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Abstract: With widely deployed smart meters, non-intrusive energy measurements have become
feasible, which may benefit people by furnishing a better understanding of appliance-level energy
consumption. This work is a step forward in using graph signal processing for non-intrusive load
monitoring (NILM) by proposing two novel techniques: the spectral cluster mean (SC-M) and spectral
cluster eigenvector (SC-EV) methods. These methods use spectral clustering for extracting individual
appliance energy usage from the aggregate energy profile of the building. After clustering the data,
different strategies are employed to identify each cluster and thus the state of each device. The SC-M
method identifies the cluster by comparing its mean with the devices’ pre-defined profiles. The
SC-EV method employs an eigenvector resultant to locate the event and then recognize the device
using its profile. An ideal dataset and a real-world REFIT dataset are used to test the performance of
these two techniques. The f-measure score and disaggregation accuracy of the proposed techniques
demonstrate that these two techniques are competitive and viable, with advantages of low complexity,
high accuracy, no training data requirement, and fast processing time. Therefore, the proposed
techniques are suitable candidates for NILM.

Keywords: non-intrusive load monitoring; energy disaggregation; spectral clustering; graph signal
processing; demand-side energy management; smart buildings

1. Introduction

Energy security is one of the critical factors for the sustainability and integrity of
society [1]. The balance between energy supply and demand is vital for energy security.
To achieve this balance, monitoring, accounting, and management of energy consumption
on the demand side is necessary [2]. Non-intrusive load monitoring (NILM) has been
established as a good substitute for intrusive submetering [3], thus becoming a future tool
for energy monitoring.

Two critical applications of NILM are home energy management systems (HEMS)
and ambient assisted living (AAL) [4], where it provides various solutions to the existing
problems and opens avenues for future research. The energy profile of each device is of
extreme importance in the overall operation of smart grids with renewable energy resources.
NILM plays a vital role in efficiently extracting energy consumption data down to the
appliance level, as demonstrated in Figure 1, helping demand prediction. This energy-
demand information may be used to manage and conserve energy at the consumer and
grid levels.

1.1. Motivation

Shortage of energy is a challenge of the current time. An increase in energy production
requires investment and dealing with many constraints. Nevertheless, there is much room
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for improving efficient energy utilization while minimizing the overall losses. NILM forms
a basis for efficient energy utilization. NILM research is focused on disaggregating the
energy usage of individual appliances attached to a central energy meter. This research area
comes under the umbrella of cyber-physical systems and Industry 4.0 [5]. The objective
of NILM is to save on the hardware while providing sufficiently accurate energy usage
patterns. The rise of NILM is linked with other recent areas of research such as the
Internet of Things (IoT) for buildings [6], smart grids, and demand-response management
systems [7], where the information from NILM is further utilized for buildings’ energy
management and decision making. The primary purpose of all these areas is to manage
and conserve energy by enabling stakeholders to make informed decisions.

Figure 1. Concept of aggregate load profile and NILM. The task of NILM is to disaggregate the
energy of each device and then identify it as shown in the colored plots.

The whole process of NILM can be divided into four significant steps, as illustrated
in Figure 2. The first step is to acquire the load signature (LS) using a suitable physical
sensor. Aggregate real power consumption is taken as LS in this paper. This aggregate real
power consumption in buildings is acquired using a commercial smart digital energy meter.
The current study is an event-based approach and thus the second step detects individual
events. An event is defined as a significant change or perturbation in the aggregate power.
Each event is thus considered as corresponding to a state change of a device. After event
detection, an important task is to identify or classify the event and the respective device
with the help of specific features of the LS, including statistical quantities such as the data
mean, peak, slope, median, mode, percentiles, range, variance, and standard deviation.
Supervised (classification) and unsupervised (clustering) approaches are used at this point.
Repeating this process for each data sample leads to a complete load identification or
disaggregation at the individual device level.

Figure 2. Steps of the NILM process.

Hart [8] initially coined the concept of disaggregating the total energy and demon-
strated that each appliance or device could be recognized using an appropriate LS feature,
as shown in Figure 1. He also defined the following three types of device models:

• Type 1: ON/OFF;
• Type 2: Finite state machine (FSM);
• Type 3: Continuously variable.
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Machine learning approaches can be divided into supervised and unsupervised meth-
ods. A labeled dataset is employed in supervised algorithms, which train the algorithm to
classify the test data and allocate them to a suitable class, while in unsupervised techniques
no labeled training data are required. Although this paper proposes unsupervised methods,
a brief overview of related supervised methods is presented below for comparison.

A lot of research has been done in event-based and non-event-based techniques. The
research includes both supervised and unsupervised machine learning methods. However,
the unsupervised and semi-supervised methods are relatively less explored [9,10]. Unsu-
pervised methods have the advantage of less or no labeled training data required for classi-
fication; however, a disadvantage is that they have relatively low classification accuracy.

