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Abstract: Smart maintenance is essential to achieving a safe and reliable railway, but traditional
maintenance deployment is costly and heavily human-involved. Ineffective job execution or failure in
preventive maintenance can lead to railway service disruption and unsafe operations. The deployment
of robotic and autonomous systems was proposed to conduct these maintenance tasks with higher
accuracy and reliability. In order for these systems to be capable of detecting rail flaws along millions
of mileages they must register their location with higher accuracy. A prerequisite of an autonomous
vehicle is its possessing a high degree of accuracy in terms of its positional awareness. This paper first
reviews the importance and demands of preventive maintenance in railway networks and the related
techniques. Furthermore, this paper investigates the strategies, techniques, architecture, and references
used by different systems to resolve the location along the railway network. Additionally, this
paper discusses the advantages and applicability of on-board-based and infrastructure-based sensing,
respectively. Finally, this paper analyses the uncertainties which contribute to a vehicle’s position error
and influence on positioning accuracy and reliability with corresponding technique solutions. This
study therefore provides an overall direction for the development of further autonomous track-based
system designs and methods to deal with the challenges faced in the railway network.

Keywords: localisation; sensor fusion; railway maintenance; autonomous systems

1. Introduction

Rail transportation demand is steadily increasing over the world, particularly in
metropolitan regions with rapidly growing populations. Even in Europe, where population
growth is slower, estimates show an increase in the proportion of people who travel
by train. This causes national railways infrastructure maintenance and renewals costs
across a total of around 300,000 km of combined track and exceeding €25 billion per
annum across Europe [1,2]. Harnessing data and analytics could help European rail
infrastructure operators to better target their maintenance spending more productively. In
Great Britain’s rail network, there are 40,000 bridges and tunnels, 9000 level crossings, and
9941 miles (16,000 km) of railway tracks. It has been reported [3,4] that in Great Britain
the rail network experiences 4.7 million train journeys every single day, demonstrating the
importance of railway infrastructure. Railways require regular maintenance to ensure safe
operating conditions. It costs over £1 billion per annum in the UK, accounting for 18% of
Network Rail’s overall expenditure [5,6]. The high-level quantitative information relating
to maintenance is depicted in Figure 1, which shows the trends in total maintenance in
terms of 2020–2021 prices. Maintenance expenditure has been steadily increasing since
2013–2014 and is expected to reach over 1830 million pounds in 2020–2021.
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Figure 1. Total maintenance expenditure, 2011–2012 to 2020–2021 (2020–2021 prices).

Therefore, preserving or improving the safety, reliability, and quality of the whole
railway system is a key challenge, and is paramount for passengers, employees, and the
entire rail network. Without reliable rail track maintenance, the safety of the rail network
will be at risk, and delays would occur regularly. For these reasons, innovative maintenance
solutions for railway systems, as well as the integration of maintenance into operations, are
constantly studied and developed to ensure a better management of the railway network.

Today, different industry sectors benefit from automation, which has led to the devel-
opment of a number of robotic solutions to maintain and repair applications in the industry.
For instance, miniature robot models have been applied in different maintenance tasks,
including in highways, aircraft servicing, underwater facilities, power line maintenance [7],
fault detection [8], and track cleaning or performing repair jobs such as 3D printing [9,10].
A wheeled robot with a manipulator can undertake a variety of dangerous and remote op-
erational tasks such as tunnel inspection [11] or the cleaning of nuclear reactors [12]. They
could also be utilised in the inspection and maintenance of railway tracks [13]. Automation
and computational intelligence techniques can dramatically improve the efficiency and ef-
fectiveness of maintenance. This guideline additionally applies to the railway maintenance
industry [14].

Many different robots have been designed to do various railway track maintenance
tasks; however, most of them are limited to specific scenarios, uses, or applications [15]. To
perform the intended tasks, autonomous robots, as with all other technical systems, must
meet certain requirements that vary depending on the individual application or task.

Autonomous systems will be one element involved in solving the trade-off between
the transport capacity challenge and the maintenance cost and time reduction. Rail infras-
tructure managers from all over the world are interested in developing automatic inspection
systems that can detect rail flaws, sleepers’ irregularities, and missing fastening elements
as high-speed railway traffic grows. These systems can improve the ability to detect defects
and minimise inspection time, allowing for more frequent railway network maintenance.
The condition of the railway track is also monitored as part of the maintenance strategy [16].
Currently, industries use equipment for inspection and maintenance activities separately;
these two activities have not yet been merged. The introduction of artificial intelligence
(AI) and cognitive analytics technologies into these two procedures can make the entire
process dynamic and autonomous [15].

In this paper, firstly, the role of robotic and autonomous systems in track maintenance
are discussed as well as the objectives and the related maintenance techniques. Following
that, a number of challenges related to the autonomous maintenance vehicles are reviewed
and various ways of positioning on the railway track are investigated. Next, sensors and
their functions in localisation as well as several fusion approaches aimed at enhancing
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positioning accuracy on the railway track are pointed out. Finally, the sources of uncertainty
contributing to errors in railway location systems are highlighted.

2. Railway Maintenance Objectives and the Related Techniques
2.1. Maintenance Policy

Rail track maintenance encompasses all technical and administrative actions aimed
at inspecting, repairing, and maintaining railway tracks in order to keep trains moving
smoothly and securely while also extending their service life [17,18]. The following are the
primary objectives of railway track maintenance:

1. Due to the high speed of trains, heavy axle loads, and repetitive loads, the track
structure’s strength continues to deteriorate.

2. The track structure is subjected to various degrading factors such as rain, sunlight,
and wind. The deterioration of rolling stock and rails is unavoidable.

3. The track structure has to withstand so many other curvatures, speeds, and load
effects, particularly at curves, points, and crossings.

For these reasons, it is critical to maintain railway track on a regular basis. Railway
maintenance tasks, however, are costly, and poor maintenance or an inability to conduct
preventive maintenance will result in severe consequences. As a result, the application of
robotic and autonomous systems in this area is proposed to undertake these maintenance
tasks with higher accuracy and reliability. According to the conducted research in [19], the
majority of robotic and autonomous systems advances in railway inspection and mainte-
nance areas are related to the rolling stock and rail track, with 56% and 28%, respectively.
The cost-effectiveness of robotics automation in railway track maintenance and related
tasks have been already proven [20].

