
Citation: Zhai, F.; Yang, T.; Zhao, B.;

Chen, H. Privacy-Preserving

Outsourcing Algorithms for

Multidimensional Data Encryption in

Smart Grids. Sensors 2022, 22, 4365.

https://doi.org/10.3390/s22124365

Academic Editor: Hossam A. Gabbar

Received: 16 May 2022

Accepted: 5 June 2022

Published: 9 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Privacy-Preserving Outsourcing Algorithms for
Multidimensional Data Encryption in Smart Grids
Feng Zhai 1,2, Ting Yang 1,*, Bing Zhao 2 and Hao Chen 2

1 School of Electrical Engineering and Automation, Tianjin University, Weijin Road No. 92,
Tianjin 300072, China; zaifeng_17@tju.edu.cn

2 China Electric Power Research Institute, State Grid, 15 Xiaoying East Road No. 15, Beijing 300072, China;
zhaob@epri.sgcc.com.cn (B.Z.); chenhao2010@epri.sgcc.com.cn (H.C.)

* Correspondence: yangting@tju.edu.cn

Abstract: With the development of the Internet of Things, smart grids have become indispensable in
our daily life and can provide people with reliable electricity generation, transmission, distribution
and control. Therefore, how to design a privacy-preserving data aggregation protocol has been a
research hot-spot in smart grid technology. However, these proposed protocols often contain some
complex cryptographic operations, which are not suitable for resource-constrained smart meter
devices. In this paper, we combine data aggregation and the outsourcing of computations to design
two privacy-preserving outsourcing algorithms for the modular exponentiation operations involved
in the multi-dimensional data aggregation, which can allow these smart meter devices to delegate
complex computation tasks to nearby servers for computing. By utilizing our proposed outsourcing
algorithms, the computational overhead of resource-constrained smart meter devices can be greatly
reduced in the process of data encryption and aggregation. In addition, the proposed algorithms
can protect the input’s privacy of smart meter devices and ensure that the smart meter devices
can verify the correctness of results from the server with a very small computational cost. From
three aspects, including security, verifiability and efficiency, we give a detailed analysis about our
proposed algorithms. Finally, through carrying out some experiments, we prove that our algorithms
can improve the efficiency of performing the data encryption and aggregation on the smart meter
device side.

Keywords: smart grid; privacy preserving; data aggregation; modular exponentiation; outsourcing
computation

1. Introduction
Smart grids [1] play an important role in promoting social stability and the economic

development, as they can utilize the information and communication technologies [2]
to stably and efficiently generate and distribute electricity. The grid providers can for-
mulate a more reasonable and reliable distribution strategy of electricity by the real-
time collection and analysis of the situation of electric generation, transmission and de-
mand/consumption [3]. However, the information exchange between the end user and the
grid providers may face some security issues and threats [4–6].

The first issue is how to distinguish and authenticate the identity of a new smart meter
(SM) or gateway (GW) when it wants to connect to the smart grid system [7,8]. Another
issue is how to ensure the privacy and integrity of the collected data from a SM [9,10].
Integrity means to ensure that the exchanged data between the various parts of smart grid
will not be modified or deleted. Privacy means to ensure that the collected data will not
be leaked to the adversary. The electricity consumption data often contains the user’s
confidential information. Once this confidential information is leaked or distorted, it may
cause serious harm to the consumers or the grid system [11]. For example, the adversary
can analyze the electricity consumption in different time periods to determine whether the
owner is at home.

Sensors 2022, 22, 4365. https://doi.org/10.3390/s22124365 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22124365
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://doi.org/10.3390/s22124365
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22124365?type=check_update&version=1

Sensors 2022, 22, 4365 2 of 19

Recently, a number of researchers have designed many multidimensional data encryp-
tion and aggregation protocols [12–14] to solve the above issues. Although these protocols
continually strive to improve the efficiency and enhance the protection of users’ data, these
protocols often contain some complex cryptographic operations, such as modular expo-
nentiation operation. In practical application, for the resource-constrained SM, there may
be no insufficient computation resources and storage resources to carry out the modular
exponentiation operation. The resource-constrained SM may take a long time to execute
the designed protocol, which may not meet the requirements for real-time processing grid
data. How to improve the execution efficiency of data encryption and aggregation has
become an urgent problem to be solved.

Outsourcing computation [15,16] can allow the resource-constrained SM to outsource
complex computation tasks to the server (may be another GW) with sufficient computation
resources, which is suitable for SMs. However, there are three security challenges [17]
for outsourcing computation. Trusted computing [18] may solve these challenges, but it
needs corresponding hardware devices. Therefore, it has become more and more popular
to design some secure outsourcing algorithms to solve these challenges. The specific
challenges are described below. At first, the server is not completely trusted by the user. The
outsourced data often contains the confidential data, such as the plaintext of the collected
data and the user’s private key in smart grid, which cannot be disclosed to the server. The
first challenge is how to protect the privacy of the user’s data in the process of outsourcing
computation. Due to the various subjective factors including saving computation resources
and objective factors, such as existing system bugs, attacked by hackers, the server may
be curious [19,20], lazy and malicious, and thus may try to steal users’ confidential data
and return random or computationally indistinguishable results to cheat users. The second
challenge is to ensure that the user has the capability to verify the correctness of the returned
results. The third challenge is efficiency. The time cost of the secure outsourcing algorithm
on the local user side must be lower than that of solving this task by itself. Otherwise, it
will be meaningless for the user to execute an outsourcing algorithm. Generally speaking,
an outsourcing algorithm must be privacy-preserving, verifiable and efficient.

In this paper, we combine outsourcing computation with data encryption and aggre-
gation to reduce the computational overhead on the SM side and improve the execution
efficiency of SMs. Specifically, we explore how to outsource the modular exponentiation
operation involved in these data encryption and aggregation protocols to a powerful server.
In the designed outsourcing algorithms, SMs can protect the confidentiality and privacy
of data by utilizing random splitting technology. In addition, a SM can verify the correct-
ness of results from an untrusted server with a high probability and low computational
overhead. We can summarize the contributions of this paper into the following aspects:

• For the different forms of modular exponentiation operation in some data encryp-
tion and aggregation protocols, we respectively propose two different outsourcing
algorithms. The first outsourcing algorithm can solve modular exponentiation with
a fixed base and a variable exponent. The second outsourcing algorithm can solve
modular exponentiation with a variable base and exponent. Both of these two out-
sourcing algorithms can protect the privacy of user’s data by logic division and the
Euler theorem;

• The two outsourcing algorithms ensure that a SM can verify the correctness of the
returned results. In the first algorithm, an SM can detect a server’s malicious behavior
with a probability of 19/20. In the second algorithm, incorrect results from a malicious
server can be detected by an SM with a probability of 59/60;

• The two outsourcing algorithms only need one round of communication between
the server and SM. Through systematic analysis, we can prove that the proposed
algorithms satisfy all security requirements including privacy, verifiability, and effi-
ciency. In addition, we carry out a comprehensive experiment to demonstrate that the
proposed algorithms are efficient.

We organize the rest of our paper as follows: in Section 2, we review the related work.
We introduce the system model and the threat model and give some formal definitions of

Sensors 2022, 22, 4365 3 of 19

secure outsourcing computation in Section 3. In Section 4, we briefly describe a specific
data encryption and aggregation protocol and give a detailed description of the proposed
outsourcing algorithms. The security and complexity analysis are given in Section 5.
In Section 6, we evaluate the proposed algorithms through experiments. After that, we
conclude this paper in Section 7.

2. Related Work
In this section, we will introduce some privacy-preserving algorithms for smart grids and

review some related works about securely outsourcing modular exponentiation to a malicious
server. Table 1 shows the difference between our algorithms and the previous algorithms.

Table 1. Comparison of algorithms.