Some supervised learning approaches that improve accuracy and reduce computa-
tional time include artificial neural networks [11,12]. Neural networks are one of the
crucial techniques in energy disaggregation. A variant of neural networks are known as
concatenated convolutional neural networks (CNNs) [13]: CNN-based algorithms achieve
good generalization and energy disaggregation even with a short sample time. Deep
neural networks have also been applied to energy disaggregation and give promising
results [14,15]: increasing the accuracy of the specific scenario. Another variant called
auto-associative neural networks was used on transient-based LS. It was implemented
on REDD and UK-DALE datasets [16]. Another approach studied the energy transients
using artificial neural networks, improving the accuracy and reducing the computational
complexity [17].

Support vector machines [18,19], k-nearest neighbors [20,21], naïve Bayes classifiers [22,23],
and linear-chain conditional random fields [24] are also well-known methods. Probabilistic
approaches for NILM have also been studied. In one such versatile study, authors explored
the Viterbi algorithm with sparse transition and the Markov chain, showing improved
performance compared with Bayesian classifiers. In [25], the noise was used as the LS to
detect eight appliances. Wavelet transform has also been applied to the transient signature
for NILM [26]. In [27], short-time Fourier transform was used to identify different types
of devices from transient power, where the shape of the transient data was used for
identification. A novel LS called frequency invariant transformation of periodic signals
was employed in a steady-state approach. The idea was to use the original electric current
waveform with respect to the reference voltage as a signature for NILM. A neural network
was employed and an accuracy of 90% was achieved with 18 different devices [28]. In [29],
particle swarm optimization was used to optimize the training parameters for the neural
network. One of the aspects in NILM research is a reduction in computational complexity.
In this direction, authors from [30,31] have adopted a lightweight approach that can run on
the edge. A combination of CNN and k-NN was employed to achieve good results.

Unsupervised approaches do not require huge labeled datasets for training [32,33];
instead, they treat the electrical system as a stochastic system and work with unlabeled
data. Although unsupervised algorithms are less precise and computationally complex,
they can disaggregate devices without training or labeled data. This characteristic can be
used in available systems and, on a commercial scale, in ready-to-use NILM systems. One
of the unsupervised techniques used for NILM is the hidden Markov model (HMM) and
its variants [34,35]. In [35], some variants of the factorial hidden Markov model (FHMM),
factorial hidden semi-Markov model (FHSMM), and conditional FHMM (CFHMM) were
proposed. HMM is a probabilistic technique with a random model. It assumes that the
system has some unobservable states. In [36], an additive and difference FHMM was
introduced. A similar but separate study [37] achieved an accuracy higher than 90%
for a specific scenario. Here, f-measure (F1) and normalized disaggregation error (NDE)
parameters were compared and discussed, showing improved efficiency. The study used a
combination of features, i.e., real power, reactive power, and voltage waveforms for five
appliances. In [38], a combination of difference HMM and extended Viterbi algorithms
was tested. Normalized error and root mean square error were used as performance
metrics to compare two variants of this approach. These techniques are generally helpful.
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Mainly, HMMs perform well in the case of constantly ON devices like the fridge and
freezer. However, they are computationally complex and long processing time makes them
inappropriate for real-time implementation without increasing processing cost appreciably.

In studies [39,40], six categories of the sampling rate are established:

• Very low: slower than one sample per min;
• Low: between one sample per min to 1 Hz;
• Medium: faster than 1 Hz up to fundamental frequency (fundamental frequency:

lowest frequency in the signal);
• High: from the fundamental frequency up to 2 kHz;
• Very high: between 2 and 40 kHz; and
• Extremely high: faster than 40 kHz.

This paper uses the low sampling rate data.

1.2. Graph Signal Processing

A relatively new semi-supervised classification technique for NILM, based on graph
signal processing (GSP), has been presented in [41,42]. GSP is a field of study that deals
with irregular data in time and space, such as a random network of sensors, the internet,
and social networks. Data points in the graph are represented as nodes, also called vertices
(singular vertex). A vertex is one of the points/nodes on which a graph is defined. The
vertices are connected through edges. In the graph, the edges represent relationships or
interconnections between vertices. The edges may be directed or undirected and can even
have weights associated with them.

Figure 3 shows a visual representation of the graph with four vertices at data points;
these vertices are connected using edges. The mathematical model of the graph is G = (V , A),
where each vertex
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where xi, xj are two consecutive data samples and σ is a scaling factor. The number of
edges connected to the node represents the degree of that node. The degree of each node is
obtained using the degree matrix, Dj,j; it is obtained by adding rows of the adjacency matrix.

Di,i =
N

∑
j=1

Ai,j (2)

Figure 3. Structure of a graph showing vertices (V1 to V4), edges Ai, j, and signals (S1 to S4).

