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Abstract: Hardware-in-the-Loop (HIL) has been recommended by ISO 26262 as an essential test
bench for determining the safety and reliability characteristics of automotive software systems (ASSs).
However, due to the complexity and the huge amount of data recorded by the HIL platform during
the testing process, the conventional data analysis methods used for detecting and classifying faults
based on the human expert are not realizable. Therefore, the development of effective means based
on the historical data set is required to analyze the records of the testing process in an efficient manner.
Even though data-driven fault diagnosis is superior to other approaches, selecting the appropriate
technique from the wide range of Deep Learning (DL) techniques is challenging. Moreover, the
training data containing the automotive faults are rare and considered highly confidential by the
automotive industry. Using hybrid DL techniques, this study proposes a novel intelligent fault
detection and classification (FDC) model to be utilized during the V-cycle development process, i.e.,
the system integration testing phase. To this end, an HIL-based real-time fault injection framework is
used to generate faulty data without altering the original system model. In addition, a combination
of the Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM) is employed
to build the model structure. In this study, eight types of sensor faults are considered to cover the
most common potential faults in the signals of ASSs. As a case study, a gasoline engine system
model is used to demonstrate the capabilities and advantages of the proposed method and to verify
the performance of the model. The results prove that the proposed method shows better detection
and classification performance compared to other standalone DL methods. Specifically, the overall
detection accuracies of the proposed structure in terms of precision, recall and F1-score are 98.86%,
98.90% and 98.88%, respectively. For classification, the experimental results also demonstrate the
superiority under unseen test data with an average accuracy of 98.8%.

Keywords: automotive software systems; fault detection and classification; deep learning; 1D-CNN;
LSTM; real-time fault injection; hardware-in-the-loop (HIL); model-based testing phases

1. Introduction

Currently, software-driven automotive systems play an increasingly important role
in daily life, notably in advanced functions such as Advanced Driver Assistance Systems
(ADASs) [1]. As an interaction results between multiple subsystems and heterogeneous com-
ponents, the advanced functions of an automotive software system (ASS) can be performed [2].
Along with the increasing complexity of software systems in automobiles, the probability of
a failure occurrence also increases. A failure or defect in a software component of a safety-
critical vehicle system, e.g., a braking system, can have a serious impact on human safety
and infrastructure loss, leading to catastrophic incidents. Therefore, as a part of the quality
assurance process, a rigorous reliability and safety assessment should be performed at each
stage of the software development process [3]. According to the V-model [4], several test
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phases are conducted during the development process, including the executable model test,
generated code test, implemented code in the real-time system test and real vehicle network
test [5]. Each test phase is implemented and realized in a specific test platform, namely the
Model-in-the-Loop (MIL) [6], Software-in-the-Loop (SIL) [7], Processor-in-the-Loop (PIL) [8],
Hardware-in-the-Loop (HIL) [9] and Vehicle-in-the-Loop (VIL) [10].

A test drive is a well-known test approach performed in the real world to meet the
functional safety requirements of ISO 26262 [11] such that unexpected faults can be detected.
To this end, manufacturers conduct real-world test drives on public roads with prototype
vehicles prior to production in which system behavior is recorded as multivariate time-
series data [12]. There are significant limitations to this type of testing, however, such as a
high cost per test kilometer, high time consumption, and high risk for the test driver [13].
Thanks to the vital role of the HIL platform in providing safe, flexible and reliable real-time
validation of Electronic Control Units (ECUs), digital test drives can be carried out virtually
in the laboratory, standardizing mileage and reducing costs tremendously [14]. However,
the complex architecture of the ASS with its heterogeneous components, e.g., sensors,
embedded computers, networks and actuators, generate a large amount of data. Thus,
conventional approaches used by manufacturers to detect and classify faults in test drive
recordings are time-consuming and depend on practical experience and expert’s knowledge,
as mentioned in [15]. Consequently, an effective and intelligent method capable of detecting
and classifying system-level faults in records generated by the HIL platform is required.

A deep neural networks-based approach has become an alternative to the traditional
approaches, i.e., model-based and signal-based approaches, which neither need an ac-
curate explicit analytic model nor provide a deep understanding and knowledge of the
abnormal behavior of the signal symptoms. Nevertheless, it faces one complicating factor,
i.e., collecting a representative training data set in terms of availability, cost and time
consumption [16]. Specifically, when applying supervised Deep Learning (DL) methods,
the availability of labeled data for model training presents a significant issue, where the
system behavior under normal and potential abnormal conditions should be identified
in advance and included in the recorded data. In the automotive domain, healthy data
can be easily generated from test benches by recording the data in fault-free operations.
However, collecting faulty data by recording under a faulty operation is a challenge [17].
Furthermore, in automotive systems, most of the potential hardware faults are random and
occur as degradation of the component performance after years of operation.

Another complicating factor in the development of an automotive fault detection and
diagnosis (FDD) model, i.e., fault identification, is that most proposed studies are relying
on standalone DL techniques. Still, it has not been proven that a single DL method is
sufficient for all FDD requirements. Consequently, there is an absence of a standard for
selecting an appropriate technique from the wide range of the available DL algorithms to
develop a robust and accurate model. In recent years, several studies have been conducted
demonstrating that hybrid methods are superior to standalone methods, and much effort
has been devoted to the study of FDD based on hybrid DL methods [18–20]. As a result,
toward achieving a better performance of FDD in a complex system, combining different
DL techniques as a hybrid method is comparatively an efficient solution. In this way,
the advantages of each method can be utilized, and the limitations can be avoided. Thus,
the research on developing an FDD model based on the hybrid DL methods is still in the
initial stage, and further contributions in this field are needed.

To overcome the aforementioned drawbacks, in this study, we propose a novel FDD
methodology, as a classification problem, for an HIL test of the ASS development. In par-
ticular, an intelligent faults identification model is developed and implemented based on
hybrid DL techniques. The developed model aims at accurately detecting and identifying
the fault types in automotive sensors and communication signals. To address the represen-
tative training data set problem, a novel real-time FI framework developed in the previous
study [21] with an HIL simulation system was used covering most of the potential fault
classes in the sensor signals of the ASS. By doing so, a faulty data set with complex test
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scenarios is simulated and recorded in real time, which is thereafter used for the training,
validation and testing of the model. We demonstrate the capability and advantages of
the proposed methodology using a complex automotive gasoline engine system as a case
study, considering the vehicle dynamics with the environmental system model. Utilizing
an unseen testing data set, the model performance was evaluated in terms of precision,
recall, F-score and accuracy.

The main contributions of the study are summarized as the following:

• A novel methodology for developing a faults identification model of automotive sensor
signals has been proposed to be used during the V-cycle of the ASS development
process, i.e., the system integration testing phase. To this end, the integration of
the LSTM and 1D-CNN is adopted to benefit from both classifiers and avoid their
limitations.

• To overcome the lack of faulty data sets, the fault modes are simulated along with
complex test scenarios without changing the original system model. For this purpose,
the fault types have been programmatically injected in real time using a novel real-time
FI with an HIL platform.

• In addition, eight different types of sensor and communication faults of vehicle signals
have been considered as fault classes, i.e., spike, offset/bias, noise, hard-over, delay,
gain, stuck-at and drift fault.

• To demonstrate the superiority of our proposed model, the classification performance
with respect to each class has been compared with a standalone DL technique-based
model, i.e., the LSTM and CNN technique.

• Finally, a high-fidelity entire vehicle model, i.e., an engine model, dynamic model,
environment model and powertrain model, with realistic driving scenarios is consid-
ered to accurately and comprehensively represent the behavioral characteristics of
the system.

The remainder of the paper is organized as follows. Section 2 introduces an overview of
the background and related work, highlighting the main differences between the proposed
methodology and previous research. The phases of the proposed methodology architecture
are described in Section 3. In Section 4, the setup of the experiments is described, and the
main steps of implementation are introduced. The results from evaluating the proposed
model are discussed in Section 5. Finally, conclusions and future work are outlined in
Section 6.