Today, track maintenance—including replacement, track stabilization, ballast injection
(stone blowing), sleeper replacement, tamping the ballast, excavation, spiking rail, tighten-
ing bolts, and aligning the track—is achieved through the utilisation of highly specialised
machines [21]. A number of these robots are massive and can conduct more than one task,
for instance, ballast tamping combined with track lining and leveling. However, in order
to get the best result for each part, it is decided that a specific robotic system should be
applied for each task. As a result, each individual robot will concentrate on a single target
for doing a highly specialised and efficient job.

In terms of railway track maintenance, a fully autonomous robotic system detects
and removes sleeper bolts, feeds new fastener, and assembles them in high-speed train
lines [22]. Rowshandel et al. [23,24] suggested an integrated robotic system comprising of a
mechanised trolley, a robot, a commercially available alternating current field measurement
(ACFM) device, and a laser distance sensor for the highlight precise identification and
characterisation of surface-breaking defects in rails. Auto-Scan [25] is another example
of an autonomous rail inspection system. It is an autonomous trolley that detects defects
on the railway track using electromagnetic acoustic transducers (EMATs). RailPod [26],
a commercially available autonomous rail inspection robotic platform, can run both on
and off track, but only on plain surfaces, because it has both rail and pneumatic wheel
reconfigurable mechanisms.

A robust rail condition monitoring methodology was proposed in [27], in which a
laser scanner mounted on a moving rail vehicle to detect track fractures, scorings, and
excessive wear was applied. An autonomous track geometry diagnostician’s computer
system which flags poor track locations was proposed in [28]. Missing or broken track
components including bolts, clips, ties, tie plates, anchors, and turnout components have
also been detected using robotic and autonomous systems [29]. For instance, a new method
for detecting missing or defective rail fastener problems has been proposed in previous
research [30] which uses the histogram of oriented gradients information and a mixture of
linear Support Vector Machine (LSVM) classifiers.

Besides providing infrastructures with an autonomous maintenance vehicle, proper
maintenance of railway assets is also necessary and should be done periodically. This
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can be periodic updating, periodic comprehensive maintenance, regular inspection, and
key repairing of track [31]. Services are at significant risk of failure if they are not prop-
erly maintained, with negative consequences for user satisfaction and asset professionals’
performance. As a result, two types of maintenance techniques have been established by
National Rail to keep the tracks as functional as possible: preventive and corrective railway
maintenance. Both demand a significant amount of resources, specialised equipment, and
well-trained personnel [32].

2.1.1. Preventive Maintenance

Preventive maintenance (PM) is an important part of maintenance activity. An integral
aspect of PM is systematic inspection, detection, and repair of incipient failures, either
before their occurrence or before they proceed to a failure state, by competent persons
involved in maintenance [33,34]. The main goals of PM are to extend the useful life of
capital equipment, reduce critical equipment breakdowns, improve the planning and
scheduling of needed maintenance works, reduce production losses due to equipment
failures, promote the health and safety of maintenance personnel, and provide maximum
system reliability and safety with the least amount of maintenance resources [35]. PM is
divided into the following options, as shown in Figure 2:

1. Inspection: comparing physical, electrical, mechanical, and other properties (as ap-
propriate) to the expected standards to evaluate the serviceability of materials/items.

2. Servicing: cleaning, lubricating, charging, preserving, and so on, of items/materials
on a regular basis to avoid incipient breakdowns.

3. Calibration: determining the value of an item’s attributes on a regular basis by
comparing it to a recognised standard with known accuracy.

4. Testing: testing or checking out on a regular basis to verify serviceability and discover
electrical/mechanical degradation.

5. Alignment: changing the stated variable aspects of an item in order to achieve opti-
mum performance.

6. Adjustment: periodically modifying specified material variable parts in order to
achieve optimal system performance.

7. Installation: regular replacement of limited-life parts or equipment experiencing time
cycle or wear degradation to maintain the stated system tolerance.

Figure 2. Elements of preventive maintenance.

Preventive maintenance for these operations takes place at specified intervals or
according to certain criteria to limit the likelihood of equipment failure or degradation in
their functioning. Because of the structure of a rail track, each element must be considered,
as mispositioning of one of them might result in poor alignment and, in the worst-case
scenario, train derailment. As a result, it can be divided into two parts: day-to-day
maintenance (scheduled continuously) and seasonal maintenance [36].

• Day-to-day maintenance:

The goal of this type of maintenance, from first inspection to final control, is to get
the track operational and running as soon as possible. Three main units are mostly used
for maintaining the track: stoneblowers, tampers, and Dynamic Track Stabilisation (DTS)
machines [37]. These machines are employed for large-scale refurbishment projects, while
a vast fleet of other units operates for smaller tasks. Stoneblowers and tamping machines
act on the ballast and the rail. These three devices allow the track to be repositioned and
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reinforced. The purpose of the operations is to fix the track’s position by shifting the ballast
and adjusting rails and sleepers. However, maintenance also entails the removal of defects,
particularly from the rail. As previously stated, the rail is prone to many failures as a result
of the train’s passing and the force exerted, and if not addressed promptly, the defect might
spread and lead to the disintegration of the rail [38]. The most common rail problems are
head check, gauge corners, cracks, and squats, which begin on the rail surface but spread
deeper if trains continue to run [38]. This can be kept in check by routinely grinding the
rail surface and lubricating the joint between the rail and the wheels.

• Seasonal Track Maintenance:

Weather is another factor that that has a significant impact on the train’s operating
conditions. Temperature changes, leaves, plants, and ice can either damage the track or
limit the train’s abilities. The functional operation of the track, as well as the safety of
passengers, are significantly influenced in this circumstance [39]. Various operations are
carried out to address this problem depending on the weather conditions. In the winter, for
instance, rails are prone to freezing and ice formation; in this situation, scraping or blowing
hot air and then spraying hot liquid on the rail will prevent the rail from freezing [38]. In
autumn, leaves on the rail reduce the friction between the wheels and the rail, causing
friction to increase and the train’s wheels to hardly adhere to the rail, especially during
acceleration phases. In this situation, the Rail Head Treatment Trains (RHTT) blowing
high pressured air would remove the leaves. It then adds an adhesion gel to the wheels
to strengthen their grip on the rail. Workers are also meant to cut down the trees that
are suspected of colliding with the train. Plants on the railway track begin to grow in
the summer, causing the track’s structure to become unsettled. In this case, herbicides
are sprayed on the track to kill the seeds, and vegetation is pruned back to maintain the
accessibility of the track. Another issue in the summer season is temperature. As rails are
thermal conductors, they retain the heat. As a consequence, they expand and are no longer
in their proper position [38], meaning that trains are subject to derailment. To prevent this
failure, some parts of the rail are painted in white to reflect the sun’s rays. However, in
other circumstances, preventing expansion is insufficient, and the rail tension is adjusted to
allow the track to dilate and stretch without buckling.

