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Abstract: Group communication enables Internet of Things (IoT) devices to communicate in an
efficient and fast manner. In most instances, a group message needs to be encrypted using a crypto-
graphic key that only devices in the group know. In this paper, we address the problem of establishing
such a key using a lattice-based one-way function, which can easily be inverted using a suitably
designed lattice trapdoor. Using the notion of a bad/good basis, we present a new method of
coupling multiple private keys into a single public key, which is then used for encrypting a group
message. The protocol has the apparent advantage of having a conjectured resistance against poten-
tial quantum-computer-based attacks. All functions—key establishment, session key update, node
addition, encryption, and decryption—are effected in constant time, using simple linear-algebra
operations, making the protocol suitable for resource-constrained IoT networks. We show how a
cryptographic session group key can be constructed on the fly by a user with legitimate credentials,
making node-capture-type attacks impractical. The protocol also incorporates a mechanism for node
addition and session-key generation in a forward- and backward-secrecy-preserving manner.

Keywords: IoT group key; quantum-safe cryptography; lightweight cryptography; lattices; lattice-
based crypotgraphy; lattice trapdoors; one-way function; learning with errors; LWE; short basis

1. Introduction

As the Internet of Things (IoT) becomes an integral component of an ever-increasing
number of application areas, the need to secure it is also assuming an ever-increasing
level of importance. Security in the IoT is a multi-faceted problem that includes the usual
security concerns regarding authentication, integrity, and confidentially; and IoT-specific
concerns, such as how to design and implement cryptosystems on small devices; how to
prevent, and recover from, attacks that leverage physically accessing an IoT device deployed
at a physically accessible place; and preventing, and recovering from, denial-of-service
attacks [1].

In this paper, we focus on the problem of how to establish a cryptographic group
key that can be used to encrypt or decrypt a group message to ensure confidentiality in
a dynamic IoT network. Group communication is an efficient and fast message-sending
mechanism, whereby a message is broadcast to a group of users that constitute a given
secure network. In contrast to unicast communication, where a sender sends a message
to each potential recipient, in group communication, a single message is broadcast to
potentially many recipients. This helps minimize the amount of traffic generated and
computations performed at the sender’s end, since only a single message is broadcast to
all potential recipients. In an IoT environment, where resources are generally constrained,
minimizing traffic and computations at both the sender’s and the receiver’s ends is a
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desirable requirement. This model of communication would, for example, be desirable
in a time-critical IIoT system where a controller must send a command to a group of
actuators [2].

Below are some use-case scenarios were group communication would be desirable:

• Smart lighting: A smart building may have its lighting devices grouped according to
their location and connected to a switch, which acts as a gateway. It is important that
the switch is able so send group messages to the devices to control lighting levels and
related functions;

• Software updates: A gateway downloads a software update and simply broadcasts it to
the group so that member nodes patch. The alternative is each device downloads the
patch independently, which results in generating unnecessary traffic;

• Emergency broadcasts: The control center of some automation may be forced to stop
or start many devices in the process with a single command, minimizing time and
resource requirements;

• e-Health: A sensor implanted in a patient’s body may broadcast readings to a group of
receivers, such as nurses, doctors, and even chat servers.

Figure 1 shows an example where secure group communication would be preferable
to unicast communication. Rather than send a message to each user in the secure multi-
cast group, which is inefficient and computationally expensive, the central entity simply
broadcasts an encrypted message that each user in the secure multicast group can decipher.
The ability to send a single message to multiple recipients is also a desired property in
time-sensitive applications, since sending a broadcast message is generally faster than
sending a unicast message to each potential recipient.

Figure 1. Multicast for light bulbs—Figure 1 of [3].

A critical problem in enabling group communication is designing an efficient mech-
anism to ensure the confidentiality and integrity of group messages [4]. The standard
mechanism to address this problem is to have all users in a group share a secret cryp-
tographic key, so that only a user that has a copy of the secret key can decrypt a group
message. This raises the problem of how to establish the secret key among the users in the
first place, and how to initiate re-keying securely. There have been various cryptographic
group-key establishment protocol proposals that rely on cryptographic constructions that
do not have conjectured resistance against quantum attacks [5,6]. Recently, there has been
a push towards basing cryptographic constructions on mathematical problems that are
believed to be computationally hard, even for a quantum computer [7]. Constructing cryp-
tographic primitives from such mathematical problems has the apparent advantage of both
preparing for a future where quantum computers are a reality and having cryptographic
systems whose security comes from alternative sources other than the usual ones, such as
discrete logarithm [8]. Lattice-based cryptographic constructions in particular have gained
an increased level of interest from the research community [9].