Algorithm Data Type Technique Trusted Authority Lightweight

Li [21] One-dimensional Paillier Yes No

Lu [22] Multi-dimensional Paillier Yes No

Boudia [14] Multi-dimensional Elliptic curve Yes No

Our Multi-dimensional Paillier No Yes

2.1. Privacy-Preserving Algorithms for Smart Gird
Saxena et al. [23] proposed a secure and efficient mutual authentication and authoriza-

tion algorithm in smart grids with an advanced metering infrastructure (AMI). The authors
used an attribute-based access control to mitigate outsider and insider threats in smart
grids. Their algorithm was suitable for the different user-roles scenario. However, their pro-
posed algorithm could not consider the error detection and the fault tolerance. For secure
smart grid communications, Sun et al. [24] put forward an efficient aggregation algorithm
(APED) with error detection by employing a pairwise private stream aggregation method.
In order to improve the APED algorithm, Shi et al. [25] proposed a diverse grouping-based
algorithm (DG-APED) for data aggregation with error detection. The authors applied the
differential privacy technique into the grouping-based private stream aggregation and for-
mulated the lifetime of a SM as an exponential distribution to achieve the data aggregation
and perform error detection in a malfunctioning SM. In their algorithm, a control center
(CC) could only obtain the aggregated results but not the individual data. Bao et al. [26]
put forward a new differentially private data aggregation algorithm with fault tolerance
named DPAFT. Their algorithm could handle fault tolerance in smart metering by applying
a novel key management technique and constructing an artful constraint relation. Based
on an improved Boneh–Goh–Nissim cryptosystem, their algorithm could protect the pri-
vacy of the user’s data under the honest-but-curious model. Guo et al. [27] put forward a
lightweight privacy-preserving data aggregation algorithm by utilizing a novel symmetric
homomorphic encryption scheme. In addition, the authors also proposed an authentication
agreement algorithm based on the password authenticated key exchange protocol. In order
to satisfy the requirement of the fine-grained demands from CC, Li et al. [21] designed a
privacy-preserving multisubset data aggregation algorithm named PPMA. Their algorithm
could not only aggregate the user’s electricity consumption data of the different ranges,
but also protect the privacy of user’s electricity consumption data from being disclosed
to a strong adversary. Ge et al. [28] put forward a consortium blockchain-oriented ap-
proach to solve the issue of user’s privacy in energy trading in smart grids. The authors
designed an account mapping technique to avoid directly exposing user’s data to attackers.
Gough et al. [29] designed an innovative differential privacy-compliant algorithm to pro-
tect the data from SMs. Their algorithm ensured that the extra costs are divided among the
participants by a fair, efficient and equitable manner based on the cooperative game theory.

Sensors 2022, 22, 4365 4 of 19

2.2. Outsourcing Algorithms for Modular Exponentiation
The research on the outsourcing modular exponentiation algorithm [30–36] mainly

focuses on two aspects: two servers and a single server. Under the two-servers model,
the user can verify the correctness of the returned result by comparing the results returned
from the two servers. Hohenberger et al. [30] gave a formal security definition for se-
curely outsourcing cryptographic computation. The authors also proposed two practical
and secure outsourcing algorithms for the Cramer–Shoup cryptosystem and the Schnorr
signature. However, the probability that the user could detect malicious behavior from
the servers was only 1/2. In order to improve efficiency and verifiability on the user
side, Chen et al. [31] put forward new algorithms for the secure outsourcing of modular
exponentiation. The verifiability in their algorithms was improved to 2/3. In addition,
the authors also designed a secure outsourcing algorithm for simultaneous modular ex-
ponentiation. Ye et al. [32] explored how to securely outsource modular exponentiation
to malicious servers by utilizing a new logical division method. The user could verify
the validity of the returned results with the probability of 19/20. There are also a num-
ber of studies that concentrate on designing secure outsourcing algorithms for modular
exponentiation under a single server. Wang et al. [33] firstly explored how to securely
outsource modular exponentiation to a malicious server. However, the user needed to
perform a time-consuming modular exponentiation operation locally once. The verifiability
in their algorithm was only 1/2. Based on the Euler theorem, Ren et al. [34] presented an
outsourcing algorithm for modular exponentiation under a single server. While improving
efficiency, the user could check the failure with a probability of 1. However, their algorithm
required the user to pre-compute some random tuples. Zhou et al. [35] put forward a secure
outsourcing algorithm for modular exponentiation without pre-computation. The authors
designed this new method to protect the privacy of the base, exponentiation and modular
exponentiation. The user could detect malicious behavior of the server with a probability
of approximately 1.

3. System Model and Definition
In this section, we will give a brief description about the system model and the threat

model. Then, we introduce the general framework and some security requirements of the
secure outsourcing computation.

3.1. System Model and Threat Model
As shown in Figure 1, the system architecture of a secure outsourcing computation

model in a smart grid mainly consists of four entities: smart meters (SM), gateways (GW),
control centers (CC) and a malicious server (MS). A detailed description of the functions of
these entities is as follows:

• SM: The main function of SMs is to continuously collect various electricity consump-
tion information and other identity information of users, such as the user’s name and
location. The SM periodically encrypts the collected data by the modular exponentia-
tion operations and sends it to the GW;

• GW: The main function of a GW is to verify the legitimacy of the received messages
and aggregate data reported by multiple SMs. Then, the GW sends the results after
aggregation to the CC;

• CC: The main function of a CC is to generate system parameters. When a new de-
vice (SM or GW) is connected to the grid network, it will be authenticated by a CC.
In addition, a CC can verify the legitimacy of the received messages from SMs and GWs.

• MS: The main function of a MS is to help a SM complete the corresponding complex
computation tasks. The SM sends the time-consuming computation tasks to the MS,
and the MS returns a correct result to the SM. The MS only communicates with the
SM. There is no communication channel between the MS and the GW (or CC).

In our system architecture, we define a SM as an honest entity. The SM will carry
out the corresponding operations according to protocol. However, the SM does not have

Sensors 2022, 22, 4365 5 of 19

sufficient computation resources and storage resources to complete complex computations.
The GW and CC are honest but curious. They will execute protocol honestly, but they try
to get the user’s private data during the execution of the protocol. The MS is regarded to
be a malicious entity with sufficient computation resources. The MS not only wants to steal
the user’s confidential data, but also returns computationally indistinguishable results to
deceive the user. This threat model is called the “full-malicious” model [37] and is used in
this paper. Therefore, the SM should encrypt the inputs x and outputs y of a computation
task F before sending it to the MS and should have capability to verify the correctness of
the returned results from the MS.

Figure 1. System model.

3.2. Rand Algorithm
The Rand algorithm [38] is used to generate a series of blinded pairs, shaped like

(c, gc
1). The specific process of the algorithm is as follows:
Zp is a multiplicative group of order M, and g1 is its generator. The user firstly

generates n random integers α1, α2, . . . , αn ∈ ZM and computes β j = g
αj
1 . Then, the user

stores αj and β j in a table. When the user needs a blinded pair, the user will select k numbers
from 1, 2, . . . , n as S. For each j ∈ S, the user selects a random integer zj ∈ 1, 2, . . . , h, where
h > 1, and computes:

z ≡ ∑
j∈S

αjzj(mod M), Z ≡∏
j∈S

β
zj
j (mod p).

The user finally obtains a blinded pair (z, Z). For a l-bit exponent, for each invoke,
the computational complexity of Rand algorithm is O(log2 l).

3.3. General Framework
The general framework of our proposed outsourcing algorithms contains the following

sub-algorithms:

• Pre-computation: The SM computes some static parameters in advance to speed up
the execution efficiency of algorithms;

Sensors 2022, 22, 4365 6 of 19

• Problem transformation: At the stage of problem transformation, the SM encrypts the
computation input x into a public value x′ and stores a secret value γ locally, which
can be used for decryption and verification of the results. Then, the SM sends the
computation task F and the public value x′ to the MS;

• Server computation: Based on the received computation task and the value x′, the MS
solves the transformed problem F(x′) and returns the corresponding result y′ to
the SM;

• Result verification: At the stage of result verification, the SM verifies the validity the
result y′ based on the stored γ;

• Result recovery: If the result successfully passes the verification, the SM decrypts y′

and obtains the real result y.

3.4. Security Requirements
We follow the security definition introduced in [30], which has been widely employed

in many previous outsourcing algorithms. A cryptographic algorithm Alg can be divided
into two parts: a trusted component T and an untrusted component U. T has access to
make queries to U. The adversary A also can be divided into two parts: the adversarial
environment E and a malicious component U′ that operates in place of U. E can submit the
adversarial input to Alg and U′ can record all information during the execution of Alg. We
consider that (T, U) is an outsource-secure implementation of Alg if (1) T and U implement
Alg, i.e., Alg = TU , and (2) a malicious U′ cannot learn anything about the inputs and
outputs during the execution of Alg. Furthermore, we formally define the security of the
outsourcing computation for the cryptographic algorithm.