2.1.2. Corrective Maintenance

Corrective maintenance (CM) is the task of locating, isolating, and resolving a fault
so that failed equipment can be substituted or restored to an operational condition within
the tolerances or limits set for in-service operations [33]. It plays a significant role in the
efficiency of maintenance organisations. Sometimes, the track is too damaged to be restored
or upkeep may be too costly [32]. In this case, corrective maintenance—which consists in
replacing the degraded pieces [34]—is undertaken. Concerning railway maintenance, two
types of operations are carried out depending on the damage level. If only a small portion
of rail requires repair—for instance, replacement of a small part—manual operations are
done, including cutting out the defective rail part, removing the rail part from the site
using the road-rail vehicle, clearing the space around it, bringing the new rail, proceeding
to illuminate thermic welding, proceeding to profile and grinding, and inspecting the
final rail [32]. However, for more advanced maintenance, specifically designed machines
conduct the tasks.

The CM process takes time to be achieved and requires the use of multiple machines
as well as the participation of several personnel. The activities for larger maintenance are
almost entirely automated. Track renewal is done when the rails have sustained too much
damage. From the dismantling of the previous rails through to the inspection of the new
track, a special purpose machine is employed to assure the complete replacement of the
track [40]. In total, CM may be classified into five major categories: fail-repair, salvage,
rebuild, overhaul, and servicing, as shown in Figure 3:
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Figure 3. Elements of corrective maintenance.

Overall, maintenance is critical in the railway industry since it ensures both safety
and profitability. In the railway industry, there has been a tendency toward increased
automation and productivity. As a result, it has become larger, more expensive, and more
technically complicated than ever. The track infrastructure is a significant part of the
railway system, and its upkeep is a key financial consideration in technical, administrative,
and managerial decisions.

Now, in order to do autonomous maintenance, it is necessary to first identify the
location of the railway vehicle precisely. Therefore, in the next section, possible approaches
are investigated.

3. Railway Vehicle Localisation Strategies

Railway vehicle positioning plays a prominent role in the safety of the system since the
positioning information is used for train separation and control. Rail vehicles are confined
to travel along the railway and an error in train location might result in a dangerous
overestimation of braking distance. Therefore, an accurate and reliable estimation of
the location of rail vehicles such as trains, trams, subways, and rail-robots is critical to
rail-system management [41,42]. A wide range of sensors and infrastructures have been
proposed and implemented for railway vehicle positioning, and so their classification is
required. These sensors are mostly divided into two classes:

(1) Elements in the railway environment (infrastructure-based)
(2) On-board sensors (infrastructure-less)

3.1. Track Infrastructures-Based Strategy

Infrastructures in the railway environment are used as a way of determining the
location of trains on the railway track. Examples of track-side sensors are magnetic coils,
cable loops, contacts, track-circuits, axle counters, transponders, and radio balises [43,44].
A number of these are shown in Figure 4. The presence of a train on rail tracks, for example,
is detected using a track circuit (a simple electrical device). This equipment is not devoted
to locating the train specifically but rather to locating it indirectly on a track portion. The
location can also be determined using detectors installed along the railway, which are used
for train protection. These sensors could be transponders (balises), which communicate
with the train’s on-board equipment when the train passes over them [45]. At best, this
technology can provide train position information with a precision of a few hundred metres,
which is sufficient for providing a train safety system, especially when there is a risk of
collision. The collision avoidance operations are accomplished by the protection systems
with interlocking [41], specifying whether or not a train can access a track section/block.
As a result, any future obstruction on the railway track is avoided. However, the main
drawback of these localisation solutions is installation and the high cost of maintenance.
Because of this, these infrastructures are usually spread along the railway track, with
distances ranging from tens of metres for current Radio-Frequency Identification (RFID)-
based systems to tens of kilometres for conventional commercial transnational railway
systems [41]. In terms of application, balises or cable loops are mostly used in continuous
train control systems such as the European Train Control Systems (ETCS) Level 2 or the
German LZB (Linienzugbeeinflussung) with the goal of better localising the train [46].
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Currently, localisation strategies—for example, those used in subway applications—rely
heavily on ground sensor infrastructure such as balises/tags and beacons [47,48].

Figure 4. Track-side infrastructures.

3.2. On-Board Sensors

On-board sensors include tachometers, inertial sensors, satellite-based positioning
systems, and other on-board sensors [49]. Several on-board sensors are shown in Figure 5.
In terms of train positioning based on these sensors, all the components and computations
parts are on-board, and in contrast to infrastructure-based localisation methods, it also
requires a map of the railway tracks [50]. The track map contains the tracks’ information
and connections, and the measurable features of the track, providing a reliable position
estimation. There are multiple approaches to train localisation based on on-board sensors
and a map, and they are different in terms of sensor types or combinations, processing
methods, and evaluation scopes [50]. A combination of a Global Positioning System (GPS),
Doppler measurements, and a track map is studied in [51].

Figure 5. On-board sensors: (a) stereo depth camera; (b) environmental camera; (c) IMU; (d) RTK-GPS;
(e) 3D Lidar.

Much research has been done in the field of train positioning methods based on GPS.
For instance, European Train Control systems (ETCS) level-3 use GPS especially for train
integrity confirmation [52,53]. Due to the train’s complex environment, using only GPS
cannot afford reliable position data in some specific scenarios such as tunnels, hilly regions,
and urban canyons [54]. Therefore, multi-sensor fusion positioning methods have been
proposed in this regard [55,56]. A fusion of GPS and Inertial Navigation System (INS) is
widely used as a localisation system [57]. This system works properly when there is a
continuous correction by GPS; otherwise, there is a cumulative position error caused by INS.
In other words, if there is no GPS correction, using the Inertial Measurement Unit (IMU)
alone for a long time will result in a huge offset. Therefore, more sensors and information
sources are necessary to precisely and consistently locate the train, such as odometers, eddy-
current sensors, Doppler velocity sensors and accelerometers, digital maps and wayside
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transponders such as RFID or balises, and other on-board equipment [58]. The necessity of
augmenting GPS with other measurements for operational and safety reasons is discussed
in [59,60].