A lattice-based cryptographic construction has several advantages. On the security
front, it provides an opportunity to build cryptosystems based on a worst-case security
assumption, as opposed to constructions based on classical problems, such as integer
factorization (IP), that are based on average-case hardness [10]. A cryptosystem based
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on worst-case hardness security has the interesting characteristic of being secure as long
as a given computational problem is hard in the worst case, even for just one instance of
the problem. A lattice-based constructions also has conjectured resistance to quantum-
based attacks, as opposed to cryptosystems based on classical problems, which are easily
breakable using quantum algorithms, as Shor [11] has demonstrated. In terms of richness,
lattices enable the construction of cryptographic primitives and services that are otherwise
impossible, such as homomorphic encryption. Regarding efficiency and ease of imple-
mentation, lattice-based computations involve simple linear-algebra computations, such
as matrix-vector multiplication—which can be computed in parallel—and evaluations of
simple linear functions.

Motivated by the aforementioned conjectured assumptions, in this paper, we present
a cryptographic group-key establishment mechanism that is based on computational
problems on lattices, for which there are no known efficient classical- or quantum-based
algorithms. In particular, the cryptographic group-key establishment protocol is based on
the concept of a lattice trapdoor, which helps us invert a lattice-based one-way function
efficiently. Without the trapdoor, reverting the lattice-based one-way function is as hard as
the search version of the well-known learning with errors (LWE) problem [12].

The main contributions of this paper are the following:

• A new method of designing a cryptographic group-key management protocol from
lattice trapdoors is presented. Lattice trapdoors have been shown to be extremely
versatile for designing various cryptographic primitives such as digital signatures
and identity-based encryption (IBE) schemes [13]. The work presented here is a new
addition to the list of cryptographic objects that can be built from lattice trapdoors.
Since the computations involved are inherently lightweight, the protocol can be
implemented and deployed in various IoT environments; hence, they contribute
towards preparing the IoT for a future where quantum computers are a reality;

• A new mechanism for cryptographic group-key establishment where the group key
is not stored in any of the constituent devices, so that an attacker cannot learn the
cryptographic group key by physically examining a given device is also presented
here. Moreover, we exhibit efficient mechanisms for adding or removing users from
and to a secure group, in a manner that maintains standard security requirements,
such as forward and backward secrecy.

The rest of this paper is organized as follows. In Section 2, we briefly discuss related
work. In Section 3, we present basic lattice concepts that are essential for our subsequent
discussion. In Section 4, we describe our network model for which the group-key estab-
lishment is proposed. In Section 5, we present the proposed protocol. In Section 6, we
discuss the security and correctness of the proposed scheme. In Section 7, we discuss some
implementation and optimization issues. In Section 8, we conclude the paper.

2. Related Work

The design and implementation of cryptographic group-key management protocols
for the IoT has received a fair amount of attention from the research community [3,5,14].
The focus thus far has been on designing lightweight cryptographic group-key management
protocols based on conventional cryptographic primitives, which are not quantum-safe.
Transport layer-specific group-key establishment protocols, such as [14], suffer from the
problem that they are not transport-layer-agnostic, in addition to not being quantum-safe.
Other proposals, such as those based on elliptic curves [5], also lack the conjectured security
against quantum-based attacks and do not scale well since they rely on a trusted anchor.
Protocols such as [3,15] are lightweight and very convenient for the IoT, but are designed
for one-to-many communication only, and are based on conventional constructions that are
not quantum-safe.

Turning to lattice-based constructions, Lei et al. [16] have proposed an NTRU-based
key-exchange protocol similar to the well-studied Diffie–Hellman key-exchange proto-
col [17]. An obvious limitation of this protocol is that it cannot be extended to a group
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consisting of more than two users. The identity-based key exchange from the lattices
protocol proposed in [18] also cannot be used in settings where there are more than two
users in a network. In [19], a quantum-cryptography-based key-management protocol has
been proposed without considerations for the resource-limited nature of devices on which
it is to be implemented. Likewise, the quantum key distribution proposed in [20] is not
intended for resource-constrained devices. In [21], the authors present an NTRU-based
key-generation algorithm, but do not consider the problem of generating session keys or
adapting the protocol to resource-constrained devices. The work in [22] addresses a related
problem of how to secure IoT-like social networks based on the blockchain.