Definition 1 (Algorithm with Outsource-IO). An algorithm Alg obeys outsource input/output
specification if it takes in five inputs (xhs, xhp, xhu, xap, xau) and generates three outputs (ys, yp, yu).
The first three inputs are generated by T and the last two inputs are adversarially submitted by
E. The classification of these five inputs depends on how A = (E, U′) has knowledge about them.
In particular,

Inputs:
• xhs is the honest and secret input, which is only known to T;
• xhp is the honest and protected input, which is known to T and E, but not to U′;
• xhu is the honest and unprotected input, which is known to T, E and U′;
• xap is the adversarial and protected input, which is known to T and E, but not to U′;
• xau is the adversarial and unprotected input, which is known to T, E and U′.

Outputs:
• ys is the secret output, which is only known to T;
• yp is the protected output, which is known to T and E, but not to U′;
• yu is the unprotected output, which is known to T, E and U′.

Definition 2 (Outsource-Security). Let Alg be an algorithm with outsource-IO. A pair of
algorithms (T, U) can be considered to be an outsource-secure implementation of Alg if:

Correctness: TU is a correct implementation of Alg.
Security: For anyone probabilistic polynomial-time adversary A = (E, U′), there exists the

probabilistic expected polynomial-time simulators (S1, S2) such that the following pairs of random
variables are computationally indistinguishable.

(1) Pair One: EVIEWreal ∼ EVIEWideal .
If the random variables of pair one are computationally indistinguishable, this means

the adversarial environment E cannot learn any useful information.

Sensors 2022, 22, 4365 7 of 19

We can formally define the view obtained by the adversarial environment E in the real
processing process as follows:

EVIEWi
real = {(ISi, xi

hs, xi
hp, xi

hu)← I(1k, ISi−1);

(ESi, ji, xi
ap, xi

au, stopi)← E(1k, EVIEWi−1
real , xi

hp, xi
hu);

(TSi, USi, yi
s, yi

p, yi
u)←

TU′(USi−1)(TSi−1, xji

hs, xji

hp, xji

hu, xi
ap, xi

au) :

(ESi, yi
p, yi

u)}.

EVIEWreal = EVIEWi
real i f stopi = TRUE.

The real process proceeds in rounds. There is an honest and stateful process I, which
the environment E does not have access to. In round i, I can pick the honest (secret,
protected and unprotected) inputs.

Then, E can choose some parameter values according to its view from the last round.
The value of ESi is a way of remembering what it does next time when it is invoked. ji is the
index of inputs (xi

hs, xi
hp, xi

au) (E can only specify the index, but cannot specify their values

of these inputs). E can choose the adversarial and protected input xi
ap and the adversarial

and unprotected input xi
au. stopi is the Boolean variable, which determines whether the

round i is the last round in the process.

Based on the inputs (TSi−1, xji

hs, xji

hp, xji

hu, xi
ap, xi

au), the algorithm TU′ begins to run,

where TSi−1 is previously saved by T and generates a new state TSi for T. In addition,
TU′ produces the secret output yi

s, the protected output yi
p and the unprotected output yi

u.
The oracle U′ is given its previously saved state USi−1, as input, and the current state of U′

is saved in the variable USi. E can obtain the final view in the real process, which is just its
view in the last round.

EVIEWi
ideal = {(ISi, xi

hs, xi
hp, xi

hu)← I(1k, ISi−1);

(ESi, ji, xi
ap, xi

au, stopi)← E(1k, EVIEWi−1
ideal , xi

hp, xi
hu);

(ASi, yi
s, yi

p, yi
u)← Alg(ASi−1, xji

hs, xji

hp, xji

hu, xi
ap, xi

au);

(SSi, USi, Yi
p, Yi

u, repi)←

SU′(USi−1)
1 (SSi−1, . . . , xji

hp, xji

hu, xi
ap, xi

au, yi
p, yi

u);

(zi
p, zi

u) = repi(Yi
p, Yi

u) + (1− repi)(yi
p, yi

u) :

(ESi, zi
p, zi

u)}.

EVIEWideal = EVIEWi
ideal i f stopi = TRUE.

The ideal process also proceeds in rounds. In the ideal process, there is a stateful
simulator S1, which can obtain the view when shielded from the secret input xi

hs. In round
i, based on the non-secret outputs that Alg generates, S1 can decide to either output the
values (yi

p, yi
u) generated by Alg or replace them with some other values (Yi

p, Yi
u). Whether

yi
p will be replaced with Yi

p depends on the value of repi, which is a bit. In doing this, S1 is
allowed to query the oracle U′; additionally, U′ saves its state as in the real experiment.

(2) Pair Two: UVIEWreal ∼ UVIEWideal .
If the random variables of pair two are computationally indistinguishable, this means

the malicious software U′ cannot learn any useful information.

Sensors 2022, 22, 4365 8 of 19

The view that the untrusted software U′ can obtain in the real process is the same as
that described in pair one. UVIEWreal = USi i f stopi = TRUE.

UVIEWi
ideal = {(ISi, xi

hs, xi
hp, xi

hu)← I(1k, ISi−1);

(ESi, ji, xi
ap, xi

au, stopi)←

E(1k, ESi−1, xi
hp, xi

hu, yi−1
p , yi−1

u);

(ASi, yi
s, yi

p, yi
u)← Alg(ASi−1, xji

hs, xji

hp, xji

hu, xi
ap, xi

au);

(SSi, USi)← SU′(USi−1)
2 (SSi−1, xji

hu, xi
au) :

(USi)}.
UVIEWideal = UVIEWi

ideal i f stopi = TRUE.

In the ideal process, there is a stateful simulator S2, which can only know the un-
protected input (xi

hu, xi
au) and has the access to query U′. As before, U′ may maintain

its state.

Definition 3 (α-Efficient [39]). A pair of algorithms (T, U′) can be considered to be an α-efficient
implementation of an algorithm Alg if (1) (T, U′) is an outsource-secure implementation of Alg,
and (2) for any inputs x, we suppose that the time cost for a task F to be solved locally by T is t1 and
the time cost for a task F to be solved locally by a secure outsourcing algorithm is t2, which satisfies
t2
t1
≤ α.

Definition 4 (β-Verifiable [39]). A pair of algorithms (T, U′) can be considered to be a β-
verifiable implementation of an algorithm Alg if (1) (T, U′) is an outsource-secure implementation
of Alg, and (2) for any inputs x, if there exists the malicious behavior from U′, the probability that
T can detect the error is not less than β.

Remark 1. In this paper, we do not adopt a method [40] to show the security of our proposed
algorithms in a real environment. We only prove that our proposed algorithms meet our proposed
security definition through detailed theoretical analysis. In the future research, we will explore how
to prove the security in a real environment according to the method proposed in [40].

4. Algorithm
Recently, Zuo et al. [12] put forward a privacy-preserving aggregation algorithm for

multidimensional data in a smart grid without a trusted authority. Their algorithm is based
on the ElGamal cryptosystem, which can support distributed decryption. This algorithm
needs the SM to encrypt the collected data periodically by the ElGamal encryption in the
data encryption stage. We will use Zuo’s algorithm as an example to describe our algorithm.

In this section, we will briefly describe Zuo’s algorithm. Then, for the modular expo-
nentiation operation in Zuo’s algorithm, we give a detailed description of our proposed
secure outsourcing algorithms.

4.1. Overview of Zuo’s Algorithm
In Zuo’s algorithm, there are six parts in total. We assume that the number of SM is n.

1. System Initialization: CC firstly generates a series of system parameters {G, GT , g, e, H,

pkCC,−→a ,
−→
b , (R1, R2, . . . , Rk, E)}, where G and GT are the multiplicative cyclic group of

a large secure prime p, g is a generator of G, e is a bilinear map: G×G → GT , H is a one-
way hash function: {0, 1}∗ → G, pkCC is the public key of CC, −→a = {a1, a2, . . . , aw}
and
−→
b = {b1, b2, . . . , bk} are the superincreasing sequences, and (R1, R2, . . . , Rk, E) are

the k range values of power consumption.
2. Registration: All SMi and GW register with CC. SMi chooses a random number

xi ∈ Zp and computes the public key pki = gxi and the signature σi = H(IDi||Ti)
xi ,

Sensors 2022, 22, 4365 9 of 19

where IDi is the identity of the user Ui and Ti is the current timestamp. Then,
SMi sends (IDi, Ti, σi, pki) to the CC. The CC verifies if e(g, σi) = e(pki, H(IDi||Ti))
holds. Once the equation is established, it means that the registration is successful.
The registration progress of the GW is similar. The GW randomly chooses a number
xGW and computes the public key pkGW .