2. Background and Related Work

This section provides a brief overview of the background of the topics addressed.
Specifically, the proposed methods and approaches for developing an FDD model are
discussed. In addition, a review of the current literature on the FDC in automotive systems
as an application domain is reviewed, focusing on the main findings and limitations of the
proposed studies and highlighting the differences of our proposed methodology compared
to the state-of-the-art.

2.1. Fault Detection and Classification Development Approaches

In the state-of-the-art, to develop an FDD model for multivariate time-series data, there
have been several approaches proposed, i.e., model-based approaches [22], signal-based
approaches [23], knowledge-based approaches [24] and data-driven approaches [25].

In dynamic systems, the model-based approach is considered the best option. Three
different methods have been proposed for developing an FDD model, namely parity space-
based [26], observer-based [27] and parameter estimation-based [28]. At the core is the
idea of comparing the analytical redundancy of the developed mathematical model with
the output data of the real physical system, and based on the residual signals generated,
the faults can be detected and classified. In the automotive field, some studies have
demonstrated the advantages and capability of the approach by proposing novel techniques
for the FDD with high accuracy [29,30]. However, the expert knowledge required to build
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an accurate mathematical model and the increasing complexity of a modern ASS contribute
to the difficulty of applying these types of approaches [31].

Although the signal-based approach is widely used in the real-time monitoring of
industrial systems, especially in the steady state, it has some limitations. Due to the
assumption that the collected signals contain significant information about the faults,
expert knowledge of the symptoms of healthy systems is required to detect the presence of
faults when analyzing the measured signals [32]. The extracted features of the signals in
this approach are categorized into three domains, namely the time domain [33], frequency
domain [34] and time–frequency domain [35].

A knowledge-based approach does not require pre-classified training sets [36]. How-
ever, due to the lack of specific qualitative expert knowledge and the complexity of modern
vehicles, the knowledge-based approach is limited and insufficient to build an FDD sys-
tem [37]. Besides the extensive human intervention required, nonlinear relationships
between signals in the complex system render the detection and classification of the
faults difficult.

Above all, the introduction of advanced sensor technology, the rapid development
of computational methods, the availability of sufficient computational resources and raw
information from measured signals, and the simplicity of model realization with its high
efficiency played a crucial role in drawing researchers’ attention to data-driven approaches
as a means of FDD [17]. The main idea of this approach is to use the constructed knowledge
from high-quality historical data to detect and classify the abnormal behavior. In accordance
with [24], FDD methods can be classified into statistical analysis data-driven and non-
statistical analysis data-driven. The most popular methods of the statistical approach are
PCA [38], ICA [39] and PLS [40]. The pattern recognition-based Machine Learning (ML)
techniques [41], on the other hand, are often used in the non-statistical approach because
of their adaptive learning and nonlinear approximation capabilities. Depending on the
tasks to be performed, i.e., clustering, classification, regression and anomaly detection, ML
techniques are classified into unsupervised learning methods [42], semi-supervised learning
methods [43], supervised learning methods [44] and reinforcement learning methods [45].

DL [46], as a subarea of ML, has been gaining importance in developing complex
FDD models based on neural networks that employ a large number of layers, especially
when multiple data streams are involved [47]. The reason behind that is its ability to
outperform traditional statistical ML methods and overcome their limitations in terms
of feature extraction, computational cost and dimensionality reduction. Not only that,
the rapid development of Graphics Processing Units (GPU) paved the way for the more
efficient processing of huge amounts of data, which in turn contributes to achieving the
outstanding performance of DL-based approaches. Therefore, in the last decade, the interest
in the development of FDD systems using DL techniques has increased, and various DL
architectures, e.g., Deep Belief Network (DBN), Restricted Boltzmann Machine (RBM),
Convolutional Neural Network (CNN), Recurrent Neural Networks (RNNs), Autoencoders
(AE), have been proposed for different application domains. A comprehensive survey of
the DL architecture focusing on current challenges and future developments can be found
in [48].

In the automotive domain, several studies have been proposed for the utilization of DL
for various tasks, e.g., for anomaly detection, fault classification and fault prognosis. As an
application area, some focus on safety-critical vehicle systems, i.e., engine, powertrain,
steering and suspension, while others focus on fuel cells and batteries of electric vehicles.
For example, in [49], You et al. proposed a data-driven framework based on the LSTM
aiming at diagnosing the state of electric vehicles. While using driving data, a CNN-based
FDC of suspension systems, i.e., automotive damper defect diagnosis, was proposed in [50].
Moreover, to develop an FDD model for a fuel cell electric vehicle (FCEV) powertrain, an ar-
tificial neural network (ANN) is used in [51] to isolate the faults, i.e., drying and flooding
faults in a single cell, as a classification problem based on the variation of temperature and
current density. In [52], an FDC method for vehicle drive systems based on DL, i.e., hybrid
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DBN, was proposed, where the new data fusion method was investigated focusing on
automotive gearbox faults. Toward classifying the faults in the braking system of a vehicle
and performing the condition monitoring, a clonal selection classification algorithm was
proposed in [53] as an artificial intelligence (AI) technique. The model is trained based on
the vibration signals collected under healthy and faulty conditions.

2.2. Convolutional Neural Network (CNN)

Nowadays, among numerous ML algorithms such as support vector machine (SVM)
and decision tree, DL algorithms, especially CNNs, have become the preferred networks
for FDI. Compared to other traditional manual methods, a useful property of CNNs is their
ability to automatically extract features, a key step in the learning algorithm, resulting in a
reduction in time and effort in the training process. Beyond the successful achievements
of CNNs in specific applications with 2D data, such as images and speech recognition,
a 1D time-series-based CNN has also proven to be successful in the FDD area with high
performance in terms of accuracy and training time. In a complete sentence, surveying
the CNN algorithms and their applications for FDD, i.e., fault size detection, identification
and estimation, have been investigated in [48,54]. Other proposed studies to employ the
1D-CNN for the FDC of rotary machines can be found in [55–57].

A CNN is a DL model based on the ANN architecture in which additional layers are
added to overcome the drawbacks of the ANN. Feature extraction and classification are
the two main phases of a CNN [58]. With the goal of automatically extracting and learning
features from raw data, the feature extraction part includes an input layer, convolutional
layers and pooling layers stacked in the form of a network. In the classification part,
the features from the last pooling layer are received at the fully connected layers, and based
on the learned features from the previous layers, the classification tasks are performed.

Mathematically, convolution and pooling are expressed in Equations (1) and (2),
respectively.

f (y)i = AF(Σ w(i, j)× y(i) + b(i)) (1)

xi = Pool(m,n)( f (y)i) (2)

where AF is an activation function like Sigmoid and ReLU, y(i) is the ith signal features,
w(i, j) and b(i) represent weight and bias, f (y)i is the output feature extraction and (m, n)
represents the nth pooling area with size m.

2.3. Long Short-Term Memory (LSTM)

One of the first studies presenting the deployment of the LSTM networks is reported
in [59]. The key feature of the LSTM architecture is its ability to learn data with long-term
dependencies. LSTM, as an extension of a Recurrent Neural Network (RNN) [60] with the
ability to remember past information, overcomes the disadvantage of the RNN reflected
in gradient vanishing and gradient explosion. Consequently, LSTM has been used for a
wide range of complicated sequential problems due to its high performance compared to
other deep neural networks in terms of feature learning and classification results, notably
in the case of the dynamic information of time sequences. For instance, with respect to fault
monitoring, LSTM has been used to develop an FDD model for the Tennessee Eastman
(TE) process in [61]. Similarly, in the Unmanned Aerial Vehicle (UAV) field, the detection
of sensor anomalies using LSTM was investigated in [62]. Regarding the diagnosis of
bearing faults in electrical machines, an improved method based on the integration of the
LSTM and CNN techniques into a unified structure was proposed in [63], achieving an
average accuracy of 99% over the test data set. Last but not least, as far as automotives
are concerned, several studies have been proposed to explore new methods for FDD using
either standalone LSTM or through the integration of the LSTM with other DL techniques,
targeting different automotive systems, e.g., faults in engines [64], EV batteries [65] and fuel
cell vehicles [66].
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The key element of the LSTM is the chain units called the cell network. Three different
gates, namely forget, input and output, constitute the internal structure of the cell and are
connected to the cell state in a specific fashion, as illustrated in Figure 1. The state of a
cell is represented by the horizontal line at the top of the cell. It is likened to an assembly
line as it runs along the entire chain of the cell. The LSTM is able to update the cell state
using gates. Deciding what information to eliminate from the cell state is determined by
the forget gate. On the other hand, the input gate is responsible for deciding what new
information should be stored in the cell state. For this purpose, the Sigmoid is computed to
decide which values will be updated and then Tanh creates a vector of new candidates that
can be added to the cell state. Subsequently, Tanh and Sigmoid are combined and added to
the cell state.

