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Abstract: With publicly verifiable computation (PVC) development, users with limited resources
prefer to outsource computing tasks to cloud servers. However, existing PVC schemes are mainly
proposed for cloud computing scenarios, which brings bandwidth consumption or network delay of
IoT devices in edge computing. In addition, dishonest edge servers may reduce resource utilization by
returning unreliable results. Therefore, we propose a revocable publicly verifiable computation(RPVC)
scheme for edge computing. On the one hand, RPVC ensures that users can verify the correct results
at a small cost. On the other hand, it can revoke the computing abilities of dishonest edge servers.
First, polynomial commitments are employed to reduce proofs’ length and generation speed. Then,
we improve revocable group signature by knowledge signatures and subset covering theory. This
makes it possible to revoke dishonest edge servers. Finally, theoretical analysis proves that RPVC has
correctness and security, and experiments evaluate the efficiency of RPVC.

Keywords: publicly verifiable computation; revocable group signature; outsource computing;
edge computing

1. Introduction

The rapid popularization of smart devices has spawned a large number of Internet
of Things (IoT) applications, one of which is the Internet of Vehicles (IoV). The reason
why vehicles tend to outsource computing tasks that include road conditions and vehicle
information to cloud servers during their travel is that the computing resources are limited.
Edge computing can improve the response speed and user experience. As a bridge between
users and cloud servers, on the one hand, they improve response speed by sharing part
of the cloud computing, while users with the limited resource can rely on them to reduce
computing pressure. One specific implementation is the Intelligent Transport System
(ITS) [1,2], as shown in Figure 1, which is used to help users receive the best driving plan
in current road and traffic conditions as soon as possible. There are four participants in
ITS: User, road side unit (RSU, which can be seen as an edge server), cloud server, and car
manufacturers. The car manufacturer dispatches functions for making a driving plan for
the cloud server. The edge server downloads the function from the cloud server. The user
sends vehicle parameters to the edge server. The edge server returns results to the user.

However, ITS has the following problems: (1) The cloud server may tamper with the
functions uploaded by the car manufacturer, and the edge server may provide users with
incorrect results [3]. (2) When a user is driving, the vehicle needs to switch among RSUs
that serve different areas. To verify signature messages from a specific RSU, a large public
key list is needed [4]. This results in overhead storage for users and overhead computation
for finding public keys (3) Once a user receives messages from an edge server that it has
never met, frequent communication brought by public key transmission will cause delays
(4) If the identity of the edge server is exposed, adversaries can use the same attack method
to threaten edge servers with similar configurations.
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From the example of IoV, the requirements for edge computing are as follows: (1) Re-
sults returned by the edge server should be verifiable, and a dishonest edge server can be
revoked. (2) The time for the user to verify the result and the number of keys stored should
be minimized. (3) Key transmission processes between users and new edge servers should
be minimized. (4) The identity of the edge server should be anonymous to users.

Cloud

Car manufacturer

Dispatch functions

Download functions

RSU

Car

Car parameters Drive scheme

Figure 1. The architecture of a typical ITS application.

For requirement 1, verifiable computation (VC) [5] can be used to ensure the result is
correct. However, the verifier in VC schemes can only be the user or the one he specified.
Other participants cannot believe in the verification processes or the reliability of results.
Therefore, Parno [6] first proposed publicly verifiable computation (PVC) to solve these
defects. Since then, Fiore [7] expanded PVC to evaluate the higher-degree polynomial and
matrix multiplication. Catalano [8] introduced a one-way function and RSA mathematical
hypothesis to improve the computing speed. However, the verification process of the former
uses low-efficiency bilinear pairing, and the practical implementation of the latter is very
complex. Polynomial commitment [9] achieves two basic goals: making a commitment
to a polynomial and providing proof that a specific point belongs to the polynomial.
Therefore, the polynomial commitment can be used to improve the efficiency of existing
PVC solutions. To revoke dishonest edge servers, James [10] applies the revocable key
policy attribute encryption [11,12] to PVC. However, such schemes are based on time-
consuming operations such as encryption and decryption, as meanwhile, the revoking
process will cause other participants to synchronize the key list. In addition, the latest
research [13–15] requires either a trusted computing environment such as SGX or specific
hardware support, thus, the scope of their application is limited. Therefore, revocable
group signatures are recommended to revoke dishonest edge servers.

For requirements 2–4, group signature schemes are suitable. That is because any group
member can make signatures stand for the whole group, and anyone outside the group
cannot forge the signature. Verifiers can verify the signature with only one group public
key. The verifier only knows that the signature is from a member of the group, but cannot
distinguish the specific signer. The group manager can open a group signature to trace
the specific signer. When applied to an edge computing scenario, edge servers can form
a group and set up a group manager. For users, only one group public key is required to
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verify any edge server signed results, thus, reducing delay and key storage. There will be
no key transmission process between users and the new edge server, moreover, the identity
of the edge server is anonymous to users. The group manager can trace the signature
of incorrect results to find the dishonest edge servers, so, a revocable group signature is
recommended for revoking their computing ability.

The classical group signature scheme proposed by Camenisch [16] cannot revoke
group members. To make group signature revocable, Song [17] proposed a revocable group
signature scheme to ensure forward security. However, the time cost increases linearly with
the number of group members. Camenisch [18] proposed an accumulator solution, but
once the group members join or quit the group frequently, the members still in the group
need to update their credentials continually. Inspired by Boneh [19], Brickell [20] presents a
revocation list (RL) solution that keeps members in the group from frequently updating
their credentials. However, the final signature of this scheme contains nine parts, which
leads to the extremely tedious verification process. Moreover, the drawback of the latest
research [21] is that there is not an extremely strong privacy demand in an IoV scenario,
which will cause resource waste. At the same time, ref. [22,23] based on merkle hash tree,
suggested that the storage and computational overhead vary superlinearly along with the
number of users who frequently join or quit An attribute tree using secret sharing [24]
and Lagrange interpolation impels the users satisfying certain attributes and can decrypt
messages under the broadcast encryption [25]. The idea of subset covering or subset
difference [26,27] in an attribute tree to reduce search time and communication cost can be
used to improve revocable group signature.

