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Abstract: Convolutional Neural Networks (CNNs) are popular models that are widely used in
image classification, target recognition, and other fields. Model compression is a common step in
transplanting neural networks into embedded devices, and it is often used in the retraining stage.
However, it requires a high expenditure of time by retraining weight data to atone for the loss of
precision. Unlike in prior designs, we propose a novel model compression approach based on Simon
k-means, which is specifically designed to support a hardware acceleration scheme. First, we propose
an extension algorithm named Simon k-means based on simple k-means. We use Simon k-means to
cluster trained weights in convolutional layers and fully connected layers. Second, we reduce the
consumption of hardware resources in data movement and storage by using a data storage and index
approach. Finally, we provide the hardware implementation of the compressed CNN accelerator. Our
evaluations on several classifications show that our design can achieve 5.27× compression and reduce
74.3% of the multiply–accumulate (MAC) operations in AlexNet on the FASHION-MNIST dataset.

Keywords: convolutional neural networks; deep learning; k-means; model compression;
weight quantization

1. Introduction

Convolutional neural networks have been some of the most successful machine
learning techniques in the last decade [1]. They are widely used in many applications,
such as autonomous driving [2], automatic speech recognition [2], and weather forecasting.
The inference-time latency and energy efficiency of CNNs are the key assessment indica-
tors. In order to solve the problem of the excessive computational resource overhead of a
CNN, some designs have proposed solutions based on Graphics Processing Units (GPUs),
Field-Programmable Gate Arrays (FPGAs) [3–5], Application-Specific Integrated Circuits
(ASICs) [6], and other hardware to facilitate the acceleration of CNNs. However, GPUs
are impacted by a high power consumption problem, while ASICs are affected by high
production and development costs, which greatly limit their scope of application. This
research [7] can be roughly divided into two directions. One of the directions is accelerating
the multiplication process in convolution and fast and efficient parallel computing [8]. The
other direction is model compression, which reduces the model size while maintaining
the same accuracy or loss [9] to reduce multiply–accumulate operations and storage over-
head. The current model compression is in the retraining stage, and fine-tuning is used
to compensate for the loss of accuracy, but this will add additional retraining time, and
pre-training is not applicable in some cases.

Inspired by this, this paper proposes a model compression scheme for the trained
weight, which can significantly reduce the number of multiply–accumulate operations and
minimize the scale of the model with a slight loss of accuracy. The main contributions of
this paper are as follows:
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• We propose a novel compression approach named Simon k-means to cluster trained
weights, which is based on simple k-means. We use Simon k-means to cluster trained
weights in convolutional layers and fully connected layers to minimize the neural
network models. The compressed models can meet the requirements of applications
in embedded or mobile devices. To the best of our knowledge, ours is the first work to
compress the data after training weights.

• We provided a hardware implementation of the compressed CNN accelerator. We
optimized the data flow to make the most of the on-chip data reuse, which can reduce
the access to the off-chip storage. In addition, we used the data storage and index
approach to take full advantage of the compressed model’s data characteristics. We
showed that our approach can reduce the consumption of hardware resources in data
movement and storage.

• We mapped several CNN workloads to the proposed architecture. Our evaluations
show that our design can achieve 5.27× compression and reduce the MAC operations
in AlexNet to 74.3% on the FASHION-MNIST dataset.

The other parts of this paper are organized as follows: In Section 2, a brief introduction
to CNNs and the k-means algorithm is given. Section 3 presents and discusses the related
literature. Section 4 explains the Simon k-means algorithm and the accelerator architecture
design. Section 5 compares and analyzes the experimental results. Section 6 summarizes
the entire work.