Figure 1. Internal structure of LSTM cell.

Mathematically, Sigma and Tanh are represented in Equations (3) and (4), respectively.
Equation (5) applies to the cell state update, where gt and dt represent Sigma and Tanh
output, respectively. Ct is the output of current state and Ct−1 represents the output of
previous state.

gt = σ(Wg.[ht−1, xt] + bg) (3)

dt = tanh(Wd[ht−1, xt] + bd) (4)

Ct = ( ft × Ct−1) + (gt × dt) (5)

The value of the gate depends on ht−1 and xt. ht−1 is the output of the previous state,
where ft ∈ 0, 1. ft is further multiplied by the current state value. If ft = 1, the state of the
cell is fully maintained, otherwise it partially depends on the value.

Finally, the output of the cell is determined by the output gate. With Tanh of the
cell state, the output is calculated and then multiplied by the output of the Sigmoid.
Mathematically, Sigma in the output cell is shown in Equation (6), and the output of this
gate is shown in Equation (7)

Ot = σ(WO.[ht−1, xt] + bO) (6)

ht = Ot × tanh(Ct) (7)

2.4. Fault Types

The major factor behind the selection of the appropriate classes of fault classification
or identification models, based on DL, is the specification of the fault types. Based on recent
studies in the literature, faults can be classified into four categories, namely hardware
faults [67], software faults [68] and network and communication faults [69]. Each category,
in turn, can be divided into subclasses. On the basis of the type of components that
contain the defect, i.e., sensors, actuators, a plant or control system, faults are grouped
into hardware faults. In contrast, bit fips, runtime errors, processor register corruption
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and target restart are types of software faults. Communication-related faults involving
delays, data loss and out-of-order delivery belong to abnormal states of communication
protocols that occur on the network path between components, applications or subsystems.
There are also other categories of faults, which can be classified as transient, permanent
and incipient, depending on the duration and type of occurrence [70]. In signal-based
system behavior, i.e., time-series data, several types of faults have been identified in [71–74],
which take the form of measurement offsets, stuck-at or scaling from true values. Gain,
delay, stuck-at, hard-over, spike, noise and drift faults are some examples of sensor and
communication faults, as can be illustrated in Figures 2 and 3, respectively.

In this study, due to the significant impact of random hardware faults on the safety of
the ASS, sensors and communication faults have been considered in terms of signal behavior.
The mathematical representation of the aforementioned fault types can be summarized in
Equation (8) and Table 1:

y(t) = dvx(t) + ov (8)

where y(t) is a faulty or manipulated signal value, dv represents the gain value and x(t) is
the healthy or standard signal value. ov represents the offset/bias value.

Table 1. Value of dv and ov for all fault types.

Fault Type dv Value ov Value

Healthy Signal 1 0
Stuck-at Fault 0 0 or 1, and it varies with time

Offset/Bias Fault 1 fixed constant value
Gain Fault Greater than 1 0
Noise Fault 1 random value

Hard-Over Fault 0 higher than maximum threshold
Spike Fault 1 value varies on time
Drift Fault 1 value increases on time

Delay Time Fault 0 last cycle value of x(t) based on time given

Figure 2. Healthy signal and fault types: Stuck-at fault, Offset fault, Hard-over fault, Noise fault.

It is also worth noting that a variety of factors can cause the above-mentioned sensors
and communication faults. Based on [75,76], dirty or deteriorated sensors, aging, corrosion,
vibration, electromagnetic interference, improper calibration and weak batteries are good
examples of direct causes of automotive sensor faults.
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Figure 3. Healthy signal and fault types: Gain fault, Drift fault, Delay fault, Spike fault.

2.5. Related Work

Tackling the problem of the high cost of collecting representative data sets in the
automotive industry, several studies have been proposed to develop an FDD model relying
on either real-world or simulation platforms to collect measurement data in different modes
of system operation, i.e., faulty and non-faulty modes. Safavi et al. [77], for example, have
proposed a DL algorithm-based fault detection, isolation, identification and prediction
system targeting sensor faults in autonomous vehicle systems. In the proposed study,
the real data of three sensors, i.e., the accelerator pedal (AccP), steering wheel angle
(SWA) and brake pressure (BP) sensor, collected from an automobile bus and recorded on
highways, have been used for training, testing and validating the proposed fault detection
and isolation (FDI) system. Specifically, the collected autonomous driving data set includes
approximately 35 min of real driving scenarios, i.e., in the city and on the highway, at three
different recording locations, namely Ingolstadt, Munich and Gaimersheim. Besides the
healthy real data set, a faulty data set is generated using the FI method by capturing the
system behavior in the faulty mode. The results of the study showed the capability of
the proposed fault detection system with an accuracy of 99.84%, while the sensor fault
identification system had an accuracy between 73.00% and 100.00%. However, the sensor
faults injected into the healthy data set are limited to four fault types, namely drift, hard-
over, erratic and spike faults, whereas eight different fault types have been considered
in our proposed methods, increasing the coverage of fault occurrence, not only in the
sensors but also in the communication signals. Another difference resides in the method
of the FI used to collect the faulty data. In the study, a normal data distribution with a
standard deviation was statically used, while in our research, a real-time FI framework was
used to generate faulty data, and hence study the effect of faults on the system’s behavior,
considering the real-time constraints and the simulation of the whole-vehicle system with
high fidelity. Similarly, in [78], Theissler proposes an anomaly detection approach using
an ensemble classifier to analyze vehicle test records based on data recorded during on-
road test drives. Albeit both known and unknown faults can be effectively detected by
the proposed system with good robustness to different fault types and driving scenarios,
the proposed system is limited to a detection problem with only two classes, i.e., the
binary classification of inputs into healthy or faulty. In contrast, in our proposed method,
besides the detection task, the identification of the type of detected fault is also explored
as a classification problem with nine different classes (healthy and faulty). On top of that,
using real data from a vehicle prototype as the basis for the training data set is costly and
poses a high risk to the driver, especially when injecting faults while driving to validate the
proposed system, whereas in our proposed method, this problem has been addressed by
using HIL simulations with real-time FI.
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To overcome the limitations of using a real vehicle prototype, some research that
has been conducted relies on the real automotive system test benches as the solution for
the training data set acquisition. For example, in [79], a probabilistic fault classification
method of time-series data was proposed, aiming at classifying unknown faults. To this end,
a combination of Weibull-calibrated OSVM and Bayesian filtering have been employed for
modeling fault classes and fault classification, respectively. To demonstrate the proposed
method, an internal combustion engine was used as a case study. Meanwhile, to generate
the residual data set, a real engine test bench was used with its model covering seven
different types of engine faults, i.e., sensor faults, leakage and air filter clogging. However,
to operate in a realistic environment, a highly accurate mathematical model is required,
which drives up the cost in terms of complexity, whereas our proposed method uses a
real-time simulation platform (HIL System) to inject the faults and capture the system-level
effects. In the same context, but for a different application, Kaplan et al. [80] used an
electric vehicle prototype to test their proposed LSTM-based FDD approach. However,
to collect the faulty data, different fault scenarios, i.e., short-circuit and open-circuit faults,
are injected into the simulated EV system in Matlab/Simulink without considering the
real-time conditions, but in our study, this problem was addressed by injecting the fault
in real-time with an HIL. Aiming at tackling both single and simultaneous fault diagnosis
issues of automotive engines, a novel framework based on the combination of three phases,
i.e., feature extraction, probabilistic reject machine (PCM) and decision threshold optimiza-
tion, has been proposed by Zhong et al. [81]. As an experimental platform, a real sports
car with an ECU, onboard oxygen sensor, ignition pickup and microphone have been used
to collect the data set under various faulty conditions, focusing on three engine signals,
namely the air ratio, ignition pattern and engine noise signal. However, to avoid the high
cost and risks of collecting real data sets from a real vehicle, the HIL simulation functions
with Rapid Control Prototyping (RCP) have been used in our study.