3. Generation of Common Public Key: Each SMi broadcasts its public key pki and
verifies the validity of other public keys from other SMs. Then, SMi computes the
common public key PK as follows:

PK =
n

∏
i=1

pki = gx1+x2+. . . +xn .

4. Encryption of User Data: Each SMi collects w dimensions of power consumption
(mi1, mi2, . . . , miw). mi = (mi1 + mi2 + . . . + miw) is the total power consumption data
of each user. If mi ∈ [Rj, Rj+1), SMi chooses a random number ri ∈ Z∗p and computes

the corresponding ciphertext (Ca
i , Cb

i) based on the common public key PK and gbj ,
where i = 1, 2, . . . , n and j = 1, 2, . . . , k.

Ca
i = gri ,

Cb
i = ga1mi1+a2mi2+. . . +awmiw · gbj · PKri .

SMi computes its own signature as follows:

σi = H(IDi||Ca
i ||Cb

i ||Ti)
xi .

SMi sends {IDi, Ca
i , Cb

i , Ti, σi, pki} to the GW.
5. Data Aggregation: The GW firstly checks the timestamp Ti and verifies the validity

of n signatures. After successful verification, the GW computes the aggregated
ciphertext (Ca, Cb) = (∏n

i=1 Ca
i , ∏n

i=1 Cb
i) and its own signature σGW . The GW sends

{IDGW , Ca, Cb,TGW , σGW , pkGW} to the CC.
6. Decryption of aggregation Data: The CC firstly checks the timestamp TGW and

verifies the signature. Each SMi is required to provide Di and signature σd
i to the CC.

Di = (Ca)xi = (
n

∏
i=1

Ca
i)

xi ,

σd
i = H(IDi||Di||Td

i)
xi .

where Td
i is the current timestamp. SMi sends {IDi, Di, Td

i , σd
i , pki} to the CC. The CC

recovers the aggregated data.

From the above description, we can know that there are many complex and time-
consuming cryptography operations in Zuo’s algorithm, including the modular expo-
nentiation operation and the bilinear pairing operation. For the GW and CC, there are
sufficient computation resources and storage resources to carry out these complex opera-
tions. However, for an SM, as a kind of resource-constrained device, there are not enough
computation resources and storage resources to deal with the time-consuming modular
exponentiation operation, or it needs a lot of time to complete these operations. In Zuo’s
algorithm, there are three parts involving modular exponentiation operations: registration,
encryption and decryption. In the registration process, each SM only performs a modular
exponentiation operation. Even if it takes a longer time, it has little effect on the efficiency
of the protocol. We mainly solve the modular exponentiation operation in encryption and
decryption because the SM constantly performs modular exponentiation. This situation
is not suitable for the CC to process power consumption data in real time. Therefore, we
design secure outsourcing algorithms to improve the efficiency of the SM’s execution of
modular exponentiation.

Sensors 2022, 22, 4365 10 of 19

4.2. Description of Outsourcing Algorithms
In Zuo’s algorithm, every time the SM sends power consumption data, the SM needs

to perform the modular exponentiation operation five times. The SM needs to compute
Ca

i , Cb
i , σi, Di and σd

i . When calculating Ca
i and Cb

i , the base of modular exponentiation
is fixed and secret, and the exponent is variable and secret. When calculating σi, Di and
σd

i , the base and exponent of modular exponentiation are variable and secret. For these
two different cases of modular exponentiation operations, we design two different secure
outsourcing algorithms.

We use u to represent the base of modular exponentiation and a to represent the
exponent of modular exponentiation. p is the modulus. The SM sends u, a and p to the
MS, and the MS returns ua mod p to the SM. In the process of computing Ca

i and Cb
i , g

is the generator of a group and PK is the common public key. g and PK are the fixed
parameters. When designing an outsourcing algorithm for Ca

i and Cb
i , the SM needs to

protect the privacy of u, a and p.
In Algorithm 1, u and p are secret and fixed, and a is secret and variable. Because u is

fixed, the SM can compute two blinding pairs, ux1 and ux2 , in advance. In order to keep
the information of a private from the MS, the SM can use x1 and x2 to blind the exponent
a. Based on the discrete logarithm problem, the MS cannot obtain the base u from ux1

and ux2 . Based on the big integer factorization problem, the MS cannot obtain the base
modular p from sp. In order to ensure the verifiability of the returned results, the SM needs
to randomly choose a number r. The SM not only needs to send the blinding original
computation ua to the MS, but also needs to send the blinding-related computation ura to
the MS. When it is necessary to verify the correctness of the result returned from the MS,
the SM only needs to verify whether the equation (ua)r = ura holds. When the verification
is successful, the SM can use the locally stored p to recovery the real result ua.

Now, we utilize an example to illustrate our proposed Algorithm 1.

Example 1. The SM wants to compute ua mod p, where p = 11 is a prime, u = 2 and a = 2.
The SM can compute as follows:
1. Pre-computation: The SM chooses x1 = 3 and x2 = 7. Then, The SM computes ux1 = 8 and

ux2 = 7.
2. Problem transformation: The SM chooses r = 2 and s = 3. Then, the SM computes ra = 4

and sp = 33. The SM computes t1 = 4 and t2 = 2.
3. Server computation: The MS computes c1 = 4 and c2 = 16.
4. Result verification: The SM can verify the following equation:

42 mod 11 = 16 mod 11.

5. Result recovery: The SM can recover the real result ua = 4 mod 11 = 4.

In process of computing σi, Di and σd
i , the exponent xi is the user’s private key,

and the base is the message summary H() or the aggregated ciphertext Ca, which cannot
be disclosed to MS. Once leaked, it will have a serious impact on the security of the entire
algorithm. Therefore, when designing an outsourcing algorithm for σi, Di and σd

i , the SM
needs to protect the privacy of the base and the exponent, that is, the privacy of u and a.

Before introducing Algorithm 2, we firstly introduce a theorem. Let N be a positive
integer, and let u be an integer which satisfies gcd(u, N) = 1; then we have uφ(N) ≡ 1
mod N.

Theorem 1. For N = p1 p2. . . pm, where p1, p2, . . . , pm are distinct prime numbers, we have

ua+γφ(N) = ua(mod N)

where φ(·) is the Euler’s function and γ is a random integer.

Sensors 2022, 22, 4365 11 of 19

Algorithm 1 Secure Outsourcing of Modular Exponentiation with Public Base and Secret
Exponent (Fixed Base)

Input:
u ∈ Z∗p, a ∈ Z∗p.

Output:
ua mod p.
1. Pre-computation:

• The SM randomly chooses x1 and x2 and pre-computes ux1 and ux2 , where
gcd(x1, p− 1) = 1 and gcd(x2, p− 1) = 1.

2. Problem transformation:
• The SM randomly chooses a number r from the set [2, 11] and computes ra.
• The SM randomly chooses a larger prime s and computes sp.
• The SM computes t1 and t2 as:

t1 = a/x1 mod p− 1,
t2 = ra/x2 mod p− 1.

• The SM sends sp, ux1 , ux2 , t1 and t2 to MS.
3. Server computation:

• The MS computes c1 and c2 as:

c1 = (ux1)t1 mod sp,

c2 = (ux2)t2 mod sp.

• The MS returns c1 and c2 to the user.
4. Result verification:

• The SM verifies the following equation:

(c1)
r mod p = c2 mod p.

5. Result recovery:
• The SM can recover the real result as:

ua = c1 mod p.