2. Background
2.1. CNN

CNNs generally consist of an input layer, convolutional layer, ReLU layer, pooling
layer, and fully connected layer [1]. The key operation of a CNN is convolution; the
input of the convolutional layer is an input feature map of HIn × WIn × CIn and the MOut
kernel of K × K × CIn; then, the stride S and padding method for each movement of the
convolution kernel are set, and a convolution operation is performed to generate an output
feature map of HOut × WOut × MOut. Most CNNs have multiple convolutional layers. The
convolutional layers tend to require most of the computing resources and time in the
training and inference [9]. As shown in Figure 1, the convolutional layers occupy most
of the computing resources and time, and most of the parameters are concentrated in the
fully connected layer. Therefore, the acceleration of the convolutional layer is the key
to accelerating the neural network, and the compression of the fully connected layer is
the key to minimizing the model. Therefore, the paper focuses on the acceleration of the
convolutional layer and the compression of the fully connected layer.

Figure 1. Profiling for convolutional neural networks.
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2.2. Model Compression

CNNs cost a lot of computing and storage resources, so it is difficult to apply them
to some embedded systems with limited hardware resources [10]. Model compression
is currently the most popular method for this problem. It is committed to accelerating
inference speed and reducing storage size while maintaining the original characteristics
and accuracy of the model. Current model compression strategies can be divided into four
categories: pruning and weight sharing, quantization, knowledge distillation, and low-rank
factorization. Pruning uses an effective evaluation method for pruning unimportant con-
nections and filters to simplify the trained network model [11]. The quantization reduces
the size of the network by using lower-weight bits [10]. Knowledge distillation puts for-
ward a teacher–student network, which extracts useful information from the cumbersome
network (teacher network) and migrates it to the distilled network (student network). The
distilled network can have performance similar to that of the cumbersome network, and
the number of calculations is also reduced [12]. The idea of low-rank factorization is to
treat the convolution kernel as a tensor in four dimensions and remove its redundancy
based on the tensor decomposition to improve acceleration [13].

2.3. K-means Algorithm

K-means is a classic clustering algorithm. From the given x1,x2, · · · xn, we select k
centroids c1,c2, · · · , ck to represent these data and minimize the sum of the distance between
the centroid and each datum. Equation (1) describes the goal of the k-means algorithm,
which is to minimize the Euclidean distance between the centroid and each datum [14].

Dis =
k

∑
j=1

n

∑
i=1
‖ x(j)

i − cj ‖
2
. (1)

3. Related Work

On the hardware acceleration front, researchers increase throughput through loop
unrolling, reuse, parallel computing, the tiling factor, etc. [2,4,5]. Nihat proposes general
reuse and a reuse-center CNN accelerator [2]. Yufei deeply analyzes the convolutional cycle
acceleration strategy by characterizing the loop optimization techniques [5]. Chen Zhang
proposes a roofline-model-based method to optimize the CNN’s computation and memory
access [4].

Zhao proposes a dynamically reconfigurable accelerator architecture that implemented
a Sparse–Winograd F(3 × 3, 2 × 2)-based high-parallelism hardware architecture [15].
Based on the Sparse–Winograd algorithm, he proposed a method for decomposing convolu-
tion based on F(3× 3, 2× 2), which eliminated the complex pre-operation of the Winograd
algorithm, reduced the difficulty of the hardware implementation of the algorithm, and
greatly expanded the hardware flexibility. The main consideration for the decomposition
with F(3× 3, 2× 2) as the basis is that the parameters in the transformation matrices A,
B, and G are (0,±1,±1/2), which can be easily implemented in hardware by shifting or
adding hardware, which is not only simple and easy to control, but also reduces hardware
expenses and reduces the design power consumption and cost [16].

Model compression reduces a CNN’s calculation and storage overhead by compressing
the convolution kernel. At present, most model compression is based on the Pruning,
Trained Quantization, and Decoding proposed in [10], which compressed AlexNet by 35×
and VGG-16 by 49×. The clustering method in [10] is based on k-means; the fine-tuning
step was applied to the complete set of weights to compensate for the loss in the accuracy
due to the clustering of the weights. In addition, due to the book-keeping, encoding, and
compression scheme, deep compression is not favorable for hardware acceleration and
aimed at the retraining stage, but the overall training time was basically the same as the
training time without the pre-weight [10].