One more possibility to obtain a representative data set of healthy and faulty operation
modes is to employ a simulation platform. As an example, in [82], researchers propose that
the MATLAB/IPG CarMaker co-simulation platform can be used to model sensor faults
and collect the resultant data set; in this way, an architecture for fault detection, isolation
and identification can be developed for multiple faults in autonomous vehicles. Notwith-
standing that the proposed FDI architecture using SVM is of high accuracy, 94.94% and
97.01%, respectively, the faults have been injected at the model level without considering
real-time constraints.

In the last decade, the advancement of the HIL simulation with its features has
attracted the attention of both academic and industrial researchers. Rather than real vehicle
hardware elements, the HIL platform’s ability to fidelity simulate a complex nonlinear
system enables effective and accurate analysis, verification and validation of an ASS in
real time. Therefore, using HIL systems, considerable attention has been paid not only to
the development of control software modules but also to the verification and validation
of the developed systems [83]. Beyond the advances in a real-time simulation with HIL,
the development of the intelligent FDC of complex software systems has attracted much
attention. As reported in the literature, several methods have been proposed with the
aim of approaching this problem. Employing the HIL system, an integral sensor fault
diagnosis method for railway traction drives has been proposed, for example, in [84]. This
was accomplished by using a combination of model-based and data-driven techniques to
develop a model capable of detecting, isolating and evaluating the sensor faults, i.e., gain
and offset faults. However, to simulate the system behavior in the presence of faults,
the system model has been extended by adding additional model blocks, which, in turn,
affects the real-time properties of the control task. In contrast, in our proposed work,
all the studied faults in automotive sensor signals have been programmatically injected
without modifying the original system model. Moreover, the classification model in
the mentioned study is limited to three classes and depends on the manual’s threshold
setting, while nine different classes were considered in our proposed method relying on
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DL-based classification. Concerning the same platform for identifying the faults in the
air brake system of heavy-duty vehicles, a multiclass classification model based on the
wheel speed sensor data collected in an HIL simulation system was proposed in [85].
Compared with the random forest-based model developed in the study, the model we
proposed based on hybrid DL techniques exhibits better classification than the traditional
ML method. In addition, to collect the faulty data during the test scenario, a real driving
system with four wheels connected to an HIL simulator was used to simulate the system
behavior under faulty conditions, whereas the method proposed in our work depends
on the entire vehicle system model deployed into the HIL simulator and connected to
the control system. Finally, Namburu et al. [86] have proposed an FDD method based on
data-driven pattern recognition techniques, i.e., support vector machines. The focus of the
proposed method is on automotive engine faults, i.e., eight engine faults with different
severity levels inserted into the engine system model, which was simulated in the real-time
ComputeR Aided Multi-Analysis System (CRAMAS) simulator. Despite the fact that the
model of the proposed method accomplishes high diagnostic accuracy in terms of detecting,
isolating and estimating the severity of faults covering high potential fault locations, there
are significant differences to our proposed method. The faults in the study were injected
as incremental changes at different locations to simulate the engine functionality under
different scenarios and different fault conditions, whereas in our proposed study, the focus
was on the fault types rather than the fault locations. Furthermore, the data collected in the
study are limited to test the feasibility of the presented approach without considering the
fault types and the realistic driving scenarios, whereas in our proposed study, eight different
fault types were considered and a whole-vehicle model with high-fidelity simulation was
used. An overview of the related work is given in Table 2.

It can be summarized that the traditional way to obtain data containing faults is
obtaining the faulty data set from the automotive industry. However, manufacturers
will probably not disclose their highly confidential defective data. On the other hand,
real test drives enable high test coverage, but test costs increase as test mileage increases.
Consequently, such a recorded data set is still limited and expensive. Moreover, as the
relevant scenario and critical driving situation are defined, the probability of risk to the test
driver also increases. Therefore, it is a challenge to have access to confidential industrial
data and to obtain data that contain faults from real test drives, and this problem has not
yet been sufficiently explored. The novelty of this study is to develop an FDC methodology
for the HIL real-time testing of an ASS during manufacturing before the operation mode,
i.e., in the system integration test phase, considering the entire vehicle system models.
To this end, a representative faulty data set is generated by programmatically injecting nine
different fault types into the HIL system in real time without modifying the original system
model. Through this approach, a novel intelligent FDC model is developed based on hybrid
DL techniques, i.e., the LSTM and CNN. The characteristics of the selected techniques,
e.g., their ability to process large amounts of data, the automatic feature extraction from the
multivariate time-series data and their ability to build an accurate FDC model with prior
knowledge, were the reasons behind selecting such methods. Furthermore, by leveraging
data from a real-time FI in the HIL, and considering real-time constraints and a whole-
vehicle system model, the cost of the data acquisition is reduced, a high-fidelity simulation
is ensured and a model for the test-drive data analysis with high accuracy is developed.
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Table 2. Overview of the related work.

Related Works Application Domain Tasks Method Collected Data Set Fault Classes Remarks

Safavi et al. [77] Autonomous vehicles Fault detection, isolation,
identification and prediction

Multiclass deep neural
network (DNN)

Real autonomous driving
data set Four

High accuracy 99.84%
Low fault coverage
High data acquisition cost

Theissler [78] Analyze automotive test
recordings Anomaly detection Ensemble classifier-based ML Real driving data set Two

Low accuracy 85%
Low fault coverage
High data acquisition cost

Jung [79] Combustion engine Fault classification Bayesian-based method Real engine data set Eight
Low accuracy 85%
High fault coverage
High data acquisition cost

Kaplan et al. [80] Electric vehicles (EVs) Fault diagnosis LSTM Simulation and real data
set Four

High Accuracy 97%
Low fault coverage
Low data acquisition cost

Zhong et al. [81] Automotive engines Simultaneous fault diagnosis Probabilistic reject machine Real data set Ten
Low accuracy 88.74%
Low fault coverage
Low data acquisition cost

Biddle et al. [82] Autonomous vehicles Fault detection, identification and
prediction SVM Simulation data set Five

High accuracy 97.01%
Low fault coverage
Low data acquisition cost

Garramiola et al. [84] Railway traction drives Fault detection and isolation
Observer-based, frequency
analysis and hardware
redundancy

Real-time simulation data
set Two

Low accuracy
Low fault coverage
Low data acquisition cost

Raveendran et al. [85] Air brake system Fault identification Random forest Real-time simulation data
set Two

Low accuracy 92%
Low fault coverage
Low data acquisition cost

Namburu et al. [86] Automotive engines Fault diagnosis Pattern recognition Real-time simulation data
set Eight

High accuracy 99.25%
High fault coverage
Low data acquisition cost

Proposed Model Automotive software
systems development Fault detection and classification Hybrid CNN-LSTM Real-time simulation data

set Eight
High accuracy 98.85%
High fault coverage
Low data acquisition cost
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3. Methodology
3.1. Hybrid DL-Based Fault Detection and Classification Methodology

The framework of the proposed FDC method includes five different phases, namely
data acquisition, data pre-processing, model training, model validation and model evalua-
tion, which together form the steps to develop the target model, as shown in Figure 4.

Figure 4. Hybrid DL-based FDC methodology.

3.1.1. Phase I: HIL-Based Data Set Acquisition

According to the supervised learning approach, a labeled training data set is required
as a prerequisite for developing an FDC model that can classify the system state into
known fault types and categories. Traditionally, to simulate the system behavior under
fault conditions, the system model of the controlled plant and controller are extended to
include additional blocks, which in turn affects the real-time constraints. To overcome
this drawback, the proposed methodology uses real-time FI method with the objective of
generating a representative data set. By doing so, most of the fault types in sensor and
communication signals can be covered without modifying the original system model. The
main components of the data acquisition phase are the real-time FI framework and the
HIL system.