To the best of our knowledge, there does not appear to be any cryptographic group-
key-management protocols based on lattices or any other quantum-safe primitive designed
for resource-constrained IoT devices in the literature.

3. Preliminaries
3.1. Notation

We use bold lower-case letters, such as x, to denote column vectors; for row vectors,
we use the transpose xt. Bold upper-case letters, such as A, denote matrices, while At

represents its transpose. Ax denotes the usual matrix-vector multiplication, and 〈a, b〉
represents the usual inner product of vectors a and b.

3.2. Lattice Trapdoors

We recall some basic definitions and theorems—without proofs—that are relevant
to our discussion of the protocol. A more rigorous exposition of basic concepts about
lattices can be found in [13] or [23], and the computational complexity analyses of various
lattice-based computational problems can be found in [24].

Definition 1. A lattice L is the set of all integer linear combinations of some linearly independent
basis vectors B = {b1, b2, · · · , bk}. Formally,

L = L(B) := BZk = {
k

∑
i=1

zibi | zi ∈ Z},

where B is the matrix whose columns are the n-dimensional column vectors b1, b2, · · · , bk [13].

A given lattice L can be generated by infinitely many bases. Any two bases B1 and B2
of a lattice L are related by a unimodular integer matrix U such that B1 = B2U, and vice
versa with a different U [25].

A notion of goodness can be associated with lattices: a basis is considered good if its
vectors are short under some reasonable notion of norm (typically the Euclidean norm),
and are orthogonal or close to orthogonal to each other. A basis is otherwise considered
bad [26]. As we will see later, some lattice problems, which are computationally hard on
their own, become computationally easy if one has access to a good basis of the lattice. It is
this important fact that we will mainly use in our construction.

Definition 2. The minimum distance of a lattice L is the length of a shortest nonzero lattice vector:

λ1(L) := min
v∈L\{0}

‖v‖.

In general, λi(L) is the smallest r such that L has i linearly independent norm vectors
at most r. Here and everywhere else in this text, ‖.‖ denotes the Euclidean norm.

Theorem 1 (Intersection of Lattices). Given two integer lattices L(B1) and L(B2), the set
L(B1) ∩ L(B2) is also a lattice whose basis can be computed efficiently, i.e., in polynomial time in
the dimension of the lattices. It is easy to prove by induction that this can be extended to any finite
number of lattice bases [24]. Computing the intersection of two lattices is generally a slow process,
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but in our proof-of-concept implementation, we have devised a relatively fast process described as
follows: to compute L(B1) ∩ L(B2), first compute the dual L(B1)

∗ and L(B2)
∗ of L(B1) and

L(B2), respectively. Then, HNF(B∗1 ∩ B∗2) is the intersection of the two lattices, where HNF is the
Hermite normal form, and B∗1 and B∗2 are the bases of L(B1)

∗ and L(B2)
∗, respectively.

Definition 3 (Learning with errors (LWE)). Let X be a discrete Gaussian of a small width [27].
For a vector s ∈ Zn

q , called the secret, the LWE distribution As,X over Zn
q × Zq is sampled by

choosing a ∈ Zn
q uniformly at random, choosing e ← X , and outputting the vector (a, b =

〈s, a〉+ e mod q) [12].

3.3. Hard Lattice Problems

The following lattice problems—among many other lattice problems—are conjectured
to be computationally hard, in the sense that there are no known classical or even quantum
algorithms that can efficiently solve them.

Definition 4 (Search-LWE). Given m LWE samples, find the vector s.

Definition 5 (Decision-LWE). Given m independent samples (ai, bi) ∈ Zn
q × Zq, where every

sample is distributed according to either As,X (for a fixed s) or the uniform distribution, distinguish
which one of the two is the case.

Definition 6 (Bounded distance decoding problem (BDDγ)). Given a basis B of an n-dimensio-
nal lattice L = L(B), and a target t ∈ Rn, with the guarantee that dist(t,L) < λ1(L)/(2γ(n)),
find the unique vector v such that ‖v− t‖ < d, where γ is some function of n, where n is the
dimension of L.