The authors discuss the effectiveness of pruning [11]. Yiwen Guo proposes dynamic
model-pruning methods, including pruning and splicing, where pruning refers to cutting
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off unimportant weights, but the basis for determining the importance of weights is not
intuitive [17]. Therefore, splicing was added, which could repair important but pruned
weights. Li proposes a pruning method based on the magnitude and determined the prun-
ing filter according to the mean value of the filter weight [18]. Hu defines an APoZ (Average
Percentage of Zeros), and the proportion of the value of activation of zeros in each filter
was used as the benchmark for pruning [19]. Yang proposes a pruning method based on
energy consumption, which evaluates the energy consumption of each layer of the model
and prioritized the pruning of the layers with higher energy consumption [20]. An interest-
ing pruning method was given in [21], where the author uses random pruning and then
calculated the performance of the model to determine a locally optimal pruning scheme.

The author of [22,23] replaces the traditional single-precision floating-point data with
quantized weight data as a fixed point. Using low-precision fixed-point numbers instead of
high-precision floating-point numbers to perform calculations can significantly improve
energy consumption and throughput, but it will inevitably cause a loss of accuracy. Early
network models, such as LeNet-5, have fewer convolutional layers, and the loss of accuracy
is acceptable. However, with the emergence of cumbersome neural networks, such as
mobilenet and resnet, the stochastic rounding scheme in [22] does not guarantee that the
loss of accuracy is still within an acceptable range.

Hinton defines knowledge distillation, which extracts useful information from a cum-
bersome network and migrates it to a smaller network. The small learned network can have
a performance close to that of the cumbersome network and can greatly save computing
resources [12]. Zagoruyko draws on the idea of distilling by using an attention map that
could provide visually relevant location information in the complex network to supervise
the learning of the small network and combining the three-level features of low, medium,
and high [24].

Max proposes a linear-combination-convolution-kernel-based method using n× 1 +
1× n convolution kernels instead of n× n convolution kernels to perform low-rank approx-
imation, achieving a 4.5× speedup with less than 1% drop in accuracy [13]. Kim presents
a Tucker decomposition called one-shot whole-network compression, consisting of three
steps: rank selection with variational Bayesian matrix factorization, Tucker decomposition
on a kernel tensor, and fine-tuning to recover accumulated loss of accuracy [25]. Wenqi
shows that tensor ring networks compress the convolutional and fully connected layers
of deep neural networks [26]. Jinmian uses block–term tensor decomposition to compress
recurrent neural networks [27].

A recent development is INQ (incremental network quantization), which was proposed
in [28], consisting of three steps: weight partition, weight quantization, and retraining.
First, a measurement method is used to divide the weights in each layer of the pre-trained
CNN model into two disjoint groups, the weight of the first group is quantified, and, finally,
the weight of the other group is fine-tuned to compensate for the loss of accuracy. This
process is repeated until all weights are quantified. However, the quantitative weight value
was limited to 2n, resulting in a large deviation between the quantized weight value and the
original weight value, which would increase the retraining time. Akshay further improved
on the basis of INQ [9], and the weight value was no longer limited to 2n. Instead, k-means
was used for clustering to quantify weights, and Symmetric k-means were proposed; then,
it was only necessary to find half of the centroid, but Akshay did not apply this to the
compression of the fully connected layers.

The current quantization-based compression methods basically rely on retraining and
fine-tuning for accuracy compensation. As far as we know, we should be the first quantization
compression scheme that improves the clustering algorithm for accuracy compensation.

4. Algorithm and Hardware Design

The top-level design is shown in Figure 2. The algorithm design can be regarded as a
pre-processing operation for the trained weight. For the convolutional layers and the fully
connected layers, the trained weights are clustered through Simon k-means for convolu-
tional layers and Simon k-means for fully connected layers, respectively. Then, the centroids
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are encoded, and the weight matrix stores the index of each weight. For the hardware
design, we provide the hardware implementation of the compressed CNN accelerator.