In Equation (2), D is an N × N diagonal matrix [42]. Another representation is the
Laplacian, which has excellent properties and is very useful in spectral clustering. The
Laplacian is mathematically represented as:

L = D− A (3)
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Graph signal processing (GSP) is a relatively new and valuable unsupervised technique
used for NILM, having many advantages, as discussed earlier. One comprehensive and
detailed study by Stankovic [41] explored the application of GSP and proved its applicability.
NILM accuracy was further improved in a later study [43] using additional preprocessing
and post-processing steps. In another study, the post-processing techniques were further
enhanced using optimization and a genetic algorithm (GA) [44]. In one recent study [45],
authors adopted GSP and the concept of clustering and produced favorable results and
improved computation time. The current work is inspired by these studies and tries to
explore GSP further and seek improvement from the NILM point of view.

1.3. Spectral Clustering

Less research has been conducted in the unsupervised domain as compared to the
supervised domain [46]; particularly, the use of spectral clustering is rarely explored for
NILM applications and has room for further exploration and research. This study examines
the feasibility of applying spectral clustering in simple yet efficient manner in order to
enhance its performance in NILM applications.

Spectral clustering [47–49] finds its roots in graph theory; its ultimate task is to cluster
out the data based on their edges’ connectivity. This method also allows dealing with
non-graphical data. Spectral clustering classifies the data using the eigenvalues (spectrum)
of the Laplacian matrix. The concepts of eigenvalues and eigenvectors are of extreme
importance here. For a matrix A, if there exists a vector x that is not all zeros and a scalar λ
such that:

Ax =λx (4)

Then x is said to be an eigenvector of A with corresponding eigenvalue λ. By careful
examination of eigenvalues, it is found that there are some eigenvalues equal to or near
to zero, which represent connected components within the graph. The corresponding
eigenvectors are constant. The first non-zero eigenvalue is called the spectral gap. The
spectral gap gives an approximate idea about the sparsity of the graph. The second
eigenvalue is called the Fiedler value, and the corresponding vector is the Fiedler vector.
The Fiedler value approximates the minimum graph cut needed to separate the graph into
two connected components. However, the number of eigenvalues and vectors depends on
the specified upper limit of clusters.

In one recent study [50], automated spectral clustering is applied on multiscale data.
The approach used is iterative and obviates the need of predefining parameters. It was
tested for NILM applications. In the current proposed study, although various parameters
are predefined the approach is simplified and less computationally complex. In another
preliminary study [51], spectral clustering has been used for NILM applications. How-
ever, the approaches proposed in the current study are different and novel. Moreover, a
comprehensive and detailed analysis centered on NILM is presented in the current study.

1.4. Current Study

The current study uses graph signal processing in combination with spectral clustering
to disaggregate energy data. This study targets the low-frequency range, i.e., between one
sample per min to 1 Hz sampling rate from a sampling point of view. Current commercially
available smart meters generally provide data in this range. The novel contributions
presented in this study are summarized below:

1. This study puts forward two different and novel algorithms based on the spectral
clustering classification method, along with a detailed analysis.

• The first algorithm, designated as the spectral clustering mean (SC-M) method,
uses the cluster’s mean to identify the appliance.

• The second algorithm, designated as the spectral clustering eigenvector (SC-EV)
method, uses the spectrum to identify the event and thus disaggregate data.
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2. The SC-EV technique proposes a novel idea of determining events based on the sum of
the eigenvectors of each cluster. The change of the resultant eigenvector corresponds
to an event within a specific threshold limit.

2. Methods

For the sake of problem formulation, a set M of m appliances is considered
M = [D1, . . . , Di, . . . , DM], where Di is the ith device. The aggregate active power of the
whole house is denoted by p(ti), which has been measured for the time samples ti. For the
sake of brevity, we will characterize p(ti) as pi in the following discussion. In addition, there
is an m number of sets pm

i for each device m, which provides the power of that device
at interval i. This power is usually measured with the help of a submeter installed at
the device location. The occurrence of a change in aggregate power is a critical point in
NILM, hereafter called an ‘event’ as denoted in literature [28], which can be described
as ∆pi = pi + 1 − pi and ∆pm

i = pm
i+1 − pm

i . Then mathematically, aggregate power can be
expressed as [43]:

pi =
|M|

∑
m=1

pm
i + ni (5)

Here ni is the noise in the aggregate signal; this noise comprises measurement noise,
unknown devices, and any baseload. For evaluating, pm

i within p(ti) set, i.e., the function
given below must be minimized to achieve disaggregation. The nearer f (ri) is to zero; the
greater is the evaluated pm

i .

f (ri) =

∥∥∥∥∥∆ pi−
|M|

∑
m=1

∆ pm
i

∥∥∥∥∥
2

2

(6)

where ri =
[
∆p1

i , ∆ p2
i , . . . .., ∆ pm

i
]

[41,52].
A graph is generated for employing GSP and spectral clustering to tackle this problem.