A multi-sensor scheme that collects data from various sensors installed on the vehicle
(specifically, an IMU and a GPS) and performs a Kalman-based filtering recursion is
investigated in [61]. That study focused on solutions that could be used on every rail
vehicle regardless of the ground equipment on the specific lines. In another study [62], an
adaptive multi-sensor data fusion technique for the precise assessment of the train’s position
and velocity, based on three on-board sensors—longitudinal accelerometer, odometer, and
GPS receiver unit—is suggested. A localisation technique for railway vehicles, based on
the fusion of tachometer and IMU and with the aim of performance enhancement in terms
of speed and position estimation accuracy, is introduced in [63]. This fusion was thanks to
Kalman filtering (KF) theory. Another piece of research [64] presents a particle filter-based
localisation approach for a rail-guided robot. A particle filter was considered to integrate
odometry with inertial measurements, laser scans, and image data. As a result, a rail map,
a motion model, and a perception model were developed to implement a 1D estimation.

Dead-reckoning systems such as eddy current sensors [65,66], Doppler radar [67],
Inertial Measurement Unit (IMU), and optical imaging [68] are applied for vehicle posi-
tioning based on estimating distance and direction of travel from a known fixed point.
However, these systems lead to uncertainty due to inherent cumulative errors which are
typically caused by wheel slippage, wear of wheels and mechanical parts, bias, and hys-
teresis, etc. [69]. Therefore, these sensors cannot be utilised alone for long periods of time
in safety-critical applications such as collision avoidance and train automation [70], and
need to be reset periodically to improve localisation accuracy. For this reason, whether
they are used alone or in combination, they must be merged with GPS [71] or track-side
markings such as RFID-type devices or balises [67]. The fusion of GNSS, inertial sensors,
and odometry was examined in [72].

It is worth mentioning that current train-borne localisation systems using GNSS,
odometers, and track maps have severe shortcomings concerning accuracy and reliability.
The problem is that they cannot always determine immediately which of several parallel
tracks the train is situated on. This is the most important prerequisite for the safety of
railway vehicle control systems [73]. Therefore, lidar sensors are the most promising
choice to complement those systems proposed in train localisation [74]. They are used for
identifying large structures and environmental changes (e.g., exiting a tunnel or entering
a station) based on a topological map of those features. It can be said that, in the case of
train positioning, lidar is related to the topological landmark detection, as in the work
of [43]. This information is then utilised to verify other sensors’ location estimates and reset
dead-reckoning errors.

On-board train localisation from the perspective of safety assessment was investigated
in [44]. The researchers attempted to answer the question of how an on-board train
localisation system can be designed so that it ensures safe operations. They propose a
generic approach that is not reliant on specific sensing devices. The system is based on
three sources of information: a GNSS receiver, a velocity sensor, and a digital track map.
Figure 6 represents the components of an on-board localisation system that fuses the
incoming information from the on-board sensors. It determines the position of railway
vehicle without relying on any trackside aids.

In another classification, Durazo Cardenas et al. [54] cited the positioning sensors
based on the principles of the sensor’s technology. They gathered four types of general
location systems: GNSS [75], radiolocation [76], proximity [77,78] and dead-reckoning
systems. A summary of these sensors can be found in [54].

In Table 1, a number of on-board sensors and track-side infrastructure are compared
with each other in terms of absolute and relative positioning, rate of frequency, long-
term and short-term baseline, outage difficulties, and environmental impact. In this table,
absolute localisation refers to a global localisation solution which relies on the GNSS
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constellations or landmarks to restore the position and orientation information with regard
to a global reference frame [79]. Relative localisation refers to a local localisation technique
which uses on-board sensors and kinematic models to estimate the robot’s pose relative to
its initial pose [79]. Baseline is defined by the distance between the rover and a reference
point [80]. For instance, in terms of applying GPS, baseline is about the vehicle and the base
station. The length of the baseline varies between short, medium, and large [80]. Another
parameter in this table is outage issue, which refers to the unavailability of a sensor for a
period of time, which can be due to different reasons. For example, GPS could have an
outage issue inside the tunnels, near the buildings, or in urban canyons, and so on [81].
The last parameter is environment impact, which includes any changes in the environment
such as rain, snow, fog, or any natural change in the environment.

Figure 6. Main components of a railway vehicle positioning.

Table 1. Train Positioning Sensor Characteristics.

Type Positioning
Sensors

Usual
Rate of
Freq.

Absolute
Position-

ing

Relative
Position-

ing

Long-Term
Solution

(Large
Baseline)

Short-
Term

Solution
(Short

Baseline)

Outage
Issue

Environmental
Impact

On-board
sensors

IMU [49] 100 Hz No Yes No No No No

Wheel
sensor

(tachome-
ter or

odometer)

10 Hz No Yes No Yes No Yes

GNSS [49] 20 Hz Yes No Yes Yes Yes Yes

Eddy
current

Sensor [49]
N/A No Yes No No No No

Track-side
equipment

RFID N/A No Yes No Yes No Yes

Balise N/A No Yes No Yes No Yes

In the following section, firstly, the application of the most used on-board sensors and
track-side equipments in a railway system is provided. Next, the main functions, as well as
their usual rate of frequency, and their advantages and disadvantages, are investigated.
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4. Sensor Hardware

As has been previously mentioned, one of the most important challenging tasks
within any autonomous driving framework is localisation from data collected in real time.
Therefore, accurate and reliable measurement of on-board systems plays a critical role for
the vehicles moving on the railway track. There are various sensors for measuring the
position and speed of railway vehicles. The most common ways include: tachometers,
transponders, balises, INS, Doppler effect, and GPS [69]. A comparative survey highlighted
benefits and drawbacks associated with different sensor types [82,83]. These sensors can
be evaluated and classified according to several parameters, including cost, accuracy,
reliability, sensitivity, coverage, speed of response, and availability [69]. Accurate and
reliable odometry information may be achieved using a number of these sensors, whose
redundant or complementary data are combined intelligently to produce more accurate
and reliable information. In the following, each sensor is described briefly.

• Tachometers:

Wheel angular speed sensors are widely diffused in railway applications due to their
resilience and reliability. They are frequently employed as a principal form of speed
measurement equipment. Through this type of sensor, when pure rolling conditions occur,
the train speed can be simply estimated [84]. Various types of tachometers have been
developed and applied, including optical, capacitive, active, and passive electromagnetic
tachometers; however, the incremental optical tachometer is more accurate and efficient
than the other types. A tachometer’s accuracy is usually impacted by a variety of sources of
errors, including noises in mechanical and electrical parts, mechanical imperfections, wheel
slip and slide, sampling frequency, and alteration in the wheel diameter as a result of wear
and turning [69,84]. A number of approaches for correcting the position inaccuracy caused
by slip and slide have been proposed and carried out, including correction by marginal
distance, mutual correction of numerous axles, and frequent resetting of the position using
transponders [85].