One can easily show that search-LWE can be cast as an average-case BDD problem on
the following family of lattices:

L(A) := {Ats : s ∈ Zn
q}+ qZm, (1)

where A is the matrix whose columns are the ai ∈ Zn
q samples.

Although the BDD problem is computationally hard on its own, with a proper trapdoor,
it can be easily solved. We refer the reader to [24] for a rigorous analysis of the computa-
tional complexity of each problem, and various classical and quantum reductions between
different problems.

4. System Model and Security Requirements

The system consists of a set of IoT users, denoted by a universe U , as depicted in
Figure 2. Each user in the system is denoted by Ui, with i ranging from 1 to n, where
n = |U |. A secure multicast group is a subset G of U . The aim of the proposed protocol is
to enable each user in G to agree on a shared secret. Note that G is dynamic, since we want
to add or remove users to and from the group.

We assume that each pair Ui and Uj, i 6= j, in U have an authenticated channel
between them. This assumption allows us to rule out an active adversary that attempts to
break the protocol by injecting messages by masquerading as a legitimate user during the
key-establishment process. Although this assumption abstracts the practical problem of
authentication away, it allows us to focus only on aspects related to the secure cryptographic
group-key-establishment mechanism.

To simplify the analysis of the security of the system, we assume a reliable communi-
cation infrastructure (e.g., no packet loss due to interference).

Regarding security requirements, the first requirement is that a passive adversary—i.e.,
an adversary that attempts to learn something useful by only observing what is out in
the open [28]—cannot learn the shared secret key without solving a computational lattice
problem that is conjectured to be hard.
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Figure 2. Network model. The network consists of a gateway and a set of nodes, supported by a
communication infrastructure. All or a part of the nodes may be members of the secure group at a
given time, as shown in the figure (m of n nodes are in the secure group).

The second requirement, which follows from the first as a corollary, is that a passive
adversary cannot decrypt a group message that was encrypted using the shared secret key
without solving a computationally hard lattice problem. We also require that a new user is
added to or removed from the group in a manner that preserves forward and backward
secrecy [29]. Finally, we require that group sessions keys be independent from each other
to achieve forward and backward secrecy.

In summary, the security requirements are the following:

• Requirement 1: Any user Ui /∈ G cannot learn the group key without solving a hard
lattice problem;

• Requirement 2: Each session group key is independent from any other session key;
• Requirement 3: A user Ui is added to G in a forward- and backward-secrecy-preserving

manner.

The methodology consists in constructing a scheme and proving that it satisfies the
above-mentioned requirements, assuming that some lattice-related problems are computa-
tionally hard. To demonstrate feasibility, a toy version of the protocol will be implemented
and results analyzed.

5. Proposed Scheme

We start our presentation of the protocol by introducing the concept of a lattice trapdoor.

5.1. Setting Up a Lattice Trapdoor

Informally, a lattice trapdoor is a piece of information that enables one to invert a
one-way function defined on a lattice, which is otherwise hard to invert on its own. A
lattice trapdoor, in particular, enables one to solve the BDD problem.

Generally, there are two types of lattice trapdoors: short bases and gadget trapdoors [30].
We describe the proposed protocol using the notion of a short basis as trapdoor, although one
can also use gadget trapdoors without having to change much in the protocol construction.

An important property of any given lattice is that it can have arbitrarily many (short)
bases. Any one of the short bases can be used to invert a one-way function defined on that
particular basis. If one can devise a mechanism for generating a lattice along with many
short bases—one for each user—and securely save each short basis in each user, then each
user can use its short basis to invert the one-way function and extract a secret value, which
can then be used as a group key. That is the main idea behind the proposed scheme.

The first part of the protocol deals with setting up a trapdoor for each user Ui in the
group G. Although it is likely that each user will end up having a different trapdoor, we
will show that each trapdoor will enable each user to invert a common one-way function.
This is at the heart of the protocol—the fact that different but related trapdoors can be used
to invert a given one-way function.
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The lattice-based one-way function that we will rely on is the following LWE function:

gA(s, e) := stA + et mod q, (2)

where s ∈ Zn
q is chosen uniformly at random, and e ∈ Zm is a small vector chosen from

the LWE error distribution Xm. Inverting this function is equivalent to the search-LWE
problem [12]. With a trapdoor information, the function can easily be inverted. The
trapdoor is a short basis S of the lattice

L(A) := {Ats : s ∈ Zn
q}+ qZm.