The graph G = (V , A) is generated, where each sample of pi is associated with the corre-
sponding vertex
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i ε V and A is the adjacency matrix. For reference purposes, it is assumed
that pm

i is available for i = 1,2, . . . ,n < N for each device m εM. Then the value of pm
i is

used to set the thresholds for identifying the events of a particular device. The goal is to
estimate pm

i for n < i ≤ N.
To disaggregate pm

i from p(ti), we first cluster the data based on their spectrum as
presented by Stella et al., [53]. This clustering technique is modified for the data suiting
NILM, i.e., power. Here each cluster in a moving window belongs to a specific device.
Therefore, the cluster and thus the device profile is to be identified. Once a cluster and
the device to which it belongs are determined, the power profile of each device m can be
identified successfully. The two techniques proposed here and detailed below differ in
methodology at the stage of cluster/device identification are feasible for NILM.

2.1. The Spectral Cluster-Mean Method

This method is designated as spectral cluster mean (SC-M) method, as the cluster’s
mean has a significant role in cluster identification and error reduction. In the first step,
adjacency matrix A is calculated according to Equation (1). According to the adjacency
matrix, a linear similarity graph is defined with consecutive nodes connected and others
unconnected with weights. In the following steps, the degree matrix and un-normalized
Laplacian matrix are calculated in Equations (2) and (3), as elaborated in the introduction
section. Next, U ε N × k is computed; it is the matrix containing k generalized eigenvectors
u1, u2, . . . , uk, calculated from the generalized eigenvalue problem Lu = λu as its columns.
For each row of U, yi ε k is the corresponding vector. As the last classification step, yi is
divided into clusters C1, C2, . . . , Ck, using k means [47].

At this point in the calculations, a novel variation is introduced. The mean of each
cluster is calculated and each of the cluster values is replaced by the cluster mean. The
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mean value reduces noise, avoids errors, and facilitates device recognition. To keep the
mean and scatter of original data sufficiently close, the window size to be clustered is kept
small. The authors kept the data size to 25 samples in each iteration window for this study.
The data size of 25 samples was found heuristically. This dataset is a sliding window and
keeps moving to encompass the upcoming samples. This moving window can be used on
actual real-time signals. This approach will also help in a real-time application for NILM.
According to the device’s specifications, a power threshold for each appliance m is assigned
as Thrm ≥ 0. The threshold value is used in the evaluation and referencing stage. Whenever
∆Mean of each consecutive cluster lies within the threshold range, it is assumed that a
change in the state of that particular device has occurred. This technique is novel in its
use for NILM. The current study is the first to use spectral clustering for electrical load
disaggregation, with certain modifications introduced such as mean assignment and small
window processing. After noting the ∆pi of consecutive clusters and comparing them with
the Thrm of each device, the cluster is designated to each device m, and its state change
is estimated for each time i. The whole process is described in the block diagram below
in Figure 4.

Figure 4. Flow chart of SC-M algorithm.

2.2. The Spectral Cluster Eigenvector Method

As in the second method, eigenvectors play a significant role in clustering and event
identification; this method is designated as the spectral cluster eigenvector (SC-EV) method.
The second method differs from the first method at the event detection stage. In the second
method, the spectrum is utilized to detect an event and further recognize the device. Here,
after clustering the input power stream using ‘k’ means [47], eigenvectors are further
utilized for event detection and cluster/device identification.

Here, eigenvectors are added to form a resultant sum vector. A significant change
in the resultant vector is observed whenever an event exists in the aggregate data. The
authors have utilized this delta to initiate consecutive events. The magnitude of change
(delta) in the sum vector is larger and unique in the case of each device switching. However,
minor variations in the sum vector also exist because of unwanted variations in the main
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meter output. Therefore, a specific suitable value of threshold has to be utilized. A change
above the threshold delta is then designated as an event.

Once an event is detected, its index is noted, and the delta of LS, which in the current
case is an active power, is calculated at that particular index. In this way, the index of events
from the aggregate power profile is automatically identified.

Moreover, the respective change of magnitude of power is further used to identify
the device or cluster. The change of magnitude of power ∆pi is compared with device
thresholds Thrm already declared according to the device specifications to recognize the
device. Furthermore, it is noted that eigenvectors are the by-product of the spectral
clustering algorithm, and no additional processing is required. This technique is thus the
second novelty introduced by this work. Therefore, the second method has a substantial
distinction from the first method. The process followed in the second method is described
in the flowchart shown in Figure 5.

Figure 5. Flowchart of SC-EV algorithm.

2.3. Performance Parameters

Although there are many parameters for evaluating machine learning algorithms and
NILM techniques, the two most important parameters used for evaluation in the literature
and this study are defined below [54].