3.1.2. Real-Time Fault Injection Framework

To generate a representative faulty data set under different conditions, the real-time FI
framework developed in the previous study [21] is employed. The framework is capable
of programmatically injecting eight different types of faults into a complex system, such
as a vehicle system with high-fidelity simulation, in real-time without altering the system
model. By doing so, real-time constraints are taken into account and the majority of
common faults in automotive software signals are covered. FI framework used in this
methodology includes four key components, i.e., HIL user environment, HIL system real-
time configuration, FI framework and HIL system. Meanwhile, in order to effectively collect
faulty data using the FI framework, three main attributes should be configured by the user,
namely fault type, fault location and fault time. According to Theissler [78], the potential
fault locations in an in-vehicle network are functional specifications, network, sensors,
actuators, ECUs, gateways, a power supply, vehicle subsystems and a data acquisition
system. In this study, sensor and communication signals are considered as the target
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locations of FI. In terms of fault types, a list of potential hardware fault types that could
occur in the vehicle’s software system are provided in the fault library. There are eight
different types of sensor and communication faults considered in this study with respect
to signal behavior, i.e., delay, gain, offset/bias, noise, hard-over, spike, stuck-at and drift
faults. Finally, the fault time point is the time at which the fault is injected. The fault instant
can be defined based on the driving cycle so that the tester can inject the fault according to
the desired time. Once the fault attributes are defined, the fault injector manipulates the
healthy signal from the CAN bus accordingly in real-time.

3.1.3. HIL System

Compared to the conventional simulation tools, HIL simulation provides an efficient,
fast and realistic simulation in real time with high accuracy [83]. Two main components
make up the structure of the HIL system, namely the HIL real-time simulator and the real
ECU. In the HIL simulator, the system models, including engine, powertrain, environment
and dynamic vehicle models, are deployed and executed. Meanwhile, the control logic,
which is represented as a controller model, is implemented and executed in the real ECU.
The connection between them is realized using the CAN bus as the communication protocol.
Thanks to the CAN bus, the control commands from the ECU to the actuators as well as the
sensor signals from the plant to the ECU can be transmitted so that the action is executed
according to the control logic. Additionally, other real elements of the vehicle system,
e.g., sensors, actuators, steering wheel and pedals, can be connected to the HIL simulators
via electrical interfaces. After fault injection, the data are recorded at the system level using
HIL tools in different file formats depending on the experimental setup. Subsequently,
these recorded files are manually converted to CSV format, where the pre-processing phase
takes place.

3.1.4. Phase II: Data Pre-Processing

Data pre-processing is an essential step toward the development of DL models because
irrelevant features in the training data can have a negative impact on the classification
accuracy [87]. Moreover, a large amount of useless features leads to increase the cost of
implementing DL algorithms in view of the high computational overhead. Therefore,
pre-processing data sets in advance contributes to avoiding an overfitting problem and
reducing computational costs. Another major challenge in developing an effective intel-
ligent FDD is the imbalanced data set, especially in real-world applications. The ratio
between healthy and faulty data is not typically equal, which in turn negatively affects the
model performance. For this reason, several approaches have been proposed to address
this problem, namely augmentation-based, feature learning-based and classifier design-
based approaches [88]. In this study, permanent faults have been injected such that the
percentage of faulty data classes is sufficient compared to the healthy data. Meanwhile,
to solve the problem of unbalanced data distribution among the faulty classes, the feature
learning-based CNN with a large data set was used to effectively learn the features of
unbalanced faulty classes. In this way, the feature extraction and learning capability of
CNN can be employed to reduce the risk of overfitting when the distribution of the faulty
data set is different. Notably, in the case of transient fault injection, a modification of neural
networks is required to handle the small and unbalanced faulty data set, e.g., using a
regularized CNN.

In the proposed methodology, the pre-processing phase is divided into four steps,
namely data selection, data normalization, data labeling and data division. The first
step after data collection is to select the relevant features so that useful system variables
can be efficiently included in the training data, based on which the classification task
is performed. In this study, five different variables at system level were selected to be
used in the classification task. The selected variables are engine RPM, engine torque,
vehicle speed, rail pressure and intake manifold pressure. The next step after selecting the
system variables is data cleaning and normalization. Noteworthy, due to the uncertain data
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collected from the real system, cleaning and filtering of the data with respect to outliers
and missing values are required before feeding it into the learning algorithms. However,
this step is not necessary for the simulation data collected from the HIL platform, as in
the case of this study. On the other hand, with the purpose of improving the performance
in training network, the selected data are converted into a binary matrix. To this end,
the Z-score normalization function [89] is used to rescale the amplitude of the variables
such that the data values are uniformly in the range [0–1]. Once the data are normalized,
the time-series samples are labeled with the corresponding classes to support the supervised
learning task. This is accomplished by labeling each category’s data set with a label that
refers to the healthy class or a specific fault class. In this study, nine different classes are
labeled to cover most fault types, including non-faulty data. Finally, the data set is divided
into three subsets to be used later in different phases, i.e., training, validation and testing.
In particular, 60% of the whole data set is dedicated to the training process. While the rest of
the dataset is used for the purpose of validation and testing, 20% is allocated to each phase,
respectively. To overcome the drawbacks of traditional feature extraction, which depends
on domain knowledge and human experience, in the proposed methodology, features are
automatically extracted from training samples based on powerful data processing ability of
deep neural networks. Specifically, by employing feature extraction capability of CNN [90],
deep features of faulty and healthy input data are effectively captured through the learning
process within the hidden layers.

3.1.5. Phase III: Model Training

The key component of the proposed methodology is to design the architecture of
the deep neural network. In addition, the identification of the hyperparameters of the
selected network architecture plays a vital role in the development of a highly accurate
model. The literature on FDD based on DL shows a variety of approaches corresponding
to different domains. Among the proposed DL models, CNN and LSTM achieved fruitful
remarkable achievements to build intelligent diagnosis models. Because each type of fault
has an individual effect on the system data, several important features are derived in the
data at different times. As a result, thanks to the ability of CNN to reveal significant features
of data without human supervision, the CNN algorithm is an optimal option for developing
FDC models. However, its drawback in processing multivariate time-series data motivated
to investigate other algorithms. On the other hand, LSTM and Gated Recurrent Unit (GRU)
have been introduced to overcome the limitations of RNN, i.e., vanishing and exploding
gradients. Moreover, in the context of sequential time-series data, LSTM and GRU surpass
other techniques from the viewpoint of accuracy. Despite the advantages of GRU reflected
in its low required resources and fast inference time compared to LSTM [91], LSTM has
achieved better accuracy on larger data sets, as indicated in [92]. In addition, LSTM have
exhibited remarkable performance in classification tasks in [93–95]. Therefore, the structure
of recurrent units can be effectively selected depending on the data set and corresponding
application [96]. In this study, to achieve accurate fault classification, LSTM is employed
to cope with dynamic multi-mode behavior with large data sets. However, for complex
multiclass classification tasks, high overhead is required in terms of cell structure and
training time. Aiming at overcoming the limitations of both techniques, i.e., CNN and
LSTM, and benefiting from both classifiers, we have employed the integration of both
structures to develop the target model, as can be seen in Figure 5.

The input layer, 1D-CNN layers, LSTM layers, the fully connected layer and the output
layer are the main components of the proposed network architecture. The training data set
in the form of time-series data is fed into the 1D-CNN network through the input layer. In
particular, after the row data are received by the input layer, local features are extracted by
the convolutional layer and stored as feature maps. Feature maps contain different nodes
associated with a particular input region. Similarly, several nonlinear activation functions
exist to extract features from the input layer. Among them, the most commonly used
functions are the Rectified Linear Unit (ReLU), hyperbolic tangent and Sigmoid function.
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According to the results of the conducted research on the development of intelligent FDD of
machines, it has been concluded that the highest test accuracy was achieved with the ReLU
activation function compared to Sigmoid and Tanh [97]. Moreover, during the training
process, a significant improvement in DNN behavior can be observed when using ReLU
compared to Sigmoid [98]. Therefore, after trying the aforementioned activation functions,
ReLU was selected for the proposed architecture to obtain a nonlinear expression and
provide better discrimination of the learned features.