In Algorithm 2, N = p and φ(N) = p− 1. u and a are secret and variable. In order
to keep the information of u private from the MS, the SM firstly runs the Rand algorithm
to generate four blinding pairs and compute two blinding pairs to blind the base u. The
original base u can be transformed into ugx1

1 . Because the MS does not know any knowledge
about gx1

1 , the MS cannot obtain the base u from ugx1
1 . By utilizing Theorem 1, the SM can

protect the information of a from being disclosed to the MS.The original exponent a can be
transformed into t3 = a + k1(p− 1), where k1 is a random integer. Similar to Algorithm 1,
the SM chooses a random integer r and compares the two returned results to ensure the
verifiability of the results. When the verification is successful, the SM can use the locally
stored gx3

1 and p to recover the real result ua.
Now, we utilize an example to illustrate our proposed Algorithm 2.

Example 2. The SM wants to compute ua mod p, where p = 11 is a prime, g1 = 2, u = 3 and
a = 2. The SM can compute as follows:
1. Pre-computation: The SM chooses x1 = 1, x2 = 3, x3 = 2, x4 = 4, x5 = 7, x6 = 5. Then,

SM computes gx1
1 = 2, gx2

1 = 8, gx3
1 = 4, gx4

1 = 5, gx5
1 = 7, gx6

1 = 10.
2. Problem transformation: The SM chooses r = 2, s = 3 k1 = 4 and k2 = 5. Then, the SM

computes ra = 4 and sp = 33. The SM computes t1 = 2, t2 = 7, t3 = 42 and t4 = 54.
3. Server computation: The MS computes c1 = 3, c2 = 31, c3 = 3 and c4 = 6.

Sensors 2022, 22, 4365 12 of 19

4. Result verification: The SM can verify the following equation:

3722 mod 11 = 180 mod 11.

5. Result recovery: The SM can recover the real result ua = 372 mod 11 = 9.

Algorithm 2 Secure Outsourcing of Modular Exponentiation with Secret Base and Exponent
(Variable Base)
Input:

u ∈ Z∗p, a ∈ Z∗p.
Output:

ua mod p.
1. Pre-computation:

• The SM runs the Rand algorithm to generate four blinding pairs (x1, gx1
1), (x3, gx3

1),
(x4, gx4

1), (x6, gx6
1) and randomly chooses x2 and x5 and computes (x2, gx2

1) (x5, gx5
1),

where gcd(x2, p− 1) = 1 and gcd(x5, p− 1) = 1.
2. Problem transformation:

• The SM randomly chooses two numbers k1 and k2, and chooses a random number r
from [2, 11]. The SM computes ra.

• The SM randomly chooses a larger prime s and computes sp.
• The SM computes t1 and t2 as:

t1 = (−x3 − x1a)/x2 mod p− 1,
t2 = (−x6 − x4ra)/x5 mod p− 1.

• The SM computes t3 and t4 as:

t3 = a + k1(p− 1),
t4 = ra + k2(p− 1).

• The SM sends (u · gx1
1 , t3), (gx2

1 , t1), (u · gx4
1 , t4), (gx5

1 , t2) and sp to the MS.
3. Server computation:

• The MS computes c1, c2, c3 and c4 as:

c1 = (u · gx1
1)t3 mod sp,

c2 = (gx2
1)t1 mod sp,

c3 = (u · gx4
1)t4 mod sp,

c4 = (gx5
1)t2 mod sp.

• The MS sends c1, c2, c3 and c4 to SM.
4. Result verification:

• The SM verifies the following equation:

(c1c2gx3
1)r mod p = c3c4gx6

1 mod p.

5. Result recovery:
• The SM can recover the real result as:

ua = c1c2gx3
1 mod p.

5. Security and Complexity Analysis
In this section, we firstly analyze the correctness and the security of the proposed

algorithms. Then, we give a detailed description about the verifiability of the returned
results. Finally, we analyze the computational complexity of the proposed algorithms.

Sensors 2022, 22, 4365 13 of 19

5.1. Security Analysis
Theorem 2. In the malicious model, the algorithm (T, U) is an outsource-secure implementation
of Algorithms 1 and 2, where the input (u, a, p) may be honest, secret; or honest, protected; or
adversarial, protected.

Proof. The correctness of these two algorithms is obvious and straightforward. We mainly
focus on security. A = (E, U′) is a PPT adversary that interacts with a PPT algorithm T in
the malicious model. We need to prove that pair one and pair two are computationally in-
distinguishable.

Pair One EVIEWreal ∼ EVIEWideal : If the input (u, a, p) is anything other than honest
and secret, the same way that the simulator S1 behaves as in the real execution. Under an
honest and secret input (u, a, p), S1 will behave as follows: once the information is received
in the ith round, S1 neglects it and correspondingly makes two random queries of the
form (αi, βi, θi) to U′. S1 randomly tests one output from the program (i.e., β

αi
i mod θi).

Once it detects an error, S1 saves the states of itself and U′, and outputs Yi
p = ”error”, Yi

u =

∅, repi = 1. If no error is detected, S1 outputs Yi
p = ∅, Yi

u = ∅, repi = 0; otherwise, S1

randomly chooses an element R and outputs Yi
p = R, Yi

u = ∅, repi = 0. In either case, S1
also stores the appropriate states. In the real and ideal experiment, the input distributions
to U′ are computationally indistinguishable. The inputs in the ideal experiment are chosen
uniformly at random. Each part of all two queries that T makes is re-randomized and
computationally indistinguishable. If U′ behaves honestly in the ith round, we have
EVIEWi

real ∼ EVIEWi
ideal . If U′ behaves dishonestly in the ith round, both T and S1 detect

malicious behavior with a high probability and output “error”. In the real experiment,
the two outputs generated by U′ are blinded by a random value. Therefore, we have
EVIEWreal ∼ EVIEWideal . In summary, we can get EVIEWreal ∼ EVIEWideal no matter
whether U′ is honest or malicious.

Pair Two UVIEWreal ∼ UVIEWideal : The way that the simulator S2 behaves is as fol-
lows: Once the information is received in the ith round, S2 neglects it and correspondingly
makes two random queries of the form (αi, βi, θi) to U′. Then, S2 saves the states of itself
and U′. These real and ideal experiments can be easily distinguished by E because the
outputs in the ideal experiment are never corrupted. Because there is no channel between
E and U′, E cannot transmit any messages to U′. In the ith round of the real experiment, T
re-randomizes its inputs to U′. S2 generates the random and independent queries to U′

in the ideal experiment. We can know UVIEWi
real ∼ UVIEWi

ideal . In summary, we can get
UVIEWreal ∼ UVIEWideal .

5.2. Verifiability Analysis
Theorem 3. In the malicious model, the proposed Algorithm 1 is a 19/20-verifiable secure outsourc-
ing algorithm and the proposed Algorithm 2 is a 59/60-verifiable secure outsourcing algorithm.

Proof. At first, we prove that Algorithm 1 is a 19/20-verifiable secure outsourcing al-
gorithm. If the MS wants to cheat the SM, the MS may make some guesses about the
value c1, c2 and r. In order to verify the correctness of the results, the SM needs to check
the equation:

(c1)
r mod p = c2 mod p.

In order to cheat the SM, the MS needs to randomly choose a integer C and constructs
the following equation:

(Cc1)
r mod p = Crc2 mod p.

In order to make the above equation hold, the MS needs to guess the value of r and
distinguish c1 from c1 and c2. Because the random number r is chosen from the set [2, 11],
the probability that the MS can accurately guess the value of r is 1/10. The probability
that the MS can accurately distinguish c1 from c1 and c2 is 1/2. Therefore, the probability

Sensors 2022, 22, 4365 14 of 19

that the MS can cheat the SM is 1/20. Algorithm 1 is a 19/20 (0.95)-verifiable secure
outsourcing algorithm.

Then, we prove that Algorithm 2 is a 59/60-verifiable secure outsourcing algorithm.
Similar to Algorithm 1, in order to cheat the SM, the MS needs to randomly choose a integer
C and construct the following equation:

(Cc1c2gx3
1)r mod p = Crc3c4gx6

1 mod p.

On the one hand, the MS needs to guess the value of r. On the other hand, the MS needs
to distinguish c1 and c2 from c1, c2, c3 and c4 and separately compute Cc1c2 and Crc3c4.
The probability that the MS can accurately guess the value of r is 1/10. The probability
that the MS can accurately distinguish c1 and c2 from c1, c2, c3 and c4 is 1/6. Therefore,
the probability that the MS can cheat the SM is 1/60. Algorithm 2 is a 59/60 (0.983)-
verifiable secure outsourcing algorithm.