Our contributions are as follows:

• We propose a revocable publicly verifiable computation (RPVC) model. Its main ideas
are: Using the properties of PVC to ensure the results returned by the edge server are
reliable. Using the properties of group signature to reduce the cost of verification and
key storage for users, and keep edge server identity anonymous. If the group signature
is revocable, the group manager can trace and revoke the dishonest edge server.

• After analyzing the RPVC threat model, four security goals of the RPVC model are
summarized according to possible attack methods and available information for
adversaries: function binding, result reliability, anonymity, and revocability.

• An RPVC scheme is given. The scheme speeds up the PVC proof generation and
verification time with the help of polynomial commitment and improves the revocable
group signature with a subset covering idea. Finally, the correctness analysis and
security proof of the scheme are provided.

• We implemented the RPVC scheme, and experiments show that the time delay and
storage cost of the RPVC scheme is acceptable when it is applied to edge comput-
ing scenarios.

2. Related Works
2.1. Publicly Verifiable Computation (PVC)

Verifiable computing (VC) was proposed to verify the outsource computing results
by Gennaro [28] via a boolean circuit in 2010. Benabbas [29] expands VC to compute
polynomials in a higher degree. Other studies such as [30–32] also consider VC However,
the common defect of all the above VC schemes is that the verifier can only be the user or
the one he specifies, which limits the promotion of VC. Thus, public verifiable computation
by Parno [6] was first proposed to address this shortcoming. Though [33,34] can also
achieve PVC, ref. [33] needs an honest user to generate the main private key, which makes
the status of users unequal. In addition, the users in [34] obtain a decrypt key by interaction,
which leads to low efficiency. Fiore [7], based on the solution from Benabbas, constructed a
PVC scheme aimed to solve matric products. However, the verification time is long because
of the use of bilinear mapping. Although Catalano [8] introduced one-way hash function
and RSA assumption to improve the speed, this is hard to deploy on existing applications.
Another solution to achieve efficient PVC is the work by Ding [15], his idea is to use a
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trusted computation environment provided by Intel SGX. Similarly, a scheme [13,14] by
Fraust and Liu also needs specific hardware support, these schemes are not suitable for
complex large-scale networks.

2.2. Revocable Group Signature

Any group member can make group signature stands for the whole group, others
cannot forge a group signature. The verifier can verify a group signature by a group
public key without finding out the specific signer. The group manager can open the group
signature and figure out who makes this signature. The original concept was proposed by
Camenisch [16], but this scheme cannot revoke group members. In order to make a group
signature revocable, Song [17] developed with a revocable group signature model which
can guarantee forward security, but its verification time increases linearly with the number
of group members. Camenisch also proposed a scheme based on an accumulator [18], but if
group members frequently join or quit the group, another group member needs to update
their credential in a timely manner. The same problems also occur in the scheme [22,23] by
Yehia and Buser, furthermore, the mechanism of merkle tree makes the scale increase super-
linearly with the joining or quitting of users. Brickell [20] put forward a solution based
on the local revocation list, which is inspired by the work of Boneh [19]; group members
do not need to update their credentials frequently. However, the final signature contains
nine parts, and the verification processes are extremely complex. To confirm whether
the signer is in the revocation list more efficiently, Nakanishi [35] brings in a subgroup
idea, however, his scheme is still based on an accumulator with the same defects as the
Camenisch solution. Yue [21] proposed a revocable group signature which can preserve
the privacy, but the drawback is the high consumption of computation resources due to the
high level security assumption.

3. Preliminaries
3.1. Bilinear Maps and Related Assumptions

Let G be cyclic additive group, whose order is prime p. G is generated by g. Define GT
as multiplicative group with the same order p. The bilinear pairing e : G×G −→ GT holds
three properties: bilinearity, non-degeneracy, and computability. ε denotes negligible value.

• DL Assumption : Given g and a $← Z∗p, for every adversary ADL, Pr[ADL(g, ga) =
a] = ε.

• t-polyDH Assumption [26]: Let α
$← Z∗p, given a (t + 1)−tuple 〈g, gα, gα2

, . . . , gαt〉 ∈
Gt+1 as input, for every adversary At−polyDH ,

Pr[At−polyDH(g, gα, gα2
, . . . , gαt

) = 〈φ(x), gφ(x)〉] = ε , where φ(x) ∈ Zp[x].

• t-SDH Assumption [36]: Let α
$← Z∗p, given a (t + 1)−tuple

〈g, gα, gα2
, . . . , gαt〉 ∈ Gt+1 as input, for every adversary At−SDH ,

Pr[At−SDH(g, gα, gα2
, . . . , gαt

) = 〈c, g
1

α+c 〉] = ε, for any value of c ∈ Zp\{−α}.
• t-BSDH Assumption [26]: Let α

$← Z∗p, given a (t + 1)−tuple 〈g, gα, gα2
, . . . , gαt〉 ∈

Gt+1 as input, for every adversary At−BSDH ,
Pr[At−BSDH(g, gα, gα2

, . . . , gαt
) = 〈c, e(g, g)

1
α+c 〉] = ε , for any value of c ∈ Zp\{−α}.