Figure 5. Deep neural network architecture of the proposed model.

The key role of the pooling layer is reflected in the reduction in the feature map, which
is located after the convolutional layer. Max pooling, average pooling and L2 norm pooling
are the most common methods used in this layer. Rather than connecting the last pooling
layer of the CNN to the fully connected layer, in this study, a multi-layer LSTM network
is designed to be after the CNN layers. By doing so, the features are further processed,
paving the way for the fully connected layer to calculate the probability score for each
class. Subsequently, the features of the last LSTM layer are processed by the fully connected
layer so that the probability score of the output is generated for classification. Finally,
at the output layer, the class with the highest probability is considered the output, which
is either related to the type of the detected fault or to non-faulty data. Table 3 depicts the
specification parameters of the proposed network architecture.

Table 3. The architecture parameters of the proposed model.

Layer Size and Parameters

CNN Layer 1 Filters: 8, Kernel Size: 2, Activation: ReLU, Input Shape: [30 × 5], Output
Shape: [30 × 8]

CNN Layer 2 Filters: 8, Kernel Size: 2, Activation: ReLU, Output Shape: [30 × 8]
CNN Layer 3 Filters: 8, Kernel Size: 2, Activation: ReLU, Output Shape: [30 × 8]
CNN Layer 4 Filters: 8, Kernel Size: 2, Activation: ReLU, Output Shape: [30 × 8]
CNN Layer 5 Filters: 8, Kernel Size: 2, Activation: ReLU, Output Shape: [30 × 8]
Batch Normalization Layer 1 Output Shape: [30 × 8]
Max Pooling Layer Pool Size: 2, Output Shape: [15 × 8]
LSTM Layer 1 Neurons: 64, Activation: ReLU, Output Shape: [15 × 64]
LSTM Layer 2 Neurons: 64, Activation: ReLU, Output Shape: [15 × 64]
LSTM Layer 3 Neurons: 64, Activation: ReLU, Output Shape: [15 × 64]
LSTM Layer 4 Neurons: 64, Activation: ReLU, Output Shape: 64
Batch Normalization Layer 2 Output Shape: 64
Flatten Layer Output Shape: 64
Output Layer Output Shape: 9

3.1.6. Phase IV: Model Validation

Using the validation data pre-processed in Phase II, the trained model from Phase
III is validated in terms of accuracy. Based on the validation results, the specifications
of the hyperparameters of the network structure are adjusted so that the FDC model is
optimized. To be specific, the value of the loss function is reduced, and the accuracy is
increased. During the validation phase, the main hyperparameters considered are learning
rate, the number of epochs, batch size, the number of batch normalization, CNN, LSTM,
dense and drop layers.
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3.1.7. Phase V: Model Testing

Once the developed model is optimized, i.e., the hyperparameters are tuned based on
the validation results, the final model with the optimal hyperparameters is tested in this
phase. Employing the unseen data prepared in Phase II, the performance of the optimized
FDC model is evaluated. To this end, various evaluation metrics can be used, such as
precision, recall, F1-score and accuracy [99]. The objective of the model is to detect and
identify faults, as a classification problem, in recordings of the HIL test. More specifically,
eight different types of sensor and communication faults along with healthy data are to be
correctly detected and identified. In this study, the performance of a hybrid 1D-CNN and
LSTM is presented in comparison to a single CNN and LSTM, respectively.

4. Case Study and Experimental Implementation
4.1. HIL System

As a case study, the ASM gasoline engine system, combined with the dynamic vehicle
model from dSPACE [100], is used to demonstrate the applicability of the proposed method-
ology and to verify the performance of the proposed model. Additionally, by using the HIL
system, healthy and faulty data sets of training, validation and testing are generated in real-
time during the operation. Figure 6 illustrates the architecture of the experimental platform
used in this work. As can be seen, to achieve high simulation fidelity and to capture the
comprehensive characteristics of the system behavior, environmental system models of the
case study are included. Specifically, the powertrain, vehicle dynamics and environmental
system are modeled and simulated along with the engine system. In addition, in case no
real ECU is available, the softECU is employed to enable the simulation of the control logic.
Fundamentally, the control system is modeled separately and implemented in the real ECU.
To realize the connection between the real ECU and the HIL simulator, I/O blocks are
employed to simulate and manage the signals from and to the ECU. The aforementioned
systems are modeled and simulated in the MATLAB/Simulink platform. Once the code
has been automatically generated from the models, i.e., the plant and the control models, it
is deployed and executed on the corresponding hardware system, i.e., the real ECU and
dSPACE SCALEXIO. In this study, a real-time system, i.e., the dSPACE MicroAutoBox II, is
used as a real ECU and is connected to the dSPACE SCALEXIO via the CAN bus carrying
the corresponding sensor and actuator signals, as is illustrated in Figure 7.

Figure 6. System architecture of the case study with different test phases of V-model.
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Figure 7. Scheme of the complete HIL simulation system.

Thanks to having two control models, the softECU and the normal ECU model, the HIL
system can be executed in two modes, namely the offline and online modes. Moreover,
with the aim of covering the comprehensive characteristics of the engine system, several
engine subsystems are modeled and simulated in detail, including the air path system,
fuel system, piston engine system, exhaust system and cooler system. The implementation
and execution of the experiments is supported by several software tools from dSPACE,
namely ModelDesk, ConfigurationDesk and ControlDesk. Further information can be
found in [100].

4.2. Experimental Setup

Despite the system complexity of the case study, thanks to the software tools provided
by dSPACE, both configurations and parameterizations of the selected system with its
components can be carried out in the user environment. Specifically, using ControlDesk,
for example, the target sensors and communication signals can be selected, manipulated
and acquired in real time. Thus, the user can configure the experiment, calibrate the
controller, read off measurements and acquire data at the control station.

The configurations of the HIL experiment, in this study, are organized into three levels,
namely the system configurations level, drive cycle configurations level and fault injector
configurations level. At the system configurations level, the system parameters, including
the internal and external system specifications, are specified. The key specifications of
the present case study are presented in [21]. Setting the fault injector attributes, i.e., the
fault type, fault time and fault location, enables the collection of a representative fault
data set reflecting the system behavior in the presence of faults. Table 4 lists the essential
specifications of the fault injector used to generate the data set as well as the number of the
collected data samples in each class.

Based on the configurations of the fault injectors, different types of faults are injected
at two locations, namely the accelerator pedal position (APP) sensor and the engine speed
sensor. The sensors, into which the faults are injected, have been selected due to their
significant impact on the vehicle behavior. According to a NASA investigation conducted in
2011, most of the accidents that have occurred in Toyota vehicles are caused by unintended
acceleration [101]. On the other hand, the engine speed sensor has an important effect
on all actuator control signals. Therefore, investigating the behavior of the system in the
presence of faults on the selected sensors is vital.
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Table 4. Configuration of fault injection with collected data samples.

Fault Type APP Value RPM Value Fault Duration Data Samples

Gain 10 5 0–300 59,945
Offset 5 300 0–300 63,910
Noise 1–100 0–8191 123–288 46,115

Stuck-at 0 0 0–300 59,830
Drift 0.1 10 17–86, 44–100, 122–300 60,195

Hard-Over 127 10,000 122–135, 184–225 34,800
Spike 1–100 700–8191 0–96, 103–293 57,805
Delay 10 3 0–96, 121–286 55,905

For the setup of the driving scenario, ControlDesk is utilized to select and configure the
driving cycle among a list provided by dSPACE, e.g., city and highway scenarios. On top
of that, the execution of the selected driving scenario can be enabled in both automatic and
manual modes in accordance with the user’s requirements. Figure 8 shows the selected
driving scenario in this study. Note that the red dot indicates the starting point, and the
blue dot indicates the current location. Figure 9 illustrates the system behavior in the
presence of various fault types as a reaction to fault injection.

Figure 8. Driving cycle in dSPACE ControlDesk.
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(a)

(b)
Figure 9. System behavior under fault conditions: (a) Gain, Offset, Noise, Stuck-at fault and Healthy
signal. (b) Drift, Hard-over, Spike, Delay fault and Healthy signal.