Then, we compare the security, verifiability and efficiency of Algorithm 2 with some
previous algorithms. As shown in Table 2, there is the comparison of security, verifiability
and efficiency for the user in these outsourcing algorithms. In order for all outsourced
algorithms to have the same level of security, we set c = r = 4 and k = l = 29. All random
numbers x, t1 and t2 are larger than 264. From Table 2, we can find that Algorithm 2 is
superior to [33,41] in both efficiency and security. Compared to [42], although Algorithm 2
does less MM, it needs to do one more MInv and one Rand. However, Algorithm 2
has higher verifiability. In addition, compared with the previous three algorithms, our
algorithm has higher security that can protect the modulus of modular exponentiation.

Table 2. Comparison of algorithms.

Wang [33] Ye [41] Kiraz [42] Algorithm 2

MM 12 + 1.5 log x > 108 1.5 log r + 1.5(log t1 + log t2) + 15 > 210 l + k + 8 log c + 38 = 112 15 + 1.5 log r

MInv 4 6 1 2

Rand 6 6 5 6

Verifiability 0.5 0.991 0.917 0.983

Modular Privacy No No No Yes

5.3. Complexity Analysis
Theorem 4. In the malicious model, the proposed Algorithm 1 is a ((1.5log r + 3)*MM + 2*MInv)/
1.5l*MM-efficient secure outsourcing algorithm, and the proposed Algorithm 2 is a ((1.5log
r + 15)*MM + 2*MInv)/1.5l*MM-efficient secure outsourcing algorithm.

Proof. We denote MM as a once modular multiplication operation and MInv as a once
modular inverse operation. For a l-bit exponent, the SM needs to be 1.5l times MM to
compute ua mod p by the square-and-multiply method. The bit length of u, a and p is l.

In Algorithm 1, the process of problem transformation needs three times MM (we
omit ra) and twice MInv. The process of result verification needs 1.5log r times MM. We
omit other operations such as modular additions. Thus, the proposed Algorithm 1 is a
((1.5log r + 3)*MM + 2*MInv)/1.5l*MM-efficient secure outsourcing algorithm.

In Algorithm 2, the process of problem transformation needs nine times MM and
twice MInv. The process of result verification and recovery needs 1.5log r + 6 times MM.
Thus, the proposed Algorithm 2 is a ((1.5log r + 15)*MM + 2*MInv)/1.5l*MM-efficient
secure outsourcing algorithm.

Sensors 2022, 22, 4365 15 of 19

6. Evaluation
6.1. Numeric Analysis

In this section, we will give an analysis of communication overhead and storage
space overhead.

At first, we give an analysis of communication overhead. The bit length of sp is L.
In Algorithm 1, the SM needs to send sp, ux1 , ux2 , t1 and t2 to the MS. The size of these
parameters is 4l + L bits. The MS needs to return c1 and c2 to the SM. The size of these
parameters is 2L bits. To sum up, the communication overhead of Algorithm 1 is 4l + 3L
bits. Similar to Algorithm 1, in Algorithm 2, the SM needs to send (u · gx1

1 , t3), (gx2
1 , t1),

(u · gx4
1 , t4), (gx5

1 , t2) and sp to the MS. The size of these parameters is 8l + L bits. The MS
needs to return c1, c2, c3 and c4 to the SM. The size of these parameters is 4L bits. To sum
up, the communication overhead of Algorithm 2 is 8l + 5L bits.

Then, we give a analysis of storage space overhead. The storage space that the SM
requires contains two parts: an online phase and offline phase. In the offline phase of
Algorithm 1, the SM needs to store the two pre-computed pairs and the parameters {u, p},
which needs 6l bits storage space. In the online phase of Algorithm 1, the SM firstly needs
l bit of storage space to store a. Then, the SM needs 4l + L bits storage space during the
problem transformation stage, which contains the parameters {ra, s, sp, t1, t2}. We assume
that s and p have the same bit length l and omit the bit length of r. The client needs l + 2L
bits storage space during the result verification and recovery, which contains the parameters
{c1, c2, ua}. To sum up, the storage space overhead of Algorithm 1 is 12l + 3L bits.

We can analyze Algorithm 2 in a similar way. The SM needs to 13l bits storage space
to store six blinding pairs and p in the offline phase of Algorithm 2. In the online phase of
Algorithm 2, the SM firstly needs 2l bits storage space to store a and u. Then, the SM needs
8l + L bits storage space during the problem transformation stage, which contains the
parameters {ra, s, sp, t1, t2, t3, t4, ugx1

1 , ugx4
1 }. We omit the bit length of r, k1 and k2. The SM

needs l + 4L bits of storage space during the result verification and recovery, which contains
the parameters {c1, c2, c3, c4, ua}. To sum up, the storage space overhead of Algorithm 2 is
24l + 5L bits.

Table 3 shows the communication overhead and storage space overhead.

Table 3. Communication overhead and storage space overhead.

Communication Overhead Offline Online Storage Space Overhead

Algorithm 1 4l + 3L 6l 6l + 3L 12l + 3L

Algorithm 2 8l + 5L 13l 11l + 5L 24l + 5L

6.2. Performance Evaluation
In this section, in order to show that our proposed algorithms are efficient, we carried

out some experiment evaluations. We implemented our algorithms by using the C++
programming language with the GMP library, which is specially designed to handle some
large integer operations. We used a software named Sublime Text3 to write the programs.
In the program, all variables were first defined as the types defined in GMP. Then, we wrote
code step-by-step according to the algorithms. We need edto define many variables to
receive the intermediate data. We usee the system’s own time function to compute the time
cost of the two algorithms. SM was simulated by a computer with a Linux Ubuntu 20.04.2
LTS operating system and Intel Core i5 processors (2.4 GMz and 2 G memory). MS was
simulated by a computer with a Linux Ubuntu 20.04.2 LTS operating system and Intel Core
i5 processors (2.6 GMz and 8 G memory). In our experiment, the bit length of p ranged
from 256 bits to 2048 bits. As shown in Table 4, there are some simulation parameters when
the bit length of p is 256 bits and 512 bits.

Sensors 2022, 22, 4365 16 of 19

Table 4. Some simulation parameters.

Bit Length u a s p

256

597974957066362
8312108786874212
0805637125244242
2833798526287842
0394720897670892

71

7783106559391062
8582374740114662
1029621475861472
9700109390341782
4734058418115822

47

1086409120439892
6481456366616012
5750177785808122
7384531935993452
1304955239068542

937

8269790490761102
2215644205306412
5187816705842742
7370829104058312
0118723036268882

41

512

754387404285988
120826742806315
691191408511373
747561289674705
476743950894451
122497539359176
804470461882150
746408475691612
284449585981855
155202044474843

8435

750582098634835
192302082996469
078517856339381
182246653167329
120531958754792
548491295132292
354230821822750
054928738939141
913001392109008
976698721435666

8809

861478175873681
674678195073537
115352012738288
372116893103864
237840006599576
717793500595767
387060711833362
282500403261748
910719236579350
879254393697362

30279

783792629876206
141918443009719
853359141243678
662806276651199
939579569239026
298451825126212
286804347962362
175060120125548
509155767187344
027224581929964

0811

Figure 2a compares the time cost of not outsourcing with our proposed Algorithm 1 on the
SM side. Figure 3a compares the time cost of not outsourcing with our proposed Algorithm 2
on the SM side. As shown in Figures 2a and 3a, the time cost of Algorithms 1 and 2 are much
smaller than that of direct computation. Note that the time cost of Algorithms 1 and 2 on the
SM side dose not include the pre-computation process. The pre-computation process can be
done off-line. In Algorithms 1 and 2, the time cost on the SM side concentrates on these three
processes: transformation, verification and recovery.

(a) (b)

Figure 2. Evaluation results for Algorithm 1. (a) The time cost of Algorithm 1 without outsourcing
on the SM side; (b) The time cost comparison among phases in Algorithm 1.