3.2. Signature of Knowledge

The signer can use the signature of knowledge (SKSIG) to prove he owns a secret
without leaking that secret. It is a kind of non-interactive zero-knowledge prove system,
which has three typical constructions: (1) signature of knowledge of discrete logarithms
(SKLOG). (2) signature of knowledge of double discrete logarithms (SKLOGLOG). (3)
signature of knowledge of an e− th root of the discrete logarithms (SKROOTLOG). No
adversary can recover the secret or create an illegal signature by the chosen message attack.
More detail is in [16,37].
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• SKLOG: SKLOG of element y ∈ Gn to the base g on message m is a pair (c, s) ∈
{0, 1}k ×Z∗n satisfying c = H(m||y||g||gsyc). H(·) is a one-way hash function. SKLOG
is denoted SKLOG[α : y = gα](m), where α is the target of zero-knowledge proof,
it should be secret to verifier. For any adversary ASKLOG, Pr[ASKLOG(c, s) = {α ∨
(c′, s′)}] = ε, where (c, s) 6= (c′, s′).

• SKLOGLOG: SKLOGLOG is denoted SKLOGLOG[β : y = gαβ
](m), where β should

be kept secret to the verifier, other references are public.
• SKROOTLOG: SKROOTLOG is denoted SKROOTLOG[β : y = gβe

](m), where β
should be kept secret to the verifier, other references are public.

3.3. Strong RSA Assumption

Let p, q be two big prime integers, compute n = pq. Given tuple (n, e), for every
adversary ARSA, Pr[ARSA(n, e) = (z, d)] = ε such that zd = e mod n [38].

4. Revocable Publicly Verifiable Computation (RPVC) Model

This section first introduces the RPVC model, then provides its threat model, and
finally puts forward the design goals.

4.1. RPVC Model

As shown in Figure 2, there are four entities in the RPVC model: cloud server, edge
server, auditor, and user. The reason why the function owner does not become an RPVC
entity is that the edge server downloaded the computing function from a cloud server.
The process that the function owner entrusts the computing function to the cloud can be
initialized offline Edge servers and the auditor are in the same group, the edge server has
the role of a group member, and the auditor has the role of the group manager. RPVC
entities are described as follows:

• Cloud Server: The cloud server receives functions initialized by different function
owners and allows legal edge servers to download functions.

• Edge Server: The edge server sends a request to the auditor for joining edge computing.
After the auditor approves, the edge server downloads functions from the cloud server
and performs computing for users.

• Auditor: The auditor is responsible for approving the edge server’s join request and
revoking a dishonest edge server who provided incorrect results.

• User: The user verifies the results returned by the edge server. If the result fails to
pass the verification, the user will send a revoke request to the auditor.

As shown in Figure 2, an RPVC can be divided into three phases: an initialize phase, a
join phase and an outsource computing phase:

• Initialize Phase: As step 1 in Figure 2, this phase can be performed offline by the
function owner. The function owner selects the function private key α, and sends the
computing function F and function evaluation key EK to the cloud server. Then, the
function owner sends the verification key VK to users.

• Join Phase: The join phase includes step 2 – 5 in Figure 2. The edge server applies
to the auditor for joining computation in step 2 . After the auditor validates the edge
server’s application, the auditor sends a group member certificate Cert or its mask
σCert to the edge server by a secure channel in step 3 . In step 4 , the edge server
downloads the computing function F and evaluation key EK from the cloud server.
In step 5 , the auditor broadcasts data structure T which stores the currently valid
edge server and group public key Gpk to users.

• Outsource Computing Phase: The outsource computing phase includes step 6 – 9

in Figure 2. In step 6 , the user sends function input x to the edge server. In step
7 , the edge server evaluates function with input x. Then, return result y = F(x),

corresponding proof proo f and computation signature SKSIGcomp to the user. In step
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8 , the user verifies SKSIGcomp to confirm the result is returned by a legal edge
server, next, verify y is correct with proo f . In step 9 , If the result verification doesn’t
pass, the user sends a revoke request to the auditor. The auditor traces and revokes
a dishonest edge server and reorganize T which gets rid of the information of the
dishonest edge server.

Cloud

Function Owner

①  F, EK

②  code(F), EK

Edge Server

User

⑥ x

Auditor

③  Join request

④  Cert

① VK

⑤  T,Gpk

⑨ Revoke request

⑦ y, proof,SKSIG

⑧ Verify result

Figure 2. Model Architecture (Dotted lines stand for the initialize phase. Blue lines and black solid
lines denote the join phase and outsource computing phase).

A revocable publicly verifiable computation scheme RPVC consist of five algorithms
(Setup, Register, Compute, Verify, Revoke) as follows:

Setup(1λ, α, F) −→ (EK, VK, Gsk, Gpk, T, L): The algorithm is used for model setup,
which includes cloud server setup and auditor setup.

(1) Cloud server setup: In order to make the outsourcing computation results
verifiable and so they cannot be forged, the function owner privately selects a
random number α, and generates a function evaluation key EK and a function
verification key VK according to the security parameter λ.

(2) Auditor setup: The auditor generates a group private key Gsk and a group
public key Gpk by security parameter λ, that Gsk used for issuing a group
member certificate and Gpk used for verifying the validity of group signature
for results and its proof. The auditor creates a binary tree T which can quickly
search all valid edge servers, and record the identities of edge servers in list L
privately.