Figure 2. Overview of the design.

4.1. Quantization for Convolutional Layers Using Simon k-Means

The authors of [9] proposed a method of clustering to quantify weights in the retrain-
ing stage; in [9], the k-means were used three times, and fine-tuning was used two times to
complete the training of the network. For a complete CNN with multiple convolutional
kernels, this will consume a lot of computing resources. This paper inherits the idea of
clustering to quantify weights from [9], but it is no longer used for weights in the retrain-
ing stage, but rather for trained weights. In other words, we propose a pre-processing
algorithm for the trained weights before the inference stage. Figure 2 performs clustering
to quantify the trained convolution kernel. Only one clustering is required for the weight of
each layer, and the compensation for the loss of accuracy does not rely on the fine-tuning of
retraining, but on the clustering algorithm. Simple k-means and variants cannot satisfy our
requirement of using one clustering operation to compress the model. Based on k-means,
we have facilitated the selection of the initial centroid and the update of the centroid. The
specific algorithm is shown in Algorithm 1.

Algorithm 1 Simon k-means For Convolutional Layers

Require: Input Matrix x with dimension K × K
Ensure: Output Matrix x with dimension K × K

1: Initialize with cluster = [[]], means = [], clustermean = [], weight = f latten(x)
2: weight = sort(weight)
3: for k of K do
4: for i of k do
5: sum = sum + weight[k × K + i]
6: end for
7: means.append(sum÷ k)
8: sum = 0
9: end for

10: cluster = find_cluster(means, weight, k)
11: for num of weight do
12: for clu of cluster do
13: if num in clu then
14: num = sum(clu) ÷ len(clu)
15: end if
16: end for
17: end for

The solution to the initial centroid selection is reflected in lines 2–8. First, the weights
are sorted. After dividing the weights into k groups, there are k weights in each group; we
find the average number to obtain the initial centroid. The traditional k-means algorithm
updates the centroid after dividing a piece of data for updating centroids. For a K× K
convolution kernel, obtaining the final centroid requires K× K divisions. For the updated
centroid of Simon k-means for convolutional layers, after each division, we take the average
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of each cluster as the final centroid so that we only use K divisions. The method of dividing
clusters is the same as k-means, which calculates the distance between the data and each
centroid, then finds the minimum distance and classifies it into the corresponding cluster.

As shown in Figure 3, the weight matrix stores 32-bit floating-point numbers. The
weight matrix will encode weights after clustering and stores the index of each weight. The
number of bits of the weight index is much less than 32 bits, so the purpose of compression
can be achieved by storing the weight index. The formula for the compression ratio of the
convolutional layer is as follows:

r =
Nc × log2 k + k× b

Nc × b
, (2)

where r represents the compression ratio, Nc represents the number of weights in the
convolutional layer, k represents the number of clusters, and b represents the bits of the
weight (float32).

Figure 3. Example of encoding.

4.2. Hardware Acceleration Strategy

In Figure 4, we give an example to explain the hardware acceleration principle of our
acceleration architecture to reduce multiply–accumulate operations in order to accelerate
convolution. First of all, we compress the convolution kernel through clustering to quantify
and encode for compression. According to the traditional operation, we perform convolu-
tion operations on the input feature map and the corresponding weights, which require 9
multiplications and 8 additions as shown in Figure 4a. We accumulate the data correspond-
ing to the same cluster centroid position in the input feature map through the accumulator
and, finally, perform multiply–accumulate operations with the cluster centroid, which only
needs 3 multiplications and 8 additions as shown in Figure 4b. Assuming that each layer in
the convolution kernel is 3× 3, the number of multiply–accumulate operations is reduced
by 2/3; in fact, a convolutional layer with a convolution kernel size of 7× 7× 3× 64 ap-
pears in ResNet50, which further reduces the number of multiply–accumulate operations.
The traditional algorithm of the CNN accelerator is shown in Algorithm 2, and the CNN
accelerator using the acceleration strategy needs to replace part of the multiply–accumulate
operations with the accumulator. The specific algorithm is shown in Algorithm 2.