With a short basis S, the function in Equation (2) can easily be inverted (i.e., s and e
can be recovered), given that the the parameters are chosen appropriately [30].

There are two challenges associated with setting up a trapdoor corresponding to the
function in Equation (2). The first challenge is how to generate a random lattice L(A) and
its corresponding short basis S. The second challenge is how to generate different short
bases Si for each Ui ∈ G, each corresponding to the lattice L(A).

In order to generate a random lattice along with a short basis, we use Ajtai’s method [31].
We recall it here as a theorem:

Theorem 2. There is an efficient randomized algorithm that, given positive integers n, q and
m ≥ Cn log q for some constant C, outputs a nearly uniformly random matrix A ∈ Zn×m

specifying the integer lattice L = L⊥(A) = {x ∈ Zm : Ax = 0 mod q} ⊆ Zm, along with a
basis S ∈ Zm×m of L whose vectors have norms bounded by poly (n, log q).

It is worth noting that the lattice in Theorem 2 corresponds to the short integer solution
(SIS) problem [32], and is a dual [33] of the lattice in Equation (1). Ajtai’s algorithm is slow
and complex for small IoT users. However, Micciancio et al. [30] have improved upon
Ajtai’s algorithm. Due to [30], it is now possible to generate a random SIS lattice along with
a corresponding short basis S efficiently and easily. This addresses the first challenge.

Regarding the second problem, assume that the users in G are indexed U1 through Uk,
where k = |G|. Without loss of generality, we may assume that U1 is the group leader, by
which we mean that it starts the trapdoor-setup process.

User U1 starts the trapdoor-setup process by broadcasting a group-join message. The
group-join message consists of a group ID chosen by user U1 and a short description of the
group. The group-join broadcast message serves as a signal to to each user Ui ∈ U to join the
group. We assume that a subset G of the users in U will respond to the group-join message
positively, i.e., will want to join the group.

Each user that wants to join the group simply broadcasts its ID. After a predefined
amount of time has elapsed, the leader broadcasts the set G = {ID1, ID2, · · · IDk} of all
received IDs. The set G gives each user Ui information about the user whose ID precedes it.
Broadcasting the set G helps the users in G form a logical ring structure in which each user
knows the user before it, assuming that a notion of ordering can be associated with respect
to the IDs.

User U1 starts the trapdoor-setup process by generating a lattice L1 = L⊥1 (A) =
{x ∈ Zm : Ax = 0 mod q} ⊆ Zm, along with a short basis S1, using the mechanism stated
in Theorem 2. It keeps S1 secret and makes L⊥1 (A) public. Note that this corresponds to
the idea of generating a good and bad basis pair, so that the good basis is used as a trapdoor
to a one-way function based on the bad basis.

Each user Ui, where i ranges from 2 to k, does the following: upon receivingLi−1, it gen-
erates the Li and Si pair as before, but with the additional requirement that Li−1 ∩ Li 6= ∅.
The problem of how to generate such lattice pairs has been addressed in [25]. We use a
slightly modified version of the algorithm discussed in [25] (please see Algorithm 1). Given
a lattice with a bad basis, Algorithm 1 generates a lattice with a Hadamard ratio [34] of
0.75, which is considered a good basis. Figure 3 depicts a lattice with a good basis gener-
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ated from a lattice with a bad basis (a Hadamard ratio of 0.37). In our proof-of-concept
implementation, we have used a less-optimized version of one of the algorithms proposed
in [25]. User Ui keeps Si private and makes Li ∩ Li−1 public. This round finishes with Uk
generating Sk and its corresponding Lk, with the requirement stated above. At the final
round, Uk makes Lk ∩ Lk−1 public. We call this last lattice LG. The trapdoor setup process
is shown in Algorithm 2.
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Algorithm 1: A Short-Basis Lattice from a Long-Basis Lattice

Input: Bad-basis lattice Am×n

Result: Short-basis lattice A∗m×n

line = (random()%m/2) + 1
A′ = gram− schmidt(A)
for i = 1 to m do

for j = 1 to n do
v = random()
A′ [i][j] = A′ [i][j]/v

end
end

while det(A′ )
||A1||2·||A2||2···||An ||2 )