Register(σid, mem(σid), SKSIGReg, T) −→ (σCert, T): The auditor executes this algo-
rithm. The auditor will receive a request from an edge server that wants to join the
outsource computation. That request should use the mask of the identity private
key σid to prevent the real identity id of the edge server from being exposed. The
edge server should use Gpk to generate mem(σid) which is the mask code of group
membership for the auditor to trace the signer. To prevent man-in-the-middle attacks,
the edge server should use knowledge signature SKSIGReg to prove he knows the
identity private key id without leaking it. After the auditor verified SKSIGReg, the
edge server will receive the mask of the group member certificate σCert. Then, the
auditor adds the edge server to T and L. The edge server gets the group member
certificate Cert by decoding σCert.
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Compute(x, F, EK, SKS, Cert) −→ (y, proo f , SKSIGcomp): The edge server executes
this algorithm. The edge server evaluates the function value y by the user input
x, then, uses EK to compute the corresponding proof proo f of y. Finally, the edge
server makes a revocable group signature SKSIGcomp to y and proo f , with Cert and a
signature private key set SKS. SKSIGcomp can prove the identity of the edge server
through non-interactive zero-knowledge proof, at the same time, it can ensure the
edge server is not revoked by the auditor.
Verify(T, Gpk, VK, y, proo f , SKSIGComp) −→ τy: The user executes this algorithm.
The user first verifies SKSIGcomp by T and Gpk to ensure the result is from a legal
edge server that has not been revoked. Next, the user verifies y is correct by VK and
proo f . Finally, if these two verifications are passed, the user outputs accept token
τy = true, otherwise, τy = f alse.
Revoke(T, L, τy, SKSIGComp) −→ T: The auditor executes this algorithm. The auditor
opens SKSIGcomp with L to trace the identity of the dishonest edge server under the
condition of τy = f alse, then removes it from T and L. From then on, the result
returned by a dishonest edge server will never pass the verification.

4.2. Threat Model

For users, the auditor is trusted and other entities are semi-trusted. In other words,
edge servers and cloud servers may tamper with or forge content. Based on the information
available to adversaries, we consider the following two threat models:

(1) Chosen Plaintext Attack Model: In this model, the attacker may obtain encryptions of
his chosen messages, such as the mask code of id, VK of the function F, or the proof
for computing result y.

(2) Chosen Message Attack Model: In this model, the attacker may obtain signatures of
his chosen messages, such as additional information which would be used to construct
an existential universal forgery group signature.

4.3. Design Goals

To achieve RPVC in edge computing, we aim to achieve the following design goals.

(1) Function Binding: The VK and EK should only be used to verify or compute the spe-
cific function F which the function owner provided. The function binding experiment
EXP f b

RPVC(A) is shown in Figure 3, the RPVC is Function Binding if Adv f b
RPVC(A) is

negligible for any adversary A.
(2) Result Reliability: For the user’s specific input x, the edge server should not give valid

results and proofs other than the real function value y. The result reliability experiment
EXPrr

RPVC(A) is shown in Figure 3, the RPVC is Result Reliability if Advrr
RPVC(A) is

negligible for any adversary A.
(3) Anonymity: The user should not recover the identity id of any edge server. The

anonymity experiment EXPano
RPVC(A) is shown in Figure 4, the RPVC is Anonymity if

Advano
RPVC(A) is negligible for any adversary A.

(4) Revocability: The user should not accept the results which are returned by revoked
edge servers. In addition, the adversary should not show the valid signature associ-
ated with wrong results or proofs The revocability experiment EXPrev

RPVC(A) is shown
in Figure 4, the RPVC is Revocability if Advrev

RPVC(A) is negligible for any adversary A.
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EXP f b
RPVC(A) - Function Binding Game EXPrr

RPVC(A) - Result Reliability Game

1. (EK, VK) $←Update(1λ, α, F)
2. F′ ←− A(EK, VK, F)
3. If Verify(VK, EK, F′) = 1 and

F 6= F′

return 1
Else, return 0

1. (EK, VK) $←Update(1λ, α, F)
2. (y, proo f )←−Compute(x, F, EK)
3. (y∗, proo f ∗)←− A(x, F, EK, y, proo f )
4. If Verify(VK, y∗, proo f ∗) = 1 and y 6= y∗

return 1
Else, return 0

Figure 3. Security Games for RPVC.

EXPano
RPVC(A) - Anonymity Game EXPrev

RPVC(A) - Revocablity Game

1. (Gpk, T) $←Setup(1λ)

2. (σCert, T) $←Register(σid, mem(σid))
3. m← A(Gpk, T)

4. r $← Z∗n
5. SKSIGComp ←Compute(Gpk, id, σCert, r)
6. id∗ ← A(Gpk, T, m, SKSIGComp)

7. If id∗ = id, return 1
Else, return 0

1. (Gpk, T) $←Setup(1λ)
2. T ←Revoke(τy, SKSIGComp, T)
3. m← A(Gpk, T)

4. r $← A(Z∗n)
5. SKSIG∗Comp

$← A(Gpk, id, σCert, r, m, T)
6. If Verify(VK, SKSIG∗Comp) = 1

return 1
Else, return 0

Figure 4. Security Games for RPVC.

5. Proposed RPVC Scheme

We now give the detailed construction of each algorithm in RPVC. Notations used in
RPVC are in Table 1.

Table 1. Notations.

Symbol Definition Symbol Definition

Gsk Group private key Gpk Group public key
T Quick access binary tree L Edge server list
σid Mask code of user’s id mem(σid) Mask code of group membership
λ
F

Security parameter
Function

α Private random number choosen
by function owner

VK Verify Key EK Computing Key
Cert Certificate σCert Mask code of Certificate
y Computing result SKS Signature private key set
τy The token decides whether accept y proo f Verifiable proof of y
SKSIG Signature of knowledge for joining

the group or computing
x The value which user outsource.

5.1. Setup

The setup algorithm of the RPVC scheme including cloud server setup and audi-
tor setup.

(1) Cloud server setup: The function owner owns a polynomial form function
F = Φ(x) ∈ Zp[x] with degree deg(Φ) ≤ t. Φ(x) which can be expressed as
Equation (1)

Φ(x) =
deg(Φ)

∑
j=0

φjxj (1)

Step 1. The function owner chooses two groups G and GT with prime order p, two
groups can make bilinear maping e : G×G −→ GT satisfies the t − SDH
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assumption. G =< e,G,GT > is defined as a bilinear group with generator

g2
R← G.

Step 2. The function owner privately chooses α
R← Z∗p, then, computes function evalua-

tion key EK = {G, g2, gα
2 , . . . , gαt

2 } and function verification key in Equation (2)
according to α.