Figure 4. Example of the hardware acceleration strategy.
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Algorithm 2 Convolution Computation with Quantized Weight

Require: Input Feature Map and quantized weight filters
Ensure: Output Feature Map

1: for row of Input Feature Map do
2: for column of Input Feature Map do
3: for num of weight filters do
4: Acc[] = 0
5: for channel of Input Feature Map do
6: for number of quantized weight do
7: for k of clusters do
8: Acc[k] += input
9: Output += Acc[k] × Centroid[k]

10: end for
11: end for
12: end for
13: end for
14: end for
15: end for

4.3. Quantization for Fully Connected Layers Using Simon k-Means

Akshay explained that the weights of the convolutional layers are almost mirrored
distributions about zero [9]. An interesting finding is that the weights of each fully
connected layer are also almost mirrored distributions with respect to zero. Figure 5 shows
the histograms of the weight distributions of AlexNet, ResNet50, and LeNet-5 on FASHION-
MNIST. There are 11 bins for each layer, and it can be observed that each fully connected
layer basically satisfies the mirror distribution with respect to zero. Inspired by this, we
present Simon k-means for fully connected layers to compress the fully connected layers.

Figure 5. Histograms to demonstrate the symmetric nature of the weight distribution in fully
connected layers on FASHION-MNIST.

In Simon k-means for fully connected layers, our goal is still to find k centroids. Ac-
cording to the symmetry of the data, we only need to calculate k/2 centroids through the
objective formula and then multiply it by −1 to get all of the centroids.

Dis =
k/2

∑
j=1

n

∑
i=1
‖ x(j)

i − cj ‖
2
, (3)

For k-means, each fully connected layer needs to store k 32-bit floating-point centroids.
For Simon k-means for fully connected layers and k/2 effective centroids, only k/2 32-bit
floating-point centroids need to be stored, and the model is further compressed. Compared
to k-means, Simon k-means for fully connected layers has a faster convergence speed, and
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the compression efficiency is further improved. The formula for the compression ratio of
the fully connected layer is as follows:

r =
N f × log2 k + k/2× b

N f × b
, (4)

where r represents the compression ratio, N f represents the number of weights in the fully
connected layer, k represents the number of clusters, and b represents the bits of the weight
(float32). There is no loss of precision at 5-bit quantization in Simon k-means for fully
connected layers compared to 32-bit floating-point baseline models.

4.4. The Overview of the Accelerator Architecture

In order to maximize the performance of the hole design, we propose a hardware
accelerator architecture design according to the characteristics of the data processing.
Figure 6 shows the top-level diagram of the accelerator design. We use a three-level cache
design to complete the data transmission. Due to the constraint of storage space, the input
images and weights are initially stored in DRAM. We chunk the data and move them
from DRAM to SRAM, which helps us reduce the hardware storage consumption. After
transferring the data from SRAM to the input buffer, the tiles of the input feature map
and corresponding weight index matrix will be transmitted to the accumulator. Unlike
in the input feature map, the weights will be directly transmitted to the PE array. Then,
the PE array will perform the computation of the dot product between weights and the
result of the accumulation. Finally, the final data, which are the results of the summation
between different channels, will be returned to the external memory with the help of the
output buffer.

Figure 6. Hardware architecture: The red and blue arrows correspond to the data flow of the input
images and weights.