1/n ≤ 0.75 do

A′ = gram− schmidt(A′)
end
Output A′ as the lattice with a good basis

Algorithm 2: Trapdoor Setup

Result: Si, 1 ≤ i ≤ k; A ∈ Zn×m defining LG
Input: m, q, n, k, C
U1 broadcasts group-join message and sets a timer;
Each Ui ∈ U that wants to join the group to which it sends its ID;
U1 creates G = {ID1, ID2, · · · IDk} and broadcasts it;
U1 generates the S1 and L1 pair, and broadcasts L1;
for i = 2 to k− 1 do
Ui generates the Si and Li pair, such that Li−1 ∩ Li 6= ∅
Ui keeps Si secret, and broadcasts Li

end
Uk generates the Sk and Lk pair
Uk keeps Sk secret, and broadcasts LG := Lk as the public parameter

We remark that LG is represented by the matrix A ∈ Zn×m, which defines a bad basis
for the lattice

L(A) := {Ats : s ∈ Zn
q}+ qZm.

The matrix A is a public parameter, and can be suitably stored in a public directory
which each user Ui can access, or be stored locally in each user.

See Figure 4 for an instance of the trapdoor-initialization process with four users.
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Figure 4. Trapdoor-setup procedure with four users.

5.2. Group Key from a One-Way Function with a Trapdoor

First, we note that LG ⊆ L(Si), 1 ≤ i ≤ k. This is true because LG = L(S1) ∩ L(S2) ∩
· · · ∩ L(Sm), which is a subset of L(Si), for each i ∈ {1, 2, · · · , k}.

By construction, LG is a lattice of the form

LG = {x : Ax = 0}

with parameters as specified in Theorem 2, and is specified by the parity-check [35] integer
matrix A.

Our one-way function is the following

gA(s, e) = stA + et mod q, (3)

where the matrix A is constructed as defined in Section 5.2, and e, s and q are chosen
according to the distributions specified in Definition 5.

5.3. The Group Key and Group-Message Encryption

The group key is some function f of s ∈ Zn
q . The function f could be a pseudo-random

function that takes s as its seed and expands it to a required bit-length suitable for the
encryption algorithm agreed upon in the group. It could well be a function that truncates
certain bits from s.

More formally, let E be the symmetric-key-encryption algorithm used to encrypt group
messages, and let M be the message space. To encrypt a message m ∈ M, Ui chooses
s ∈ Zn

q and an error e ∈ Zm, according to the distributions specified in Equation (1),
and outputs

c = E( f (s), m); (4)

Ui then computes the one-way function g(s,e) and appends it to c. The final com-
bined message is then simply broadcasted. Algorithm 3 describes how the encryption
process works.
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In the next section, we prove that only a user in G can recover s and, hence, decrypt
the encrypted group message c.

Algorithm 3: Group-Message Encryption
Result: Encrypted group message c, n, q
Input: Encryption algorithm E , message m, pseudo-random function f
Choose s ∈ Zn

q randomly
Compute key = f (s)
Compute c = E(key, m)
Broadcast c as the encrypted group message

5.4. Decrypting a Group Message

Decrypting a group message c involves first recovering s and then using the agreed-
upon decryption algorithm to recover m.

To recover s, each user Ui ∈ G uses its short-basis trapdoor Si to compute:

xt = bt(Si) = et(Si) mod q,

where

bt = gA(s, e) = st(A) + et mod q

The vector x is then lifted to its canonical representative [26] x ∈ [− q
2 , q

2 )
m, from which

we obtain

e = xt(S−1)

Computing s, given e, is straightforward, as shown in [13].

5.5. Adding a New Node to a Group

In a dynamic IoT network, there could arise a need to add a new user Ui ∈ U \ G to G.
A standard security requirement in such a scenario is that Ui does not learn any of the s
values used before it joins the group, nor is any group message exchanged prior to joining.
This is the usual backward-secrecy requirement [36].

Node addition is effected as follows: Ui reads off the public parameter LG. It then
generates an Si and Li pair, with the requirement that Li ∩ LG 6= ∅. Finally, node Ui
broadcastsLi ∩LG as the newLG. All other nodes in G update their copy ofLG accordingly.
The node-addition process is shown in Algorithm 4.

Notice that each user Uj ∈ G \ {Ui} does not update its copy of Sj when Ui is added
to G.