VK =
deg(Φ)

∏
j=0

(gαj

2 )
φj

(2)

Step 3. The function owner sends F and EK to the cloud server, sends VK to users.
This step can be completed offline, such as VK can be embedded in vehicle
OBU by car manufacturers in IoV applications.

(2) Auditor setup: The auditor outputs group private key Gsk and group public tree Gpk
with security parameters a, λ, then generates a subset covering complete tree (SCST)
according to valid edge servers at time t, at last, updates list L.

Step 1. The auditor first privately chooses two big primes at random, and gets their
product nc as RSA modulus. Then, it generates group G1 in order nc with
generator g1 ← G1. Next, it selects security parameters a and λ for knowledge

signature. After that, it choses ec
R← Zn and computes dc which satisfies

Equation (3). Finally, the auditor keeps a group private key Gsk = (nc, dc), and
broadcasts a group public key Gpk = {nc, ec, g1.G1, a, λ}.

ecdc ≡ 1 mod ϕ(nc) (3)

Step 2. Let N be the overall set of edge servers, R is the set of revoked edge servers,
clearly, N\R is the set of valid edge servers right now. The auditor builds a
minimum complete binary tree CT with a height of l = dlog|N|e, at the same
time, it initializes all leaf nodes to ⊥. The root node of CT is recorded as x0,0,
other nodes can be expressed as xi,j, where i ∈ [0, . . . , l], j ∈ [1, . . . , 2i]. Accord-
ing to the subset covering theory, the parent node can be used to represent the
set composed of its two child nodes under the condition of both child nodes
belonging to N\R. If iterate to the root node in this way, N\R can be expressed
by the set of parent nodes, these parent nodes represent num disjoint subsets
S1 ∪ S2 ∪ · · · ∪ Snum, in which num is the minimum amount of disjoint subsets
in the current valid leaf node arrangement. The resulting SCST is the set of
nodes from the above processes. Algorithm 1 shows how SCST is generated.

Step 3. The auditor should assign random ei,j to each node xi,j on SCST, and calculate
di,j which satisfies Equation (4) and then attach a timestamp t to SCST. At last,
it should put the edge servers’ information into L.

ei,jdi,j ≡ 1 mod ϕ(nc) (4)
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Algorithm 1 SCST Generator.
Input: All signers set N, revoked set R

1: Build complete binary tree CT with N
2: tmp =<>
3: for all x in CT do
4: if x in R then
5: tmp.add(path(x))
6: end if
7: end for
8: for all x in tmp do
9: if xle f t in tmp then add xle f t to SCST

10: else add xright to SCST
11: end if
12: end for
13: return SCST

5.2. Register

The auditor issues a group membership certificate to the edge server and broadcasts
the latest SCST to users.

Step 1. The edge server privately selects an identifier id R← Z∗p, then, computes Equation (5)
as the mask of id and Equation (6) as the mask of group membership. Next, it makes
the knowledge signature SKSIGReg to σid and mem(σid) by Equation (7), and sends
a request for joining the edge computing to the auditor. The request should involve
σid, mem(σid) and SKSIGReg.

σid = aid mod nc (5)

mem(σid) = gσid
1 (6){

m = (σid ‖ mem(σid))
SKSIGReg = SKLOGLOG[id : mem(σid) = gσid

1 ](m).
(7)

Step 2. If the auditor verifies SKSIGReg successfully, it indicates that the edge server owns
id. Based on this premise, auditor selects free leaf node xl,k(k ≤ 2i) on SCST, chooses
random el,k and dl,k which satisfies Equation (8). Obviously, the group member
certificate for the edge server is Equation (9). The auditor puts the information of
the edge server into L, the form of the record is {σid, mem(σid), dl,k}, after that, it
updates SCST by Algorithm 1.

el,kdl,k ≡ 1 mod ϕ(nc) (8)

σCert = (σid + el,k)
dc mod nc (9)

Step 3. The auditor broadcasts the latest SCST to users, transmits σCert and Credid = gdl,k
1

which is used for proving the identity of the edge server is valid at time t to the
edge server.

Step 4. The edge server creates a signature private key set SKS = {id, σCert, Credid}.

5.3. Compute

The edge server evaluates the function value and its proof for users, then, makes the
group signature revocable on result and proof.

Step 1. The user sends function input x to the edge server.
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Step 2. The edge server evaluates the function value y = F(x), and calculates the corre-
sponding proo f by EK with Equation (10).

proo f = gψx(α)
2 , ψx(α) =

F(α)− F(x)
α− x

∈ Zp[x] (10)

Step 3. In order to show the validity and that it has not been revoked, the edge server should
make the signature q to y and proo f by Equation (11), where h(·) is a one-way hash
function.

q =
(

gdl,k
1

)h(y||proo f )
mod nc (11)

Furthermore, the edge server makes a group signature by Equation (12) as in [16,37].
The final computation signature is SKSIGComp = {q, g̃, z̃, V1, V2}.

g̃ = gr
1, r R← Z∗p, z̃ = z̃σid

V1 = SKLOGLOG[id : z̃ = g̃aid
](y ‖ proo f )

V2 = SKROOTLOG[Cert : z̃g̃el,k = g̃Certec
]

(12)

Step 4. The edge server returns {el,k, y, proo f , SKSIGComp} to user.

5.4. Verify

The user first verifies whether the result is from a valid legal edge server, then, verifies
that the result is correct. If a fault occurs during the verification process, the user will send
a revoke request to the auditor.

Step 1. The user synchronizes the SCST from the auditor and confirms el,k ∈ SCST by
Equation (13).

gh(y||proo f )
1 = qel,k mod nc (13)

Step 2. The user rapid verifies V1, V2 in SKSIGComp by the hash functions provided by
SKLOGLOG and SKROOTLOG.