• Transponders:

Passive and active transponders are track-based items that are used in conjunction
with on-board odometers (integrating tachometers), representing a reliable method for
measuring the position of a train [69]. They have been used by numerous railway operators.
The transponders transmit a signal to the train-based receiver that includes information
on their position and in some circumstances signaling information. Increasing the number
of transponders along the track to reduce the positioning error results in higher costs and
lower reliability in the system [69].

• Balise:

A balise is an electronic beacon or transponder that is installed between railway tracks
as part of an automated train protection (ATP) system. It provides the train a position
reference as well as direction information. It is an example of a transponder fixed on the
track to correct the position uncertainty that builds up within the train location subsystem
over the time. Balises, as magnetically coupled transponders, do not require a steady
energy source [86], and can be termed as passive. The balises are placed at approximately
regular intervals, with the distance between them being determined based on two factors:
the speed of the trains and complexity of the railway [87]. As it is important for the trains
to stop precisely at stations, point zones, and buffer stops, up to eight balises are required
at a minimum interval defined by the design [87]. In order to increase the possibility of
balise detection by the train and decrease the possibility of the train failing to read a balise,
the use of more than one balise in critical stopping locations is considered.

• Doppler Radar:

Based on the principle of the Doppler frequency shift effect, Doppler radar can cal-
culate the train’s immediate speed by analysing the frequency difference between the
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radar transmitted and reflected wave [88]. It is a non-contact sensor with two microwave
antennas that gives accurate and consistent results independent of reflecting surface or
vibration [89]. Compared to a tachometer, Doppler radar is found to provide more accurate
data [90]. Heide et al. [91], by doing a number of experiments, demonstrated that the use of
a coded 24 GHz Doppler radar can provide high precision data (within 20 db) for vehicle
position and speed measurement. On the other hand, Malvezzi et al. [92], while discussing
odometric estimation for a train protection system, stated that Doppler radar output is
often affected by noise and systematic errors. Mirabadi et al. [69] also stated this issue
and identified sources of errors including very smooth reflective surface and change in
radiation angle owing to acceleration and braking action, vibration, and bias error.

• Inertial Navigation Systems (INS):

INSs are navigational systems capable of measuring the acceleration, speed, and po-
sition of a moving train along the stable axes [79]. An INS is a system that is basically
composed of at least three gyros and three accelerometers to derive a navigation solution.
The accelerometer will measure the acceleration of the vehicle by integrating the accelera-
tion signals both speed and position data. On the other side, gyroscopes are used in order
to measure an angular rotation of the vehicle [93]. They can be used to obtain accurate
information of the trajectory of the train in a horizontal and vertical direction. Unlike
tachometers, which depend on wheel rotations, the INS system is self-contained, and this
is a major advantage of this system. They do not need a line of sight such as GPS. They can
be used in any weather condition and environment, both underground or overground.

• Global Positioning System (GPS):

GPS is a satellite-based radio navigation technology which is the core functionality for
any navigation system [79] and provides absolute position information with a known ratio
of error. The fundamental advantage of GPS is its long-term stability and its resistance to
the accumulation of errors over time. GPS is mainly utilised for more than simple outdoor
navigational tasks and it is effective in areas with a clear view of the sky. However, GPS
sensors are ineffective in certain areas such as tunnels, forests, underground, and underwa-
ter spaces [94]. They also have outages caused by satellite signal blockage, occasional high
noise content, multipath effects, low bandwidth, and interference or jamming. Common
GPS sensors are utilised for positioning, which has an accuracy of 10 m. This does not
provide sufficient accuracy [95] for train localisation.

• Light Detection and Ranging (LiDAR):

The lidar sensor is an optical device which uses laser light pulses to gather information
from surfaces in the form of “points” (3D coordinates). Compared with cameras, the lidar
sensor operates more reliably at different weather conditions and is less influenced by
the lighting or weather conditions due to the infrared laser that provides an adequate
illumination. Therefore, even in tunnels or under bridges, appropriate measurements can
be obtained [73]. LiDAR sensors are also widely deployed in railway applications for
different reasons, including object detection and collision avoidance, and in level crossings
for detecting whether there are passenger cars, trucks, or people [96]. In [74], the application
of LiDAR in a train-borne localisation system is investigated. It is mentioned that position
measurements at turnouts remain ambiguous. The combination of GPS, velocity sensors,
and digital track map are not capable of addressing the challenges of unavailability of GPS
in some parts of environments, and velocity sensors can fail to specify which branch at
a turnout is taken by a train. In [97], a 2D Lidar is deployed in an underground railway
environment to specify high-speed train localisation.

• Visual sensor:

There are various publications related to the deployment of vision sensors in railway
inspection and maintenance applications such as the detection of missing bolts, railhead
wear, and other surface geometry inconsistencies [98]. A vision system consisting of
a monocular thermal camera mounted on a train for detecting the rails in imagery as
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well as for detecting anomalies on the railway is pointed out in [99]. In another piece of
research, a prototype system for railway object detection, installed in the cab of a train,
is presented [100]. The aforementioned system consists of a single camera that acquires
images of the railway scene in front of the train and a near-infrared laser primarily used
to add illumination to the area the camera is directed at when the light is insufficient.
A summary of the publications describing traditional computer vision approaches are
described in [101]. The advantages of cameras over other active sensors are high data
density and visual information, enabling the detection of the boundaries of objects and the
classification of these objects precisely.

In Table 2, some of the positioning sensors, including on-board sensors (infrastructure-
less) and elements in the railway environment (infra-structure-based) are mentioned, along
with their functions, advantages, and disadvantages.

Table 2. Advantages and disadvantages of sensor used in rail applications.

Category Sensor Function
Usual

Sampling
Frequency

Advantages Disadvantages

On-board sensor
(infrastructure-

less)

Tachometer [69]
Measuring the

rotational speed of
a machine.