Accuracy =
TP + TN

TP + FN + TN + FP
(7)

F1 =
2× precision× recall

precision + recall
=

TP
TP + 0.5× (FP + FN)

(8)

where TP: true positive, TN: true negative, FN: false negative, and FP: false positive.
Precision and recall have been defined in Appendix A.
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3. Results

Two datasets are employed to test the performance of the above techniques. The first
dataset is a clean (noiseless) and less complex (ideal) dataset containing the real power
of the five devices for algorithm testing. These devices are two state devices. Sampling
frequency is five samples per second. Later for real-world testing, the REFIT dataset [55]
is used to test the accuracy of the developed algorithms. The REFIT dataset is the energy
consumption profile of various devices of a UK-based housing community. This dataset
has energy consumption data of 21 houses for approximately two years. The measurement
frequency ranges from 4 to 10 samples. This sampling frequency lies in the low range of
sampling and is sufficient for measuring steady-state load signature. The dataset is quite
complex in real time as it contains unwanted transients, spikes, outliers, and abnormalities
encountered in real-world measurements. Therefore, this dataset serves as a tough test for
the NILM techniques. The dataset has a washing machine, PC, and TV as multistate devices.
The authors have tested the presented NILM techniques with these two datasets and found
valuable results, as presented in the following sections. As expected, the accuracies are
very high in the ideal dataset and competitive with other unsupervised techniques in the
case of the REFIT dataset.

3.1. Results of Spectral Cluster Mean Algorithm

The spectral cluster mean algorithm results, using the ideal dataset, are shown in
Table 1. Before presenting the results on the actual REFIT dataset, it is pointed out that
results for multistate devices like washing machines, PCs, and TVs are taken only for one
major ‘ON’ state. That means they are assumed to be two states: ON/OFF devices to
simplify the test. Next, the results of the same technique are presented on the real-world
data REFIT in Table 2. Houses 1, 2, 3, 4, 5, 8, 9, 15, 17, 18, 19, and 21 are randomly selected
from the 21 houses present in the dataset.

Table 1. Performance of SC-M algorithm applied on ideal data.

Device 1 Device 2 Device 3 Device 4 Device 5

f-measure score 0.86 0.83 0.65 1 0.94

Accuracy 0.83 0.86 0.48 1 0.93

Table 2. Performance of SC-M algorithm applied on the REFIT dataset.

Fridge
(F)

Freezer
(FZ)

Fridge-
Freezer
(FFZ)

Washer
Dryer
(WD)

Dishwasher
(DW)

Computer
(PC)

Television
(TV)

Microwave
(MW)

Food-
Mixer
(FM)

Kettle
(K)

Toaster
(T)

Bread
Maker
(BM)

Heater
(H)

f-measure
score
(Avg)

0.57 0.58 0.57 0.89 0.85 0.67 0.80 0.89 0.74 0.82 0.82 0.84 0.86

Accuracy
(Avg) 0.46 0.48 0.59 0.82 0.63 0.53 0.67 0.82 0.60 0.79 0.76 0.74 0.78

During the selection of houses, it is considered that solar energy is not present in
the house, so the aggregate is not affected by it. Table 2 presents the mean performance
parameters’ values of the devices (excluding outliers) for the houses mentioned above. The
actual trend of performance is not affected by these outliers. The washing machine is not
included in this table and is discussed in Section 4.

It is evident in Figure 6 that by employing the spectral cluster mean algorithm, various
changes of states are successfully clustered. The aggregate power shown in the graph is
well-clustered using the algorithm, and each cluster’s mean and the cluster are shown in a
different color. The mean value has an essential role in device identification.
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Figure 6. Example of REFIT data clustering using SC-M. According to the legend, different colors
show separate cluster assignments of aggregate (black) and the mean of each cluster, which is further
used for device/state identification.

3.2. Results of Spectral Cluster Eigenvector Algorithm

The spectral cluster eigenvector algorithm results on ideal data are presented in Table 3.
By comparing Tables 1 and 3, it is noted that the SC-EV algorithm outperforms the SC-M
algorithm for the ideal dataset in some cases.

Table 3. Performance of SC-EV algorithm on ideal data.

Device 1 Device 2 Device 3 Device 4 Device 5

f-measure score 1 0.83 1 1 1

Accuracy 1 0.86 1 1 1

Next, the results of the SC-EV on the real-world data REFIT are presented in Tables 4 and 5.
The same number of houses are selected for comparison and analysis from the dataset.
Tables 4 and 5 also present the mean performance parameter values of the same devices of
each house.

Table 4. Results of SC-EV algorithm applied on REFIT data with k = 0.01.

F FZ FFZ WD DW PC TV MW FM K T BM

f-measure score (Avg) 0.50 0.64 0.60 0.86 0.90 0.58 0.76 0.94 0.76 0.87 0.86 0.82

Accuracy (Avg) 0.40 0.57 0.60 0.78 0.83 0.45 0.75 0.90 0.61 0.74 0.80 0.69

Table 5. Results of SC-EV algorithm applied on REFIT data with k = 0.1.