Step 3. The user verifies the result is correct by Equation (14), and outputs an accept token
τy = accept after the result hass passed verification. Otherwise, the user sends a
revoke request to the auditor; the request contains a reject token τy = reject and
SKSIGComp.

e(VK, g2) = e(proo f , gα
2 /gx

2) · e(g2, g2)
F(x) (14)

5.5. Revoke

The auditor opens the revocable group signature to lock the identity of the dishonest
edge server, removes it from L, and broadcasts the updated SCST which deletes the leaf
node of the dishonest edge server to users.

Step 1. After the auditor received the revoke request, the auditor opened SKSIGComp to
trace the dishonest edge server with the help of L, and then deletes it from L.

Step 2. The auditor updates SCST by means of deleting the leaf node corresponding to
the dishonest edge server via Algorithm 1, then broadcasts the latest SCST. For
example, as shown in Figure 5, there are eight signers x3,1, . . . , x3,8. When the
auditor receives the request to revoke x3,2, x3,5, x3,6 at time t, SCST will be updated
to {t||x3,1, x2,2, x2,4}.
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X0,0

X3,1 X3,2 X3,3 X3,4 X3,5 X3,6 X3,7 X3,8

X2,4X2,1 X2,2 X2,3

X1,1 X1,2

Figure 5. Example of SCST generation process. (The nodes to be revoked are represented in red, and
the new subset covering the node is represented in blue).

6. Scheme Analysis

This section first illustrates the correctness of RPVC from the correctness of the result
and signature. Then, combined with the security model proved the security of RPVC from
the aspects of function binding, result reliability, anonymity, and revocability.

6.1. Correctness
6.1.1. Correctness of Result

The edge computing results and its verification processes are correct, because:

e(proo f , gα
2 /gx

2) · e(g2, g2)
F(x)

= e
(

gψx(α)
2 , gα−x

2

)
· e(g2, g2)

F(x)

= e(g2, g2)
ψx(α)(α−x)+F(x)

= e(g2, g2)
F(α)−F(x)
(α−x) (α−x)+F(x)

= e(g2, g2)
F(α) = e(VK, g2)

6.1.2. Correctness of Signature

The signature q used by the edge server to prove it has not been revoked and the
verification process of q is correct, because:

qel,k mod nc

= gdl,kh(y||proo f )el,k
1 mod nc

= gh(y||proo f )
1

6.2. Security Analysis

The proof method of RPVC uses “game-playing” technology which was proposed
in [39–41]. This technology uses the game sequence specification to prove that the possibil-
ity of the adversary winning the game is negligible, and the probability of the adversary
winning two adjacent games should be controlled within a negligible range (i.e., indistin-
guishable in polynomial time). Define the probability of Game i happens is Pr(Si).
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6.2.1. Proof of Function Binding

Game 0: This is the original function binding game in Figure 3, A trying to find another
F′ which has the same VK with F. A obtains EK, VK and F as information. Clearly,
Adv f b

RPVC(A) = Pr(S0).
Game 1: This game is the same as Game 0 except that replace F′ with F + F̂. If A can find
F′, he must find a different function F̂. So, Pr(S1) = Pr(S0).
Game 2: This game is the same as Game 1 except that replace the winning condition to
Φ̂(α) = 0

∧
φ̂j not all 0. Φ̂(α) = 0 since

V̂K = gΦ̂(α)
2 = gΦ′(α)−Φ(α)

2 = gΦ′(α)
2 /gΦ(α)

2 = 1.

Because F′ 6= F, the polynomial coefficients φ̂j cannot be all 0. Clearly, Pr(S2) = Pr(S1).
Claim 1:

Pr(S2) ≤ AdvDL
g,ga(BA)

Let n be the degree of polynomial, algorithm B is a tool that assumes A can solve a class of
problems including the games. If the simplest case in these problems is the current difficult
mathematical problem, it means that the adversary cannot break the security characteristic.
BA(n, F, F′) computing a collision as in the following steps:

(1) α′ ← A(n, Φ(α), Φ′(α)), 2 ≤ n ≤ t
(2) If α = α′ return 1

Else return 0

Proof. Game 2 is equivalent to BA(t, F, F′). It will be the simplest polynomial of degree
one problem when n = 2, so Adv f b

n=t
(
BA
)
≤ Adv f b

n=2
(
BA
)
. That means to solve the latter

is easier than the former, A will own more advantages. Now let n = 2, the processes to
find a collision are as follows:

g(φ1−φ′1)α′+φ0−φ′0 = 1

⇔ (φ1 − φ′1)α
′ + φ0 − φ′0 = 0

⇔ α′ =
φ′0 − φ0(
φ1 − φ′1

)
Clearly, find α′ via g2 and gα

2 on cyclic group G is a more efficient way, which exactly
is DL assumption. Hence,

Adv f b
RPVC(A) ≤ Adv f b

n=2

(
BA
)
≤ AdvDL

g2,gα
2

(
BA
)
≤ ε

That is, the probability of the adversary successfully attacking is negligible, the RPVC
scheme achieves Function Binding.

6.2.2. Proof of Result Reliability

Game 0: This is an original result reliability game in Figure 3, A trying to find malicious y∗

and proo f ∗ that can pass the user verification. Clearly, Advrr
RPVC(A) = Pr(S0).

Game 1: The adversary can compute 1
α−x . The reason why Game 0 ≈p Game 1 and

Pr(S1) = Pr(S0) is:

Veri f y(VK, y∗, proo f ∗) = Veri f y(VK, y, proo f )

⇔ e(g2, g2)
ψx(α)(α−x) · e(g2, g2)

y = e(g2, g2)
ψ∗x(α)(α−x) · e(g2, g2)

y∗

⇔ ψx(α)(α− x) + y = ψ∗x(α)(α− x) + y∗

⇔ ψx(α)− ψ∗x(α)

y∗ − y
=

1
α− x
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Game 2: For g2 is part of Gpk, the adversary can give valid pair (−x, g
1

α−x
2 ). Obviously,

Game 1 ≈p Game 2.
Claim 2:

Pr(S2) ≤ Advt−SDH
EK (BA2 )

BA2 (EK, V) can give a valid pair (c, g
1

α+c
2 ), where V is some kind of valid algorithm, c ∈ Z∗n.