20 Hz High short-term accuracy,
efficiency, and reliability

Low resolution, electrical
noise, impacted by

mechanical imperfections
such as backlash,

polynomial accuracy
degradation in the presence

of slip and slide between
the train wheel and track

INS [54,69]

Tracking the position
and orientation relative

to a known
starting point

~100 Hz
High short-term accuracy
and reliability, not subject

to interference outages

Polynomial accuracy
degradation, error

accumulation over time

GPS [54]
Suppling an absolute

position information in
world coordinates

1 Hz

High short-term accuracy
and reliability in most
outdoor environments,
available and relatively

inexpensive to implement

Outage in tunnels and
performance degradation in
urban canyons, affected by
poor weather conditions

and other sources
of interference, dependency

on external
signal providers

Wheel encoders
[54]

Estimating the position
of the vehicle by

counting the number of
revolutions of the
wheels that are in
contact with the

ground (a relative
positioning technique)

~20 Hz

Simple to determine
position/orientation,

short term accuracy and
allows high sampling

rates, low-cost solution

Position drift due to wheel
slippage, lower sensor

resolution, surface
irregularities, error

accumulation over time,
velocity estimation requires

numerical differentiation
that produces

additional noise

Doppler radar
[102]

Calculating the
immediate speed of

the train
N/A

Overcome the slippage of
the vehicle, work reliably
at speeds up to 350 km/h,

work for speed and
distance measurement

Does not work properly in
winter on snowy tracks,

often affected by noise and
systematic errors

Eddy current
sensor [103,104]

Able to detect
inhomogeneities in
magnetic resistance
along the track, e.g.,
rail clamps or switch

components as well as
irregularities of the rail

N/A

Provide precise
noncontact and slipless
speed measurement of
rail vehicles, drift-free,

unbiased measurements,
robust enough to

withstand weather
influences, dirt,

and daytime

Frequency is based on
speed, cannot provide

real-time high
accuracy position
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Table 2. Cont.

Category Sensor Function
Usual

Sampling
Frequency

Advantages Disadvantages

LiDAR [73]

Emitting laser light
pulses to gather

information from
surfaces in the form of

“points”, as well as
object detection

~10 Hz

High resolution, large
field of view, the ability

of providing robust
ranging data for object

detection and localisation,
operating more reliably at

different weather and
ambient

illumination conditions

Reflection of signal wave is
dependent on material or

orientation of obstacle
surface, Expensive solution,
affected in extreme weather

conditions such as heavy
snow, fog, or rain

Vision sensor [101]

The most accurate way
to create a visual
representation of

the world

~20 Hz

Providing huge
information that can be

utilised to generate
steering control signals
for the mobile robots,
images store a huge

meaningful information,
provide high

localisation accuracy,
inexpensive solution

They influence by varying
ambient lightening

conditions especially in
outdoor environments, and
severe weather situations

such as fog, snow, and rain,
fail to provide the depth
information needed to

model the 3D environment,
requires image-processing

and data-extraction
techniques, high

computational cost to
process images

Elements in the
railway

environment
(infrastructure-

based)

Balise (an
electronic beacon
or transponder)

[102,105]

Determining the
absolute positioning of
a rail vehicle along the

track, allowing
determining the

direction of movement

N/A

Do not require contact or
direct line-of-sight

between the identification
tag and the reader device,

needs no power source

Compatibility and not
universal for every network

RFID [102,106]

Used for the purpose of
tracking and

identification of the
location of individual

rail vehicles or wagons
at all times

N/A

High momentary
accuracy and reliability at

intermittent locations,
work effectively where

the continuous signaling
system is not present

Materials such as metal and
liquid can impact signal,
sometimes not accurate

enough or reliable as
barcode scanners,

expensive, implementation
can be difficult & time

consuming

Track-circuits
[78,107]

A safety-critical asset
that determines which

sections of track are
occupied by trains,
ensure the safety of

rail traffic

N/A Very simple to maintain

Can delay trains because
the signaling system is

designed to fail to a safe
state, electronic circuits are

more vulnerable to
lightning strikes,

restrictions on placing
impedance bonds

5. Sensor Fusion
5.1. Sensor Fusion Techniques

Sensor fusion is an essential aspect of most autonomous systems; therefore, various
types of algorithms and methodologies have been widely researched in recent years and are
now well-established in the literature. Due to the diversity and variety of fusion algorithms
proposed in the literature, getting the current state-of-the-art fusion techniques and algo-
rithms is a demanding task, according to a recent study [108]. Recently, several reviews on
the topic of multi-sensor fusion have been published, with some describing the architectural
structure and sensor technologies in AV [109,110], and others focusing on processing stages
such as sensor calibration, state estimation, object and tracking [111], [112], or detailing
techniques for multi-sensor fusion, such as deep learning-based approaches [113,114].

A review study in [113] divided these techniques and algorithms into two categories:
classical sensor fusion algorithms and deep learning sensor fusion algorithms. On the one
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hand, classical sensor fusion algorithms, such as knowledge-based approaches, statistical
methods, probabilistic methods, and so on, fuse sensor data using theories of uncertainty
from data flaws, such as inaccuracy and uncertainty [115]. Deep learning sensor fusion
techniques, on the other hand, entail the creation of numerous multi-layer networks that
enable them to process raw data and extract features in order to accomplish difficult
and sophisticated tasks such as object detection. Deep learning is a subset of artificial
intelligence and machine learning that can be considered as an advancement of neural
networks [113]. The quantity of research into deep learning sensor fusion algorithms
in autonomous vehicles (AV) has increased noticeably. Convolutional Neural Network
(CNN) and Recurrent Neural Network (RNN) algorithms are among the most used in
autonomous vehicle perception systems. To increase the real-time performance of object
detection, [116] suggested advanced weighted-mean You Only Look Once (YOLO) CNN
algorithms to merge RGB camera and LiDAR point cloud data. Some other examples of
deep learning-based sensor fusion algorithms include ResNet (i.e., Residual Networks), a
residual learning framework that facilitates deep networks training [117]; SSD (i.e., Single-
Shot Multibox Detector), which discretizes bounding boxes into a set of boxes with different
sizes and aspect ratios per feature map location to detect objects with variant sizes [118];
and CenterNet [119], which represents the state-of-the-art monocular camera 3D object
detection algorithm.

Despite the vast quantity of research which has been done in the field of environment
perception with deep learning approaches, the application of deep learning to localisation
has not received the same level of attention or maturity. As a result, there is a lot of promise
for using deep learning algorithms, especially RNN, to improve sequential localisation data.
Learning algorithms may in the future provide an end-to-end deep learning localisation
and mapping system that avoids feature modelling and data association, reducing errors
and uncertainties associated with unmodeled dynamics and imprecise modelling [113].