4.3. Data Set Description

During the experiments, the system behavior under normal and faulty conditions is
recorded at the system level as time-series data, which serves as the basis for training and
verifying the FDC model. The engine RPM, engine torque, vehicle speed, rail pressure
and intake manifold pressure are the system-level variables considered for performing the
detection and classification tasks. The recorded data are stored as an “IDV” file format.
The data are then converted to a CSV format using the ControlDesk tool.

Once the records are captured, based on the proposed methodology, the data are
pre-processed in order to clean, label, normalize and split them. However, the converted
CSV file contains unusable data that could have a negative impact on the accuracy of
the target model. Therefore, it is required to delete this kind of auxiliary information.
During the labeling process, the fault types and the corresponding locations are assigned
to the data. The labels are added to the aforementioned system variables in the form of
numbers. Upon the completion of the labeling process, the HIL data are normalized using
the Keras normalize function [102] to improve performance. By doing so, the data set is
transformed into a binary matrix. Finally, the normalized data are split into three portions,
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one of which is used for training, the second for early model validation and tuning and the
last for the testing and evaluation of the trained model. The distribution of the data is
randomly determined, with 60% used for training and the remaining 40% is shared by both
validation and testing, with 20% for each. After the cleaning steps, the total number of
data points collected is 503,850. To be specific, 302,310 samples with 33,590 instances per
class have been used for the training phase, while 101,670 samples have been used for the
validation phase and the same number of samples have been employed as unseen data for
the testing phase. Note that the unavailability of real-world automotive data sets to test
the developed model is considered a threat to external validity. To address this threat in
our experiments, unseen samples have been used as test data to verify the performance of
the model.

4.4. Hyperparameters Optimization

Following the data pre-processing, the next phase is the development of the FDC
model, i.e., training and validation. Aiming at reducing the learning time of the training
process, the implementation of the model is performed in the Google Colab environment,
where Python is used with the Tensorflow [103] and Keras [104] libraries. Figure 10 shows
the flowchart of the model implementation and optimization, initializing with the data
collection and concluding with the testing of the optimally trained model.

Figure 10. Flowchart of model implementation and optimization.

To avoid the problem of overfitting, the trained model is validated using validation
data, which in turn yields the model with the highest accuracy from the training data.
In the course of the optimization process, the values of the hyperparameters are adjusted
so that the optimal structure of the FDC model with the best performance can be obtained.
In this regard, a set of hyperparameters, i.e., epochs, batch size, batch normalization
layers, learning rate, CNN layers, LSTM layers, dense layers and drop layers, have been
selected to be tuned according to the accuracy of each training. The range of the selected
hyperparameters to be optimized is summarized in Table 5. Achieving the above goal
requires the use of two evaluation metrics, namely accuracy and loss.

Table 5. Range of hyperparameters used in optimization process.

Hyperparameter Range

CNN Layers 0–5
LSTM Layers 0–5
Dense Layers 0–5
Epochs 50–900
Max Pooling Layer 0–1
Drop Layer 0–2
Batch Normalization Layer 0–2
Batch Size 64–150
Learning Rate 0.001–0.0001



Sensors 2022, 22, 4066 21 of 31

These metrics are implemented in Python using the scikit-learn library [105]. The re-
sults of the optimization process in terms of accuracy are presented in Figure 11.

(a) (b)

(c) (d)

(e) (f)

Figure 11. Hyperparameters optimization results. (a) Validation accuracy with different number of
layers. (b) Validation accuracy with different number of epochs. (c) Validation accuracy with different
number of dropout layers. (d) Validation accuracy with different number of batch normalization
layers. (e) Validation accuracy with different number of learning rate. (f) Validation accuracy with
different number of batch size .

Based on the results presented in Figure 11a, the best validation accuracy of 90% was
achieved by a five-layers CNN, including one dense layer. In contrast, no improvement
in the validation accuracy was observed by adding more dense layers to the LSTM. Con-
sequently, a five-layers CNN, a four-layers LSTM and four-layers dense are considered
in the structure of the proposed model. Similarly, conducting the model training with
different epochs shows that the best results, i.e., 96.8%, can be achieved with 700 epochs,
as shown in Figure 11b. Another noteworthy point is that the performance of the model
without dropouts is better than adding additional layers, as seen in Figure 11c. Therefore,
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the dropout layers are omitted in further experiments. On the other hand, due to the
favorable validation results of the model, as a consequence of the addition of the batch nor-
malization layers with a validation accuracy of 98.6% (Figure 11d), two batch normalization
layers are added to the proposed structure. In terms of the learning rate, Figure 11e gives
us an insight into the validation accuracy being improved by decreasing the learning rate;
the best accuracy was achieved at 0.0005 with 98.3%. Finally, after determining the core
hyperparameters, the model is trained with a varying number of batch sizes. In Figure 11f,
it is noticeable that the results with batch size 64 are better than the others in terms of the
validation criteria. As a conclusion of the validation phase, the optimized hyperparameters
of the proposed model are presented in Table 6.

Table 6. Optimal Hyperparameters for CNN+LSTM Model.

Hyperparameter Value

CNN Layers 5
LSTM Layers 4
Dense Layers 0
Epochs 850
Max Pooling Layer 1
Drop Layer 0
Batch Normalization Layer 2
Batch Size 64
Learning Rate 0.0005

5. Results and Discussion

This chapter details the evaluation results of the optimized FDC model based on
the test data along with a discussion of the capabilities of the proposed methodology
to detect and classify different sensor and communication fault types. As stated in the
methodology section, the model is evaluated based on various evaluation metrics, i.e., the
accuracy, precision, recall and F1-score [99]. Moreover, the results of the proposed model
are compared with standalone ML and DL techniques. In particular, the performance of
the proposed model has been compared with two different single classifiers, namely LSTM
and CNN.

5.1. Evaluation Metrics

Among the various available evaluation metrics, the focus of this study is on the
accuracy, precision, recall and F1-scores. The classification accuracy, as one of the core
metrics, is the ratio of the number of the correct predictions to the total number of input
samples, as shown in Equation (9).

Accuracy =
TP + TN

TP + TN + FP + FN
(9)

where TP signifies the number of positive cases, i.e., the predicted fault types being correctly
classified; TN describes the truly classified negative cases or the element dismissed correctly
during classification; FP describes the number of cases misclassified as positive, also known
as false alarm; and FN denotes the number of positive cases erroneously classified as
negative or the unclassified faults.

The precision, or positive predictive value (PPV), on the other hand, indicates the
proportion of the total classification results that are predicted to be correct. Mathematically,
it can be calculated by dividing the number of true positive predictions by the sum of true
positive and false positive predictions, as illustrated in Equation (10).

Precision =
TP

TP + FP
(10)
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The recall, or true positive rate (TPR), is another metric that represents the sensitivity,
indicating the percentage of correctly identified items compared to all items requiring
identification. According to Equation (11), it can be calculated by dividing the number of
true positives by the sum of true positives and false negatives.

Recall =
TP

TP + FN
(11)

Finally, the F1-score is the harmonic mean between precision and recall. As such, it
allows the evaluation of the model in terms of precision and robustness. Mathematically, it
can be calculated with Equation (12).

F1-Score = 2 ∗ 1
1

Precision + 1
Recall

(12)

5.2. Testing Results

Based on the optimization results obtained in the previous phase, the hyperparameters
have been tuned so that the optimal FDC model can be obtained. As a comparison with
the individual LSTM and CNN models, Table 7 represents the detection accuracies of the
proposed model according to the evaluation metrics. The results shows that the proposed
model outperforms the standalone models in terms of the precision, recall and F1-score.

Table 7. Fault detection accuracies of the models.

Model Precision Recall F1-Score

CNN 92.69% 91.99% 92.32%
LSTM 95.98% 94.87% 95.36%
CNN-LSTM 98.86% 98.90% 98.88%

For the classification of the detected faults, the performance of the proposed model
over eight classes of faults plus healthy data in terms of precision, recall and F1-score is
presented in Figures 12–14, respectively. Generally, all networks have reasonable classi-
fication accuracy with unseen testing data, i.e., CNN with an average accuracy of 91.7%,
LSTM with 95.6% and CNN-LSTM with 98.8%. Although the optimization process has
been applied on the three DL models, it is noticeable that the proposed model as a hybrid
architecture outperforms the standalone models.