F FZ FFZ WD DW PC TV MW FM K T BM

f-measure score (Avg) 0.60 0.72 0.60 0.86 0.85 0.67 0.81 0.93 0.76 0.92 0.86 0.82

Accuracy (Avg) 0.40 0.63 0.61 0.78 0.76 0.59 0.79 0.88 0.61 0.73 0.76 0.69

Figures 7 and 8 show the disaggregation of various devices from the aggregate signal.
These data belong to House 4 of the REFIT dataset. A graph showing the sum of disaggre-
gate devices is also shown in the dotted line, closely following the aggregate measured
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power. The difference between aggregate and sum also shows a variable baseload present
throughout the dataset. In addition to that, some unknown loads and unwanted spikes are
also present.

Figure 7. Aggregate and clustered REFIT data (samples: 35,000 to 38,000 window). As indicated in
the legend, each device’s disaggregated profile is shown in a different color. The red plot is the sum
of disaggregated devices’ energy. It is seen that the trend of sum (red) follows the aggregate (blue) at
each instant showing the effectiveness of the technique.

Figure 8. Aggregate and clustered REFIT data (samples: 45,000 to 48,000 window). As indicated in
the legend, each device’s disaggregated profile is shown in a different color. The red plot is the sum
of disaggregated devices’ energy. It is seen that the trend of sum (red) follows the aggregate (blue) at
each instant showing the effectiveness of the technique.

4. Discussion

In Table 1, the accuracy and f-measure of the first two devices lie in the range of 80 to
90% and that of Device 3 is somewhat lower. The main reason for lower performance in the
case of SC-M lies in the misidentification of the cluster. In some cases, the SC-M assigns the
mean to the cluster such that ∆Mean does not lie within any of the Thrm ranges defined for
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cluster/device identification. This problem is mainly controlled by minimizing the window
size to 25 samples; otherwise, the results can degrade. More research in this domain is
needed on improving the cluster identification further, and more effective techniques can be
used for future works. However, the SC-EV method handles this problem more efficiently.

Table 2 shows good accuracy in device identification of prominent loads, having high
power consumption and being well-separated from other loads, e.g., dryer, microwave,
kettle, toaster, pump, heater, and high-fidelity equipment. At the same time, the accuracy in
identifying devices having less prominent state changes is lower. Similarly, appliances with
overlapping power graphs, e.g., fridge/freezer, computer, and food mixer, are challenging
to be identified. The main reason is that prominent devices get well-clustered initially and
are easily segregated and identified later.

Table 3 presents the performance metrics of the SC-EV method for the ideal dataset.
Most of the devices have an accuracy of 100%, while Device 2 has a misclassification and
has an accuracy of 86%, which shows that SC-EV performs much better. Tables 4 and 5 show
the performance of SC-EV on the REFIT dataset. The difference between Tables 4 and 5 lies
in the threshold of the event. It is evident that this threshold has a vital role here, and an
optimal balance needs to be achieved. Very narrow or broad threshold ranges deteriorate
performance, and a delicate balance is needed in defining them.

The number of clusters within a data window also play a vital role in the performance
of both techniques. An optimal balance needs to be achieved for this as well. Some
significant and present events are not clustered if the number of clusters is kept too low.
On the other hand, if a high number of clusters is selected, then some false events may
be generated. These false events can decrease the accuracy of the disaggregation process.
This phenomenon can be better visualized with the help of Figure 6, where an increase or
decrease of the cluster affects the disaggregation accuracy of devices. Although in spectral
clustering, the sizeable spectral gap between eigenvalues gives us a fair idea of the number
of clusters present [47]. However, it has been observed that, in some cases, using this
eigenvalue notion for determining the number of clusters is not practical because of the
following reasons:

1. Too many events present in reality,
2. Some devices have meager power consumption,
3. Some devices have a nearly equal power rating or overlap each other,
4. Noise and variations magnitude in data is higher than the power rating of some devices.

The deciding factor is the number of devices present in the aggregate signal and the
number of clusters used. It was determined heuristically that restricting the number of
clusters to four for each 25-sample window provides the best results. A significant factor for
this is that the number of events occurring within each 25-sample window also varies from
two to four. However, the performance comparison of both approaches, i.e., the notion
of a spectral gap between eigenvalues to determine the number of clusters with that of a
user-defined number of clusters, has not yet been made and is left for future work.

It is also observed that the performance of compressor-based devices, i.e., fridge/freezers,
remained low compared to other devices for both techniques. The main reason, observed
here and reported before in the literature [43,54], is the cyclical pattern of these devices
plus a complex decaying power profile during the ON state. This decaying power profile
during the ON state changes the mean power from the initial transient, which sets during
the ON state of the device. The other ON-state threshold is very different from the OFF-
state threshold. As these techniques are based on thresholds, any threshold variation
decreases accuracy. Furthermore, it is observed that fridge and freezer power profiles
lie in close vicinity of each other, making it very difficult to recognize them accurately.
Fridge/freezer power profiles are also similar to the power profiles of some other devices,
e.g., computers and TVs, which further reduces the disaggregation performance of the
developed algorithms for these devices.

The power of computers and TVs remains variable throughout their operational
duration. Therefore, it becomes difficult to detect and disaggregate them, as is evident from
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Tables 2 and 4. Therefore, it is concluded that these techniques need to be further refined to
cater to devices that have a decaying/variable power profile.