BA2 is a bridge between Game 2 and t-SDH difficult mathematical.

Proof. When EK = {G, g2, gα
2 , . . . , gαt

2 }, algotithm BA2 is t-SDH assumption. Though
the adversary can give a valid algorithm V(x, y, proo f , y∗, proo f ∗), Advt−SDH

EK,V (BA2 ) ≤

Advt−SDH
EK (BA2 ). The output of algorithm V is (−x, g

1
α−x
2 ), where

g
1

α−x
2 = (

proo f
proo f ∗

)

1
y∗−y.

So the following equation holds,

Advrr
RPVC(A) ≤ Advt−SDH

EK (BA2 ) ≤ ε

That is, the probability of the adversary succesfully attacking is negligible, the RPVC
scheme achieves Result Reliability.

6.2.3. Proof of Anonymity

Game 0: This is an original anonymity game in Figure 4, A trying to figure out the identity
of the edge server. Clearly, Advano

RPVC(A) = Pr(S0).
Game 1: The adversary has the ability to extract id from at least one of the following parts:
z̃, V1, V2. Explicitly, Game 0 ⇐⇒ Game 1 and Pr(S1) = Pr(S0) for the identity information
in SKSIGComp only including z̃, V1, V2.
Game 2: This game is the same as Game 1 except that the adversary has the ability to
extract id from V1 or V2. Function F1(y, x) denotes the probability of extract x from y = gx

under the DL assumption. Extract id from z̃ should sequentially execute: F1(z̃, rσid), F1(g̃, r)
and F1(σid, id). The recursive proof method can refer to the literature [41]. The above
process can be expressed as:

|Pr(S1)− Pr(S2)| ≤ Pr(extract id f rom z̃),

and it is not more than

Pr(F1(z̃, rσid))Pr(F1(g̃, r))Pr(F1(σid, id)) ≤ (AdvDL
g,ga(·))3

Finally, Game 1 ≈p Game 2 and Pr(S2) = Pr(S1), due to

(AdvDL
g,ga(·))3 ≤ ε3 ≤ ε

Game 3: This game is the same as Game 2 except that the adversary can extract id from
V1. Function F2(y, x) and F3(y, x) denotes the probability of extract x from y under the RSA
assumption and SKROOTLOG signature. Extract id from V2 should sequentially execute:
F3(V2, σcert), F2(σcert, σid) and F1(σid, id). Similiar to Game 2, it can infer that

|Pr(S3)− Pr(S2)| ≤ Pr(Event3) ≤ AdvDL
g,ga(·)AdvRSA

n,e (·)AdvSKROOTLOG
SKSIG (·) ≤ ε,
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so Game 3 ≈p Game 2 and Pr(S2) = Pr(S3). The RPVC scheme achieves Anonymity for

Pr(S3) ≤ AdvSKLOGLOG
SKSIG (·) ≤ ε

6.2.4. Proof of Revocability

Game 0: This is an original revocable game in Figure 4, a revokedA trying to succesfully sign
results or faking an honest user’s signature on wrong results. Clearly, Advrev

RPVC(A) = Pr(S0).
Game 1: This game is the same as Game 0, the adversary can recovery corresponding dl,k
by el,k or replace valid q in malicious SKSIGComp. Game 0⇔ Game 1.
Game 2: This game is the same as Game 1 except that the adversary can recover corre-
sponding dl,k by el,k. If an adversary can replace valid q in malicious SKSIGComp, he must
make sure V2 can be verified succesfully So

|Pr(S1)− Pr(S2)| ≤ AdvSKROOTLOG
SKSIG (·) ≤ ε,

further, Game 1 ≈p Game 2. The RPVC scheme achieves Revocability for

Pr(S2) ≤ AdvRSA
n,e (·) ≤ ε

7. Performance Analysis

In Table 2, we compare other existing group signature schemes in the IoV scenario
with RPVC. The results in Table 2 show that our scheme uses a superior audit method to
find the dishonest participants, and the core cryptographic algorithm is the non-interactive
zero-knowledge signature, which is mainly based on a hash function that is more efficient
than existing schemes. Besides, RPVC updates the SCST at a regular time, which provides
participants with more fault tolerance.

Table 2. Comparison of RPVC with existing schemes.

Scheme Auditable Audit Method Update Frequency Key Generator Cryptographic Algorithm

[42] No Cannot Dynamic Single Symmetric
[43] No Cannot Dynamic Multi-party Symmetric
[44] Yes Iterate list Dynamic Multi-party ECC
[45] Yes Direct Never Single BBS
[46] Yes Iterate list Dynamic Single ECC

RPVC Yes Query the tree Timed Single Zero-knowledge signature

In order to compare the performance of the RPVC more intuitively, we conduct a
series of experiments to evaluate the cost and efficiency of the RPVC. The experimental
environment is deployed on a PC with Ubuntu 20.0.4 TLS, bilinear pairing rely on bn256
(github.com/ethereum/go-ethereum/crypto/bn256/cloudflare, accessed on 20 March
2022), other libraries including PBC 0.5.14 (https://crypto.stanford.edu/pbc/, accessed on
15 March 2022) and GMP-6.2.1 (https://gmplib.org/, accessed on 15 March 2022).

Some basic assumptions in the experiments are as follows: The service radius of RSU
is about 2.5 km [47], users’ vehicle speed is not more than 180 km/h. 3G network speed is
about 300 KB/s, 4G network speed is about 2.4 MB/s [48]. The reaction time of a driving
human to brake is 600–1400 ms [49].