5.2. Sensor Fusion Algorithms for Vehicle-Based Localisation on the Railway Track

As has been mentioned, new approaches in instrumentation, technology, engineering,
and, in particular, sensor fusion, have opened up new paths for achieving better reliability
and accuracy in measurement. Integration of several sensors for speed and position
measurement is the concept which has attracted much interest in industry and research
departments [92,120]. Fusing measurements from different independent sensors which
have different kinds of input/output attributes and characteristics will extract the best
information in terms of accuracy and reliability. Therefore, when multi-sensor data fusion
techniques are included in the system, the navigation system becomes more robust. In
other words, it can increase the robustness of the system against possible faults of each
element it is composed of. This can help railway engineers to achieve higher safety.

The use of multi-sensor data fusion techniques have also gained much popularity and
been found to be advantageous when used in intelligent transportation systems [121,122].
Integrating different position and speed sensors will give more information about the
system conditions for monitoring and control tasks [69]. The combination of sensors should
be chosen in a way which optimizes coverage of multiple aspects, including availability,
reliability, speed of response, cost, and accuracy of the system, besides providing a better
on-board measurement system. For instance, integrating tachometer and transponder
sensors, a type of primitive sensor fusion, will increase the accuracy level by re-initiating
the position at some fixed points, but it still does not overcome errors caused by slip and
slide between two transponders [123]. A localisation algorithm for increasing the accuracy
of the odometric estimation, especially in critical adhesion conditions, based on sensor
fusion between tachometers and inertial measurement unit, is suggested in [84]. A data
fusion technique is proposed in [62] for a train localisation system consisting of three
on-board sensors, namely, longitudinal accelerometer, odometer, and GPS receiver unit.
Wang et al. [124] proposed a train positioning method which fuses vison and millimeter-
wave radar data. The proposed framework includes the loop closure detection part which
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eliminates the cumulative error when the train detects a key position, and the radar-based
odometry part which can realize the positioning of the train on the whole railway line.

In [66], a hybrid framework for locating trains travelling on track routes based on
GNSS and eddy current sensor device, implemented by an Extended Kalman Filter method,
is proposed. This positioning system performs a robust localisation even in the case of
noise or when a sensor fault occurs. In another piece of research [71], two different fusion
approaches which use two different system models to approximate the kinematics of train-
borne location system are investigated. These are an eddy current sensor device providing
the train velocity and a GNSS delivering the absolute position. The first fusion is based on
a polar coordinate system model, whereas the second fusion approach uses two cartesian
system models with the ability to switch between these models. Evaluating the fusion
approaches shows that in case of GPS failures, the first fusion approach with its system
model in polar coordinates can propagate the train kinematics more adequately and thus
achieve a better performance than the second fusion approach.

Another common fusion approach is based on the integration of GPS and INSs, which
typically results in a drift in the estimation of the vehicle speed and position [63]. To address
this problem, a filter is used aimed at decreasing the difference between the data output
signals coming from INS and another one, e.g., GPS [95]. Due to GPS signal degradation in
some parts of the environment, including indoor environments, dense forests, and near the
tall buildings, it is necessary to consider alternative solutions to compensate this outage,
for instance a fusion of tachometer and IMU (Inertial Measurement Unit).

Figure 7 shows an example of fusion of different sensors for the measurement of train
speed and position:

Figure 7. Integration of different sensors for measuring train position and speed.

After investigating sensors, their functions, and various fusion approaches applied
in railway vehicle positioning, the remaining gap concerns the uncertainty sources which
impact the positioning system performance and must be taken into consideration and
analysed from different perspectives. In the following section are mentioned in detail.

6. Uncertainty in Railway Localisation Performance

Localising maintenance vehicles, which undertake the inspection and repair of railway
track in the global level, leads to specifying the defect positioning in the global level as
well. Most of the off-the-shelf localisation systems in railway applications, such as tamping
adjustment or track geometry refinement, generally require localisation at meter-level
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or at several meters, while finding the absolute location (cm level) of railway vehicles
would result in specifying the defect location in the absolute level. It would also help
the rail-system management, as it can assure the safe running of vehicles on the railway
track. In this regard, accuracy and the degree of confidence of the provided position are
the main concerns. Therefore, it is of high importance to identify challenges, potential
factors, and effects of uncertainties which impact the location accuracy. In the following,
five key elements which contribute to a vehicle’s position error, including sensor hardware,
environment, information sources, and positioning estimators, are explained [125,126].

• Method performance uncertainty:

Methods used in the position estimation lead to positioning error in several ways. The
first item is about validity or integrity of the received information. It is necessary to be
sure about the presence of outliers or errors before inputting these data to a positioning
algorithm. This is because the calculated positions reflect these wrong data and deteriorate
the accuracy of the system [31]. Therefore, input validation should happen as early as
possible in the data flow, preferably as soon as the data is received from sensors.

Moreover, the time-domain consistency, frequency sychronisation between multiple
sources, and the timeliness of processing data are essential for the stability of localising.

Another point concerns the strategy considered for data fusion [69]. There are various
information fusion techniques, each with their advantages and drawbacks [84]. Therefore,
it is important to study the selected fusion method.

The final point concerns the proper setting of initial conditions and performance
parameters for some of the positioning algorithms, especially those employed for data
fusion. Setting up proper conditions leads to positioning algorithms working properly.
Otherwise, an incorrect selection results in increasing the resulting error instead of reducing
it. For instance, in the extended Kalman filter algorithm, proper specification of process-
noise-covariance and initial-estimate-covariance can provide an optimal gain, based upon
which it assigns a weight to the current state measurement and the prediction state. Bad
specification will show a positioning error in the result.

• Sensor hardware uncertainty:

To guarantee a reliable baseline, the hardware systems must be checked physically
before being used, because any issues—including receiver failures, calibration failure, or
any failure in any of the pieces of the location system, e.g., breakdown of receivers—are
considered as sources of error, which can cause severe problems when used in a real
system [127]. Sensor calibration is one of the main items which should be checked first, as
it minimises any measurement uncertainty and verifies the precision and reproducibility of
measurement instruments. Another point concerns the appropriate selection of sensors
based on their characteristics and the requirements of the application. For instance, vision
sensors such as ASUS stereo cameras are not suitable for outside environments, as they
cannot work properly in strong sunshine. The output appears to be noisy from the robot’s
perspective as if subject to random error, and the values obtained from the ASUS camera
will be unusable [128]. Illumination dependency is only one example of the apparent noise
in a vision-based sensor system which need to be taken into consideration before sensor
selection. Picture jitter, signal gain, and blurring are all additional sources of noise that
potentially reduce the useful content of a color image. In terms of railway applications,
sensor specification such as resolution, frequency, and sensing range should be considered
as well. For instance, the maxiumum sensing range for a stereo camera is 10 m, and it
might fail at detection in the case of a fast-moving vehicle; fast speed causes a blur motion
problem in camera imaging.