In particular, concerning the precision score, the CNN model achieved a lower accuracy
compared to the LSTM and the hybrid CNN-LSTM, especially for the drift, delay and offset
faults, with a precision score of 86.64%, 87.94% and 88.98%, respectively. Because the
number of false positives and false negatives increases with the healthy class in the CNN
model, the probability of the false alarm rate also increases. On the other hand, the LSTM
results exhibit an improvement in the performance, where the LSTM model outperforms the
CNN-based model in terms of precision. The best precision score of the model is reflected
in the stuck-at, noise, gain and delay faults, with accuracies of 99.85%, 98.21%, 97.7%
and 97.85%, respectively. However, the limitations on the remaining fault classes have been
overcome by our proposed model with an average accuracy of 98.8%. In addition, it is
noticeable that the precision score is 100% for three classes, namely gain, noise and stuck-at,
and is above 98% for the remaining classes, except for the delay class, which reaches 96.36%.
The reason behind this limitation is that some features of the delay fault samples are similar
to other classes and are incorrectly predicted as delay fault samples.
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Figure 12. Classification performance in terms of precision.

Observing the recall score of the aforementioned models, the individual CNN per-
formance is still not satisfactory with an average accuracy of 95.6%, which is caused by
the low recall score of the delay, spike and drift faults with 86.24%, 87.37% and 88.51%,
respectively. By contrast, in the LSTM model, the recall value of seven classes is also
above 90%. Compared to the CNN, the false positives for the healthy classes are relatively
lower. Nevertheless, the percentage of false positives is 6.32%, and the percentage of false
negatives is 5.92%. The probability of false positives for healthy data is still quite high.
Therefore, in terms of the precision and recall of the LSTM model, the results are well suited
for fault classification but not for fault detection due to the higher number of false positives
and false negatives in the healthy class. However, the recall results of our proposed model
are promising with good results for all target classes; the recall score is more than 98% for
eight out of nine classes, except for spike faults with 97.38%.

As a harmonic mean, the combination of recall and precision is represented by the
F1-score. The superiority of our proposed model is reflected in the values of the F1-score
for each class compared to the other models (see Figure 14). The proposed model achieved
very good accuracy with a minimum F1-score of 97.21%, outperforming the other models,
i.e., the CNN and LSTM with minimum F1-scores of 87.08% and 92.1%, respectively.

Figure 13. Classification performance in terms of recall.

To illustrate the relationship between the true positive rate (TPR) and the false positive
rate (FPR) of the proposed model, the classification results in terms of Receiver Operating
Characteristic (ROC) curves are shown in Figure 15. The higher the ROC curve reaches the
left corner, the better the classification performance. Accordingly, the results show that the
proposed model exhibits a low false positive rate.

In summary, the hybrid CNN-LSTM-based FDC model with our proposed methodol-
ogy surpasses other standalone DL techniques. With an accuracy of 98.5% and an F-score
of 98.84%, respectively, in our proposed model, which are higher than other classification
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models with different classes of faults, the hybrid technique significantly excels most com-
mon state-of-the-art models. Subsequently, on the basis of proper integration, this can pave
the way in the future for the development of more accurate FDC models.

Figure 14. Classification performance in terms of F1-score.

(a) Healthy (b) Gain fault (c) Offset fault

(d) Noise fault (e) Stuck-at fault (f) Drift fault

(g) Hard-over fault (h) Spike fault (i) Delay fault

Figure 15. Classification performance in terms of AUC–ROC curve.
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5.3. Computational Complexity Analysis

In any application of an intelligent FDD model, besides the importance of prediction
accuracy, the cost of training and inference should also be considered in terms of the
time required. In this study, both training and inference times (in seconds) have been
investigated, as shown in Table 8. As mentioned in the training section, cloud-based
tools with high resources performance, i.e., Google Colab, were used as the development
environment for the model.

Table 8. Training and inference times of the models.

Model Training Time (s) Inference Time (s)

CNN 368.4 1.14
LSTM 4874.7 5.22
CNN-LSTM 9541.2 3.07

Despite the high classification accuracy, the hybrid method requires a high training
time. The reason is that the complexity of the model architecture is higher compared to the
single model. On the other hand, the required execution time of the proposed model for
classification under test data is significantly shorter than the LSTM model.

Compared to traditional ML methods, which require additional time for feature
extraction, the time consumption of the proposed model is acceptable. Moreover, the target
model can be trained offline once, but the real-time conditions for executing the model on a
real-time system should be ensured. To accelerate the inference time, utilizing dedicated
software libraries or selecting a specific network architecture such as PCA-GRU would be a
good alternative. Based on the comparison, the trade-off between ensuring accuracy and
reducing the complexity of the trained model paves the way for further improvements in
the future to reduce computation time in real-time applications.

6. Conclusions

In this article, a novel effective and intelligent methodology for the fault detection and
classification of an ASS during the development process, i.e., the system integration phase,
is proposed. It aims at detecting and identifying system-level fault types, as a classification
problem, in sensors and communication signals during the HIL testing process. For the
purpose of designing a robust and accurate classification model, a hybrid CNN-LSTM
network structure has been chosen among the DL techniques. By doing so, the limitations
of each method can be overcome, and the advantages can be leveraged. To address the prob-
lem of a lack of representative training data, a novel real-time FI framework is employed
with the HIL simulation platform through which eight different types of faults have been
injected into the target components, i.e., sensor signals, along with complex test scenarios
in real time. Consequently, the effects of the faults on the system behavior, in the form
of time-series data, have been collected and used for the training, validation and testing
of the target classifier. From a novelty standpoint, eight different types of sensors and
communication faults have been programmatically injected in real-time without changing
the original system model. In addition, high-fidelity simulations of the vehicle system
involving realistic driving scenarios have been conducted, encompassing the entire vehicle
model, i.e., the vehicle dynamics, environment, powertrain and engine model. Thus, the be-
havioral characteristics of the system can be accurately and comprehensively represented.
Detailed phases of the proposed methodology for developing the FDC model have been
presented, highlighting the key steps of the data set acquisition, data set pre-processing,
model training, model validation and model testing.

For demonstrating the applicability of the proposed methodology and evaluating the
performance of the proposed FDC model, a complex gasoline engine system has been used
along with whole-vehicle and environment models. In this study, 60% of the collected
data set is used for the training phase, while the remaining 40% is used for validation and
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testing, respectively. To improve the convergence rate of the proposed structure and to
avoid the problem of overfitting, the optimization process is carried out in a manner that
allows for an effective tuning of the hyperparameters. To analyze the performance of the
proposed FDC model, different evaluation metrics have been used, i.e., recall, precision,
F1-score and accuracy. Compared to standalone DL techniques, the experimental results
demonstrate the superiority of our proposed model in terms of the classification accuracy
on unseen test data, i.e., with an average accuracy of 98.85%. Specifically, the highest
precision and recall scores have been obtained with our proposed model for eight different
classes of faults along with the healthy class, with an average value of 98.88% and 98.81%,
respectively. Additionally, the proposed model achieved a maximum F1-Score of 98.84%,
outperforming the individual DL methods. Thus, from the results of our study, it can
be concluded that the proposed model as a hybrid architecture surpassed the standalone
models. Finally, the training and inference times of the models have been analyzed with
the aim of highlighting avenues for further improvement.

Toward future lines of research, the findings imply that our proposed methodology can
also be useful for analyzing recordings of real test drives conducted on public roads, so that
unexpected faults can be intelligently detected and classified without human intervention.
To this end, during the development of the FDC model, uncertain and imbalanced data,
including unknown fault types, should be considered as potential further research in
advanced feature engineering approaches. In the same way, as a future scope, considerable
attention should be paid to the noise contained in real test drive recordings, which requires
further development of the proposed model to improve the performance in the presence of
high noise. On the other hand, developing a fault isolation model capable of determining
the faulty components in complex systems with heterogeneous elements needs to be further
investigated. Finally, to achieve full coverage of the faulty representative data set, future
research will be conducted considering concurrent transient faults.
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