Despite low detection performance for some devices, the developed algorithms pro-
vide excellent detection accuracy for many devices. Additionally, the algorithms developed
during this study have the advantage of low complexity and fast processing time (discussed
in Section 4.3) in achieving the results.

As stated in Section 3.1, results for multistate devices like washing machines, PCs,
and TVs are taken only for one primary state, as tabulated in this study. The operational
duration of some devices such as washing machines is minimal, i.e., once a week. So, ac-
cording to the relation of accuracy, Equation (6), average accuracy turns out to be artificially
very high. Thus, this accuracy may not reflect the actual performance and show unreal-
istically high accuracy. To cater to this, a smaller portion of data, having the significant
operation of the washing machine, is selected, and its performance is evaluated. These
statistics are presented in Tables 6 and 7 with an asterisk mark (*) to differentiate them from
average statistics.

4.1. Comparative Analysis of SC-M and SC-EV

Both methods are compared in terms of their f-measure score and accuracy. Figure 9
presents the comparison of these two methods for the ideal dataset. The SC-EV method
outperforms the SC-M method generally, except in one case, i.e., Device 4, in which both
perform equally. Figure 10 represents this comparison for the REFIT dataset. In this
analysis, it is also evident that the SC-EV method is performing well. In addition, a
comparison of different threshold ‘k’ values is presented for the SC-EV method. The value
k has a significant role in the performance of the SC-EV method. Detailed reasoning is
presented in the previous section and summarized here. SC-M has lower performance as it
works on the cluster’s mean, while the SC-EV algorithm uses eigenvector magnitudes for
device detection. Using eigenvector magnitudes improves device detection by enhancing
the differences in the device signatures. Hence, the SC-EV algorithm performs better in
most cases.

Figure 9. Performance (F1 score and accuracy) comparison of * SC-M and ** SC-EV for ideal data.
The F1 score of both techniques is shown in green, while the accuracies of both techniques are in
blue shades. Ideal data exhibits better performance than REFIT data because of low randomness
and variation.
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Figure 10. Performance (average F1 score and average accuracy) comparison of SC-M, SC-EV
(k = 0.01), and SC-EV (k = 0.1) for REFIT data, k being the threshold for event detection. The figure
shows that SC-EV outperforms SC-M in many cases.

Figure 10 shows a comparison of mean accuracy and f-measure scores, illustrating
that event threshold ‘k’ affects the detection accuracies. Setting k = 0.1 provides better
performance as compared to k = 0.01. The effects of selecting the value of ‘k’ are highlighted
in this study. However, a more detailed sensitivity analysis of the ‘k’ value is planned to be
carried out in future work.

4.2. Comparison with State of the Art

Comparative performance analysis of the algorithms developed in this study with
some of the latest results available in the literature is presented here. Recent research work
by Zhao et al. [56] provides a detailed comparison of different NILM techniques’ disaggre-
gation accuracies. The results (accuracies) provided by Zhao et al. have been compared
with the current study results in Figures 11 and 12 for the REFIT dataset. The benchmark
studies are factorial hidden Markov model (FHMM), discriminative disaggregation sparse
coding (DDSC), graph signal processing (GSP), unsupervised optimization (OPT), and con-
volutional neural network (CNN). Although optimization-based approaches, e.g., FHMM
and OPT, have high accuracy for compressor-based normally on devices like F and FZ, they
show reduced accuracy for other devices like PC, K, and WM. This is in line with NILM
results reported previously [56,57]. On the other hand, proposed schemes SC-M and SC-EV
exhibit consistent and robust performance across all devices generally. An exception of the
MW exists here, which exhibits reduced accuracy as compared to other devices. However,
the accuracy of MW detection remained high in other houses as shown in Tables 4 and 5.
The reason of low MW accuracy in these houses needs further investigation. In these
figures WM results are given for short duration for the proposed schemes as discussed in
previous section.

Furthermore, the presented results of both the SC-M and SC-EV methods are compared
with another recent study regarding GSP on NILM [43]. Houses 2 and 17 of the REFIT
dataset are used in the reference paper. The comparison is presented in Tables 6 and 7. The
algorithms proposed by this study provide better or competitive results of accuracy (Accm)
and f-measure (FM) metrics for most devices. However, considering the low computational
complexity for an unsupervised technique, algorithms proposed in the current study may
be more appropriate for real-time implementation in the NILM field.
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Figure 11. REFIT dataset House 4 comparison with results (accuracy).

Figure 12. REFIT dataset House 8 comparison with results (accuracy).

Table 6. Comparison between proposed and state of the art methods in literature.