Algorithm 4: Adding a Node Ui to G
Result: A new LG, representing the new group parameter
Ui requests group leader U1 to send it a copy of LG;
Ui generates Si and Li, such that Li ∩ LG 6= ∅
Ui sends Li ∩ LG to U1
U1 broadcasts Li ∩ LG as the new LG
for each Uj ∈ G do
Uj updates its LG value to Li ∩ LG

end
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5.6. Removing a Node from a Group

Once a secure group has been established, the need to remove a node Ui ∈ G could
emerge for various reasons [37]. A common security requirement in such a scenario is that
Ui be unable to read future messages or have access to any of the future session keys [38].

In the proposed protocol, the only way to remove a node while maintaining the
said security requirement is to re-run the protocol from scratch, excluding the node to be
removed. This is a straightforward but inefficient method. An improved solution is left for
future work.

5.7. Generating Session Keys

Generating session keys in such a way that security requirements such as forward and
backward secrecy are maintained is not an easy problem. The proposed protocol easily
solves these problems since the session key is a value derived from s, where s is chosen
uniformly at random at each round. That is, if we let t represent the round number, the
s ∈ Rn used at round ti is independent from the s ∈ Rn used at round ti−1 or ti+1. So, if an
attacker ever succeeds in learning the value of s at any particular round, the attacker does
not learn anything about previous or future values of s.

In each round t, a user Ui that intends to broadcast a group message m chooses st ∈ Zn
q

randomly, computes c = E( f (st), m), and broadcasts c. A user Uj uses its short basis Sj to
recover st and runs the decryption algorithm using f (st) as the decryption key. If t and
t + 1 represent two consecutive rounds, or group sessions, then knowledge of st does not
help an attacker learn anything about st+1, nor does knowledge of st+1 reveal anything
useful about st. If each si is chosen sufficiently randomly and the LWE function is indeed
hard, then independence of session keys from each other follows easily.

6. Proof of Correctness and Security

By correctness, we mean that each Ui in G ends up recovering the same value of s. By
secure, we mean that no user U /∈ G can either classically or quantumly recover s. We state
each claim as a theorem and provide a proof for each.

Theorem 3 (Correctness). The group-key-agreement protocol is correct.

Proof. This amounts to proving that each S1 is a good (that is, short) basis for LG. Strictly
speaking, this is generally not the case since L(Si) ⊃ LG, for each i ∈ {1, 2, · · · , m}.
However, since LG ⊆ L(Si), and since each Si is a short basis by construction, each Si is a
trapdoor for g(s,e). The details of how s can be recovered given a short basis S can be seen
in [13] or [39].

Theorem 4 (Security). The group-key-agreement protocol meets the security requirements specified
in Section 4.

We only consider a passive adversary; that is, we consider an adversary that can
attempt to learn the group key or some partial information about the group key by inter-
cepting data that is in the open. We do not consider an active adversary.

• Requirement 1: An attacker that attempts to recover one of the short bases Si or
generate a new short basis for the lattice LG has to solve a version of the (approximate)
shortest vector problem (SVP) [40], which we conjecture to be computationally hard.
An attacker that attempts to directly recover the secret s by inverting the one-way
function g has to solve a version of the BDD problem, since the two problems are com-
putationally equivalent. The BDD problem is again conjectured to be computationally
hard. Therefore, a passive adversary cannot recover s without solving either one of the
two lattice problems. Since we conjecture the problems to be hard even for quantum
computers, we conclude that the protocol is quantum-safe. The confidentiality of a
message m encrypted using s follows as a corollary, assuming that the encryption
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scheme E is quantum-safe. The encryption scheme could be a standard protocol, such
as the AES, with a proper key length to account for possible quantum-based attacks;

• Requirement 2: This easily follows from the fact that, at each round, a user Ui chooses
s randomly;

• Requirement 3: By design, the addition of a new node Uj into G forces each node
Ui ∈ G to acquire a new LG that is not related to the previous LG or a future LG.

7. Results and Performance Analysis

We have implemented a proof of concept of the protocol on a simulated IoT network
on Contiki OS [41]. Using a 300× 300 full-rank lattice, which would be insecure for practical
purposes due to the small parameter sizes, each node takes 4.94 s on average to set up a
trapdoor. The restriction to small lattices was motivated by the memory-size-related limits
of the IoT-device simulators provided by Contiki [22]. One can extrapolate the encryption
and decryption times for larger lattices for the results obtained for smaller ones.

Encryption takes 0.023 s on average and decryption takes 3.04 s on average. With
proper optimization, these numbers can be improved, making the protocol fast.