Figures 2b and 3b show the time cost of transformation, verification and recovery in
Algorithms 1 and 2. As shown in Figures 2b and 3b, the process of transformation needs
to take more time than two other processes. This is because the process of transformation
contains two modular inverse operations. Generally speaking, it takes more time to
complete a modular inversion operation than a modular multiplication operation. Because
only one modular operation is performed in the process of recovery, the time cost of
recovery is the smallest.

Figure 4 shows that the ratio between the time cost of our proposed algorithms and
direct computation. From Figure 4, we can see that Algorithms 1 and 2 can significantly im-
prove the efficiency of the SM. In addition, as the bit length of p increases, the improvement
becomes more and more significant.

Sensors 2022, 22, 4365 17 of 19

(a) (b)

Figure 3. Evaluation results for Algorithm 2. (a) The time cost of Algorithm 2 without outsourcing
on the SM side; (b) The time cost comparison among phases in Algorithm 2.

Figure 4. The ratio between the time cost of our proposed algorithms and direct computation.

7. Conclusions
In this paper, for the complex modular exponentiation operations involved in Zuo’s

privacy-preserving data aggregation protocol, we designed two secure and efficient out-
sourcing algorithms for resource-constrained SMs. The proposed algorithms not only can
protect SMs’ confidential data from being leaked to an untrusted server, but can also ensure
the correctness of the returned results from the server. In addition, we provided an analysis
of the security, verifiability and efficiency and proved that the SM can detect error with
a probability of 19/20 in Algorithm 1 and with a probability of 59/60 in Algorithm 2.
Finally, through experimental evaluation, we proved that our proposed algorithms are
well suitable for data encryption and aggregation in smart grids. In the future, on the one
hand, we will investigate more outsourcing algorithms, including bilinear pairing and
scalar multiplication on elliptic curves, which are applicable to other data encryption and
aggregation protocols. On the other hand, we will explore how to combine outsourcing
computation with distributed computation to reduce the computational overhead on the
server side.

Author Contributions: Conceptualization, F.Z. and T.Y.; methodology, F.Z. and T.Y.; software, F.Z.
and B.Z.; validation, F.Z., T.Y., B.Z. and H.C.; formal analysis, F.Z.; investigation, F.Z.; resources,
F.Z.; data curation, F.Z.; writing—original draft preparation, F.Z.; writing—review and editing, F.Z.;
visualization, F.Z.; supervision, F.Z.; project administration, F.Z. All authors have read and agreed to
the published version of the manuscript.

Funding: This work was supported in part by the National Key Research and Development Program
of China (2017YFE0132100) and the National Natural Science Foundation of China (61971305).

Conflicts of Interest: The authors declare no conflict of interest.

Sensors 2022, 22, 4365 18 of 19

References
1. Fang, X.; Misra, S.; Xue, G.; Yang, D. Smart Grid—The New and Improved Power Grid: A Survey. IEEE Commun. Surv. Tutor.

2012, 14, 944–980. [CrossRef]
2. Gungor, V.C.; Sahin, D.; Kocak, T.; Ergut, S.; Buccella, C.; Cecati, C.; Hancke, G.P. Smart Grid Technologies: Communication

Technologies and Standards. IEEE Trans. Ind. Inform. 2011, 7, 529–539. [CrossRef]
3. Yu, L.; Jiang, T.; Zou, Y. Distributed Online Energy Management for Data Centers and Electric Vehicles in Smart Grid. IEEE

Internet Things J. 2016, 3, 1373–1384. [CrossRef]
4. Iyer, S. Cyber security for smart grid, cryptography, and privacy. Int. J. Digit. Multimed. Broadcast. 2011, 2011, 1–8. [CrossRef]
5. Dwivedi, A.D.; Singh, R.; Ghosh, U.; Mukkamala, R.R.; Tolba, A.; Said, O. Privacy preserving authentication system based on

non-interactive zero knowledge proof suitable for Internet of Things. J. Ambient. Intell. Humaniz. Comput. 2021, 1–11. [CrossRef]
6. Almaiah, M.A.; Hajjej, F.; Ali, A.; Pasha, M.F.; Almomani, O. A Novel Hybrid Trustworthy Decentralized Authentication and

Data Preservation Model for Digital Healthcare IoT Based CPS. Sensors 2022, 22, 1448. [CrossRef]
7. Gope, P.; Sikdar, B. Privacy-Aware Authenticated Key Agreement Scheme for Secure Smart Grid Communication. IEEE Trans.

Smart Grid 2019, 10, 3953–3962. [CrossRef]
8. Wazid, M.; Das, A.K.; Kumar, N.; Rodrigues, J.J.P.C. Secure Three-Factor User Authentication Scheme for Renewable-Energy-

Based Smart Grid Environment. IEEE Trans. Ind. Inform. 2017, 13, 3144–3153. [CrossRef]
9. Ding, Y.; Wang, B.; Wang, Y.; Zhang, K.; Wang, H. Secure Metering Data Aggregation With Batch Verification in Industrial Smart

Grid. IEEE Trans. Ind. Inform. 2020, 16, 6607–6616. [CrossRef]
10. He, D.; Kumar, N.; Zeadally, S.; Vinel, A.; Yang, L.T. Efficient and Privacy-Preserving Data Aggregation Scheme for Smart Grid

Against Internal Adversaries. IEEE Trans. Smart Grid 2017, 8, 2411–2419. [CrossRef]
11. Yan, Y.; Qian, Y.; Sharif, H.; Tipper, D. A Survey on Cyber Security for Smart Grid Communications. IEEE Commun. Surv. Tutor.

2012, 14, 998–1010. [CrossRef]
12. Zuo, X.; Li, L.; Peng, H.; Luo, S.; Yang, Y. Privacy-Preserving Multidimensional Data Aggregation Scheme Without Trusted

Authority in Smart Grid. IEEE Syst. J. 2020, 15, 395–406. [CrossRef]
13. Peng, C.; Luo, M.; Wang, H.; Khan, M.K.; He, D. An Efficient Privacy-Preserving Aggregation Scheme for Multidimensional Data

in IoT. IEEE Internet Things J. 2021, 9, 589–600. [CrossRef]
14. Boudia, O.R.M.; Senouci, S.M.; Feham, M. Elliptic curve-based secure multidimensional aggregation for smart grid communica-

tions. IEEE Sens. J. 2017, 17, 7750–7757. [CrossRef]
15. Atallah, M.J.; Frikken, K.B. Securely Outsourcing Linear Algebra Computations. In Proceedings of the 5th ACM Symposium on

Information, Computer and Communications Security, ASIACCS ’10, Beijing, China, 13–16 April 2010; pp. 48–59.
16. Li, H.; Yu, J.; Yang, M.; Kong, F. Secure Outsourcing of Large-Scale Convex Optimization Problem in Internet of Things. IEEE

Internet Things J. 2022, 9, 8737–8748. [CrossRef]
17. Ren, K.; Wang, C.; Wang, Q. Security Challenges for the Public Cloud. IEEE Internet Comput. 2012, 16, 69–73. [CrossRef]
18. Munoz, A.; Mafia, A. Software and hardware certification techniques in a combined certification model. In Proceedings of the

2014 11th International Conference on Security and Cryptography (SECRYPT), Vienna, Austria, 28–30 August 2014; pp. 1–6.
19. Gao, X.; Yu, J.; Chang, Y.; Wang, H.; Fan, J. Checking Only When It Is Necessary: Enabling Integrity Auditing Based on the

Keyword with Sensitive Information Privacy for Encrypted Cloud Data. IEEE Trans. Dependable Secur. Comput. 2021, 1. [CrossRef]
20. Ge, X.; Yu, J.; Zhang, H.; Bai, J.; Fan, J.; Xiong, N.N. SPPS: A Search Pattern Privacy System for Approximate Shortest Distance

Query of Encrypted Graphs in IIoT. IEEE Trans. Syst. Man, Cybern. Syst. 2022, 52, 136–150. [CrossRef]
21. Li, S.; Xue, K.; Yang, Q.; Hong, P. PPMA: Privacy-preserving multisubset data aggregation in smart grid. IEEE Trans. Ind. Inform.