The test contains two parts: One is the process of the edge server applying to join
edge computing and the auditor revokes a dishonest edge server, the other one is the user
asking for outsourcing computing and receiving verifiable reliable results. The former has
three test items: (1) The execution time for the auditor. (2) The size of SCST which the
user received from the auditor. (3) The storage space consumed by the user. The latter
also has three test items: (4) The extra cost for the edge server to apply RPVC. (5) The time
consumed for user verification. (6) The total time delay after applying RPVC.

github.com/ethereum/go-ethereum/crypto/bn256/cloudflare
https://crypto.stanford.edu/pbc/
https://gmplib.org/
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For test item 1, the execution time for the auditor can be divided into the time to add
the edge server into the group and the time to generate SCST. As shown in Table 3, the time
to add an edge server into the group is about 27.996 ms, which is independent of the scale
of the edge server. As shown in Table 4, with edge servers scale increase in the group, the
time of the auditor adding or removing an edge server increases proportionally. However,
even if the number of edge server reaches 215 (RSU service can cover about 321,700 km2),
the auditor can generate SCST within 1 ms. The driving distance is only 1.45 m during
the user vehicle receives SCST at the highest speed, far less than the service radius of RSU.
That is, users have enough time to safely synchronize the current valid edge server. For
test item 2, as shown in Table 4, the size of SCST is independent from the scale of the
edge server, SCST is only about 5 kB. For test item 3, the local storage space for the user is
multiplied with the increase of the edge server scale, which is shown in Table 5. However,
even when the number of edge servers comes up to 215, storage is less than 15 MB.

Table 3. Execution Time of Four Stages of Group Signature (ms).

Register Signature Verify Open

27.996 28.162 29.001 287.466

Table 4. Add/Delete An Edge Server.

Test Content
Scale 211 212 213 214 215

Size of SCST(KB) 5.974 5.340 5.340 5.023 4.709
Execution time(ms) 0.085 0.158 0.270 0.524 0.986

Table 5. Cumulative SCST Size.

Edge Server Scale 211 212 213 214 215

Size(MB) 1.213 2.363 4.352 7.703 14.785

In test items 4–6, we set the degree of polynomial and input x as independent vari-
ables, the time cost as dependent variable (default is ns, 10−9s). The rule to choose the
independent variable x is: randomly select a value from each range, ranges including
[0, 24], [24, 25], [25, 26], [26, 27], [27, 28]. Results of test item 4 are shown in Figure 6a, the extra
cost of applying the RPVC proportionally tothe polynomial degree, the larger the x, the
smaller the curve fluctuation. For test item 5, as shown in Figure 6b, the time of user
verification fluctuates between 36 ms and 38 ms, which is less affected by independent
variables. Figure 6c indicates the total extra time delay brought by the RPVC application.
Even if the degree of a polynomial function is up to 100, the total delay is less than 100 ms,
which is far less than the driver’s reaction time [49].
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Figure 6. RPVC overhead. (a) Edge sever overhead. (b) User verify time. (c) Total delay.
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From the above six test items, it is clear that the RPVC can be used to improve the
security of existing edge computing applications. We can summarize the key influencing
factor from Figure 7: if the polynomial degree is larger than 40, the performance of the edge
server takes the most portion of total time delay, the portion gets larger with the increase of
degree. So, a better edge server may expand the application scope of the RPVC.
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Figure 7. Proportion of edge server delay.

8. Discussion

For the requirements of edge computing in the IoV scenario, the RPVC first achieves
the goal of results returned by the edge server being verifiable. At the same time, the
identity of the edge server is anonymous to user vehicles and a dishonest edge server
can be revoked. From the test results, when a new edge server takes part in outsourced
computing, user vehicles do not need to exchange keys with it. The time in which the
auditor adds one edge server into the group can be fixed, nearly 28 ms that is independent
of the scale of the edge server. The time of user vehicles receiving SCST mainly depends on
the communication delay because the generated speed of SCST is less than 1 ms. Though
the total delay for user vehicles increases with the degree of the polynomial, it is less than
95 ms when the degree is up to 100 (a very complex computation). Furthermore, the storage
overhead is acceptable for user vehicles, even if the number of edge servers comes up to
215, storage demand is less than 15 MB.

The low delay and overhead are owed to the subset covering complete tree and non-
interactive zero-knowledge signature. SCST makes user queries faster than iterating local
revoke lists at a small cost. Besides, the non-interactive zero-knowledge signature is mainly
based on the hash function, which is more efficient than other large number or exponent
multiply schemes. The practical applications of the research can be used to assist the
construction of intelligent transportation or vehicle networking.

For future work, we will first reduce the size of SCST for the larger scale of the edge
server. Next, machine learning and federated learning can be introduced to improve the
performance of edge servers, good solutions can be found in [50–52]. In addition, different
regions have different traffic rules and habits, these should be considered. Finally, we will
extend the outsource function to varied forms, such as verifiable matrix computation.
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9. Conclusions

In this article, we proposed an RPVC model for the edge computing scenario which
can be used in IoV applications. The RPVC model cannot only ensure the results returned
by edge servers are reliable, but can also revoke dishonest edge servers. The following
security proofs show that the RPVC has characteristics of function binding, result reliability,
anonymity, and revocability. Experiments show that a new edge server which takes part
in edge computing does not need transfer keys to users, and an auditor can approve the
request in a fixed time (28 ms). Due to the SCST, users have a low overhead storage and a
faster query time, even when the number of edge servers came up to 215, storage demand is
less than 15 MB. Because of the non-interactive zero-knowledge signature, even the degree
of outsource function up to 100, the total delay of users is about 95 ms. Thus, applying
RPVC to existing IoV applications is acceptable. In the future, we are committed to reducing
the size of SCST, trying to introduce machine learning or federated learning to improve the
performance of edge servers and supporting verifiable matrix computation.
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