Another factor is sensor aliasing; even when applying noise-free sensors, the amount of
information is generally insufficient to identify the vehicle’s position from a single percept
reading. Therefore, techniques must be employed that base the vehicle’s localisation on
a series of readings and, thus, sufficient information to recover the robot’s position over
time [128].
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• Pre-process uncertainty:

The number and quality of the information sources used for position estimation also
have a direct impact on the positioning estimation error. It is necessary to provide real-time,
reliable, and precise information for train positioning as it has a direct impact on vehicle
safety and control, collision avoidance, and autonomous driving systems. One of these
sources is the transmission rate of each technology. Based on the strategy followed by the
position estimator, ranges of some received signals can be obsolete by the time they are
used. Furthermore, time synchronisation of the received information is essential, as it can
cause an offset in the detection of the signal and add extra error, especially in time-related
positioning algorithms [15]. Sensor fusion would be a challenge in this step. For instance,
to address this challenge, a novel fusion approach is proposed in [129]. This method is
based on the Kalman filter, which can handle asynchronous data.

Moreover, the intrinsic accuracy related to each technology makes the position error
range from a few meters in the case of using GNSS, to several hundred meters, e.g., Global
System for Mobile Communications-Railway (GSM-R). Therefore, based on the nature
of the sensors, and their features and functions, their stand-alone or fusion use can be
considered.

Position data, generally from GPS, has varying levels of accuracy, and data from
different sensors are often not well aligned spatially. This misalignment happens because
of GPS position error, such as multipath reception, which is especially problematic when
the GPS receiver does not have a clear view of the sky. In this regard, an alignment strategy
as a pre-processing step is proposed to mitigate GPS error [129].

• Environment uncertainty:

Environment is another factor that impacts the error related to the location of a
system, especially on coverage and accuracy. In the case of railway vehicle localisation,
the environment would be a changing factor as the vehicle moves from cities to open
areas, where existing infrastructure will be different. Therefore, the environment would
result in different error ratios in vehicle location, while information sources and estimation
algorithms are the same. The estimated position can be more or less accurate depending
on the number and the geo-localisation of the infrastructure in the environment. These
infrastructures refer to the number of satellites in line-of-sight with the receiver, as well as
track-side objects such as the balises [87].

Based on the features of the terrain or the orography, the coverage and accuracy of
the different technologies will be limited. For instance, ingress to tunnels, dense forests,
tall buildings, and passage through deep and narrow track openings significantly degrade
or even block the reception of the signals temporarily. The best example in this regard is
concerns GPS signals, which may not always be available in parts of the environment such
as tunnels, hilly regions, canyons, and so on [130]. It might be the case that the signals are
available, but that environmental features including satellite signal blockage, occasional
high noise content, multipath effects, low bandwidth, and interference or jamming would
impact the accuracy of the position estimate.

The main causes of inaccuracy and errors that affect the estimation of a position are
shown in Figure 8:
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Figure 8. Fishbone diagram showing factors contributing to location errors.

7. Conclusions

The periodic inspection and maintenance of railway track assets is critical to the safe
operation of infrastructure and the management of the continual degradation and ageing
of the assets. Autonomous and reliable methodologies can facilitate cost-effective and effi-
cient asset management. Because of the rapid progress made by robotics and autonomous
systems in the railway maintenance sector, developing intelligent asset management strate-
gies for digitalisation and smart management for rail infrastructure is a path towards the
intelligent industrial 4.0. Precise and real-time rail vehicle localisation is essential to robotic
command and control, task execution, safety and efficiency.

As a result, the current study gives a comprehensive overview of the hardware and
software methodologies required for autonomous vehicle positioning on the railway track
for maintenance purposes. The following list overviews the main topics which have been
covered in this review paper:

• First, the railway infrastructure maintenance requirements and strategies, the mainte-
nance objectives, and the general preventive and corrective workflows are reviewed,
revealing that accuracy in localisation is essential for autonomous inspection and
repair systems.

• Secondly, a review of the most recent and relevant railway vehicle positioning ap-
proaches, based on infrastructures in railway environment and on-board sensors, with
their principles, advantages and disadvantages were highlighted. It was identified
that applying trackside positioning strategy not only lacks efficiency and accuracy for
real-time applications, but also requires large civil investment for construction and
successive maintenance.

• Next, for obtaining a comprehensive perception for accurate localisation, the sensor fu-
sion techniques and algorithms were discussed to review the applicability of different
sensing methods. The most recent fusion approaches based on machine learning were
also discussed. It was also mentioned that deep learning fusion approaches are mostly
applied in perception, and that further research in pose and depth estimations, loop
closure detection, and feature descriptors is needed to achieve maturity in localisation
and mapping.

• Furthermore, the uncertainty sources in railway vehicle positioning were discussed to
address the challenge features from different sources which impact the localisation
accuracy and reliability. Each uncertainty source was separately investigated and the
solutions and strategies to mitigate the impact of that source were also provided.
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This review provides a comprehensive discussion of the challenges of localisation
technologies for railway maintenance vehicles. It provides an overall reference for lo-
calisation system architecture design for both autonomous systems and manual railway
rolling stocks.
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129. Lederman, G.; Chen, S.; Garrett, J.H.; Kovačević, J.; Noh, H.Y.; Bielak, J. A data fusion approach for track monitoring from

multiple in-service trains. Mech. Syst. Signal Process. 2017, 95, 363–379. [CrossRef]
130. Yonekawa, M.; Tanaka, T. Relations between positioning result and each error factor in GPS. In Proceedings of the 2006 SICE-

ICASE International Joint Conference, Busan, Korea, 18–21 October 2006; pp. 1361–1365.

http://doi.org/10.3390/app9235129
http://doi.org/10.1016/j.ymssp.2017.03.023

	Introduction 
	Railway Maintenance Objectives and the Related Techniques 
	Maintenance Policy 
	Preventive Maintenance 
	Corrective Maintenance 


	Railway Vehicle Localisation Strategies 
	Track Infrastructures-Based Strategy 
	On-Board Sensors 

	Sensor Hardware 
	Sensor Fusion 
	Sensor Fusion Techniques 
	Sensor Fusion Algorithms for Vehicle-Based Localisation on the Railway Track 

	Uncertainty in Railway Localisation Performance 
	Conclusions 
	References