2017, 14, 462–471. [CrossRef]
22. Lu, R.; Liang, X.; Li, X.; Lin, X.; Shen, X. EPPA: An efficient and privacy-preserving aggregation scheme for secure smart grid

communications. IEEE Trans. Parallel Distrib. Syst. 2012, 23, 1621–1631.
23. Saxena, N.; Choi, B.; Lu, R. Authentication and Authorization Scheme for Various User Roles and Devices in Smart Grid. IEEE

Trans. Inf. Forensics Secur. 2016, 11, 907–921. [CrossRef]
24. Sun, R.; Shi, Z.; Lu, R.; Lu, M.; Shen, X.S. APED: An efficient aggregation protocol with error detection for smart grid

communications. In Proceedings of the 2013 IEEE Global Communications Conference (GLOBECOM), Atlanta, GA, USA, 9–13
December 2013; pp. 432–437.

25. Shi, Z.; Sun, R.; Lu, R.; Chen, L.; Chen, J.; Shen, X.S. Diverse Grouping-Based Aggregation Protocol With Error Detection for
Smart Grid Communications. IEEE Trans. Smart Grid 2015, 6, 2856–2868. [CrossRef]

26. Bao, H.; Lu, R. A New Differentially Private Data Aggregation With Fault Tolerance for Smart Grid Communications. IEEE
Internet Things J. 2015, 2, 248–258. [CrossRef]

27. Guo, C.; Jiang, X.; Choo, K.; Tang, X.; Zhang, J. Lightweight privacy preserving data aggregation with batch verification for smart
grid. Future Gener. Comput. Syst. 2020, 112, 512–523. [CrossRef]

28. Gai, K.; Wu, Y.; Zhu, L.; Qiu, M.; Shen, M.S. Privacy-Preserving Energy Trading Using Consortium Blockchain in Smart Grid.
IEEE Trans. Ind. Inform. 2019, 15, 3548–3558. [CrossRef]

29. Gough, M.; Santos, S.; Alskaif, T.; Javadi, M.; Castro, R.; Catalao, J.P.S. Preserving Privacy of Smart Meter Data in a Smart Grid
Environment. IEEE Trans. Ind. Inform. 2022, 18, 707–718. [CrossRef]

30. Hohenberger, S.; Lysyanskaya, A. How to Securely Outsource Cryptographic Computations. In Proceedings of the International
Conference on Theory of Cryptography, Cambridge, MA, USA, 10–12 February 2005; pp. 264–282.

http://doi.org/10.1109/SURV.2011.101911.00087
http://dx.doi.org/10.1109/TII.2011.2166794
http://dx.doi.org/10.1109/JIOT.2016.2602846
http://dx.doi.org/10.1155/2011/372020
http://dx.doi.org/10.1007/s12652-021-03459-4
http://dx.doi.org/10.3390/s22041448
http://dx.doi.org/10.1109/TSG.2018.2844403
http://dx.doi.org/10.1109/TII.2017.2732999
http://dx.doi.org/10.1109/TII.2020.2965578
http://dx.doi.org/10.1109/TSG.2017.2720159
http://dx.doi.org/10.1109/SURV.2012.010912.00035
http://dx.doi.org/10.1109/JSYST.2020.2994363
http://dx.doi.org/10.1109/JIOT.2021.3083136
http://dx.doi.org/10.1109/JSEN.2017.2720458
http://dx.doi.org/10.1109/JIOT.2021.3116127
http://dx.doi.org/10.1109/MIC.2012.14
http://dx.doi.org/10.1109/TDSC.2021.3106780
http://dx.doi.org/10.1109/TSMC.2021.3073542
http://dx.doi.org/10.1109/TII.2017.2721542
http://dx.doi.org/10.1109/TIFS.2015.2512525
http://dx.doi.org/10.1109/TSG.2015.2443011
http://dx.doi.org/10.1109/JIOT.2015.2412552
http://dx.doi.org/10.1016/j.future.2020.06.001
http://dx.doi.org/10.1109/TII.2019.2893433
http://dx.doi.org/10.1109/TII.2021.3074915

Sensors 2022, 22, 4365 19 of 19

31. Chen, X.; Li, J.; Ma, J.; Tang, Q.; Lou, W. New Algorithms for Secure Outsourcing of Modular Exponentiations. IEEE Trans.
Parallel Distrib. Syst. 2014, 25, 2386–2396. [CrossRef]

32. Ye, J.; Chen, X.; Ma, J. An Improved Algorithm for Secure Outsourcing of Modular Exponentiations. In Proceedings of the 2015
IEEE 29th International Conference on Advanced Information Networking and Applications Workshops, Gwangiu, Korea, 24–27
March 2015; pp. 73–76.

33. Wang, Y.; Wu, Q.; Wong, D.S.; Qin, B.; Chow, S.S.M.; Liu, Z.; Tan, X. Securely Outsourcing Exponentiations with Single Untrusted
Program for Cloud Storage. In Proceedings of the European Symposium on Research in Computer Security, Wroclaw, Poland,
7–11 September 2014; Springer: Berlin/Heidelberg, Germany, 2014; pp. 326–343.

34. Ren, Y.; Dong, M.; Qian, Z.; Zhang, X.; Feng, G. Efficient Algorithm for Secure Outsourcing of Modular Exponentiation with
Single Server. IEEE Trans. Cloud Comput. 2021, 9, 145–154. [CrossRef]

35. Zhou, K.; H. Afifi, M.; Ren, J. ExpSOS: Secure and Verifiable Outsourcing of Exponentiation Operations for Mobile Cloud
Computing. IEEE Trans. Inf. Forensics Secur. 2017, 12, 2518–2531. [CrossRef]

36. Li, H.; Yu, J.; Zhang, H.; Yang, M.; Wang, H. Privacy-Preserving and Distributed Algorithms for Modular Exponentiation in IoT
With Edge Computing Assistance. IEEE Internet Things J. 2020, 7, 8769–8779. [CrossRef]

37. Chen, X.; Huang, X.; Li, J.; Ma, J.; Lou, W.; Wong, D.S. New Algorithms for Secure Outsourcing of Large-Scale Systems of Linear
Equations. IEEE Trans. Inf. Forensics Secur. 2015, 10, 69–78. [CrossRef]

38. Nguyen, P.Q.; Shparlinski, I.E.; Stern, J. Distribution of Modular Sums and the Security of the Server Aided Exponentiation. In
Cryptography and Computational Number Theory; Birkhäuser: Basel, Switzerland, 2001; pp. 331–342.

39. Gennaro, R.; Gentry, C.; Parno, B. Non-interactive Verifiable Computing: Outsourcing Computation to Untrusted Workers. In
Advances in Cryptology—CRYPTO 2010; Springer: Berlin/Heidelberg, Germany, 2010; pp. 465–482.

40. Muñoz, A.; Maña, A.; Serrano, D. AVISPA in the validation of ambient intelligence scenarios. In Proceedings of the 2009
International Conference on Availability, Reliability and Security, Jukuoka, Japan, 16–19 March 2009; pp. 420–426.

41. Ye, J.; Wang, J. Secure outsourcing of modular exponentiation with single untrusted server. In Proceedings of the 2015 18th
International Conference on Network-Based Information Systems,Taipei, Taiwan, 2–4 September 2015; pp. 643–645.

42. Kiraz, M.S.; Uzunkol, O. Efficient and verifiable algorithms for secure outsourcing of cryptographic computations. Int. J. Inf.
Secur. 2016, 15, 519–537. [CrossRef]

http://dx.doi.org/10.1109/TPDS.2013.180
http://dx.doi.org/10.1109/TCC.2018.2851245
http://dx.doi.org/10.1109/TIFS.2017.2710941
http://dx.doi.org/10.1109/JIOT.2020.2995677
http://dx.doi.org/10.1109/TIFS.2014.2363765
http://dx.doi.org/10.1007/s10207-015-0308-7

	Introduction
	Related Work
	Privacy-Preserving Algorithms for Smart Gird
	Outsourcing Algorithms for Modular Exponentiation

	System Model and Definition
	System Model and Threat Model
	Rand Algorithm
	General Framework
	Security Requirements

	Algorithm
	Overview of Zuo's Algorithm
	Description of Outsourcing Algorithms

	Security and Complexity Analysis
	Security Analysis
	Verifiability Analysis
	Complexity Analysis

	Evaluation
	Numeric Analysis
	Performance Evaluation

	Conclusions
	References