All layers of the neural network are modeled as different states of the finite-state
machine and sent to the accelerator in turn. Some blocks of the input feature map and
their corresponding weights in this convolutional layer are fetched from the RAM and are
stored in the on-chip buffer. The computational unit performs the convolution operation,
bias function, and activation function. One layer of the convolutional layer operation is
performed each time, and then the corresponding intermediate output results are sent back
to the RAM. This data flow is followed until all convolutional layers and pooling layers are
computed. Finally, the output feature map is loaded into the CPU for the calculation of the
fully connected layer to obtain the final prediction result.
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5. Results and Discussion

To evaluate the compression effect, we conducted a large number of network classifi-
cation tasks on Dogs-Vs-Cats, MNIST, FASHION-MNIST, and CIFAR10. Dogs-Vs-Cats is a
simple dataset with two categories that distinguish dogs and cats. The MNIST is a relatively
simple handwritten digit subclass dataset. The FASHION-MNIST is an improvement of
MNIST, which uses ten kinds of clothes instead of handwritten numbers, representing diffi-
cult subclass situations. CIFAR10 has about 50,000 training images and 10,000 validation
images. Each image is annotated as one of 10 object classes. We applied our compression
scheme to AlexNet, LeNet-5, ResNet-50, and ResNet-101, covering almost all known deep
CNN architectures.

5.1. The Compression of Convolutional Layers

In order to evaluate the effect of Simon k-means, we evaluated three popular convo-
lutional neural networks in the “Dogs-Vs-Cats, MNIST, FASHION-MNIST” dataset. The
uncompressed network model on the dataset was used as the baseline. The reductions of
multiply–accumulate operations were compared by showing the compression before and
after each convolution layer.

5.1.1. Accuracy

We used LeNet-5, ResNet-101, and ResNet50 to evaluate the compression effects of
convolutional layers. LeNet-5 has only two convolutional layers, and thus represents
a simple convolutional neural network. The ResNet network parameters are primarily
concentrated in the convolutional layer, making it easier to observe the compression effect.
ResNet50 uses residual convolution and has more convolutional layers, representing a
regular CNN. Resnet101 adds many blocks to conv4 of ResNet50, therefore representing
a complex CNN. The accuracy indicators in Table 1 refer to Top-1 Accuracy. The results
in Table 1 show the loss of accuracy caused by Simon k-means compression with the three
datasets of the three neural networks. It can be seen from the table that the loss of accuracy
caused by Simon k-means is very low, basically fluctuating at 1%, and the fluctuation
obviously does not exceed the confidence interval.

Table 1. The accuracy of three CNNs with different datasets and with clusters for quantification.

Networks Baseline Compression Dataset

LeNet-5 88.12% 87.20% Cat vs. Dog
ResNet-50 98.78% 98.14% Cat vs. Dog
ResNet-101 94.16% 93.64% Cat vs. Dog

LeNet-5 99.02% 98.89% MNIST
ResNet-50 98.46% 98.37% MNIST
ResNet-101 97.93% 97.28% MNIST

LeNet-5 89.12% 87.84% FASHION-MNIST
ResNet-50 87.27% 85.80% FASHION-MNIST
ResNet-101 87.43% 87.20% FASHION-MNIST

AlexNet 89.82% 89.29% FASHION-MNIST

5.1.2. The Reduction of Multiply–Accumulate Operations

With the input image of 28 × 28 × 1 as the input of LeNet-5, it can be seen that
the number of multiply–accumulate operations was significantly reduced. The results
in Table 2 show the number of multiply–accumulate calculations for each convolutional
layer of LeNet-5 before and after compression. After compression, the number of multiply–
accumulate operations in each convolutional layer was reduced by 66.67%. With the input
image of 224 × 224 × 3 as the input of ResNet50, the results in Table 2 show the number
of multiply–accumulate calculations for the convolutional layers of ResNet50 before and
after compression. After compression, the number of multiply–accumulate calculations in
the first convolutional layer was reduced by 85.7%, and those in the other convolutional
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layers were all reduced by 66.67%. According to the data of AlexNet in the table, the
reduction and compression ratios of the convolutional layers increased with the increment
in convolutional kernels.

Table 2. The number of multiply–accumulate calculations per inference for each convolutional layer
of LeNet-5.