House REFIT House 2 REFIT House 17

FFZ DW WM TV K T MW WM K FFZ TV MW Com FZ

SC-M
FM 0.73 0.76 0.95 * 0.91 0.97 0.90 0.61 0.95 * 0.95 0.67 0.77 0.70 0.58 0.83

Acc 0.61 0.62 0.92 * 0.84 0.95 0.82 0.44 0.91 * 0.90 0.63 0.64 0.54 0.46 0.76

SC-EV
FM 0.68 0.80 0.92 * 0.91 0.64 0.84 0.64 0.96 * 0.73 0.66 0.76 0.70 0.60 0.83

Acc 0.57 0.67 0.85 * 0.84 0.48 0.72 0.47 0.94 * 0.57 0.63 0.62 0.54 0.48 0.76

UGSP
[57]

FM 0.42 0.79 - - - - - 0.76 0.84 0.50 - - - -

Acc 0.77 0.42 - - - - - 0.53 0.79 0.66 - - - -

SGSP
[41]

FM 0.59 0.73 - - - - - 0.77 0.96 0.82 - - - -

Acc 0.8 0.67 - - - - - 0.61 0.80 0.70 - - - -

DT
[58]

FM 0.54 0.73 - - - - - 0.78 0.95 0.82 - - - -

Acc 0.73 0.61 - - - - - 0.52 0.77 0.67 - - - -
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Table 7. Comparison of mean f-measure between proposed and state-of-the-art for refit data.

House House 2 House 17

FM

SC-M 0.86 0.82

SC-EV 0.81 0.80

P-UGSP 0.59 0.53

P-SGSP 0.61 0.62

P-DT 0.59 0.60

A comparison of current approaches with two studies employing different approaches
of spectral clustering technique may be of interest here, shown in Figure 13. In [50], the
EMBED dataset was used to test three different clustering approaches. The non-iterative
one-step approach has been chosen from the three approaches because the proposed
approaches i.e., SC-M and SC-EV, are also non-iterative in nature. The mean score for the
proposed, as well as all four datasets in the benchmark study from the said category is
presented for comparison here. Although a comparison of REFIT performance with EMBED
is debatable here because of the difference of complexity in these datasets. However, their
comparison is interesting and relatable and provides further insight into the techniques.

Figure 13. f-measure comparison of proposed and benchmark study [50].

4.3. Computation Time

Time elapsed during the processing of four days of data (50,578 samples) using the
SC-M algorithm came out to be 23.89 s, or a per-sample computation time of 0.472 ms on an
Intel Core i5-3427U, 1.8 GHz, 2.30 GHz, 8GB RAM, Windows 10 64-bit system with Matlab
2020a installed. Similarly, when processing four days of data (72,500 samples) using the
SC-EV algorithm, the time elapsed is 43.44 s or a per-sample computation time of 0.599 ms.
For comparison, a study [41] provides computational time data of two techniques: first,
for a GSP-based technique, the study reports processing time for 20,000 samples to be
10 to 12 s or an average per-sample computation time of 0.55 ms. The system description
for this study was an Intel Core i5-3470 CPU, 3.20 GHz processor running Windows 7 64-bit.
The second study presents an HMM-based technique, with a processing time of 40–50 s
for 20,000 samples, resulting in an average per-sample computation time of 2.25 ms. The
preceding results show that algorithms developed in the current study are faster and more
appropriate for real-time applications. The SC-M algorithm is a little faster than the semi-
supervised GSP-based technique and much faster than the HMM-based technique, while
accuracy and f-measure score are competitive and even better in many cases, keeping in
mind that the proposed algorithms require no training data.
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5. Conclusions

This paper demonstrates that NILM is a practical and economical solution for device-
level energy monitoring. Although spectral clustering has been used to classify data,
including images, its application in NILM has not been investigated. This paper proposes
two novel unsupervised strategies: SC-M and SC-EV, which work on graph-based as well
as non-graph-based data.

Despite their relatively poor performance for devices such as fridge-freezers, the
proposed techniques show excellent detection accuracies for most devices. After successful
testing on several datasets, results show a high f-measure of 0.79 and 0.83 together with
an accuracy of 0.70 and 0.75 for SC-M and SC-EV, respectively. The results achieved by
the proposed algorithms are found to be comparable or better in accuracy with respect
to other recent studies. The improvement in accuracy is evident, especially when similar
unsupervised GSP-based NILM techniques are considered.

Due to their higher accuracy, no training data requirement, shorter processing time,
and less computational complexity, the proposed techniques can be applied to real-time and
low-frequency smart meter data. These techniques can lead to better energy management
and conservation in buildings. From a futuristic point of view, more avenues of research
exist in improving these techniques, especially for f-measure score and accuracy. This paper
also reveals several areas for further studies and possible improvements, including intelli-
gent decision-making replacing the heuristic decisions in this work. Similarly, exploring
the efficacy of these methods using different types of load signatures is recommended.
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Appendix A

Precision and recall in Equation (7) is defined as follows:

Precision =
TP

TP + FP
(A1)

Recall =
TP

TP + FN
(A2)

where TP: true positive, TN: true negative, FN: false negative, and FP: false positive.
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