation 5319 4570 1.99% 85.92% 74.81% 224

The algorithm proposed in
this article 6036 5870 1.59% 97.25% 96.09% 212

As shown in Table 2, the recognition success rate of the research method in this paper
is 97.25%, and the overall recognition success rate is 96.09%, which is obviously higher
than those of the watershed algorithm based on distance transformation and Hough circle
transformation algorithm. For the statistics of Agaricus bisporus after segmentation and
recognition, the average coordinate deviation rate of the algorithm studied in this paper
is only 1.59%, and the average time is 212 ms, which is the shortest of the three methods.
It shows that the research method in this paper is effective for the segmentation and
recognition of overlapping Agaricus bisporus.

6. Conclusions

This paper takes Agaricus bisporus in a factory environment as the research object.
Aiming at the complex overlapping segmentation of Agaricus bisporus, a segmentation
identification method of overlapping Agaricus bisporus is proposed. According to the image
edge gradient characteristics, the global gradient threshold is calculated to divide the image
to obtain the binary image, and then the binary image is filtered and morphologically
processed, and the contour is obtained by Canny operator edge detection. We extract the
convex hull of the overlapping Agaricus bisporus area and the concave area to simplify
the polygon. We also adopt the Harris corner to detect the vertices and determine the
segmentation point, and then use the branch definition algorithm to merge and group
the dispersed outlines of the same Agaricus bisporus. Finally, we use the least square
ellipse fitting algorithm and the minimum distance circle fitting to reconstruct Agaricus
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bisporus contours. The experimental results show that the recognition rate of overlapping
Agaricus bisporus is higher than 96%, the average coordinate deviation rate of the algorithm
studied in this paper is only 1.59%, which provides picking demand information for the
Agaricus bisporus picking robot. This method is innovative in segmentation recognition of
overlapping circular fruit. However, due to the large amount of calculation in this method,
it takes a long time. In future research, the algorithm needs to be improved to increase the
efficiency of the algorithm.
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