Networks Convolutional Layer Before Compression After Compression Reduction (%)
Compression Ratio
of Convolutional

Layer (%)

LeNet-5 Tn = 1 117,600 23,520 80 29.37
LeNet-5 Tn = 2 470,400 94,080 80 29.37
AlexNet Tn = 1 1,795,682,592 163,243,872 90.9 12.53
AlexNet Tn = 2 7,984,742,400 1,596,948,480 75 29.37
AlexNet Tn = 3 2,874,507,264 958,169,088 66.67 39.58

ResNet50 Tn = 1 118,013,952 16,859,136 85.71 23.67
ResNet50 Tn = 2 115,605,504 38,535,168 66.67 39.58

5.2. The Compression of Fully Connected Layers

In order to evaluate the compression effect of the fully connected layers, we com-
pressed each fully connected layer of the weight of AlexNet on the FASHION-MNIST
dataset and calculated the compression ratio and accuracy loss with different values of k.
The uncompressed network model on the dataset was used as the baseline. The accuracy
indicators in Figures 7 and 8 refer to Top-1 accuracy.

Figure 7. Accuracy of LeNet-5 for each fully connected layer with different values of k.

Figure 8. Accuracy of ResNet50 for each fully connected layer with different values of k.
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5.2.1. Accuracy

Figures 7 and 8 show the changes in the accuracy of each fully connected layer in
LeNet-5 and ResNet50 after using k-means and Simon k-means for fully connected layers
with different values of k. According to Figure 8, we can reach three conclusions. First,
the loss of accuracy decreased gradually and tended to converge with the increment in k.
Second, when k = 32, the loss of accuracy was close to zero. Third, there was no difference
in the accuracy of k-means and Simon k-means when k ≥ 16.

5.2.2. Compression Ratio

Figure 9 shows the compression ratio for fully connected layers with different values
of k. We can draw three conclusions: First, with the increment in k, the compression ratio
gradually decreased. Secondly, Simon k-means for fully connected layers showed a better
compression effect than that of k-means. Third, Simon k-means was more effective for
small-scale fully connected layers on compression.

Figure 9. Compression ratio of fully connected layers of the neural network with different values of k.

5.3. Discussion

Table 3 describes the loss of precision and the compression ratios of different com-
pression methods. From Table 3, we can see that the compression ratio of the compression
scheme in this paper is second only to those of XNOR-Net and TWN. However, XNOR-Net
and TWN cause a greater loss of precision. Compared to other compression schemes,
the method proposed in this paper has no absolute advantage in terms of compression
ratio and loss of accuracy. The compression scheme proposed in this paper is suitable for
situations in which a slight loss of precision can be accepted and those that require a higher
compression ratio.

Table 3. Loss of precision and compression ratios of different compression methods in AlexNet.

Method Accuracy Fluctuations
(Top_1) Compression Ratio Dataset

SVD [29] −2.02% 5× IMAGENET
Symmetric k-means [9] +0.04% 1.04× IMAGENET

INQ [28] −0.25% 1.04× IMAGENET
XNOR-Net [30] −12.32% 32× IMAGENET

TWN [31] −2.02% 16× IMAGENET
Data-free pruning [32] −1.40% 1.5× IMAGENET

This paper −0.83% 5.27× FASHION-MNIST
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6. Conclusions and Future Work

This paper proposes a novel model compression algorithm based on Simon k-means
that is specifically designed to support hardware acceleration schemes. First, we propose an
extended algorithm named Simon k-means that is based on simple k-means. We use Simon
k-means to cluster trained weights in convolutional layers and fully connected layers. Then,
we reduce the consumption of hardware resources in data movement and storage by using
a data storage and index approach. Finally, we provide the hardware implementation of the
compressed CNN accelerator. For fully connected compression, we achieve a compression
ratio of 10.66× without loss of precision. We focus only on image classification in this
paper; in the future, we will try our compression scheme on other CNN applications, such
as object detection and depth estimation.
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