Figure 5 depicts the running times for setting up a trapdoor on each node, encrypting,
and decrypting (128-bit key, 128-bit message) an IoT network consisting of 10 Raspberry Pi
3Bs [42].
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Regarding error rate, each node recovers the same s value—on average—92 percent
of the time, meaning that 8 times out of 100, decryption does not work. This is not a
significant problem, however, since one can use a reconciliation technique [43] to resolve
any discrepancies in decryption.

The main positive aspect about the performance of the protocol is that once a trap-
door is set up on each node, all the other functions—encryption, decryption, session-key
generation, and node addition—are effected in constant time, regardless of the size of the
network. Setting up trapdoors takes Θ(n), where n is the number of nodes in G. This is so
because the setting up of trapdoors is conducted in a sequential manner, but in principle, it
can be effected in parallel. The fact that most of the main functions of the protocol can be
achieved in constant time is a considerable improvement over other protocols available in
the literature, which take at least linear time in the size of the input [6]. Operations that
take constant time are especially desirable in larger networks.
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In concrete terms, setting up a trapdoor, the most time-consuming function, took less
that 5 s, albeit in a network with 10 nodes and a small lattice (300 by 300 dimensional
lattice). The other key-agreement-related functions took less than a second to complete.

Analyzing the protocol in relation to other protocols that solve the same or a related
problem is impractical due to the specificity of the design—different primitives, different
setups, and different construction. At an abstract level, our protocol outperforms related
protocols with respect to the running time and amount of storage required. See Table 1 for
the running times of each function of the proposed protocol. All the protocols discussed
in Section 2 that deal with the same problem have at least a Θ(n) running time for every
function. This is, of course, a crude comparison, because the operations involved in each
function are different. Regardless, a constant running time is a considerable improvement,
especially in large networks. With respect to storage, our protocol does not require a user
to store anything permanently since a session is constructed on the fly.

Table 1. The table shows the running time for each function as a function of n, where n is the number
of users in the secure group.

Function Running Time

Setting up trapdoor Θ(n)
Encrypting a group message Θ(1)
Decrypting a group message Θ(1)

Generating a session key Θ(1)
Adding a node Θ(1)

Removing a node Θ(n)

In this work, we only presented the basic building blocks of the protocol, without
regard to how it can actually be implemented efficiently. One issue with lattice-based
cryptographic constructions in general is the size of the security parameters. For a reason-
able security level, such as a 128-bit security level, the dimension of the lattice should be
greater than 500 [26]. This means that each device would need to store at least 2 matrices,
each in the order of 100s of kilobytes. This could be an issue for extremely small devices
with highly constrained memory sizes. This problem can be partially solved by using
the Hermite normal form (HNF) of the matrix A that describes the lattice LG [25]. This
optimization reduces the size of the matrix by a factor of n, where n is the dimension of the
lattice. A further improvement both in terms of storage and computation can be achieved
by defining the one-way function on the ring-LWE problem, which is more compact and
allows for faster computations using fast Fourier transform (FFT) techniques [44]. One can
then use Micciancio’s compact one-way function, which is syntactically similar to the one
presented here [45].

8. Conclusions and Direction for Future Work

In this paper, we have presented a new cryptographic group-key-management protocol
based on lattice trapdoors. The protocol enables a group of IoT devices to define a trapdoor-
based one-way function that only a device in the network can revert. We have shown how
one can construct a cryptographic group-key from the one-way function.

The results show that the protocol can be implemented on resource-constrained IoT
devices. Moreover, the fact that most of the functions of the protocol can be effected in
constant time is an important improvement on similar protocols that attempt to solve the
same problem.

The advantage of the protocol is twofold: First, it is highly lightweight since the
computations involved are simple linear-algebra operations that are parallelizable and
evaluations of simple linear functions. Second, it provides conjectured security against
potential quantum-based attacks and has security based on worst-case hardness assump-
tions. We have also demonstrated how to add a user to a secure group dynamically, while
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maintaining the necessary security requirements, all in constant time, regardless of the size
of the network. The protocol can be potentially deployed on various IoT networks, and
help secure such networks against future quantum-based attacks.

The protocol can be improved in future work by expanding the security model to in-
clude an active adversary, devising a parallel bad/good lattice basis-generation mechanism,
and optimizing the implementation.
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